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ABSTRACT 
 
Dead reckoning is the most commonly used predictive 
contract mechanism for the reduction of network traffic in 
Distributed Interactive Applications (DIAs). However, 
this technique often ignores available contextual 
information that may be influential to the state of an 
entity, sacrificing remote predictive accuracy in favour of 
low computational complexity. In this paper, we present a 
novel extension of dead reckoning by employing neural-
networks to take into account expected future entity 
behaviour during the transmission of entity state updates 
(ESUs) for remote entity modeling in DIAs. This 
proposed method succeeds in reducing network traffic 
through a decrease in the frequency of ESU transmission 
required to maintain consistency. Validation is achieved 
through simulation in a highly interactive DIA, and results 
indicate significant potential for improved scalability 
when compared to the use of the IEEE DIS Standard dead 
reckoning technique. The new method exhibits relatively 
low computational overhead and seamless integration with 
current dead reckoning schemes. 

 

1. INTRODUCTION 
 
Distributed Interactive Applications (DIAs) are virtual 
reality systems through which participants can share 
information via individual and collaborative interaction 
with each other and their environment [1]. They offer the 
realization of simulated virtual worlds that embody a 
modern extension of communication, encompassing the 
concepts of shared time, space and presence [2]. The 
definition of DIAs includes a wide range of applications 
that have seen rapid advances in technology and global 
popularity due to the widespread availability and ease-of-
use of the Internet [3, 4]. 

The two key factors that limit large-scale deployment 
of DIAs are network latency and bandwidth. Bandwidth 
refers to the rate at which data can be communicated per 
unit time between two end-points, while latency refers to 

the delay in communication. High latency and low 
network bandwidth capacity represent the largest 
contributors to the difficulties faced by DIAs in 
supporting dynamic shared state consistency, potential 
scalability and real-time interactivity. A wide variety of 
techniques exist that aim to reduce the amount of network 
traffic transmitted during the execution of a DIA [2-4]. 
One of the most commonly used techniques is the 
predictive contract mechanism known as dead reckoning. 

Formally defined within the IEEE Standard for 
Distributed Interactive Simulation (DIS) [5], dead 
reckoning reduces network traffic by preventing update 
packets from being sent if the local participant’s state has 
not varied from a low-fidelity model of that state by a pre-
determined error threshold. It often relies exclusively on 
the replication of instantaneous derivative information 
between controlling hosts for remote entity modeling. 
However, it ignores available contextual and a priori 
information that may be influential to the state of an 
entity, and sacrifices remote predictive accuracy in lieu of 
low computational complexity and resource usage [2]. 

This paper presents a novel extension of dead 
reckoning, termed neuro-reckoning, that uses neural-
networks to allow for expected future entity behaviour 
when transmitting entity state updates (ESUs). Each 
controlling host employs a set of time-delayed neural-
networks trained to predict future changes in entity 
velocity over a series of progressively increasing 
prediction horizons. Future changes in entity location are 
determined using a process of forward simulation through 
time, producing an estimate for the total expected change 
in entity location over a temporal interval defined by the 
maximum prediction horizon. On exceeding the error 
threshold, the controlling host issues an ESU containing 
the predicted neuro-reckoning velocity vector instead of 
the standard dead reckoning velocity vector. Hence, by 
distributing ESUs that implicitly encode future entity 
behaviour, neuro-reckoning succeeds in reducing the 
spatial error associated with remote entity modeling. This, 
in turn, achieves a reduction in network traffic through a 
decrease in the frequency of ESU transmission due to 
error threshold violation. 



The remainder of this paper is structured as follows. 
A mathematical representation of the application domain 
is given in the next section. This is followed by a detailed 
explanation of the novel neuro-reckoning approach in 
Section 3. A short description of the experimentation is 
given in Section 4, while Section 5 presents the analysis 
and results, comparing the proposed method with the 
IEEE DIS Standard dead reckoning. Finally, the paper 
ends with some conclusions and directions for future 
research in Section 6. 
 

