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Abstract—In this paper, we address the problem of designing
power efficient quantizers for state estimation of hidden Markov
models using multiple sensors communicating to a fusion centre
via error-prone randomly time-varying flat fading channels
modelled by finite state Markov chains. Our objective is to
minimize a tradeoff between the long term average of mean
square estimation error and expected total power consumption.
We formulate the problem as a stochastic control problem by
using Markov decision processes. Under some mild assumption
on the measurement noise at the sensors, the discretized action
space (quantization thresholds and transmission power levels)
version of the optimization problem forms a unichain Markov
decision process for stationary policies. The solution to the
discretized problem provides optimal quantization thresholds
and power levels to be communicated back to the sensors
via a feedback channel. Moreover, in order to improve the
performance of the quantization system, we employ a gradient-
free stochastic optimization technique to determine the optimal
set of quantization thresholds from which optimal quantization
levels are determined. The performance results for estimation
error/total transmission power tradeoff are studied under various
channel conditions and sensor measurement qualities.

Index Terms—Power control, state estimation, hidden Markov
models, fading channels, Markov decision processes.

I. INTRODUCTION

In recent years, due to the wide range of applications
of wireless sensor networks (WSNs), signal processing with
distributed sensors has gained great research interest espe-
cially in context of distributed detection and estimation. A
typical wireless sensor network (WSN) consists of a set of
geographically dispersed sensor nodes which have limited
battery power and communication capability. Due to energy
limitations and bandwidth constraints encountered with WSNs,
the transmission data rate of each individual sensor node is
severely limited. This motivates the requirement for quantizing
observations at sensor nodes so that only a short sequence of
bits representing the observation is transmitted to the fusion
centre.

Designing such quantizers optimally is quite challenging.
However, many authors have obtained iterative quantizer de-
sign methods under various different distortion criteria for dis-
tributed detection (hypothesis testing) as well as for decentral-
ized estimation of random variables with known densities (e.g.,
[1]). Quantizer design for decentralized parameter estimation

This work was partially supported by the Australian Research Council.
N. Ghasemi and S. Dey are with the ARC Special Research Centre on

Ultra-Broadband Information Networks (CUBIN), Department of Electrical
and Electronic Engineering, University of Melbourne, Parkville, Melbourne,
VIC 3010 Australia. CUBIN is affiliated program of National ICT Australia
(NICTA).

was considered in [2] using multiple sensors with Bayes
distortion and Fisher information criteria. There is also an
extensive literature on binary sensors in the context of binary
hypothesis testing; see [3]–[5] and references therein. Various
decentralized/distributed parameter estimation problems with
quantized (binary or with a small number of bits) data have
been studied in [6]–[8] (see also references therein).

In contrast, the design of optimal quantizers for decen-
tralized state/parameter estimation of dynamical systems, to
minimize estimation error variance, is a difficult task because
this error variance can be a complex nonlinear nonconvex
function of the quantization thresholds. Recently, a stochastic
control approach has been used in [5] to design optimal
quantizers for general hidden Markov models (HMMs). These
results, however, do not take into account other constraints
in WSNs such as limited energy/memory/computing power,
sensor faults, channel noise or random channel conditions
such as fading etc. that can lead to signal degradation. Some
of these constraints have been addressed partially in recent
works such as [9] for constant parameter estimation with
energy constraints, while the impact of channel noise and
fading is considered in [10] for distributed detection. While
[5] assumed error-free communication between sensors and the
fusion centre, a more recent study [11] extends these works by
considering more realistic case of additive channel noise and
wireless channel fading. In [11] the wireless fading channel is
modeled by a finite-state Markov chain.

