
USING NEURAL-NETWORKS TO REDUCE ENTITY STATE UPDATES IN
DISTRIBUTED INTERACTIVE APPLICATIONS

Aaron McCoy, Tomas Ward, Seamus McLoone and Declan Delaney

Department of Electronic Engineering,

National University of Ireland Maynooth,
Maynooth, Co. Kildare, Republic of Ireland.

E-mail: {amccoy,tomas.ward,seamus.mcloone}@eeng.nuim.ie

ABSTRACT

Dead reckoning is the most commonly used predictive
contract mechanism for the reduction of network traffic in
Distributed Interactive Applications (DIAs). However,
this technique often ignores available contextual
information that may be influential to the state of an
entity, sacrificing remote predictive accuracy in favour of
low computational complexity. In this paper, we present a
novel extension of dead reckoning by employing neural-
networks to take into account expected future entity
behaviour during the transmission of entity state updates
(ESUs) for remote entity modeling in DIAs. This
proposed method succeeds in reducing network traffic
through a decrease in the frequency of ESU transmission
required to maintain consistency. Validation is achieved
through simulation in a highly interactive DIA, and results
indicate significant potential for improved scalability
when compared to the use of the IEEE DIS Standard dead
reckoning technique. The new method exhibits relatively
low computational overhead and seamless integration with
current dead reckoning schemes.

1. INTRODUCTION

Distributed Interactive Applications (DIAs) are virtual
reality systems through which participants can share
information via individual and collaborative interaction
with each other and their environment [1]. They offer the
realization of simulated virtual worlds that embody a
modern extension of communication, encompassing the
concepts of shared time, space and presence [2]. The
definition of DIAs includes a wide range of applications
that have seen rapid advances in technology and global
popularity due to the widespread availability and ease-of-
use of the Internet [3, 4].

The two key factors that limit large-scale deployment
of DIAs are network latency and bandwidth. Bandwidth
refers to the rate at which data can be communicated per
unit time between two end-points, while latency refers to

the delay in communication. High latency and low
network bandwidth capacity represent the largest
contributors to the difficulties faced by DIAs in
supporting dynamic shared state consistency, potential
scalability and real-time interactivity. A wide variety of
techniques exist that aim to reduce the amount of network
traffic transmitted during the execution of a DIA [2-4].
One of the most commonly used techniques is the
predictive contract mechanism known as dead reckoning.

Formally defined within the IEEE Standard for
Distributed Interactive Simulation (DIS) [5], dead
reckoning reduces network traffic by preventing update
packets from being sent if the local participant’s state has
not varied from a low-fidelity model of that state by a pre-
determined error threshold. It often relies exclusively on
the replication of instantaneous derivative information
between controlling hosts for remote entity modeling.
However, it ignores available contextual and a priori
information that may be influential to the state of an
entity, and sacrifices remote predictive accuracy in lieu of
low computational complexity and resource usage [2].

This paper presents a novel extension of dead
reckoning, termed neuro-reckoning, that uses neural-
networks to allow for expected future entity behaviour
when transmitting entity state updates (ESUs). Each
controlling host employs a set of time-delayed neural-
networks trained to predict future changes in entity
velocity over a series of progressively increasing
prediction horizons. Future changes in entity location are
determined using a process of forward simulation through
time, producing an estimate for the total expected change
in entity location over a temporal interval defined by the
maximum prediction horizon. On exceeding the error
threshold, the controlling host issues an ESU containing
the predicted neuro-reckoning velocity vector instead of
the standard dead reckoning velocity vector. Hence, by
distributing ESUs that implicitly encode future entity
behaviour, neuro-reckoning succeeds in reducing the
spatial error associated with remote entity modeling. This,
in turn, achieves a reduction in network traffic through a
decrease in the frequency of ESU transmission due to
error threshold violation.

