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Abstract—The implementation of practical adaptive resource
allocation scheme remains a key criterion to be satisfied for
realising spectrally efficient multitone wireless communications.
The ever-increasing demand for spectrally efficient broadband
wireless transmission technologies has spurred intensive research
leading towards the implementation of adaptive OFDM and
adaptive MIMO systems. Efforts in this direction have been
frustrated however by the lack of a clear and accurate description
of the fading behaviour typically encountered in the broadband
wireless transmission environment. This has been partially been
overcome by the use of mathematical modelling which captures
certain large-scale characteristics of the channel and facilitates
theoretical research. The “average” channel parameters gleaned
from these processes is typically then used to inform the design
and configuration of wireless networking equipment after the
broad application of generous safety margins. The resulting solu-
tion is therefore quite robust to certain transient channel quality
degradation yet the generous safety tolerances render it unable
to exploit other transient transmission quality improvements
We seek to overcome the problems associated with this ap-

proach by applying a theoretically sound novel adaptive resource
allocation framework to actual broadband wireless channel
development data. The allocation framework is derived from the
optimal OFDM allocation scheme for a known channel [1]: the
channel development data is obtained from actual measurement
of a broadband wireless mobile environment [2]. Prediction tech-
niques are employed to overcome the time lag between channel
assessment and symbol transmission. We present the details of the
predictive resource allocation scheme used and include a broad
characterisation of the transmission environment in terms of the
time-varying fading processes observed. We provide some results
of the application of this scheme as typical performance levels
that may be achieved in an actual transmission environment.

I. INTRODUCTION

Practical adaptive resource allocation has been remained
an elusive target for the achievement of spectrally-efficient
wireless communications. An important characteristic of such
communications schemes is their ability to exploit transient
channel behaviours, partly through increasing the utilisation
of advantageous channels and avoiding severely degraded
facilities: doing this could potentially maximise the overall
transmission quality while minimising power consumption,
for example. Rapid variations in the quality of the wireless
channels used by such networks have however traditionally
frustrated efforts to develop such an ideal adaptive resource
allocation scheme. This is because the time lag typically
associated with assessing the current channel state information

(CSI) and the determination of an optimised loading schedule
is significant when compared to the timescale of the fading
processes that influence channel quality variations, leading to
the obsolescence of this schedule by the time it has been found.
A potential means of overcoming this problem is in the

implementation of CSI prediction to determine the channel
quality at a (future) transmission instant and optimising trans-
mission resource distribution in time to send the desired data
symbol. To this end, heavy interest has recently been invested
in CSI prediction for systems employing OFDM transmissions
[3]–[5] as well as in the integration of CSI prediction and
adaptive resource allocation [6]–[8] in attempts to achieve the
desired solution for this problem. While these approaches have
yielded much success, it was observed that much of this work
has been performed on analytical channel models, while in
only a few examples such as [7] is actual channel data used.
We seek to extend on this body of work by applying a novel
resource allocation scheme to actual channel fading data and
gain insight into typical results that can be obtained in similar
real-world applications.
We demonstrate the application of our previously developed

resource allocation scheme [8]–[10] to wireless channel fading
as exhibited by an actual channnel. The data provided for this
analysis was obtained as result of an evaluation performed of
mobile wireless transmission in two locations in Stockholm,
and was kindly made available to us by Ericsson Radio
Systems AB: this data is from the same dataset used by
[2]. LMS filtration [11] is applied to predict the CSI at the
future instant of symbol transmission: this prediction horizon
will be exploited to perform the transmission optimisation.
We indicate how the channel fading processes influence the
accuracy and range of this prediction.
In the next section, we characterise the channel fading data-

set used as best as we can without violating the confidentiality
agreement under which this data was provided. We briefly
outline the operation of the prediction-based adaptive resource
allocation framework used and its application in a realistic
fading environment. Results will then be presented illustrating
the successful operation of the resource allocation scheme in
this environment. We conclude this paper with an analysis of
these results and a discussion of the implications that they
hold for practical dynamic resource allocation in a real-world
fading environment.
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II. CHANNEL DEVELOPMENT

