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Abstract

This paper considers state estimation of scalar linear
systems using analog amplify and forwarding with mul-
tiple sensors, under a multiple access communication
scheme. Optimal state estimation can be achieved us-
ing a Kalman filter. We show that in many situations,
the error covariance decays at a rate of 1/M when the
number of sensors M is large. Optimal allocation of
transmission powers subject to constraints on the error
covariance or sum power is also considered.

1. Introduction

Wireless sensor networks are collections of sensors
which can communicate with each other or to a central
node or base station through wireless links. Poten-
tial uses include environment and infrastructure mon-
itoring, healthcare and military applications, to name
a few. Often these sensors will have limited energy
and computational ability which imposes severe con-
straints on system design, and signal processing algo-
rithms which can efficiently utilise these resources are
of great interest.

In recent years there has been a considerable lit-
erature on estimation and detection schemes designed
specifically for use in wireless sensor networks. Work
on detection in wireless sensor networks include [1]
which studies the asymptotic optimality of using identi-
cal sensors in the presence of energy constraints, and [2]
which derives fusion rules for distributed detection in
the presence of fading. Parameter estimation or esti-
mation of constant signals is studied in e.g. [3,4] where
issues of quantization and optimization of power usage
are addressed. Type based methods for detection and
estimation of discrete sources are proposed and ana-
lyzed in [5, 6].

A promising scheme for distributed estimation in
sensor networks is analog forwarding, where measure-
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ments from the sensors are transmitted directly (pos-
sibly scaled) to the fusion center without any coding,
which is motivated by optimality results on uncoded
transmissions in point-to-point links [7,8]. Analog for-
warding schemes are attractive due to their simplic-
ity as well as the possibility of real-time processing
since there is no coding delay. In [9] the asymptotic
(large number of sensors) optimality of analog forward-
ing for estimating an i.i.d. scalar Gaussian process is
shown. Analog forwarding with optimal power allo-
cation is studied in [10] and [11] for multi-access and
orthogonal schemes respectively. Lower bounds and
asymptotic optimality results for estimating indepen-
dent vector processes, is addressed in [12].

Rather than the i.i.d. processes previously consid-
ered, in this paper we address estimation of dynamical
systems using analog forwarding of measurements. In
particular, we will consider the problem of state estima-
tion of discrete-time scalar linear systems using multi-
ple sensors. As is well known, optimal state estimation
of a linear system can be achieved using a Kalman fil-
ter. Other work on Kalman filtering in sensor networks
include [13] which studied optimal sensor data quanti-
zation, and [14], where Kalman filtering using one bit
quantized observations is considered and performance
is shown to lie within a constant factor of the standard
Kalman filter.

The organization of the paper is as follows. Section
2 specifies our model and preliminaries. We investigate
the asymptotic behaviour for a large number of sensors
M in Section 3, where it is shown that the error co-
variance decays at the rate 1/M , even when the total
power is bounded. Power allocation for static chan-
nels is considered in Section 4, where we formulate and
solve optimization problems for 1) an error covariance
constraint and 2) a sum power constraint. Numerical
studies are presented in Section 5. Extensions of our
work are outlined in Section 6.

2. Model and preliminaries
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Figure 1: System model

Throughout this paper, i represents the sensor in-
dex and k represents the time index. Let the linear
system be

xk+1 = Axk + wk (1)

with the M sensors each observing

yi,k = Cixk + vi,k, i = 1, . . . , M (2)

with wk and vi,k being zero-mean Gaussians having co-
variances Q and Ri respectively, with the vi,k’s being
independent between sensors, see Figure 1. In this pa-
per we will restrict ourselves to scalar systems, so that
A,Ci, Q,Ri are scalar quantities. Moreover, we assume
that the system is stable, i.e. |A| < 1. We consider a
multi-access scheme where the fusion center coherently
receives the sum

zk =

M∑
i=1

αihiyi,k + nk (3)

where nk is zero-mean Gaussian with variance N , hi

are the channel gains, and αi are the multiplicative
amplification factors in an amplify and forward scheme.
The assumption of CSI at the transmitters is crucial in
order for the signals to add up coherently in (3), and
may not be easy to achieve in large sensor networks.
However in studies such as [15,16] it has been shown in
slightly different contexts that for moderate amounts
of phase error much of the potential performance gains
can still be achieved.

The situation (1)-(3) is equivalent to the linear sys-
tem

xk+1 = Axk + wk

zk = C̄xk + v̄k

(4)

if we define C̄ ≡ ∑M
i=1 αihiCi and v̄k ≡ ∑M

i=1 αihivi,k+

nk, with v̄k having variance R̄ ≡ ∑M
i=1 α2

i h
2
i Ri + N .

Then it is well known that optimal estimation of the
state xk in the minimum mean squared error (MMSE)
sense can be achieved using a Kalman filter [17].