The remainder of this paper is structured as follows.
A mathematical representation of the application domain
is given in the next section. This is followed by a detailed
explanation of the novel neuro-reckoning approach in
Section 3. A short description of the experimentation is
given in Section 4, while Section 5 presents the analysis
and results, comparing the proposed method with the
IEEE DIS Standard dead reckoning. Finally, the paper
ends with some conclusions and directions for future
research in Section 6.

2. THE APPLICATION DOMAIN

To demonstrate and validate our proposed neuro-
reckoning framework within an application domain
exhibiting a realistic scope, experiments are conducted
under the guise of a simple First-Person Shooter (FPS)
style game scenario, designed to produce patterns of
repeatable human-user behaviour (suitable for training
time-delayed neural-networks). The data from this genre
of games can be considered a fair representation of the
type of data one would expect to see in commercial
networked multiplayer computer games [6].

In general, we assume the current state and the
current action of an entity at time t to be described by real-
valued feature vectors st ∈ ℜn and at ∈ ℜm respectively.
Further, we assume the environmental (i.e. external)
influences affecting the state of an entity at time t to be
described by a real-valued feature vector et ∈ ℜp. Given
these real-valued feature spaces, reactive modeling of user
behaviour in the discrete-time domain can subsequently be
viewed as a problem of function approximation. This is
represented by the following non-linear input-output
model describing the dependence of the future change in
entity state i steps ahead on both the current and k
previous states, actions and environmental influences:

 [] [] []),,(,,, tkttkttkt
it

t f −−−
+ =∆ eass (1)

Data-based learning problems become exponentially

more difficult with the increasing size of the state-space
[7, 8]. To reduce the complexity of our particular state-
space, we employ domain specific knowledge that is
partly realized through a series of consciously introduced
application constraints, allowing us to make assumptions
regarding the information relevance of state-space features
for adequately approximating the functional mapping
presented in Eq. (1). The following assumptions are made:

1) Action State-Space: We assume the consequences
of actions performed by entities are both implicitly and
sufficiently encoded within the changes in entity state that
occur during multiple consecutive time-steps;

2) Environmental State-Space: We assume that any
environmental influences are plausibly negligible over a
sufficiently fine temporal-granularity;

3) Degrees of Freedom Constraints: We assume
that vertical-component space can be ignored by
exclusively constraining the manipulation of entity state to
two degrees of freedom along the horizontal plane;

4) Translation and Rotation Invariant: We assume
that changes in entity state are translation and rotation
invariant, meaning that entity reactions are independent of
absolute location (this ties in with Assumption (2) above).

Assumptions (1) and (2) remove the dependence on
the action and environmental influence state-spaces a and
e respectively, reducing Eq. (1) to a problem of multi-
variate time-series prediction, represented as:

),,,,(21 ktttt
it

t f −−−
+ =∆ sssss K (2)

From our FPS scenario, we assume the state of an

entity at time t to be accurately represented by a series of
location Lt, velocity Vt, and orientation Ot vectors, jointly
comprising a 9-dimensional real-valued state-space:

 3,,:),,(ℜ∈= ttttttt OVLOVLs (3)

Assumption (3) removes the dependence on vertical-

component space (thus reducing from ℜ3 to ℜ2), while
Assumption (4) removes the dependence on the location
vector space L, reducing Eq. (3) to a more compact form:

 2,:),(ℜ∈= ttttt OVOVs (4)

By combining Eqs. (2) and (4), we arrive at the final

compact state-space representation, where k represents the
current time-delay and i represents the current prediction
horizon:

[] []

),,,,,(

),(),(,,

kttktt

tkttkt
it

t
it

t

f

f

−−

−−
++

=

=∆∆

OOVV

OVOV

KK

 (5)

For the remainder of this paper (and without a loss of

generality), we shall restrict our attention exclusively to
the prediction of changes in entity velocity only. Hence, as
a final step, we remote the change in entity orientation
from the output of the dependency relationship in Eq. (5):

),,,,,(kttktt
it

t f −−
+ =∆ OOVVV KK (6)

3. THE NEURO-RECKONING APPROACH

Eq. (6) can be used to define a set of predictors P for the
reactive modeling of user behaviour, represented by:

{ } { }

it
ttit

it
t

predicts
i

i

P

qiP

+
+

+

∆+=

∆ →

∈∀=

VVV

V

P ,,1, K

 (7)

In order to realize P, we employ a collection of time-

delayed neural-networks (TDNNs) for predicting future
changes in entity velocity over a series of progressively
increasing prediction horizons (up to a total of q steps
ahead), as given by Eq. (7) [9]. In this respect, a separate
TDNN is trained for each prediction horizon, resulting in
a total of q individual networks. Each TDNN consists of
an input layer, a hidden layer, and an output layer
arranged in a feed-forward architecture comprising an
additional tap-delay line designed to delay the input signal
by a total of k time-steps (see Figure 1), producing a total
of 4(k + 1) input neurons, m hidden neurons, and 2 output
neurons. Non-linear tan-sigmoid transfer functions are
used by neurons contained within the hidden layer, while
linear transfer functions are used by neurons contained
within the output layer. Each TDNN utilizes the well-
known mean squared error (MSE) performance criterion
[7] and is batch trained using the popular Levenberg-
Marquardt (LM) update rules for propagating the scaled
output-error to individual network weights and biases
[10]. As per Eq. (4), state vectors reside in a 2-
dimensional vector space. As a result, neurons pictured as
residing in either the input or the output layer represent
two components of entity state, physically implemented as
two separate neurons in the final model.

Figure 1: Time-delayed neural-network (TDNN) topology for a
single prediction horizon i. Given a maximum prediction horizon
q, a total of q such TDNNs (one for each prediction horizon) are
required to predict entity state (see Eq. (7) above). Each TDNN
contains 4(k + 1) neurons in the input layer, m neurons in the
hidden layer, and 2 neurons in the output layer.

The set of predictors P provides controlling hosts
with the capability to generate a representation for the
expected evolution of future entity velocity up to a total of
q steps ahead (for each entity under the host’s control). In
order to generate a spatial representation of the expected
evolution of future entity location, controlling hosts can
combine the velocity estimations by a process of forward
simulation through time (a process we refer to as locally
‘unfolding’ an entity trajectory). Future changes in entity
location are estimated by simulating the effect of each
predicted change in entity velocity using a standard first-
order, one-step extrapolation equation over a constant
simulation time-step ∆t (equal to the sampling rate of the
set of training exemplars used to train the predictors) (see
Table 1). The net effect of this entire process is an
estimate for the total expected change in future entity
location over the temporal interval τ defined by the
maximum prediction horizon q and the constant
simulation time-step ∆t, where τ = (q + 1)∆t. This
procedure of unfolding is illustrated in Table 1, presented
as an iterative process that is performed over the
progressively increasing prediction horizon i (this process
is performed by a controlling host for a local entity every
time an error threshold violation is detected).

Table 1: The iterative process of unfolding an entity trajectory.

To exploit the process of unfolding, controlling hosts

must compress the resulting predictive state information
for replication to remote hosts in a compact form that: (1)
implicitly encodes the expected evolution of entity state in
both temporal and spatial form, and (2) retains suitability
for efficient remote extrapolation of entity state.

Both prerequisites can be satisfied by employing a
suitable ‘aggregation policy’ designed to summarize the
predictive state information contained within the unfolded
entity trajectory. In theory, an aggregation policy can
assume any functional means intended to reduce the
unfolded trajectory to a compact form for replication to
remote hosts. On the other hand, the format of the
expected output of an aggregation policy will be pre-
defined should maintaining compatibility with existing
predictive contract mechanisms (such as dead reckoning)
be considered a priority – in our case, we wish to maintain
compatibility with current standard first-order, one-step

extrapolation mechanisms employed within many DIAs.
As such, we require an aggregation policy that produces a
single predictive velocity vector, implicitly describing the
expected evolution of entity behaviour over time, while
also maintaining suitability for replication in the form of a
standard entity state update (ESU).