A. Source Data

The transmission channel data used was obtained by Eric-
sson Radio Systems AB of Stockholm, Sweden and was
initially described in [2]. The first set of measurements was
taken in Kista, an environment that may be described as having
a mix of urban and suburban characteristics; the second set
was captured in central Stockholm, an urban environment with
areas of open water. In all cases, the base stations were 2-3 m
above rooftop level, which was in turn always 20-25 m above
ground level.
A mobile antenna was placed on top of a vehicle driven

around local streets: most of the measurements were taken in
non-line-of-sight conditions. A BPSK-modulated 511-bit PN
sequence having a 3dB bandwidth of slightly below 4.672 MHz
was utilised to assess the impulse response of the channel. The
receiver was implemented using a HP 89441A Vector Signal
Analyzer set to a sampling rate of 6.4 MHz. Each measurement
was obtained as a set of 1430 complex response bins by cross
correlation with the transmitted sequence. Vehicle speed was
varied between 30-90 km/h and the centre frequency of the
transmission was 1880 MHz.
Post-processing was done on the measured impulse re-

sponses to 1.25 MHz and 5 MHz bandwidths and sampled
at rates of 1.28 these bandwidths to avoid aliasing in the
receiver. The median noise level was also assessed and all
received samples less than 6dB above this level were set to
zero in a manner similar to [12]. Additional details of the
data acquisition process are presented in [2].
We selected a group of twenty channel datasets and eval-

uated the 512-point discrete Fourier transform (DFT) of the
measured data in order to determine the frequency response of
the wireless channel and hence the associated power spectral
density (PSD) of the fading observation. Fig. 1 indicates the
range traversed by the PSD within the cutoff bandwidth.
The mean gain value of the transmission channel is also
indicated on this diagram. The unequal gain observed across
the frequency range of interest indicates the possible existence
of frequency-selective fading phenomena.
We chose one continuous realisation of the fading process

from these twenty sets of data to represent the conditions
under which further analysis take place. We evaluated the
real and imaginary parts of the autocorrelation function of
the channel gain observations, and present these in Fig. 2
and Fig. 3 respectively. We also present the autocorrelation
of the absolute magnitude of the fading realisations as Fig. 4.
We observe from Fig. 4 that the autocorrelation of the fade
magnitude remains greater than zero for a lag of −1000 ≥
τ ≥ 1000, which indicates that CSI prediction is possible on
this source data within these bounds (at least).

B. System Model

Without loss of generality, we are interested in either the
uplink or downlink channel between transceivers in a mobile
wireless environment. We assume that a means exists for

Figure 1: Range of PSD of Ericsson Channel
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Figure 2: Real Part of Fading Autocorrelation
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Figure 3: Imaginary Part of Fading Autocorrelation
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Figure 4: Autorrelation of Fade Magnitude

accurately estimating the prevailing CSI and reliably relaying
this information between transceivers in a reasonable amount
of time, thus facilitating adaptive resource allocation. We
consider the transmission system of interest as operating on
discrete time intervals k ∈ {1, 2, . . . , 1430}, in the presence of
a wide-band channel divided into N narrowband subcarriers.
We also consider that the (nontrivial) channel fading attenuates
a given transmitted symbol (denoted x(k) ∈ C

N ) such that
the power received on each subcarrier i ∈ I = {1, . . . , N}
has been modulated by an amount αi(k): in this way, we
characterise the effect of channel fading on received symbol
power by the (real) vector αk = [αi(k)]∀i∈I . No loss in
generality is incurred by characterising α(k) ∈ R

N as OFDM
transmissions implement a cyclic prefix that may be exploited
at the receiver to eliminate any phase offset effects incurred
during transmission.