In most application scenarios of WSNs, sensor nodes are
powered by small batteries for which replacement is impracti-
cal, if not impossible, due to cost limitations or because they
are deployed in hostile environments with high temperature,
high pollution levels, and so on. This highly motivates the
fact that power-efficient designs are of chief importance [12].
Minimization of transmission power leads to more efficient
utilization of battery energy and hence longer battery life of
sensor nodes. On the other hand, reducing transmission power
increases the probability of error as a result of transmission
over a noisy fading channel, thus increasing the average state
estimation error at the fusion centre. Motivated by these
concerns, in this paper, we address the issue of minimizing
the average state estimation error (at the fusion centre) with
respect to sensor quantization thresholds and sensor transmis-
sion power levels, under a fixed expected total transmission
power constraint. In particular, we study a decentralized state
estimation problem for a remote stochastic process (such as
target maneuvers in battlefield scenarios, or gas/chemical leaks
in hostile environments etc.) modelled by an underlying finite
state discrete time Markov chain via multiple sensors. We con-
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sider the sensors to have modest computation capability, in that
they only quantize their measurements into a binary symbol.
We formulate the problem using a Markov decision process
(MDP) approach, namely, an unconstrained Lagrangian based
MDP formulation. Our work is distinct from [11] in that we
allow different sensors to be allocated different power levels
while bounding the total expected power allowed per time of
operation. Moreover, we introduce a framework to determine
the set of quantization thresholds optimally rather than arbitrar-
ily. This leads to a significant improvement in optimizing the
estimation error/total power tradeoff cost. We account for the
error-prone randomly time-varying flat fading channel between
each sensor and the fusion centre by modeling it as a binary
symmetric channel with the crossover probability controlled
by the transmission power and channel status.

The remainder of the paper is outlined as follows: in
Section II, we describe a model for the system and present
the hidden Markov model formulation of the state estimation
problem using quantized measurements with power constraint.
In Section III, we present the MDP formulation of optimizing
the tradeoff between average estimation error and average
power consumption across the sensors for the presented model.
In Section IV, we describe a framework to determine the
optimal set of quantization thresholds. The simulation results
are given in Section V followed by some concluding remarks
in Section VI.

II. PROBLEM STATEMENT

A. System Model

Let the dynamic process be represented by the random
sequence {Xt, t ≥ 1} which is a stationary ergodic Markov
chain with state space X = {s1, · · · , sn}. For this Markov
chain, the transition probability is given by the matrix
P = [pXij ], where pXij = Pr(Xt+1 = sj |Xt = si), 1 ≤
i, j ≤ n. The state variable Xt is related to the measure-
ments by Yt = AXt + Vt, where Yt = [Y1,t, · · · , YM,t]

T ,
A = [1, · · · , 1]T , and the additive noise sequence Vt =
[V1,t, · · · ,VM,t]

T is independent and identically distributed
(i.i.d.). The joint probability density function for Vt is given
by fV.

We consider a one-bit binary quantization scheme in which
the sequence {rt, t ≥ 1} = {(r1,t, · · · , rM,t), t ≥ 1}
represents the sequence of quantization parameters. Let the
quantized data be denoted by Y

q
t = [Y q

1,t, · · · , Y q
m,t]

T . Each
sensor transmits its quantized output to the fusion centre over a
discrete time flat fading channel. Let Ct = (C1,t, · · · , CM,t)

T

be the sensors’ channel state vector at time t. We assume that
the sequence of channel states {Cm,t, t ≥ 1} is a stationary
ergodic Markov chain with state space C = {c1, · · · , ck} and
transition probability matrix PC

m = [pm
ij ], where

pm
ij = Pr(Cm,t+1 = cj |Cm,t = ci),

1≤i,j≤k
1≤m≤M. (1)

Each channel state ci, 1 ≤ i ≤ k may represent a value of the
channel gain. In the estimation problem, the channel states of
different sensors are assumed to be known at the fusion centre,
but not at the sensor nodes.

The transmission power at each sensor is allowed to
vary according to the channel condition. Denote the m-th
sensor’s transmission power at time t by pm,t. Let pt =
(p1,t, · · · , pM,t) and write the sequence {pt, t ≥ 1} =
{(p1,t, · · · , pM,t), t ≥ 1}. pt will be called power level
parameter. Transmission power for every sensor is chosen from
the same set of available power levels P = {p1, · · · , p�}.