Eq. (8) defines the aggregation policy employed
throughout this paper for use within our proposed neuro-
reckoning framework by controlling hosts for each
unfolded entity trajectory. The estimated total expected
change in entity location (Lt+q+1 – Lt) is normalized to a
unit vector and scaled by the magnitude of the current
instantaneous entity velocity at time t (i.e. current speed):

 t
tqt

tqt
t V

LL
LL

V
−
−

=
++

++

1

1NR (8)

When an entity is deemed to have violated the dead

reckoning error threshold, the controlling host issues an
ESU consisting of current entity location Lt, current entity
orientation Ot, and the predictive velocity vector Vt

NR.
Remote hosts subsequently extrapolate entity location
using a first-order, one-step extrapolation equation defined
in Eq. (9). In this way, the reliance of controlling hosts on
the use of neuro-reckoning for replicating predictive state
information is entirely opaque to remote hosts, who only
ever view the transmitted ESU packets:

 tttt ∆+=+
NR

1 VLL (9)

4. EXPERIMENTATION

In order to collect the type of data that one would expect
to observe in a real-world DIA (and to illustrate the
potential of neuro-reckoning for network traffic
reduction), we utilize the commercially available Torque
Game Engine [11] as a customisable research platform for
performing experiments in a controlled manner [6]. We
present results for three human-user test subjects (each
possessing a varying degree of expertise with respect to
networked multiplayer computer games – Test Subject 1
being the most experienced, Test Subject 3 the least), who
were each required to individually compete in a series of
12 consecutive experiments (consisting of a pre-specified
‘hit-point’ score limit of 10) against a scripted computer-
controlled opponent operating under the influence of a
simple dynamic shortest-path behavioural model [12].

Data is collected at a rate of 20 samples per second
(i.e. a constant simulation time-step of ∆t = 50ms), and
subsequently normalized in order to improve training
efficiency and provide good generalization capability. Of
the 12 experimental datasets collected for each user, the
first 2 sets were discarded due to the probable appearance
of transient behaviour related to initial learning strategies

adopted by each human-user test subject. In addition, the
final 2 sets were kept isolated from the data pertaining to
training the neural-networks for the purposes of providing
an unbiased means of performance evaluation. The
remaining 8 experimental datasets were combined, after
which time a series of exemplars were extracted and then
divided randomly into suitable training (70%), validation
(15%), and testing (15%) sets. Based on early evaluations
performed using various network topologies, the total
time-delay k was set at 3 (longer time-delays were seen to
produce negligible improvement in training performance
relative to the additional network complexity), and the
maximum prediction horizon q was set at 10.

5. RESULTS AND ANALYSIS

Table 2 presents the mean squared error (MSE) training
performance over the training, validation, and test sets for
each test subject with respect to the deviation between
predicted changes in entity velocity and the correct
changes in entity velocity over each set of TDNN
predictors. Each individual TDNN learns to predict over a
specific prediction horizon, where the training procedure
continues until the validation set determines the ‘early-
stopping’ point for maximum generalization [7] (or
alternatively, the training period reaches 100 epochs). As
can be observed, each of the datasets exhibits similar
results over all of the prediction horizons, indicating good
generalization ability across the entire set of predictors.
Evident from inspection of Table 2 is the fact that as the
prediction horizon increases, we can observe an
approximately linear trend in the decreasing accuracy of
each neural-network. Hence, the predictive performance
of each neural-network is directly proportional to the
prediction horizon.

Table 2: MSE results over training, validation and test sets for
each individual human-user test subject.

Table 3 presents simulation results that were

conducted over a series of increasing error thresholds for
Test Subject 1, Test Subject 2, and Test Subject 3. All
presented error threshold values are measured in terms of
Torque world units. To put the error thresholds into
perspective, the height of an entity within our test
environment is approximately 2.3 Torque world units.
Ideal network conditions were assumed to ensure unbiased
evaluation of the performance of the first-order, one-step

Table 3: Entity state updates generated and totalled over all 12 recorded trajectories for each individual test subject (see Section 4).

dead reckoning (‘DR’) model and the proposed first-order,
one-step neuro-reckoning (‘NR’) technique.