For stable scalar systems, if Xk is stationary we
have E[X2

k ] = Q
1−A2 ,∀k. The power used at time k by

the ith sensor in transmitting its measurement to the
fusion center is then

pi = α2
i

(
C2

i

Q

1 − A2
+ Ri

)
.

From Kalman filtering theory, we know that the
steady state (as k → ∞) error covariance P∞ for scalar
systems satisfies

P∞ =
A2P∞R̄

C̄2P∞ + R̄
+ Q.

The solution to this can be easily shown to be

(A2 − 1)R̄ + C̄2Q +
√

((A2 − 1)R̄ + C̄2Q)2 + 4C̄2QR̄

2C̄2
.

(5)

It will also be useful to write (5) as

P∞ =
A2 − 1 + QS +

√
(A2 − 1 + QS)2 + 4QS

2S
(6)

with S ≡ C̄2/R̄ regarded as a signal-to-noise ratio
(SNR). We have the following property, whose proof
is omitted for brevity, see [18].

Lemma 1 P∞ is a decreasing function of S

3. Asymptotic behaviour

Since P∞ is a decreasing function of S, increasing
S will provide an improvement in performance. As
S → ∞, we can see from (6) that P∞ → Q, the process
noise variance. Note that unlike e.g. [9, 11] where the
mean squared error (MSE) can be driven to zero in
some situations such as when there is a large number
of sensors, here the lower bound Q on performance is
always strictly greater than zero. We will show that as
the number of sensors M → ∞, then P∞ → Q can be
achieved in many situations. Moreover we will derive
the rate 1/M at which this convergence occurs.

In this section we will investigate two simple strate-
gies, 1) αi = 1,∀i, and 2) αi = 1/

√
M,∀i.1 We do this

first for the “symmetric” case (i.e. the parameters are
the same for each sensor) where we can obtain explicit
asymptotic expressions. We then use these results to
bound the performance in the general asymmetric case.

No scaling: αi = 1,∀i
Let αi = 1,∀i, so measurements are forwarded to the

fusion center without any scaling. Assume firstly the

1These strategies are similar to the case of “equal power con-
straint” and “total power constraint” in [19] (also [16]), and var-
ious versions have also been considered in the work of [9–12], in
the context of estimation of i.i.d. processes.
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symmetric case, where Ci = C,Ri = R, hi = h,∀i. We
have C̄ = MhC and v̄k has variance R̄ = Mh2R + N ,

so that S = M2h2C2

Mh2R+N . Substituting into (5):

P∞=
1

2M2h2C2
×

(
(A2−1)(Mh2R + N) + M2h2C2Q

+
(
((A2 − 1)(Mh2R + N) + M2h2C2Q)2

+ 4M2h2C2Q(Mh2R + N)
)1/2

)
.

We are interested in the behaviour of this as M → ∞.
Now(

((A2 − 1)(Mh2R + N) + M2h2C2Q)2

+ 4M2h2C2Q(Mh2R + N)
)1/2

=
(
h4C4Q2M4 + 2(A2 − 1)Rh4C2QM3

+ 4h4C2QRM3 + O(M2)
)1/2

= h2C2QM2

(
1 +

2(A2 + 1)R

C2QM
+ O

(
1

M2

))1/2

= h2C2QM2

(
1 +

1

2

2(A2 + 1)R

C2QM
+ O

(
1

M2

))
= h2C2QM2 + (A2 + 1)h2RM + O(1)

(7)

where we have used the expansion (1+x)1/2 = 1+x/2+
O(x2) for |x| < 1, which is valid when M is sufficiently
large. Hence

P∞ = Q +
A2R

C2

1

M
+ O

(
1

M2

)
. (8)

So in this case the steady state error covariance for
the multi-access scheme converges to the process noise
variance Q, at a rate of 1/M . This result matches the
rate of 1/M achieved for estimation of i.i.d. processes
using multi-access schemes, [9, 12], and is also the rate
that is achieved for centralised estimation.

Scaling αi = 1/
√

M,∀i
In the previous case with αi = 1,∀i, the power received
at the fusion center will grow unbounded as M → ∞.
Suppose instead we let αi = 1/

√
M,∀i, which will keep

the power received at the fusion center bounded (and
is constant in the symmetric case), while the transmit
power used by each sensor will tend to zero as M → ∞.
Again assume for now that Ci = C,Ri = R, hi = h,∀i.
For this situation we can show similar to (7) that

P∞ = Q +
A2(R + N/h2)

C2

1

M
+ O

(
1

M2

)
. (9)

So we again have the steady state error covariance con-
verging to the process noise variance Q at a rate of

1/M , though the constant in front is larger. The dif-
ference here is that the transmit power used by each
individual sensor can decrease to zero as the number
of sensors increases, which could be quite attractive in
power constrained environments such as wireless sen-
sor networks. For i.i.d. processes, this 1/M behaviour
when the total received power is bounded has also been
observed [12].