The received symbol at the fusion centre after decoding is
then denoted by Y f

m,t. Let Y
f
t = [Y f

1,t, · · · , Y f
M,t]

T . Y f
m,t is

described by the following channel transition probability

Pr(Y f
m,t = aj |Y q

m,t = ai, Cm,t = c, pm,t = p) = qm
ij (c, p)

(2)

where i, j ∈ {1, 2}, c ∈ C, p ∈ P , and a1, a2 denote the
symbols for a binary-quantized measurement.

The resulting input-output transition matrix is denoted by
Qm(c, p) = [qm

ij (c, p)] conditioned on the channel state c ∈ C
and power level p ∈ P . The off-diagonal entries in Qm(c, p)
are called crossover probabilities. The crossover probabilities
are formulated in the next section.

For each pair of sequences r = {rt, t ≥ 1} and p =
{pt, t ≥ 1}, the long term average of the mean square error
in state estimation is given by

J(r,p) := lim sup
T→∞

1

T

∑T

t=1
E |Xt − X̂t|2 (3)

where the state estimate X̂t is a Borel measurable function of
the sequence {Yf

l ,Cl, l ≤ t}. The objective of this paper is to
solve the dynamic quantization optimization problem which is
to obtain the optimal sequences r and p such that the mean
square estimation error J(r,p) is minimized constrained on
the long term average of total power consumption across all
the sensors. The optimization problem can be formulated as

min
r,p

J(r,p)

subject to : lim sup
T→∞

1

T

∑T

t=1
E Q(Ct,pt) ≤ Pavg

(4)

whereQ(Ct,pt) is a power consumption cost function defined
in (14) (on page 3). Notice that the fusion centre can not
find the optimal quantization scheme using the optimization
problem (4) by directly minimizing the cost function J(r,p).
This is because it has no exact knowledge on Xt. Therefore,
in the following section, we define the information state θt,
which can be computed at the fusion centre using a recursive
formula, and then in Section III we restate the definition of
the cost function J(r,p) based on the information state, thus
converting the partially observed problem to a fully observed
stochastic control problem.

B. The information state

Define the information state vector θt = [θ1,t, · · · , θn,t]
T ,

where θi,t = Pr(Xt = si | Dt), i ∈ {1, · · · , n}, t ≥ 1 and
Dt := D(Yf

l ,Cl, l ≤ t) is the σ-algebra generated by the
observations up to time t. Denote also

H(si, rt,y
q
t ) = Pr(Yq

t = y
q
t |Xt = si, rt), i ∈ {1, · · · , n}

(5)

where y
q
t denotes a value for the random variable Y

q
t , and we

have

H(si, r,a) =

∫
U(r,a)

fV(y1 − si, · · · , yM − si)dy1 · · · dyM

(6)

where a = (ai1 , · · · , aiM
), im ∈ {1, 2} for m = 1, · · · ,M ,

and the integration region U(r,a) := {y ∈ R
M | G(r,y) =

a}, in which G : R
M × R

M �→ {a1, a2}M is the binary
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quantization mapping. Based on the channel input-output
transition probability defined in (2), we have

Q(yf
t ,y

q
t , ct,pt) = Pr(Yf

t = y
f
t |Yq

t = y
q
t ,Ct = ct,pt)

=
M∏

m=1

qm
imjm

(cm, pm,t) (7)

where ct = [c1, · · · , cM ]T , cm ∈ C, y
q
t and y

f
t denote

values for random variables Y
q
t and Y

f
t respectively, in which

yq
m,t = aim

and yf
m,t = ajm

for im, jm ∈ {1, 2}. Assuming
the channels from the sensors to the fusion centre to be
independent, we define the product of M channel transition
probabilities as p(Ct+1 = ct+1 | Ct = ct) =

∏M
m=1 p

m
imjm

,
where cm,t = cim

, cm,t+1 = cjm
for im, jm ∈ {1, · · · , k},

and 1 ≤ m ≤M . Define the function

ψi(si, rt,pt,Y
f
t = y

f
t ,Ct = ct)