Throughout Table 3, packet counts for both scenarios
are listed under the headings ‘DR’ and ‘NR’ respectively.
The term ‘% Red’ refers to the percentage reduction (or
increase) in the number of ESU packets generated due to
error threshold violation, where negative values are
indicative of superior performance by the proposed neuro-
reckoning framework in comparison with the standard
dead reckoning model. Packet counts are generated and
totalled over all of the 12 recorded trajectories for each
individual test subject (see Section 4), and all simulations
were performed at a constant rate of 20Hz (i.e. the original
sampling rate of the data) using a maximum prediction
horizon of q = 10 (i.e. 10 TDNNs).

From inspection of the results, it is noted that in every
situation, neuro-reckoning offers a reduction in the
number of ESU packets generated that ranges from small
bandwidth savings (in the region of 2% or lower packet
reduction) to very large bandwidth savings (in the region
of just under 20% packet reduction). Furthermore,
percentage reductions in the number of ESU packets
generated are observed over the entire series of simulated
error thresholds. Of particular interest are the large packet
reductions typically observed at lower error thresholds,
implying excellent potential for use within DIAs requiring
a high degree of tightly coupled synchronization between
locally and remotely modeled entity state. In general,
there appears to be an approximately linear trend between
the (decreasing) reported percentage reductions and the
(increasing) error threshold. This implies a relatively
stable predictive accuracy with respect to the gross
performance gain (i.e. expected overall packet reduction)
resulting from the use of our proposed neuro-reckoning
framework in contrast to the DIS dead reckoning model. It
should be noted that although the number of users limits
our ability to generalize the results, it is sufficient for
demonstrating the efficacy of the neuro-reckoning
technique for cases where good neural-network prediction
is available for a user.

Figure 2 (a)-(b) presents the results generated using
both ESU mechanisms for Test Subject 1 over an error
threshold of 0.5 Torque World Units (TWUs), visually
illustrating the potential of neuro-reckoning for further
network traffic reduction over a small sample section from
one of the trajectories recorded for that user.

(a) First-order DIS dead reckoning (DR) (20 ESUs generated).

(b) First-order neuro-reckoning (NR) (16 ESUs generated).

Figure 2 (a)-(b): ESU packet generation results for Test Subject
1 over an error threshold of 0.5 Torque World Units (TWUs) for
a small sample section extracted from a recorded user trajectory.

In both cases, the remotely modelled entity trajectory
is represented as a solid line that is overlaid on top of the
original trajectory represented as a dashed line, where the
number of solid black stars represents the number of ESUs
generated due to error threshold violation.

From inspection of the spatial plots, we can observe
how first-order neuro-reckoning accurately compensates
for expected changes in future entity behaviour, reducing
the number of ESUs required to maintain an equivalent
spatial consistency to that provided by the first-order DIS
dead reckoning mechanism from 20 to 16.

6. CONCLUSIONS AND FUTURE WORK

The proposed neuro-reckoning model provides a statistical
foundation for the modelling and prediction of repeatable
patterns of human-user behaviour [13, 14]. By forecasting
expected future entity behaviour in advance, and
distributing this information to remote hosts in a compact
form, neuro-reckoning succeeds in reducing the spatial
error associated with remote modelling of entity state
when compared with the traditional use of first-order
instantaneous derivative information. Consequently,
neuro-reckoning achieves a reduction in the number of
ESUs generated due to error threshold violation.

Presented simulation results validate the potential of
our proposed framework for improving the accuracy of
remote entity modelling over the use of a pure dead
reckoning approach throughout our experimental set-up,
exhibiting a reduction in network bandwidth requirements
over a wide range of error thresholds and indicating viable
potential for satisfying many spectrums of consistency
requirements throughout a broad range of applications.