General parameters

The behaviour shown in the two previous cases can
still hold under more general conditions on Ci, Ri and
hi. Suppose for instance that they can be bounded
from both above and below, i.e.

0 < Cmin ≤ |Ci| ≤ Cmax < ∞,∀i

0 < Rmin ≤ Ri ≤ Rmax < ∞,∀i

0 < hmin ≤ hi ≤ hmax < ∞,∀i.

We have MhminCmin ≤ ∑M
i=1 hiCi ≤ MhmaxCmax

and Mh2
minRmin ≤ ∑M

i=1 h2
i Ri ≤ Mh2

maxRmax. Recall
from Lemma 1 that P∞ is a decreasing function of S =
C̄2/R̄. If we choose αi ∈ {+1,−1} such that αiCi is
positive for all i, we have

Mh2
minRmin + N

M2h2
maxC2

max

≤ R̄

C̄2
≤ Mh2

maxRmax + N

M2h2
minC2

min

and by a similar calculation to (7) we can show that as
M → ∞

Q +
A2h2

minRmin

h2
maxC2

max

1

M
+ O

(
1

M2

)
≤ P∞

≤ Q +
A2h2

maxRmax

h2
minC2

min

1

M
+ O

(
1

M2

)
.

If instead we choose αi ∈ {1/
√

M,−1/
√

M} such that
αiCi is positive for all i, and we can similarly show that
as M → ∞

Q +
A2(h2

minRmin + N)

h2
maxC2

max

1

M
+ O

(
1

M2

)
≤ P∞

≤ Q +
A2(h2

maxRmax + N)

h2
minC2

min

1

M
+ O

(
1

M2

)
.

(10)

In either case, as the upper and lower bounds both
converge to Q at a rate of 1/M , P∞ itself will also do
so.

4. Optimal power allocation

When there are a large number of sensors, one can
use simple strategies such as αi = 1/

√
M,∀i which will

give a convergence of the steady state error covariance
to Q at a rate of 1/M , while bounding the total power
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used by all the sensors. But when the number of sen-
sors is small, one may perhaps do better with different
choices of the αi’s. Here we will address two relevant
optimization problems.

Minimizing sum power

One possible formulation is to minimize the sum of
transmit powers used by the sensors subject to a bound
on the steady state error covariance, i.e.

min

M∑
i=1

pi =

M∑
i=1

α2
i

(
C2

i Q

1 − A2
+ Ri

)
s.t. P∞ ≤ D

with P∞ given by (5). Some manipulations show that
the constraint can be simplified to R̄

(
A2D + Q − D

)
+

C̄2D(Q − D) ≤ 0. Now define s = h1C1α1 + · · · +
hMCMαM . Then the optimization problem becomes
equivalent to

min
α1,...,αM ,s

M∑
i=1

α2
i

(
C2

i Q

1 − A2
+ Ri

)

s.t.

(
M∑
i=1

α2
i h

2
i Ri + N

)(
A2D + Q − D

) ≤ s2D(D − Q)

and s =
M∑
i=1

hiCiαi.

(11)

Before going further, let us determine some upper and
lower bounds on D. From Section 3, a lower bound
is D ≥ Q, where Q is the process noise variance. For
an upper bound, suppose C̄ = 0 so we don’t have any
information about xk. Since we are assuming the sys-
tem is stable, one can still achieve an error covariance
of Q

1−A2 (just let x̂k = 0,∀k), so D ≤ Q
1−A2 . Hence in

problem (11) both D − Q ≥ 0 and A2D + Q − D ≥ 0.
The objective function of problem (11) is clearly

convex. Let us call x = A2D + Q − D, y = D(D −
Q), ai = hiCi, bi = h2

i Ri and γi =
(

C2

i
Q

1−A2 + Ri

)
for

i = 1, . . . , M . We can divide the feasible region into
two regions corresponding to s > 0 and s < 0. Then
in each of the two regions, the function (

∑M
i=1 α2

i bi +
N)/s2 is convex, by noting that each of the functions
α2

i /s2 is convex. Hence the two regions corresponding
to s > 0 and s < 0 are both convex and the global
solution can be easily found numerically. Moreover,
following similar steps to [10], a solution in (mostly)
closed form can be obtained. We omit the derivations
but shall summarise what is required. One first solves
numerically for λ the equation

M∑
i=1

λa2
i

γi + λbix
=

1

y
.