=
∑

y
q
t∈{a1,a2}M

H(si, rt,y
q
t )Q(yf

t ,y
q
t , ct,pt) (8)

We also introduce the diagonal matrix

Ψ(s1, · · · , sn, rt,pt,Y
f
t = y

f
t ,Ct = ct) =⎛⎜⎝ ψ1(s1, rt,pt,y

f
t , ct)

. . .
ψn(sn, rt,pt,y

f
t , ct)

⎞⎟⎠
(9)

Proposition 2.1: The recursion for the information state θt

is given by

θt =
p(ct | ct−1)

ξ′t
Ψ(s1, · · · , sn, rt,pt,y

f
t , ct)P

T θt−1

:=
1

ξt
Λ(rt,pt,y

f
t , ct)θt−1 (10)

where P is the transition matrix of {Xt}, ξ′t and ξt are
normalizing factors such that ‖ θt ‖1= 1. �

The proof is standard and can be obtained by use
of the Bayesian rule and the detail is omitted here.
ξt =‖ Λ(rt,pt,y

f
t , ct)θt−1 ‖1 is a normalization factor.

C. Channel crossover probabilities
In this section, we formulate the channel input-output tran-

sition probabilities qm
ij (c, p) as defined in (2). The received

signal at the fusion centre from the m-th sensor at time t
is given by yr

m,t = gm,t
√
pm,tbm,t + νm,t, where gm,t, pm,t

are the channel gain and transmission power respectively,
bm,t ∈ {−1, 1} denotes the source bit and νm,t is the additive
white Gaussian channel noise. Here bt = [b1,t, · · · , bM,t]

T

is generated in an obvious manner via binary quantization,
defined by the mapping G(rt,yt), of the noisy sensor ob-
servation Yt = yt for the state value Xt = xt, xt ∈ X .
Let the covariance of νm,t be denoted by σ2

ν . For this signal
model, the signal-to-noise ratio (SNR) at time t is given by
γ = gm,tpm,t/σ

2
ν . Let κ denote the path loss exponent of the

wireless channel, dm the distance between the m-th sensor
and the fusion centre, and suppose binary phase shift keying
(BPSK) modulation is used to transmit the sensor bits, then
we can express the crossover probability after detection at the
fusion centre as

εm(γ) = Q(

√
2αγd−κ

m ) =

∫ ∞

√
2αγd

−κ
m

1√
2π
e−

t2

2 dt (11)

where α is a constant. The input-output transition re-
lationship between the fusion centre decoded output
Y f

m,t and the transmitted bit bm,t is then expressed by
Pr(Y f

m,t = −bm,t | bm,t) = εm(γ). Since we consider the
channel as a binary symmetric channel, the other crossover
probability is also given by the same quantity.

III. THE STOCHASTIC OPTIMAL CONTROL PROBLEM

A. Average Estimation Error/Average Total Power Trade-off

In the following, we present the two per-stage cost func-
tions, i.e., expected state estimation error and expected total
power consumption across the sensors. Given the observations
Dt, the state estimate X̂t can be written as

X̂t(θt) = EX [Xt | Dt] =
∑n

i=1
siθi,t. (12)

We introduce the conditional cost function

φ(θt) = EX [|Xt − X̂t|2|Dt]

=
∑n

i=1
[si −

∑n

j=1
sjθj,t]

2θi,t (13)

which is computed using (12) in terms of θt. Notice that the
fusion centre can minimize the error cost in (13), since θt

can be computed using recursion given in (10) having the
observations y

f
l , cl, l ≤ t. It is obvious that the state space

for the information state θ can be defined as the simplex
Tθ = {Ω ∈ R

n
+ | ‖ Ω ‖1 = 1} ⊂ R

n.
Define the average total power cost function Q(Ct,pt) as

Q(Ct = u,pt = v) :=
∑M

m=1
vmπ

m
um

(14)

where u = [u1, · · · , uM ]T , um ∈ C, v = [v1, · · · , vM ]T ,
vm ∈ P for 1 ≤ m ≤M are the values for the channel
state and transmission power vectors at time t, and πm =
[πm

c1
, · · · , πm

ck
]T denotes the steady-state distribution of the

channel state sequence {Cm,t, t ≥ 1} for the m-th sensor
(note that by the previous assumptions in Section II-A such a
distribution exists and is unique).