2. THE APPLICATION DOMAIN 
 
To demonstrate and validate our proposed neuro-
reckoning framework within an application domain 
exhibiting a realistic scope, experiments are conducted 
under the guise of a simple First-Person Shooter (FPS) 
style game scenario, designed to produce patterns of 
repeatable human-user behaviour (suitable for training 
time-delayed neural-networks). The data from this genre 
of games can be considered a fair representation of the 
type of data one would expect to see in commercial 
networked multiplayer computer games [6]. 

In general, we assume the current state and the 
current action of an entity at time t to be described by real-
valued feature vectors st ∈ ℜn and at ∈ ℜm respectively. 
Further, we assume the environmental (i.e. external) 
influences affecting the state of an entity at time t to be 
described by a real-valued feature vector et ∈ ℜp. Given 
these real-valued feature spaces, reactive modeling of user 
behaviour in the discrete-time domain can subsequently be 
viewed as a problem of function approximation. This is 
represented by the following non-linear input-output 
model describing the dependence of the future change in 
entity state i steps ahead on both the current and k 
previous states, actions and environmental influences: 
 

 [ ] [ ] [ ]),,( ,,, tkttkttkt
it

t f −−−
+ =∆ eass  (1) 

 
Data-based learning problems become exponentially 

more difficult with the increasing size of the state-space 
[7, 8]. To reduce the complexity of our particular state-
space, we employ domain specific knowledge that is 
partly realized through a series of consciously introduced 
application constraints, allowing us to make assumptions 
regarding the information relevance of state-space features 
for adequately approximating the functional mapping 
presented in Eq. (1). The following assumptions are made: 
 

1) Action State-Space: We assume the consequences 
of actions performed by entities are both implicitly and 
sufficiently encoded within the changes in entity state that 
occur during multiple consecutive time-steps; 
 

2) Environmental State-Space: We assume that any 
environmental influences are plausibly negligible over a 
sufficiently fine temporal-granularity; 
 

3) Degrees of Freedom Constraints: We assume 
that vertical-component space can be ignored by 
exclusively constraining the manipulation of entity state to 
two degrees of freedom along the horizontal plane; 
 

4) Translation and Rotation Invariant: We assume 
that changes in entity state are translation and rotation 
invariant, meaning that entity reactions are independent of 
absolute location (this ties in with Assumption (2) above). 
 

Assumptions (1) and (2) remove the dependence on 
the action and environmental influence state-spaces a and 
e respectively, reducing Eq. (1) to a problem of multi-
variate time-series prediction, represented as: 
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From our FPS scenario, we assume the state of an 

entity at time t to be accurately represented by a series of 
location Lt, velocity Vt, and orientation Ot vectors, jointly 
comprising a 9-dimensional real-valued state-space: 
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Assumption (3) removes the dependence on vertical-

component space (thus reducing from ℜ3 to ℜ2), while 
Assumption (4) removes the dependence on the location 
vector space L, reducing Eq. (3) to a more compact form: 
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By combining Eqs. (2) and (4), we arrive at the final 

compact state-space representation, where k represents the 
current time-delay and i represents the current prediction 
horizon: 
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For the remainder of this paper (and without a loss of 

generality), we shall restrict our attention exclusively to 
the prediction of changes in entity velocity only. Hence, as 
a final step, we remote the change in entity orientation 
from the output of the dependency relationship in Eq. (5): 
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3. THE NEURO-RECKONING APPROACH 
 
Eq. (6) can be used to define a set of predictors P for the 
reactive modeling of user behaviour, represented by: 
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In order to realize P, we employ a collection of time-

