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Abstract— We extend our previous work on optimal
dynamic resource allocation in wireless environments to
incorporate prediction of the frequency-selective OFDM
channel. We briefly summarize our previous work and
its exploitation of convexity for the resource allocation
problem in point-to-point digital wireless communication
links. We introduce channel prediction to overcome la-
tency associated with symbol recovery, channel estima-
tion, and channel-state feedback, which previously re-
stricted resource allocation algorithms to implementa-
tion in slowly-fading channel environments. The resource-
allocation framework is augmented with channel prediction
functionality, and we demonstrate its use with a channel
model exhibiting frequency-selective fading with a limited
time autocorrelation. Results are presented, illustrating
successful implementation, and we conclude with an outline
of the course of future investigation to make channel-
prediction-based resource allocation a viable technique in
practical OFDM systems.

I. INTRODUCTION

Orthogonal Frequency Division Modulation (OFDM)
systems are being rapidly developed into platforms to
service the exploding bandwidth demands in emerg-
ing wireless communication networks. Contemporary
OFDM implementations include the IEEE 802.11 WiFi
specification, as well as the digital video and audio
broadcasts in Europe and worldwide.

In such systems, the wideband transmission channel
is implemented as a collection of (independent) nar-
rowband sub-channels, each of which conveys a por-
tion of the total payload data. These systems typically
utilise a fixed resource allocation scheme, in which
the transceiver operates using pre-assigned transmission
rate/power levels. This helps account for the dynamic
behavior of the wireless environment by allocating over-
head power levels so that the received signal levels
(in the presence of time-varying channel conditions)
are sufficient to provide some desired overall quality
of service (QoS) level. Although this performs accept-
ably for broadcast environments, the nature of mobile
communications motivates an alternate approach. The
energy storage constraints typically imposed by mobile
networking terminals, as well as the point-to-point com-
munications scenario typically encountered motivates the
development of an optimised resource allocation scheme.
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We consider point-to-point digital OFDM communi-
cations in the presence of slowly-developing frequency-
selective fading. We assume that the fading process
has a non-zero time coherence, and that zero cross-
correlation is observed in observations of the fading
process across different subchannels!. We illustrate the
exploitation of these properties to predictively perform
resource allocation in such environments.

Our consideration of predictive resource allocation
arises from the rapid channel quality variations as-
sociated with the mobile wireless channel, in which
the time required for channel estimation are significant
when compared with the coherence time of the channel.
This results in outdated channel state information for
transmission resource allocation. We exploit the time-
correlation of the fading process and apply Kalman
filtering [1] to provide a forecast of the fade values based
on previous (noisy) observations of the fading process.
This work is presented as an extension of previous work
on optimal resource allocation in the presence of fast
fading and composite fading in a non-predictive scenario.

The next section briefly describes the resource alloca-
tion (or loading) framework and highlights key aspects.
We characterise the prediction as a filtering operation,
and illustrate the resource allocation problem under
such conditions, where the channel is not restricted
to be statistically stationary. A p-vector Gauss-Markov
fading channel model is implemented for evaluation of
its performance and results are presented. Performance
limitations of our framework are presented, along with an
assessment of the consequences of operation in hostile
environments. We then discuss important future direc-
tions of this preliminary work and offer some conclu-
sions.

II. LOADING FRAMEWORK

We model an OFDM channel as a collection of p
discrete narrowband subchannels, each of which affects
the received signal power, as represented by a time-
varying fading coefficient drawn from a statistical fad-
ing process. The OFDM channel fade process may be
represented by the random vector h € RP assuming
values h(n), and where h;(n) denotes the value of

the gain tap experienced on the ** subchannel during

!Whereas uncorrelated assumption this is not true in practice, it
serves to simplify our initial model in order to treat each subchannel
separately. With correlated slow-fading processes, we can only expect
to do better at tracking and predicting the fade provided some infor-
mation on the bandwidth coherence function
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transmission of the n** symbol. It is assumed that

the transmission occurs with negligible inter-carrier and
inter-symbol interference.