Due to the randomized nature of optimal solutions to
constrained MDP problems, we now obtain an unconstrained
MDP formulation, by minimizing the long-term average of
a weighted combination of these two conflicting objectives-
the average estimation error φ(θt) and average total power
consumption cost Q(Ct,pt). Thus, a variation of the optimal
estimation problem (4) subject to the long run average total
power consumption may be expressed as

min
r,p

lim sup
T→∞

1

T

T∑
t=1

E[G(θt,Ct,pt) | θ1 = θ◦,C1 = c◦]

(15)

where (θ◦, c◦) is the initial condition, and G(θt,Ct,pt) is the
per-stage cost function defined as

G(θt,Ct = u,pt = v) = φ(θt) + βQ(u,v) (16)

where the weighting factor β ≥ 0 is a trade-off parameter
which assumes the role of Lagrangian multiplier and specifies
the relative importance of total power consumption across the
sensors over the expected estimation error.

In fact, the average cost MDP problem (15) has a composite
state space Tθ × CM and action space R

M × PM with
(θ,C), and (r,p) being the state and action respectively. In
order to devise a numerical solution to (15), we discretize
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the continuum information state θ. We use the discretization
procedure presented in [5]. We choose a step size 1

N
and

approximate the continuum information state θ ∈ Tθ by
discretized values ϑ ∈ T , where T ⊂ Tθ is the state space of
the discretized information state. Note that after discretization,
we still have that ‖ ϑ ‖1 = 1, ∀ϑ ∈ T . In further analysis
for numerical tractability, we consider a variant of the above
problem (15) by restricting the range space for the variable r
to a finite set of discrete values in R

M . Let the range space of
rm,t be the set R = {ρ1, · · · , ρd}. Hence r shall be chosen
from the product setRM . By discretizing the information state
and quantization parameter, we can now obtain a suboptimal
control problem as

min
r∈RM

p∈PM

lim sup
T→∞

1

T

T∑
t=1

E[G(ϑt,Ct,pt) | ϑ1 = ϑ◦,C1 = c◦]

(17)

where ϑt ∈ T represents a discretized approximation of θt,
and (ϑ◦, c◦) is the initial state.

The optimization problem (17) is, indeed, an average cost
MDP problem with a finite state space S = T × CM and a
finite action space A = RM × PM . The Bellman optimality
equation associated with the problem (17) is given by

λ+h(c, ϑ)

= min
r∈RM

p∈PM

[
G(ϑ, c,p) +

∑
yf ,c′

p(c′ | c) ‖ Λ(r,p,yf , c′)ϑ ‖1×

h

(
c′,
[ Λ(r,p,yf , c′)ϑ

‖ Λ(r,p,yf , c′)ϑ ‖1

]
round

)]
(18)

where [.]round : Tθ �→ T is the discretization operator for the
information state as described in [5], λ is the gain or average
cost per period in steady state which we are after its optimal
value λ∗, and h is the differential cost.

Assume that the quantization and power level parameters
(rt,pt) at each time instance t are specified by a Markov
stationary policy μ∞ = {μ, μ, · · · } which specifies (rt,pt)
as a function of the discretized information state ϑt−1 and
the channel state Ct−1. Let Π denote the set of all Markov
stationary policies μ∞. Before establishing solvability of the
above Bellman equations, we need to introduce the following
assumption:

(A1) For any r ∈ RM , p ∈ PM , yf ∈ {a1, a2}M , and
c ∈ CM , the matrix Λ(r,p,yf , c) is non-singular and strictly
positive. �

The following theorem establishes the existence of solutions
to the Bellman equation (18).