Future work includes the investigation of confidence-
interval estimation methods to quantify the reliability of
the predictions made by each set of neural-networks (with
a view to dynamic model switching) [15], in addition to a
complexity analysis for the use of the neuro-reckoning
algorithm by controlling hosts during real-time execution.
Further validation of the technique on more test subjects,
comprising a wider array of scenarios involving multiple
human-users, complex real-world environments, and
realistic network conditions, will also be undertaken.

7. ACKNOWLEDGEMENTS

This material is based upon work supported by the
Science Foundation of Ireland and Enterprise Ireland
under grant no. IRCSET/SC/04/CS0289, and also by
Enterprise Ireland under grant no. SC/2002/129.

8. REFERENCES

[1] E. F. Churchill, D. N. Snowdon and A. J. Munro,
Collaborative Virtual Environments: Digital Places and Spaces
for Interaction. London, UK: Springer-Verlag, 2001.

[2] S. K. Singhal and M. J. Zyda, Networked Virtual
Environments: Design and Implementation. New York, New
York: Addison-Wesley, ACM Press SIGGRAPH Series, 1999.

[3] D. Delaney, T. Ward and S. McLoone, “On Consistency and
Network Latency in Distributed Interactive Applications: A
Survey – Part I,” Presence: Teleoperators and Virtual
Environments, vol. 15, no. 2, pp. 218-234, April 2006.

[4] A. McCoy, D. Delaney and T. Ward, “Game-State Fidelity
Across Distributed Interactive Games,” ACM Crossroads, vol.
9.4 (Networking Issue), pp. 4-9, Summer 2003.

[5] IEEE Standard for Distributed Interactive Simulation –
Application Protocols, IEEE Standard 1278.1-1995, 1995.

[6] A. McCoy, D. Delaney, S. McLoone and T. Ward,
“Investigating Behavioural State Data-Partitioning for User-
Modelling in Distributed Interactive Applications,” in Proc. 8th
IEEE International Symposium on Distributed Simulation and
Real-Time Applications (DS-RT ’04), Budapest, Hungary,
October 2004, pp. 74-82.

[7] J. C. Principe, N. R. Euliano and W. C. Lefebvre, Neural and
Adaptive Systems: Fundamentals through Simulation. New
York, NY, USA: John Wiley and Sons, Inc., 2000.

[8] G. I. Webb, M. J. Pazzani and D. Billsus, “Machine Learning
for User Modeling,” User Modeling and User-Adapted
Interaction, vol. 11, no. 1-2, pp. 19-29, March 2001.

[9] R. Bone and M. Crucianu, “Multi-step-ahead Prediction with
Neural Networks: A Review,” Approches Connexionnistes en
Sciences Economiques et en Gestion, vol. 2, pp. 97-106,
November 2002.

[10] M. T. Hagan and M. B. Menhaj, “Training Feedforward
Networks with the Marquardt Algorithm,” IEEE Transactions on
Neural Networks, vol. 5, no. 6, pp. 989-993, November 1994.

[11] J. Lloyd, “The Torque Game Engine”, Game Developer
Magazine, vol. 11, no. 8, pp. 8-9, September 2004.

[12] A. McCoy, D. Delaney, S. McLoone and T. Ward,
“Dynamic Hybrid Strategy Models for Networked Multiplayer
Games,” in Proc. 19th European Conference on Modelling and
Simulation (ECMS 2005), Riga, Latvia, June 2005, pp. 727-732.

[13] W. S. Sarle, “Neural Networks and Statistical Models,” in
Proc. 19th Annual SAS Users Group International Conference,
SAS Institute Inc., Cary, NC, USA, April 1994, pp. 1538-1550.

[14] I. Zukerman and D. W. Albrecht, “Predictive Statistical
Models for User Modeling,” User Modeling and User-Adapted
Interaction, vol. 11, no. 1-2, pp. 5-18, March 2001.

[15] G. Papadopoulos, P. J. Edwards and A. F. Murray,
“Confidence Estimation Methods for Neural Networks: A
Practical Comparison,” IEEE Transactions on Neural Networks,
vol. 12, no. 6, pp. 1278-1287, November 2001.