In order to achieve data transmission over such a
network with a particular QoS, it is required that the
receiver signal-to-noise ratio (SNR) meets or exceeds a
certain threshold (SNRyy), which is dependent upon the
modulation scheme employed and selected sub-symbol
rate. This phenomenon is exploited by the implemen-
tation of adaptive modulation in time-varying channels,
in which the modulation rate R;(n) and transmit power
P;(n) on the i'" subchannel are selected such that the
SNRyy associated with the desired QoS will be satisfied.
The (R;(n), P;(n)) operating point selected for the *"
subchannel during the n‘" interval depends on the value
assumed by the subchannel fade h;(n). It is assumed that
the rate assigned for transmission on a given subchannel
is selected from some closed set (which may or may not
be constrained to integer values) and that it is possible to
abandon a given subchannel by the assignment of zero
bits. For now, we assume that it is possible to select
any non-negative transmit power P;(n) with which to
transmit a given sub-symbol, subject to some overall
maximum power constraint Py,x. Hence,

0 < Pi(n) < Puax » Ri(n) € {0,71,-- ,rp1}, Vi,n
()

The aim of the resource allocation algorithm is to
accept each h(n) and select the rate/power conditions for
transmission of the OFDM symbol x(n) to achieve the
desired QoS. We select error probability P, as the QoS
metric for our analysis®>. For a single subchannel, the
resource allocation is trivial and the maximum allowed
rate is bound only by the power constraint P; < Pyax,
SNRyy(r;) thresholds, and h;(n). Optimisation over the
p sub-symbols introduces additional complexity, as each
P; is now bound by the sum of the other (P;;)’s such
that Pyax > Pr = >0 | P,. The total rate R; of the
OFDM symbol is defined as Ry := ) & | R;.

Two possible (and popular) approaches to loading an
OFDM system are considered: Rate Maximisation and
Margin Maximisation. Rate Maximisation Allocation
(RMA) aims to maximise the symbol rate subject to total
symbol power F,x and subchannel error probability
P., constraints. Hence,

max Ry st Pr < Py and P.; <P..; Vi

- ©)

For Margin Maximisation Allocation (MMA), the per-
formance margin is defined as the excess SNR achieved
during transmission of a digital symbol, relative to the
minimum required SNR to achieve a particular P ;.
Since margin represents a scaling of the allocated P;’s,
the solution to this problem may be found by evaluating
the minimum power allocation required to satisfy the rate

2P, may be defined in terms of bit error rate (BER) or the symbol
error probability (SEP) or an outage probability.

Rpgs and P 4

min Pr s.t. Ry = Rpgs and Pe; < Pey; Vi (3)

and then scaling the power of this solution appropriately
until the total power budget is used. Assuming that the
information in each subchannel is equally important,
equal margin may be allocated across all subchannels
by factor ¢ = Pyax/Pr.

The following analysis is detailed in [2]- [3]. We
consider the MMA problem defined in (3), and assume
a convex rate-power relationship as is true in general.
We can use Lagrange multipliers and the Kuhn-Tucker
conditions to characterise the optimal solution. The con-
strained optimisation problem can be converted into an
unconstrained optimisation problem (4), where J(\) is
the Lagrange cost and A > 0.

N N
min J()\) = Z P, + A <RDES - Z Rz) (4)
i=1 =1

For fixed A, J(\) corresponds to the minimum power
required to satisfy some Ry, and which is achieved with
a same-slope solution (gg = )\) for each subchannel
[2]. The algorithm’s goal is to find a A* which achieves
the target Rpgs.

As the r;’s are drawn from a discrete set, the (digital)
solution may be found by relaxing the solution of the
continuous problem to find the appropriate (R;, P;)
values. This discrete relaxation does not alter the con-
vexity of the objective function, and the optimisation
for this problem follows as above, except that in our
consideration the derivatives are replaced by differentials
d;(r;), the (Apower)/(Arate) between adjacent operating
points r;_1 and r;. Each segment of the continuous-
valued A range is associated with an operating point

solution for target rate,
oy di(rg) <A< di(rjta)
R = { 0, A< di(r). )

Considering the SNRyy(7;) to fulfil the target P, for
a particular rate r; as defined by,

2
— P,-CNR, ©)

it is noted that the P; required to achieve SNRTH(rj)
is inversely proportional to the channel-to-noise ratio,
CNR;. Provided that the observed values of CNR; affect
signal transmission independently of other properties of
the subchannel, the operating points may be defined in
terms of SNR/rate tuples. This modifies the criteria for
operating point selection (7), where 3(r;) := d;(r;) -
CNR; .

’f‘j,
{7

These boundaries are no longer subchannel dependent,
which greatly reduces the computation load of imple-
mentation [3]. For a given A\, L — 1 lookup table

A

A 1
By, S ONR: < B(r) 7
A1 @)
B(r1) CNR;*
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boundaries may be computed, and (CNR;)~! is used
to find R;.

