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Abstract— This paper proposes a new scheme coupling power
control with a minimum outage probability multiuser detector.
The resultant iterative algorithm is conceptually simple and finds
the minimum sum transmission power of all users with a set of
outage probability constraints. Bounds on the outage probability
expression are found that extend a previous result that did not
include receiver noise. These bounds are used to create a sub-
optimal scheme coupling power control and a MMSE multiuser
detector. This new problem becomes a variant of an existing
problem where outage probability constraints are first mapped
to average SIR threshold constraints. Simulation results are
presented showing the closeness of the two schemes and speed
of convergence.

I. INTRODUCTION

Power allocation is an effective way to improve the per-
formance of wireless communication systems. It can mitigate
the near-far problem occurring when a nearby interferer
disturbs the reception of a remote user, whose desired signal
is attenuated to a greater extent. Careful power allocation
can also increase utilization in interference-limited systems
such as CDMA, or those multiple access systems employing
frequency reuse amongst cells, as in FDMA. Finally, by
allocating minimum power across all users, battery life of
mobile devices will be extended: users only need to expend
sufficient power for acceptable reception as determined by
their quality of service (QoS) specifications such as FER, BER
or outage probability.

The power allocation problem has been studied extensively
as an eigenvalue problem for non-negative matrices [1]–[4], as
iterative Power Control Algorithms (PCA) that converge each
user’s power to the minimum power result [5]–[6], optimiza-
tion based approaches [7]–[9] and other variations [10]–[12].
A useful framework for uplink cellular power control is given
in [13].

Much of this previous work deals with invariant channel
models. Any power control scheme that attempts to follow
fast fades would need to be highly efficient to be implemented
in practice, or incur a power penalty due to intense signal
processing and may require frequent communication with its
assigned base station.

Of particular interest is the work presented in [8] and [9].
In [8], a scheme whereby the statistics of the received signal
to noise ratio (SIR) are used to allocate power, rather than an
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instantaneous SIR. The allocation decisions can then be made
on a much slower time scale (following log-normal shadowing
variations for instance). In [9], an optimization problem is
considered using average SIR which yields locally optimal
solutions.

In a multiple access system, multiuser detection (MUD) can
be used to further enhance the performance of wireless systems
by exploiting the structure of the multiple access interference
[14]. The optimal MUD is near-far resistant however has expo-
nential complexity with the number of active users. The decor-
relating detector, with polynomial complexity, can eliminate
multiuser interference entirely at the expense of enhancing
receiver noise power [15]. Furthermore, in a CDMA system,
the noise enhancement increases as the utilization increases
until the detector becomes unusable. Minimum mean squared
error (MMSE) detection [16] is based on the minimization of
the expected squared error between a transmitted symbol and
the received signal. It is also near-far resistant and reduces
to the decorrelating detector as the AWGN power is zeroed.
The MMSE receiver is considered a compromise between the
matched filter and decorrelator.

Traditionally, power allocation and multiuser detection were
considered separately. Power allocation assumed a fixed re-
ceiver structure and multiuser detection assumed fixed user
transmitter powers. Recent work [17]–[19] has focused on the
problem of jointly optimizing both power and linear receivers
to obtain the benefits from both power allocation and MUD.

The main contributions of this paper are:
1) Design of a conceptually simple, iterative algorithm that

minimizes the sum power of all users subject to outage
constraints. The optimization is performed on choice of
user powers and linear multiuser receivers. This problem
reduces to that considered in [8] if background noise is
neglected and linear receivers fixed.

2) A new sub-optimal iterative PCA-MUD where outage
constraints are first mapped to average SIR threshold
constraints. Such a mapping permits the use of a variant
of an existing combined PCA and MMSE MUD given
in [17].

Simulation results are also provided comparing both methods.