Theorem 3.1: Under assumption (A1), there exists a scalar
λ ∈ R, and a bounded function h : CM × T �→ R which
satisfies the Bellman equation (18). �

Remark: Note that Theorem 3.1 holds under the fact
that the state space S and the action space A are
both finite, and the per-stage cost G is bounded, that
is, |G

(
ϑ(r,p), c,p

)
| ≤ K <∞ for ∀c ∈ CM ,ϑ ∈ T ,r ∈ RM ,

p ∈ PM . The proof is excluded as it is very similar to the
result presented in [5].

The optimality equation (18) can be solved via dynamic
programming techniques. In order to find the solution to the
optimality equation (18), we apply a relative value iteration
algorithm. Under assumption (A1), this algorithm finds a

deterministic stationary ε-optimal policy (μ∗ε )
∞ and an ap-

proximation to its gain as the value of the optimal cost λ∗.
IV. OPTIMIZING THE SET OF QUANTIZATION

THRESHOLDS

In this section, we consider the problem of finding the
optimal set of quantization thresholds R = {ρ1, · · · , ρd},
to be used in the optimization problem (17) as an input
parameter. We consider the dynamic quantization system as
a scalar-valued map function L : R

d �→ R+ in which we
have λ = L(η;β◦), where λ is the value of ε-optimal cost
found by the relative value iteration algorithm for a given set
of quantization thresholds η. Here, η may be viewed as a
vector in R

d, where d is the cardinality of the set R. Thus,
the problem of finding the optimal set R∗ can be translated
into finding η∗ which minimizes the objective function L(.)
over feasible values of η, that is,

η∗ = arg minη∈Rd {λ = L(η;β)}, λ, β ∈ R+ . (19)

The optimization problem (19) can be viewed as the clas-
sical problem of stochastic optimization of a multivariate
system. Note that for the quantization problem at hand, the ε-
optimal cost λ in the optimization problem (19) represents a
noisy measurement of the objective function L(.). Moreover,
in our problem, no direct measurements (with or without
noise) of the gradient of the objective function are assumed
available. Thus, we are looking for a gradient-free stochastic
optimization algorithm which approximates the gradient g(η)
only from the measurements of the objective function L(.).
The method we apply in this problem is an enhanced version
of the simultaneous perturbation stochastic approximation
(SPSA) method introduced in [13]. We apply the enhanced
version of the SPSA algorithm called adaptive stochastic
approximation (ASP) studied in [14]. The ASP algorithm
iteration starts from an initial estimate of the optimal η. In
order to find the initial estimate η̂0, we use a vector quantizer
algorithm called LBG algorithm introduced in [15].

V. SIMULATION RESULTS

In this section, we present some numerical examples il-
lustrating the performance trade-off achieved by the dynamic
quantization algorithm between the average estimation error
and the total average power consumption. The simulations
are performed for two different Markov random processes
{Xt, t ≥ 1} and under various fading statistics, wireless
channel noise, and measurement noise of the sensors. The
optimal policies are obtained using the unconstrained MDP
formulation (17). We use the relative value iteration algorithm
in order to obtain the optimal deterministic policies and the
optimal cost. Throughout the following experiments, some
of the parameters are assumed fixed as following unless
otherwise mentioned: the step size 1/N in discretization of
the information state θ is chosen 1/N = 0.01; κ, the path
loss exponent of the wireless channel, is considered κ = 2
for the deployment of the sensors in an open rural area; the
constant coefficient α for computing crossover probabilities is
taken α = 1.

A. State Estimation of a Two-State Markov Chain

In this section, we examine state estimation of a two-state
Markov chain {Xt, t ≥ 1} using two sensors. The sensors
are located in different distances from the fusion centre with
distance vector d = [100.0, 200.0]T , where the distance figures
are given in meters. For the Markov chain {Xt}, the state
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Fig. 1. Relative error between ε-optimal cost found by relative value iteration
algorithm and the cost computed by simulation.

space is X = {s1=0, s2=2.5} and the transition probability
matrix is given by

P =

[
0.8 0.2
0.4 0.6

]
.