This simplification depends on an underlying scalabil-
ity of the desired rate/power points across subchannels,
in a unit-fading environment (AWGN). This may be
formally stated; A loading problem has scalability across
subchannels if the QoS can be written as a function of
only (R; = ;) and (¢, - P;) for all i,j, where ¢ is
a known parameter which completely characterizes the
exact or statistical nature of each subchannel. If the
channel conditions are known, then (; is the CNR; as
above. In the case of a fading environment, (; may be
related to a statistical parameter of the fading process
[3]. In the case where the exact channel conditions are
replaced by a reliable estimate, then this estimate may
be used to determine the (; parameter.

The loading algorithms in [2]- [3] are not only op-
timal, but are very computationally efficient with run
times exhibiting O(p) complexity. A major factor in the
complexity reduction is the scalability property, and this
is expected to hold in many predictive scenarios/models
as well. In addition, our loading approach offer a low-
complexity ability to track small or moderate channel
changes, which is critical for a predictive channel sys-
tem.

III. CHANNEL PREDICTION

We consider the adaptation of our framework to
integrate channel prediction. In the previous sections,
we outlined that the solution to the resource allocation
problems (2), (3) could be evaluated by comparing the
inverse channel to noise ratio (a linear function of the
fade intensity observed on the channel and the observed
channel noise power) with the scaled rate/power deriva-
tive of the objective function (5).

We assume our OFDM channel can be described as
the product of some fast-fading process and one which
produces slow fading. We assume that the slow fading
process is dominant and independent of the fast-fading
process, which is assumed to vary so quickly that it
is impossible to track or predict for resource allocation
purposes. The effects of the fast-fading process can be
averaged out to focus solely on the slow-fading process
for our loading problem. The dominant (slow) fading
process produces observations which exhibit a time-
autocorrelation function that does not rapidly fall to zero.
This time-correlation may be exploited by the implemen-
tation of predictive filtering to provide a reliable estimate
of channel conditions during the future transmission
instant of a desired symbol. This estimate may then
be used to determine resource allocation parameters for
the transmission of this future symbol. The appeal of
such a predictive resource allocation is that it allows an
appreciable time to lapse between the sampling of the
channel state (during which time the resource allocation
algorithm amy be executed, and the solution passed
from receiver to transmitter node) and the realisation

of the predicted channel state, which is essential for
implementing adaptive modulation in rapidly-varying
channel environments. Such a scheme would adaptively
allocate transmission resources such that the solution
of the allocation problem would be closely matched
with the state assumed by the channel at the symbol
transmission instant.

Our aim is to provide reliable estimates of the val-
ues to taken by the channel fading process s during
the transmission of a given symbol x, based on prior
observations. Recent progress has been made in the
application of predictive filters to estimate future values
of the channel fading process observed on wireless
channels [4], [5]. Linear Recursive-Least-Square error
(RLS) filtering was utilised in [4], and Kalman filtering
was employed in [5]. We implemented Kalman filtering,
as this provides better performance than linear filters in
the presence of statistically non-stationary environments,
and those with significant added noise [6].

In our OFDM channel model, we assume that per-
fect receiver phase compensation is possible, or that
the receiver is able to remove transmission phase-
distortion effects. We assume that the wideband channel
experiences time-varying frequency-selective fading and
that the fading process affecting this channel exhibits
correlation between successive symbol intervals. No
long-range dependency is assumed for the fading pro-
cess. This allows the framework to be applicable across
a wide range of fading process models. Additionally, no
assumptions will be made at this stage regarding the
correlation of the fading processes observed on any pair
of subchannels.

We characterise the channel as introducing fading such
that the exponent of the actual fade coefficient assumes
values derived from a Gauss-Markov random process.
We can characterise this exponent as s(n) € RP, where

s(n) = As(n — 1) + Bu(n) 8)

where A € RP*P ig the (known) state transition matrix,
B € RPXP js the (known) input gain matrix, which
modulates the Gaussian excitation process, u(n) € RP.
Without loss of generality, we assume that u «~ N (0, Q).
The time autocorrelation of s falls rapidly:

Ry :=E[s(n)s(n+7)]=0, V|7[>2 (9

The initial state vector, s(—1) «~ N(us, Cs) is also
assumed independent of all u(n). Each realisation (s(n))
is observed in the presence of a zero-mean additive white
noise process (w), the observations (h(n) € RP*P) thus
given by

h(n) = D(n)s(n) + ¢(n) (10)
where D(n) € RP*P is the (known) observation matrix,
and the perturbation vector €(n) «~ N(0,C(n)). The
Gaussian nature of the perturbation prevents any direct
prediction of h(n): the expected value of the predicted
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h(n) will therefore be derived from a prediction of the
s variables.