II. SYSTEM MODEL

In this paper, we consider the uplink in a synchronous
direct sequence CDMA communications system with K users
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and a processing gain of N . We assume a BPSK modulation
scheme and a N -dimensional chip matched filter vector for
each symbol interval, given by

ri =
K∑

j=1

√
GijFijPjbjsj + n (1)

where GijFijPj is the total received power from user j,
with transmit power Pj . GijFij represents the instantaneous
channel gain of user j to the assigned Base Station (BS) of user
i. The data bits bj take on values of ±1 with equal probability,
sj is the N -dimensional spreading sequence of user j, and n
is AWGN with zero mean and covariance σ2I. We assume
fixed spreading sequences, with elements of sj taking values
±1/

√
N .

Following the conventions of [8], we assume Gij is the
positive slow-varying path gain of user j to the assigned Base
Station (BS) of user i, excluding any fading. The analysis that
follows holds only over a time scale where factors affecting
Gij do not change significantly. An adaptive channel estimator
can be utilized to reassess the allocation of powers modifying
the following work to create an adaptive PCA.

The terms Fij model fast time scale Rayleigh fading and are
assumed to be unit mean independent exponentially distributed
random variables. In this so called Rayleigh/Rayleigh fading
environment, the received power has mean value

E[GijFijPj ] = GijPj .

Let ci denote the receiver filter coefficients for user i at its
assigned BS and c = [c1, . . . , cK ]. The filter output of user i
at its assigned BS is given by

yi = c�
i ri =

K∑

j=1

√
GijFijPj(c�

i sj)bj + ñi

where ñi = c�
i n is N(0, σ2c�

i ci).
Unlike the development in [8], we will not neglect receiver

noise as it will be crucial to the PCA developed below.

III. OUTAGE PROBABILITY AND CERTAINTY-EQUIVALENT

MARGIN WITH NOISE

To simplify notation in this section, we shall drop the
receiver filter terms (c�

i sj)2 without a loss of generality
(since we can absorb them into the Gij terms). They will
be important in Section IV.

A. SIR and Outage Probability

The SIR, γ, of the ith mobile is given by

γi =
GiiFiiPi∑

j �=i GijFijPj + σ2 . (2)

The outage probability of user i, denoted Oi, is defined as
the proportion of time that some SIR threshold γth

i is not met

for sufficient reception at the BS receiver. By careful choice
of γth

i , we can set a QoS for each user. Oi is given by

Oi = Pr
(
γi ≤ γth

i

)

= Pr



GiiFiiPi ≤ γth
i





∑

j �=i

GijFijPj + σ2








 . (3)

The outage probability for the ith user is given by (see [8])

Oi = 1 − exp
(

−σ2γth
i

GiiPi

) ∏

j �=i

1

1 + γth
i GijPj

GiiPi

. (4)

B. Certainty-Equivalent Margin with Noise

The Certainty-Equivalent Margin (CEM) was defined in [8]
without noise. It represents a margin of error for average SIR
when representing the system by a certainty-equivalent form
(with all statistical variation in signal and noise power ignored
and replaced with their expected values.)

We will take average SIR (SIR) to mean the expected value
of the ith mobile received power over the expected value of
the interference from the K −1 other mobiles and background
noise. This is also the certainty-equivalent SIR and is given
by

SIR = γce
i =

E[GiiFiiPi]
E[

∑
j �=i GijFijPj + σ2]

=
GiiPi∑

j �=i GijPj + σ2 .

(5)
As with [8], we also define the CEM (with noise) as the ratio

of the certainty-equivalent SIR to the average SIR threshold,

CEM σ
i = γce

i

γth
i

= GiiPi

γth
i {∑

j �=i GijPj+σ2} . (6)

C. Relation Between the CEM σ and Outage Probability

Using the following result, we derive some bounds between
the CEM σ and outage probability. For z1, ..., zn ≥ 0 we have,

1 + k +
n∑

i

zi ≤ ek
n∏

i

(1 + zi) ≤ ek+
∑ n

i zi (7)

where k is some constant.
From (4), we have

Oi = 1 − exp
(

−σ2γth
i

GiiPi

) ∏

j �=i

1

1 + γth
i GijPj

GiiPi

= 1 − 1

exp
(

σ2γth
i

GiiPi

)∏
j �=i 1 + γth

i GijPj

GiiPi

.