The measurement noise of the sensors are assumed to be
i.i.d. and normally distributed with zero mean and identical
variance σ2 = 0.3, that is, Vm,t ∼ N (0, 0.3) for m = 1, 2.
The wireless flat fading channels from the sensors to the
fusion centre are assumed to be independent and each channel
is modeled by a two state Markov chain with state space
C = {c1, c2}. We consider asymmetric channels for the two
sensors, that is, the channels have different fading statistics
given by the following transition probability matrices

PC
1 =

[
0.85 0.15
0.25 0.75

]
, PC

2 =

[
0.6 0.4
0.55 0.45

]
.

The channel states c1 and c2 represent the corresponding
channel gains g1 = 10−10 and g2 = 10−11 respectively. The
proportional magnitude of the channel gain g1 relative to
g2 indicates 10dB drop in signal-to-noise ratio γ when the
wireless channel deteriorates from state c1 to c2 and the
power remains unchanged. The noise power of the wireless
channel for every sensor is σ2

ν = 10−16 W . The action space
of the power level parameter for every sensor is considered
as P = {60, 40, 20, 5}, where the power levels are given in
mW . However, it is worth mentioning that these power levels
are chosen as typical values, and the devised algorithm can
be used for any technology-specific values of power levels.
Using the given transition matrix for each channel Markov
chain, the steady-state distribution of the channel states for
the two sensors can be calculated as π1 = [0.625, 0.375]T

and π2 ≈ [0.579, 0.421]T which are used in computing the
power budget function Q(Ct,pt).

In order to study the effect of the measurement noise
variance σ2 on the optimal error/power curve, we use Monte
Carlo simulations to compute the long term average of both
state estimation error and power for the ε-optimal policy μ∗

found by the relative value iteration algorithm. We com-
pute the estimation error and power consumption using a
sample path ω consisting of a sequence of the received
measurements {Yf

t (ω)}T
t=1, and a sequence of the channel

states {Ct(ω)}T
t=1 for T = 50× 103. Note that the sequence

Fig. 2. Optimal Error/Power curves for different values of the measurement
noise.

{Yf
t (ω)}T

t=1 is, in fact, determined by the corresponding
sequences of the measurement noise {Vt(ω)}T

t=1 and Markov
chain state {Xt(ω)}T

t=1 for a given sample path ω. Let
{θt(ω)}T

t=1 be a sequence of the information state computed
using recursion (10) at time steps t ≥ 2 having two sequences
{Yf

t (ω)} and {Ct(ω)}. Based on the sequence {θt(ω)} and
the discretization operator for the information state, we obtain
the sequence {ϑt(ω)}T

t=1 for a given sample path ω. The
optimal action sequence {At(ω)}T

t=2, where At = (rt,pt), is
then determined by the optimal policy μ∗. Then, the average
estimation error and average power are computed by averaging
on 30 runs of the simulation. Fig. 1 illustrates concurrence
of the ε-optimal per-stage cost computed by relative value
iteration algorithm and the cost computed by simulation for
945 experiments in which each experiment has been run with
different values of the parameters σ2, σ2

ν , and R. As it can be
seen in Fig. 1, the relative error is upper bounded by 1% and
for 98.8% of the experiments, the relative error is less than
half a percent.