delayed neural-networks (TDNNs) for predicting future 
changes in entity velocity over a series of progressively 
increasing prediction horizons (up to a total of q steps 
ahead), as given by Eq. (7) [9]. In this respect, a separate 
TDNN is trained for each prediction horizon, resulting in 
a total of q individual networks. Each TDNN consists of 
an input layer, a hidden layer, and an output layer 
arranged in a feed-forward architecture comprising an 
additional tap-delay line designed to delay the input signal 
by a total of k time-steps (see Figure 1), producing a total 
of 4(k + 1) input neurons, m hidden neurons, and 2 output 
neurons. Non-linear tan-sigmoid transfer functions are 
used by neurons contained within the hidden layer, while 
linear transfer functions are used by neurons contained 
within the output layer. Each TDNN utilizes the well-
known mean squared error (MSE) performance criterion 
[7] and is batch trained using the popular Levenberg-
Marquardt (LM) update rules for propagating the scaled 
output-error to individual network weights and biases 
[10]. As per Eq. (4), state vectors reside in a 2-
dimensional vector space. As a result, neurons pictured as 
residing in either the input or the output layer represent 
two components of entity state, physically implemented as 
two separate neurons in the final model. 
 

 
 
Figure 1: Time-delayed neural-network (TDNN) topology for a 
single prediction horizon i. Given a maximum prediction horizon 
q, a total of q such TDNNs (one for each prediction horizon) are 
required to predict entity state (see Eq. (7) above). Each TDNN 
contains 4(k + 1) neurons in the input layer, m neurons in the 
hidden layer, and 2 neurons in the output layer. 

The set of predictors P provides controlling hosts 
with the capability to generate a representation for the 
expected evolution of future entity velocity up to a total of 
q steps ahead (for each entity under the host’s control). In 
order to generate a spatial representation of the expected 
evolution of future entity location, controlling hosts can 
combine the velocity estimations by a process of forward 
simulation through time (a process we refer to as locally 
‘unfolding’ an entity trajectory). Future changes in entity 
location are estimated by simulating the effect of each 
predicted change in entity velocity using a standard first-
order, one-step extrapolation equation over a constant 
simulation time-step ∆t (equal to the sampling rate of the 
set of training exemplars used to train the predictors) (see 
Table 1). The net effect of this entire process is an 
estimate for the total expected change in future entity 
location over the temporal interval τ defined by the 
maximum prediction horizon q and the constant 
simulation time-step ∆t, where τ = (q + 1)∆t. This 
procedure of unfolding is illustrated in Table 1, presented 
as an iterative process that is performed over the 
progressively increasing prediction horizon i (this process 
is performed by a controlling host for a local entity every 
time an error threshold violation is detected). 
 

 
 
Table 1: The iterative process of unfolding an entity trajectory. 

 
To exploit the process of unfolding, controlling hosts 

must compress the resulting predictive state information 
for replication to remote hosts in a compact form that: (1) 
implicitly encodes the expected evolution of entity state in 
both temporal and spatial form, and (2) retains suitability 
for efficient remote extrapolation of entity state. 

Both prerequisites can be satisfied by employing a 
suitable ‘aggregation policy’ designed to summarize the 
predictive state information contained within the unfolded 
entity trajectory. In theory, an aggregation policy can 
assume any functional means intended to reduce the 
unfolded trajectory to a compact form for replication to 
remote hosts. On the other hand, the format of the 
expected output of an aggregation policy will be pre-
defined should maintaining compatibility with existing 
predictive contract mechanisms (such as dead reckoning) 
be considered a priority – in our case, we wish to maintain 
compatibility with current standard first-order, one-step 



extrapolation mechanisms employed within many DIAs. 
As such, we require an aggregation policy that produces a 
single predictive velocity vector, implicitly describing the 
expected evolution of entity behaviour over time, while 
also maintaining suitability for replication in the form of a 
standard entity state update (ESU). 

Eq. (8) defines the aggregation policy employed 
throughout this paper for use within our proposed neuro-
reckoning framework by controlling hosts for each 
unfolded entity trajectory. The estimated total expected 
change in entity location (Lt+q+1 – Lt) is normalized to a 
unit vector and scaled by the magnitude of the current 
instantaneous entity velocity at time t (i.e. current speed): 
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When an entity is deemed to have violated the dead 

reckoning error threshold, the controlling host issues an 
ESU consisting of current entity location Lt, current entity 
orientation Ot, and the predictive velocity vector Vt