Using the left-hand side inequality in (7),

Oi ≥ 1 − 1

1 + σ2γth
i

GiiPi
+

∑
j �=i

γth
i GijPj

GiiPi

= 1 − 1

1 +
γth

i {∑
j �=i GijPj+σ2}
GiiPi

=
1

1 + CEM σ
i

.
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Repeating the procedure above for the right-hand side inequal-
ity in (7),

Oi ≤ 1 − 1

exp
(

σ2γth
i

GiiPi
+

∑
j �=i

γth
i GijPj

GiiPi

)

= 1 − 1

exp
(

γth
i [∑ j �=i GijPj+σ2]

GiiPi

)

= 1 − e−1/CEMσ
i .

The upper and lower bounds on outage are thus,

1
1 + CEM σ

i

≤ Oi ≤ 1 − e−1/CEMσ
i (8)

which have the same form and tightness in the region of
interest as the noiseless case in [8].

Note that CEM σ
i (or average SIR with a fixed γth

i ) and
outage probability are inversely proportional. As we increase
the CEM σ

i (or SIR), we get a lower outage probability and
vice-versa.

IV. POWER CONTROL ALGORITHM

A. Problem Definition

The aim of the PCA is to find the powers, Pi, and filter
coefficients, ci for i = 1, ...,K, such that the total power
transmitted by all users is minimized while all outage con-
straints are met. i.e., Oi ≤ Ot

i . Stating this as an optimization
problem, we have

min
P,c

K∑
i=1

Pi

s.t. 1 − e
−σ2(c�

i ci)γth
i

Gii(c
�
i

si)
2Pi

∏
j �=i

1

1+
γth

i
Gij(c�

i
sj)2Pj

Gii(c
�
i

si)
2Pi

≤ Ot
i ,

Pi ≥ 0, ci ∈ R
N i = 1, ...,K

where we used (4) with the receiver filter included and Ot
i

are target outage probability constraints. It can be shown that
this problem is equivalent to the following, where the inner
optimization has been inserted into the constraint set. See [17]
for a similar refinement.

min
P

K∑
i=1

Pi

s.t. min
ci∈RN




1 − e
−σ2(c�

i ci)γth
i

Gii(c
�
i

si)
2Pi

∏
j �=i

1

1+
γth

i
Gij(c�

i
sj)2Pj

Gii(c
�
i

si)
2Pi




 ≤ Ot
i ,

Pi ≥ 0 i = 1, ...,K
(9)

B. Optimal Power Control

In this section we describe an iterative algorithm to solve
the optimization problem (9).

Taking the log of the outage constraint from (9) and re-
arranging yields

wi + G̃iiPi

γth
i

∑
j �=i log

(
1 + G̃ijPj

G̃iiPi
γth

i

)

G̃iiPi

γth
i

≤ log
(

1
1 − Ot

i

)

with wi = σ2(c�
i ci), G̃ij = Gij(c�

i sj)2, and finally

Pi ≥
wi + ĜiiPi

∑
j �=i log

(
1 + G̃ijPj

ĜiiPi

)

Ĝii log
(

1
1−Ot

i

) (10)

where Ĝii = G̃ii

γth
i

.

If we view (10) as representing a set of quasi-interference
constraints on the power vector P, we can define a new PCA
where each user i iteratively attempts to compensate for the
interference. At convergence, we would like each of the outage
constraints to be met.

We define

Ii(P, ci) =
wi + ĜiiPi

∑
j �=i log

(
1 + G̃ijPj

ĜiiPi

)

Ĝii log
(

1
1−Ot

i

) (11)

Ti(P) = min
ci

Ii(P, ci) (12)

where we let Ii(P, ci) = Pi be (10) replaced with equality.
We shall now refer to Ii(P, ci) as the interference function to
maintain consistency with the framework in [13].