C. CSI Prediction

We sought to implement CSI prediction on N = 6
uniformly-spaced subchannel frequencies within the available
bandwidth. We assumed an autoregressive channel model
and implemented LMS predictive filtering [11] of the DFT
estimate of the subchannel gain after the application of an
appropriate normalizing factor. Let d ≥ 1 denote the prediction
horizon of the filter, F the filter order and wk ∈ C

F be the
filter weight values. We utilise the set of observed values u(k)
such that

(uk)T = [αk αk−1 . . .αk−F ] (1)

to determine yk+d = [yi(k + d)]∀i∈I the LMS estimate of the
observed fading at the interval of interest:

yi(k + d) = wT
k × uk (2)

hk = uk × (αk − yk+d)H (3)
wk+1 = wk + μ × hk (4)

A normalisation factor of 104 was applied to the fading data,
and an analysis of the predictor mean square error (MSE)

0 10 20 30 40 50 60
2.5

3

3.5

4

4.5

5
x 10

�13

 P
re

di
ct

io
n 

M
ea

n�
S

qu
ar

e 
E

rr
or

 (
M

S
E

)

Prediction Horizon, s

Figure 5: Variation of Prediction MSE with Prediction Depth

performance is presented as Fig. 5 for a step-size value of
μ = 0.1 and a filter order F = 2. A 4th order polynomial line
of best fit is also displayed. We observe that the prediction
MSE starts from an approximate maximum value of 4.5 ×
10−13 for d = 1 and then diminishes to below 2.9 × 10−13

as the prediction horizon is increased to 50 seconds. We also
note that the MSE error performance is negligible compared to
the average gain thresholds identified in Fig. 1: this indicates
that accurate LMS-based CSI prediction is possible within this
fading environment.
We also observe that the MSE of the prediction is significant

when compared to the minimum PSD of the fading phe-
nomenon. This indicates the possibility that the gain realised
on a given subchannel αi(k) < yi(k), and hence that data
transmistted over the channel at this time will be received
a lower SNR than required to satisfy transmission quality
of service (QoS) requirements. We denote such an event
as a shortfall, and that such a condition would lead to a
transmission outage on that subchannel at that time. We note
that a possible means of mitigating for these effects would
be to scale the predicted yk by a suitable margin ϕ prior to
performing resource allocation.
In investigating the efficacy of such a scaling scheme, we

examine the effect of scaling the predicted yk by various
amounts and observing the predictor shortfall performance,
PS(ϕ, d), as defined below:

PS(ϕ, d) := P
[
αi(k) < ϕ · yi(k),∀i ∈ I, 1 ≥ k ≥ 1430

]
(5)

In further discussion, we will denote the shortfall probability
by a simplified PS. We evaluated the effect of various scaling
factors, 0.8 ≥ ϕ ≥ 1 with μ = 0.1 and F = 2 and present
the results as Fig. 6. A 4th order polynomial line of best fit
for each set of data is also presented. These results indicate
that a decreasing value of PS is observed with an increasing
prediction horizon is increased, for a fixed ϕ. This trend that
is similar to the one observed in Fig. 5. Reducing ϕ results in
a reduction in PS at a given prediction horizon.
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Figure 6: Variation of Shortfall Error vs. Prediction Depth
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Figure 7: Prediction of Single Channel Gain
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Figure 8: Variation of Subchannel Rate over Time