NR. 
Remote hosts subsequently extrapolate entity location 
using a first-order, one-step extrapolation equation defined 
in Eq. (9). In this way, the reliance of controlling hosts on 
the use of neuro-reckoning for replicating predictive state 
information is entirely opaque to remote hosts, who only 
ever view the transmitted ESU packets: 
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4. EXPERIMENTATION 

 
In order to collect the type of data that one would expect 
to observe in a real-world DIA (and to illustrate the 
potential of neuro-reckoning for network traffic 
reduction), we utilize the commercially available Torque 
Game Engine [11] as a customisable research platform for 
performing experiments in a controlled manner [6]. We 
present results for three human-user test subjects (each 
possessing a varying degree of expertise with respect to 
networked multiplayer computer games – Test Subject 1 
being the most experienced, Test Subject 3 the least), who 
were each required to individually compete in a series of 
12 consecutive experiments (consisting of a pre-specified 
‘hit-point’  score limit of 10) against a scripted computer-
controlled opponent operating under the influence of a 
simple dynamic shortest-path behavioural model [12]. 

Data is collected at a rate of 20 samples per second 
(i.e. a constant simulation time-step of ∆t = 50ms), and 
subsequently normalized in order to improve training 
efficiency and provide good generalization capability. Of 
the 12 experimental datasets collected for each user, the 
first 2 sets were discarded due to the probable appearance 
of transient behaviour related to initial learning strategies 

adopted by each human-user test subject. In addition, the 
final 2 sets were kept isolated from the data pertaining to 
training the neural-networks for the purposes of providing 
an unbiased means of performance evaluation. The 
remaining 8 experimental datasets were combined, after 
which time a series of exemplars were extracted and then 
divided randomly into suitable training (70%), validation 
(15%), and testing (15%) sets. Based on early evaluations 
performed using various network topologies, the total 
time-delay k was set at 3 (longer time-delays were seen to 
produce negligible improvement in training performance 
relative to the additional network complexity), and the 
maximum prediction horizon q was set at 10. 
 

5. RESULTS AND ANALYSIS 
 
Table 2 presents the mean squared error (MSE) training 
performance over the training, validation, and test sets for 
each test subject with respect to the deviation between 
predicted changes in entity velocity and the correct 
changes in entity velocity over each set of TDNN 
predictors. Each individual TDNN learns to predict over a 
specific prediction horizon, where the training procedure 
continues until the validation set determines the ‘early-
stopping’  point for maximum generalization [7] (or 
alternatively, the training period reaches 100 epochs). As 
can be observed, each of the datasets exhibits similar 
results over all of the prediction horizons, indicating good 
generalization ability across the entire set of predictors. 
Evident from inspection of Table 2 is the fact that as the 
prediction horizon increases, we can observe an 
approximately linear trend in the decreasing accuracy of 
each neural-network. Hence, the predictive performance 
of each neural-network is directly proportional to the 
prediction horizon. 
 

 
 

Table 2: MSE results over training, validation and test sets for 
each individual human-user test subject. 

 
Table 3 presents simulation results that were 

conducted over a series of increasing error thresholds for 
Test Subject 1, Test Subject 2, and Test Subject 3. All 
presented error threshold values are measured in terms of 
Torque world units. To put the error thresholds into 
perspective, the height of an entity within our test 
environment is approximately 2.3 Torque world units. 
Ideal network conditions were assumed to ensure unbiased 
evaluation of the performance of the first-order, one-step



 
 

Table 3: Entity state updates generated and totalled over all 12 recorded trajectories for each individual test subject (see Section 4). 
 
dead reckoning (‘DR’ ) model and the proposed first-order, 
one-step neuro-reckoning (‘NR’ ) technique. 

Throughout Table 3, packet counts for both scenarios 
are listed under the headings ‘DR’  and ‘NR’  respectively. 
The term ‘% Red’  refers to the percentage reduction (or 
increase) in the number of ESU packets generated due to 
error threshold violation, where negative values are 
indicative of superior performance by the proposed neuro-
reckoning framework in comparison with the standard 
dead reckoning model. Packet counts are generated and 
totalled over all of the 12 recorded trajectories for each 
individual test subject (see Section 4), and all simulations 
were performed at a constant rate of 20Hz (i.e. the original 
sampling rate of the data) using a maximum prediction 
horizon of q = 10 (i.e. 10 TDNNs). 