Furthermore, we propose the PCA

P(n + 1) = T(P(n)) (13)

where T(P) = [T1(P), . . . , TK(P)]� and is initialized with
powers set to the receiver noise level Pi(0) = σ2,∀i and
matched filter coefficients ci(0) = si,∀i.

This PCA is similar in form to that in [17], however we are
dealing with outage and average quantities on a slower time
scale. In Section IV-C, we will see how a sub-optimal variant
of (11)-(13) can be reduced to a PCA that is similar in form
to [17].

Since our PCA (13) is of the standard form given by
[13], Theorem 1 proposes that (12) is a standard interference
function and thus the PCA converges to a fixed solution. The
proof is based on the three properties of a standard interference
function given in [13].

Theorem 1: T(P) is a standard interference function.
Proof: We recall that Gij > 0, Pi > 0 and 0 < Ot

i < 1.
Thus for any fixed ci, Ii(P, ci) > 0. Therefore Ti(P) =
min
ci

Ii(P, ci) is positive and T(P) is also positive.

To prove monotonicity of (12), we will first show that (11)
is monotonic for any fixed ci.

Note that Ii(P, ci) is monotonic in all Pj , j 
= i – we
only need to prove monotonicity for Pi. This is equivalent
to proving monotonicity of

y = x log
(

1 +
k

x

)
(14)

where x = ĜiiPi and k = G̃ijPj is a constant.
It can be shown that (14) is monotonic for k > 0. We have

k = G̃ijPj which is positive, thus (11) is monotonic.
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If c∗
i = arg min

ci

Ii(P, ci), then we have

Ti(P) = min
ci

Ii(P, ci)

= Ii(P, c∗
i )

≥ Ii(P′, c∗
i )

≥ min
ci

Ii(P′, ci)

= Ti(P′)

Thus Ti(P) ≥ Ti(P′) and (12) satisfies the monotonicity
property.

To prove scalability, we note that for a fixed ci, we have

Ii(αP, ci) =
wi + αĜiiPi

∑
j �=i log

(
1 + αG̃ijPj

αĜiiPi

)

Ĝii log
(

1
1−Ot

i

)

< αIi(P, ci)

since the α’s cancel in the log term and the noise wi is non-
zero.

If again c∗
i = arg min

ci

Ii(P, ci), then we have

αTi(P) = min
ci

αIi(P, ci)

= αIi(P, c∗
i )

> Ii(αP, c∗
i )

≥ min
ci

Ii(αP, ci)

= Ti(αP)

Thus αTi(P) > Ti(αP) and (12) satisfies the scalability
property.

Since T(P) is a standard interference function, the PCA
(11)-(13) converges to a final solution P∗ = T(P∗). This so-
lution is the minimum power required to meet all users’ outage
constraints. The filter coefficients converge to a new type of
MUD, the Minimum Outage Probability (MOP) receiver.

C. Average SIR and Outage Probability

To meet our outage probability constraints, we require that
Oi ≤ Ot

i for all i. Combining this inequality with the upper
bound in (8), we can define a new constraint on CEM σ

i that
when met, will guarantee that our original outage constraints
are also met:

Oi ≤ 1 − e−1/CEMσ
i ≤ Ot

i i = 1, . . . ,K. (15)

Rearranging the right-hand side of (15) yields,

e−1/CEMσ
i ≥ 1 − Ot

i

1
CEM σ

i

≤ log
(

1
1 − Ot

i

)

CEM σ
i ≥ 1

log
(

1
1−Ot

i

)

γi ≥ γth
i

log
(

1
1−Ot

i

)

= Γth
i

where we have used the definition of CEM σ
i from (6) and

defined a new quantity,

Γth
i =

γth
i

log
(

1
1−Ot

i

) (16)

called the outage-mapped average SIR threshold. We can now
define a new problem,

min
P,c

K∑
i=1

Pi

s.t. Pi ≥ Γth
i

Gii

∑
j �=i Gij(c�

i sj)2Pj+σ2(c�
i ci)

(c�
i si)2

Pi ≥ 0, ci ∈ R
N i = 1, ...,K

where we have rearranged (5) to form a SIR constraint. This
problem is mathematically equivalent to the power control
problem in [17], however we consider average channel gains
and the outage-mapped average SIR threshold Γth

i as param-
eters.