III. RESOURCE ALLOCATION
The results of the previous section indicate that it is feasible

to perform CSI prediction in the presence of actual channel
fading. Additionally, the strong correlation observed in channel
fading at low lag, in addition to the low complexity of the LMS
predictor makes such a method viable for performing adaptive
resource allocation. We thus investigate the application of CSI
prediction in conjunction with adaptive resource allocation to
the real-world situation.
Following [9], [10], we apply an optimal resource allocation

scheme for the known OFDM channel [13] to the predicted
CSI value α̂(k+d). We use the margin maximisation algorithm
(MMA). The term margin refers to the excess power level
applied to a transmitted symbol so that the receiver SNR
exceeds the minimum threshold required to achieve the target
error probability Pe, subject to the selected symbol rate. The
MMA scheme was implemented for this task as it seeks to
distribute power across subchannels in such a way as to best
equalise outage rates across sub-carriers, sublect to available
power constraints.
We also investigate the predictive allocation power penalty,

defined as the excess total transmitter power required to
achieve a given value of symbol outage probability Po for
the particular prediction range under test. Each subchannel is
assumed to have a 3kHz bandwidth and it is assumed that the
frequency response is flat within each individual narrowband
subchannel.
We evaluate the receiver SNR obtained after the MMA

has been performed and after attenuation by the transmission
channel. This is compared with the SNR levels required to
satisfy the target selected rate on each subchannel. We thus
detect whether an outage occurred during each interval and
hence determine the overall outage rate. More details of this
evaluation are presented in Table I.

Table I: Details of Adaptive Allocation for Penalty Analysis

No. of Subcarriers 6
Subchannel Bandwidth 3 kHz
Modulation Scheme M-QAM
Maximum Modulation Depth 6 bits
Target Bit Error Probability 10−2

Prediction Filter LMS
No. of Filter Taps 2
Step Size, μ 0.1
Allocation Algorithm MMA
Noise PSD, No 10−9 W/Hz
Source Data Scaling 104

IV. RESULTS
A. CSI Prediction
We examined the relationship between predictor MSE and

prediction range for these data and present the results in Fig. 5.
A 4th order best-fit polynomial curve for these data points is
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also included in the diagram. These results indicate that the
filter MSE increases with an increase in prediction range and
also that the error is small as compared to the filter gain, even
for a considerable prediction range.
The prediction shortfall probability performance was also

evaluated as shown in Fig. 6: the best-fit curve is also a
4th order approximation. Fractional shortfall probability was
also assessed by comparing the predicted CSI value with
fractions of the actual CSI obtained. This shortfall probability
is observed to be higher at low prediction ranges and decreases
with increasing prediction range. These results indicate that
CSI prediction is feasible in an actual wireless transmission
environment. In Fig. 7, we present sample prediction results
obtained on a single subchannel for μ = 0.1, F = 2 and
various values of d. We also note the applicability of single-
step prediction to current OFDM systems: the 109ms channel
sample interval is large compared to typical symbol duration.

B. Resource Allocation
Typical resource allocation results obtained for the applic-

ation of the MMA on the 6-subchannel system are presented
in Fig. 8.
We also investigated the power penalty associated with

applying the MMA to the predicted CSI and present the results
of this operation in Fig. 9. It may be seen that an increase of
the transmitter power is associated with a decreasing outage
probability Po. For these data, we also observe a small increase
in Po as the prediction horizon is increased.
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V. CONCLUSION
These results gleaned from these analyses of suburban

mobile wireless transmission environments motivate the re-
commendation of predictive resource allocation in realistic
transmission scenarios. Following [13], we note that if a
bisection search is performed in determining the optimal rate-
power distribution, then each iteration of the algorithm will
require at most 2(N − 1) additions and N multiplications, or

at worst 763 flops of a computer. Additionally, the algorithm
provided an optimal distribution for a 255-subcarrier OFDM
transmission within 11 iterations (≤ 8, 400 flops). If a 1MHz
speed processor is used to perform this evaluation, then the
use of this algorithm will provide optimal RP within 8.4 ms.
Furthermore, increasing the CSI prediction range will require
correspondingly less computing resources for transmission
resource optimisation but will not incur an onerous cost in
terms of predictor shortfall probability.
Additional research will therefore enable the system de-

signer to select a desired operating point in terms of trans-
mission power constraints, available processing power, desired
outage behaviour and target data throughput.
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