From inspection of the results, it is noted that in every 
situation, neuro-reckoning offers a reduction in the 
number of ESU packets generated that ranges from small 
bandwidth savings (in the region of 2% or lower packet 
reduction) to very large bandwidth savings (in the region 
of just under 20% packet reduction). Furthermore, 
percentage reductions in the number of ESU packets 
generated are observed over the entire series of simulated 
error thresholds. Of particular interest are the large packet 
reductions typically observed at lower error thresholds, 
implying excellent potential for use within DIAs requiring 
a high degree of tightly coupled synchronization between 
locally and remotely modeled entity state. In general, 
there appears to be an approximately linear trend between 
the (decreasing) reported percentage reductions and the 
(increasing) error threshold. This implies a relatively 
stable predictive accuracy with respect to the gross 
performance gain (i.e. expected overall packet reduction) 
resulting from the use of our proposed neuro-reckoning 
framework in contrast to the DIS dead reckoning model. It 
should be noted that although the number of users limits 
our ability to generalize the results, it is sufficient for 
demonstrating the efficacy of the neuro-reckoning 
technique for cases where good neural-network prediction 
is available for a user. 

Figure 2 (a)-(b) presents the results generated using 
both ESU mechanisms for Test Subject 1 over an error 
threshold of 0.5 Torque World Units (TWUs), visually 
illustrating the potential of neuro-reckoning for further 
network traffic reduction over a small sample section from 
one of the trajectories recorded for that user. 
 

 
 

(a) First-order DIS dead reckoning (DR) (20 ESUs generated). 
 

 
 

(b) First-order neuro-reckoning (NR) (16 ESUs generated). 
 
Figure 2 (a)-(b): ESU packet generation results for Test Subject 
1 over an error threshold of 0.5 Torque World Units (TWUs) for 
a small sample section extracted from a recorded user trajectory. 



In both cases, the remotely modelled entity trajectory 
is represented as a solid line that is overlaid on top of the 
original trajectory represented as a dashed line, where the 
number of solid black stars represents the number of ESUs 
generated due to error threshold violation. 

From inspection of the spatial plots, we can observe 
how first-order neuro-reckoning accurately compensates 
for expected changes in future entity behaviour, reducing 
the number of ESUs required to maintain an equivalent 
spatial consistency to that provided by the first-order DIS 
dead reckoning mechanism from 20 to 16. 
 

6. CONCLUSIONS AND FUTURE WORK 
 
The proposed neuro-reckoning model provides a statistical 
foundation for the modelling and prediction of repeatable 
patterns of human-user behaviour [13, 14]. By forecasting 
expected future entity behaviour in advance, and 
distributing this information to remote hosts in a compact 
form, neuro-reckoning succeeds in reducing the spatial 
error associated with remote modelling of entity state 
when compared with the traditional use of first-order 
instantaneous derivative information. Consequently, 
neuro-reckoning achieves a reduction in the number of 
ESUs generated due to error threshold violation. 

Presented simulation results validate the potential of 
our proposed framework for improving the accuracy of 
remote entity modelling over the use of a pure dead 
reckoning approach throughout our experimental set-up, 
exhibiting a reduction in network bandwidth requirements 
over a wide range of error thresholds and indicating viable 
potential for satisfying many spectrums of consistency 
requirements throughout a broad range of applications. 

Future work includes the investigation of confidence-
interval estimation methods to quantify the reliability of 
the predictions made by each set of neural-networks (with 
a view to dynamic model switching) [15], in addition to a 
complexity analysis for the use of the neuro-reckoning 
algorithm by controlling hosts during real-time execution. 
Further validation of the technique on more test subjects, 
comprising a wider array of scenarios involving multiple 
human-users, complex real-world environments, and 
realistic network conditions, will also be undertaken. 
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