In a similar fashion to [17], the problem is equivalent to

min
P

K∑
i=1

Pi

s.t. Pi ≥ Γth
i

Gii
min

ci∈RN

∑
j �=i Gij(c�

i sj)2Pj+σ2(c�
i ci)

(c�
i si)2

Pi ≥ 0 i = 1, ...,K
with an associated PCA given by,

Ĩi(P, ci) =
Γth

i

Gii

∑
j �=i Gij(c�

i sj)2Pj + σ2(c�
i ci)

(c�
i si)2

T̃i(P) = min
ci

Ĩi(P, ci) (17)

P(n + 1) = T̃(P(n))

where T̃(P) =
[
T̃1(P), . . . , T̃K(P)

]�
.

In [17], it was shown that the MMSE filter coefficients ci

minimize (17) and so we have the following iterative algorithm
for the above problem:

ĉi =
√

Pi(n)
1 + Pi(n)s�

i A−1
i si

A−1
i si (18)

Pi(n + 1) =
Γth

i

Gii

∑
j �=i Pj(n)Gij(ĉ�

i sj)2 + σ2(ĉ�
i ĉi)

(ĉ�
i sj)2

(19)

where Ai =
∑

j �=i PjGijsjs�
j + σ2I is updated on each

iteration and the PCA is initialized with powers set to the
noise level and matched filter coefficients. The convergence
proof of this PCA mirrors that in [17].

Since we have used the upper bound on Oi in the derivation
above, the solution is sub-optimal, however we guarantee the
outage constraints from the right-hand side of (15). Recall that
in the region of interest, the outage bounds are tight, and so we
expect that this PCA will result in nearly optimal performance
as compared to the optimal MOP PCA.

V. SIMULATION RESULTS

Our simulation considers a single circular CDMA cell with
radius 1km. We assume uniform location of users within the
cell who are subject to distance dependent loss (loss exponent
4) and log-normal (zero mean, 8dB variance) shadowing.
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Fig. 1. Total transmitter power with 10-40 users.

A processing gain of 40 was chosen with AWGN power
equal σ2 = 10−13, corresponding to approximately a 1MHz
bandwidth.

We defined three classes of users, each having outage
probability and SIR threshold pairs as {(5%, 10.53dB), (10%,
8.40dB), (20%, 6.79dB)}. We assign 50% of users to the first
class, 25% to the second and the remaining to the third.

User signature sequences were chosen randomly, and initial
filter coefficients set to the matched filter. Powers were set
to the noise power σ2 = 10−13 in preparation for the first
iteration.

For K = 10, 20, 30, 40 users, Fig. 1 shows in log scale
the sum power of all users as a function of the iteration step.
The difference in powers between the optimal MOP PCA and
MMSE PCA are almost indistinguishable, verifying earlier
claims on the tightness of the bounds.

Figure 2 considers a system of 40 users. It shows the
convergence of the outage probabilities for each user as a
function of the iteration step. We clearly see the three outage
probability classes (5%, 10% and 20%) at convergence.

VI. CONCLUSION

This paper introduced a new power control problem which
aims to jointly optimize user powers and linear receiver filters
according to outage constraints. An iterative algorithm to solve
this problem was developed and convergence proved. A bound
on the outage probability enabled a mapping to take place
between outage and an average SIR threshold. From this, a
sub-optimal PCA-MUD was developed that utilized the well
known MMSE receiver. The approximation to the optimal
solution was found to be exceptionally close in the CEM σ

region of interest.
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