Fig. 2 illustrates the optimal estimation error/total power
tradeoff curves for various values of measurement noise vari-
ance in the range of 0 ≤ σ2 ≤ 0.5. For each value of the trade-
off parameter β along every error/power curve, the optimal
set of quantization thresholds R∗ with cardinality d = 6
has been found using the gradient-free stochastic optimization
method ASP. In Fig. 2, for the same average power, a trend of
consistent decrease of the estimation error with the decrease of
the measurement noise variance can be observed. However, the
relative decrease rate is much higher for the power levels along
the tail of the curve where the value of the trade-off parameter
β is smaller (i.e., when β → 0). The reason for this is that the
contribution of the estimation error in the cost function G(.) is
quite considerable when β → 0. Moreover, in order to achieve
the same estimation error, it requires larger transmission power
in sensor nodes for higher values of the measurement noise
than lower ones. This is because higher power level results
in higher received SNR γ at the fusion centre which then
leads to a lower crossover probability that compensates for
the highly noisy sensors’ observations in equation (8). For the
trivial case σ2 = 0, the quantizer output at each sensor node is
determined directly from the state value xt ∈ X of the Markov
chain {Xt, t ≥ 1}.
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Fig. 3. The improvement in state estimation error achieved by using the ASP
result set R∗ over against some arbitrary sets for different values of trade-off
parameter β.

B. ASP Results for State Estimation of a Three-State Markov
Chain via Two Sensors

The following results provide the improvement, in sense of
state estimation error, achieved by using ASP optimization
method in state estimation of a three-state Markov chain
{Xt, t ≥ 1} via two sensors. For the Markov chain {Xt}, the
state space is X = {s1=0, s2=1, s3=2.5} and the transition
probability matrix is given by

P =

[
0.9 0.1 0
0.1 0.8 0.1
0 0.15 0.85

]
.

We consider symmetric channels for the two sensors
with equal transition probability matrix PC

1 given in Sec-
tion V-A.The transmission power level for every sensor is
optimized from the set P = {60, 30, 10}, with the power
values being in mW . The quantization threshold parameter
for every sensor is optimized from the set R = {ρ1, · · · , ρd}
with cardinality d = 4. The other input parameters are the
same as those mentioned in Section V-A.

Fig. 3 illustrates the improvement in state estimation error
achieved by using the ASP result set R∗ versus estimation
error obtained from some arbitrary sets. The first set is given
by R1 = {−0.4, 0.9, 2.2, 3.5} which contains equally-spaced
threshold values starting from −0.4 with step size 1.3. The
set R1 is covering the most probable deviation1 from the
third Markov chain state value s3 = 2.5. As specified by circle
markers in Fig. 3, for different values of the tradeoff parameter
β, the state estimation error obtained from the ASP result set
R∗(β) comparing to the one achieved by using the set R1

shows 9.08−19.01% improvement with average improvement
of 14.02%. For the second set R2 = {−1.0, 0.5, 2.0, 3.3}, the
error improvement, specified by square markers in Fig. 3,
lies in the range 4.28 − 8.95% with the average of 7.19%.
The set R2 is covering the most probable deviation from the
first Markov chain state value s1 = 0.0. As for the third set
R3 = {−0.5, 0.8, 1.2, 3.0}, specified by triangle markers in
Fig. 3, the ASP result set R∗ shows 3.06 − 13.75% better
error efficiency with a mean efficiency of 8.55%. The setR3 is

1that is, ±2σ which accounts for up to 95.5% of the values for random
variable Ym,t drawn from Gaussian distribution N (s3, σ2) when Markov
chain state is Xt=s3=2.5.

chosen such that two of the threshold values are concentrated
around the Markov chain mid-state s2 = 1.0 and the other two
thresholds are evaluated with mid-points in the most probable
deviation range from the Markov chain state s1 and s3.

VI. CONCLUDING REMARKS

In this paper, we designed a novel optimal dynamic quan-
tizer design algorithm with optimal power allocation for state
estimation of hidden Markov models using multiple sensors
communicating with a fusion centre over temporally correlated
flat fading channels. We formulated the problem as a stochastic
control problem with a Markov decision process and used
dynamic programming techniques to find the optimal cost and
the optimal deterministic stationary policy which adapts the
values for the quantization thresholds and power levels based
on the state estimate and channel state information available
at the fusion centre. Moreover, we employed a gradient-free
stochastic optimization technique to determine the optimal set
of quantization thresholds for a given value of the tradeoff
parameter. Simulation studies were carried out to illustrate the
optimal average estimation error/average total power tradeoff
performance under various channel fading, noise and senor
measurement noise parameter values.
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