Following [7], the minimum-mean-square error
(MMSE) estimate of s(n), denoted §(n), based on
previous observations of x(:) is provided by Kalman
filtering:

1) Prediction:

Sn|n—1)=A8n-1|n-1) 1D

h(n|n—1)=D3n|n—1) (12)

2) Miniumum Prediction MSE (MPMSE) Matrix :

M(n|n-1)=AMMm-i|n-1)A’+BQB’
13)

3) Kalman Gain Matrix:
Kmn)= M |n—-1)D'(n)

[C(n) + D(@)M(n | n—1)D'(n)] "
(14)

4) Correction:
S(n|n)=8Mn|n—-1)+
K(n)[x(n) —D(@)$(n |n —1)]
s)
5) MMSE Matrix :

M(n | n) = [I - K(n)D(n)]M(n |n—1) (16)

The algorithm was initialised with §(—1 | —1) = pus
and M(—1 | —1) = Cs. To implement longer-range
prediction, (17) gives the MMSE estimate of y(d+n) |
d > 0.

E[h(n + d) | x(0),--- ,x(n)] = DAY '§(n +1)
(17)

IV. PREDICTIVE LOADING

We applied the framework developed above to im-
plement prediction in the presence of Gauss-Markov
fading (8), (10). From (9),we observed that the co-
herence time of such a channel limits the filtering to
single-step prediction. Our prediction will therefore be
refreshed at each symbol interval. Such rapidly-decaying
time correlation would not typically be encountered in
practise, but serve to establish reasonable worst-case
bounds on the operation of predictive allocation schemes.
The increased coherence time of more practical channels
would enable longer range prediction to be implemented
(17), and would reduce the frequency of the channel
estimation and prediction operations.

We considered an OFDM system with p = 128
subchannels. Channel effects varied the receive power
by a factor h, as given in (10). We assumed reception
in a unit noise power environment, and thus the values
h(n) also correspond to receiver SNR. For stability,
A = 0.98I, where I € RP*P is the identity matrix. We
also set B = I, and the observer was given access to all

state variables (D = I). We assumed a worst-case (in
terms of computation load) uncorrelated channel fading.
Following the Log-Normal shadowing model observed in
[8], we selected u to be a zero mean Gaussian random
vector with a variance Q = o2 I, where 012‘7’ = 11dB.
The perturbation € was also assumed to be a zero-mean
uncorrelated Gaussian random vector of length p, and
was assigned a variance of 10~3. The Kalman prediction
algorithm (11)-(16) was initially established with a unit
prediction horizon - the algorithm was given access to
variables u(7) and h(r) (0 < 7 < n) to determine
s(n+1).

We desired to implement the MMA (3) to achieve
a target symbol rate of Ry = 384 bits/symbol, which
would require an average value E[R;] = 3 bits. Our
target error probability was P, = 1%. A sample of the
results (for only a subset of four subchannels) is shown
in Fig. 1.

Instantaneous CNR

Assigned Rate

23
Symbol Index

1: Predicted CNR and Resulting Rate Allocation

Fig. 1A (top diagram) shows a sample of the predicted
values of the time development of the channel gain
conditions observed in four subchannels (: = 1 — 4)
(ordinate) plotted against an index of time (abscissa).
Fig. 1B (lower diagram) shows the corresponding MMA
rate allocation for these subchannels for the same time
interval as above. The thresholds indicated by SNR(1)
and SNR(6) correspond to the SNRyy values for r; =
1 and r; = 6 respectively, at the target P.. Other
thresholds were not displayed for the sake of clarity,
and lie between these two values. No graphical results
were presented for the prediction error process (X (n) :=
h(n)-— ﬁ(n)) as its time development resembled a zero-
mean Gaussian random process with covariance on the
order of 10~3 along the main diagonal, and zero for all
off-diagonal elements.

From Fig. 1, we observe the operation of the dynamic
MMA scheme, which varied each subsymbol (R;) to
realise the required R at the target P.. The subchannel
(P;)’s are scaled to achieve a uniform margin across
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subchannels and hence the values of P;(n) were not
presented. It was observed that the changing values
observed for h values produced appropriate loading
conditions (R;(n), P;(n)), and that instances of h;(n) <
SNR(1) resulted in channel abandonment. These and
other observations indicate that the MMA is correctly
implemented in this environment.

We also noted that the average transmit power required
to satisfy similar P, requirements with fixed resource
allocation at an equivalent symbol rate (here, R; = 3bit)
was much greater the maximum P; values allocated
using MMA. These observations indicated correct im-
plementation of predictive resource allocation in OFDM
communications over the wireless mobile channel.

V. ANALYSIS
A. Prediction Operation

The Kalman predictor is an implementation of an IIR
filter. Steady-state analysis of the predictor operation
(following [7]) yields a measure of error performance.
From (8), as n — oo, the Kalman filter asymptotically
becomes an LTI filter provided that C(n) = C. As
n — oo we denote K(co) as the Kalman gain, M(c0)
as the MMSE, and M, (c0) as the MPMSE (steady-state
values). It has been shown that

M(oo) =C(AM(0)A’ + Q)-
(AM(c0)A'+Q+C)

and that the steady-state transfer function is

1 3U8)

Hoo(z) = K(o0)(T— AT —K(oo))z V)" (19)
The innovation® of the output is therefore,
h=h(n)—I8n|n-1) 20)

=h(n)—AS(n—1|n—-1)A
Considering §(n | n) (as n — oo0) as the output of a

filter with gain Hoo(z) excited by x(n), we note that

the transfer function relating h(n) to h(n) is
Hu(z) = (T— Az 1) (I — A(T—K(c0))z )"
(2D
The PSD of h(n), Znn(f), is given in (22), and the PSD
of the prediction filter output* is given by (23).
gzhh(f) = yss(f)—’_c

Pss(f) = Mo (f) Pss(£)H, (f)

Denoting Cy; as the covariance of h, the prediction filter
error PSD is thus

Pii(f) = Cp (Hw (E)H (£))

As n — oo therefore, the PSD of the filter error be-
comes flat, and its magnitude is less than the innovation
variance [7].

(22)

(23)

24

3INNOVATION is defined as the “new” information in the actual
output value; orthogonal to all previous observations of h
4where Hu (f) = Huw (exp(j2f)).

B. Loading Operation

The reduction of the steady-state PSD allows success-
ful implementation of this method of channel prediction,
even in cases where the system parameters are non-
stationary (which may be observed when mobile users
move through varying environments). For Gaussian in-
puts, the error of the prediction filter will be a white zero-
mean Gaussian random vector, having covariance less
the covariance of the prediction filter input. It is trivial to
show that the predicted value of x will exceed its actual
value approximately half of the time, which will allow
the algorithm to allocate resources in a more conservative
manner than actual conditions would require, resulting in
no QoS violations in the system.

The variance of the predictor error may be minimised
when the filter is allowed to sample h(n) frequently
compared to its rate of evolution. This reduces the
variance in successive h(n) values, by reducing the
range of possible variation between successive samples,
increasing observed correlation. Sampling theory would
best guide the selection of an appropriate measurement
time horizon for observation of the fading process.
Fulfilment of this condition will produce optimal re-
source allocation.

VI. FUTURE WORK

This experiment outlined and assessed the perfor-
mance of a resource optimisation scheme based on
single-step prediction of a channel with especially short
coherence time. It is straightforward to develop the
introductory model introduced in this paper to for longer-
range channel prediction, and ultimately for the eval-
uation of the application of these methods to realistic
channel fading data. This will also allow us to accu-
rately determine the actual parameters of the prediction
error process () and to evaluate the performance of
procedures to mitigate error effects on the QoS of the
transmission link. Predicting too far ahead will have
consequences on performance due to higher prediction
error, while a short-range prediction may not still lag the
true channel in a practical system with latency. We plan
to analyse this tradeoff, and include practical limitations
such as a limited amount of noisy subchannel estimates.

We are also investigating the further optimisation of
the resource allocation algorithm by the analysis of the
time-varying optimal Lagrange parameter (\*(n), used
to determine the optimal resource allocation scheme for
transmission of symbolx(n)) and the implementation
of predictive filtering on this parameter as well. We
anticipate that successful implementation of this function
will further enhance computational efficiency of the
resource-allocation determination.

We are additionally investigating the performance of
predictive loading utilising alternate prediction schemes
(e.g. Wiener, Linear RLS filtering), in an effort to
determine an optimal, or an attractive near-optimal,
predictive resource allocation scheme for digital OFDM
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