Since the left hand side is increasing with λ solutions to
this equation will be unique provided it exists. Taking
limits as λ → ∞, we see that a solution exists if and
only if

M∑
i=1

a2
i

bi
>

x

y
. (12)

Equation (12) thus also provides a feasibility check for
the optimization problem (11). In the context of (11),
one can easily derive that (12) implies

M∑
i=1

C2
i

Ri
>

A2D + Q − D

D(D − Q)

which indicates that the sum of the sensor signal to
noise ratios must be greater than a threshold (depen-
dent on the error covariance threshold D) for the opti-
mization problem (11) to be feasible.

Next, we compute μ from

μ2 = Nx

(
M∑
i=1

a2
i γi

4λ(γi + λbix)2

)−1

.

Finally we obtain the optimal αi’s (denoted by α∗i )

α∗i =
μai

2(γi + λbix)
, i = 1, . . . , M. (13)

with the resulting powers

pi = α∗2i γi = α∗2i

(
C2

i

Q

1 − A2
+ Ri

)
, i = 1, . . . , M.

Depending on whether we choose μ to be positive or
negative, two different sets of α∗i ’s will be obtained, one
of which is the negative of the other, though the pi’s
and hence the optimal value of the objective function
remains the same.

We remark also that this problem can be solved
in a distributed manner, where the fusion center can
calculate the values λ and μ and broadcast them to all
sensors, which can then be used by the sensors along
with their local information to determine the optimal
αi’s, see [10].

Minimizing error covariance

A related problem is to minimize the steady state er-
ror covariance subject to a sum power constraint. For-
mally, this is

min P∞ s.t.

M∑
i=1

α2
i

(
C2

i Q

1 − A2
+ Ri

)
≤ ptotal

with P∞ again given by (5). By Lemma 1, maximizing
C̄2/R̄ (or minimizing R̄/C̄2) is equivalent to minimiz-
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ing P∞. Hence the problem is equivalent to

min
α1,...,αM ,s

∑M
i=1 α2

i h
2
i Ri + N

s2

s.t.
M∑
i=1

α2
i

(
C2

i Q

1 − A2
+Ri

)
≤ ptotal and s=

M∑
i=1

hiCiαi

which can also be shown to be convex, though unlike
problem (11), we have not been able to obtain an ana-
lytical solution here.

5. Numerical studies

First we show some plots for the asymptotic results
of Section 3. In Fig. 2(a) we plot P∞ vs M for the sym-
metric situation with αi = 1/

√
M and A = 0.8, Q =

1.5, N = 1, C = 1, R = 1, h = 0.8. We compare this

with the asymptotic expression Q+ A2(R+N/h2)
C2

1
M from

(9). Fig. 2(b) plots the difference between P∞−Q, and

compares this with the term A2(R+N/h2)
C2

1
M . We can

see that P∞ is well approximated by the asymptotic
expression even for 20-30 sensors.
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Figure 2: Comparison between P∞ and asymptotic ex-
pression: αi = 1/

√
M

Next we look at numerical results for optimal power
allocation in Section 4. In Figure 3 we compare be-
tween using optimal power allocation and a simple equal
power allocation scheme. We use A = 0.9, N = 1, Q =
1 with various values for Ci, Ri drawn from a uni-
form distribution U(0, 2), and values of hi drawn from
U(0, 1). In (a) we keep D = 2, while in (b) we keep
ptotal = 1. What can be observed is that as the number
of sensors M increases there is a general trend down-
wards for both graphs, though for equal power alloca-
tion the behaviour is not necessarily monotonic. This is
due to the fact that some sensors might have low qual-
ity measurements, e.g. sensor 5, so that extra resources
are needed to compensate.

6. Extensions

In this section we briefly outline some extensions of
the work in this paper. Further details can be found
in [18].
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Figure 3: Comparison between power allocation
schemes, with (a) an error covariance constraint and
(b) a sum power constraint

6.1. Fading channels

Instead of (3), we can allow the channels gains hi,k

to be time varying as follows:

zk =

M∑
i=1

αi,khi,kyi,k + nk (14)

where the amplification factors αi,k are now also as-
sumed to be time varying.

Using the shorthand Pk = Pk|k−1, the Kalman filter
recursion for the error covariance in the case where CSI
is available is (see [17]):

Pk+1 = A2Pk − A2P 2
k C̄2

k

C̄2
kPk + R̄k

+ Q =
A2PkR̄k

C̄2
kPk + R̄k

+ Q

(15)

with C̄k ≡ ∑M
i=1 αi,khi,kCi and R̄k ≡ ∑M

i=1 α2
i,kh2

i,kRi+
N . One way in which we can formulate an optimiza-
tion problem is to minimize the sum of powers used at
each time instant, subject to Pk+1|k ≤ D at all time
instances k. Another possible optimization problem is
to minimize Pk+1|k at each time instant subject to a
sum power constraint at each time k. These problems
will be of a similar form to those treated in Section 4.

In the case where CSI is not available but channel
statistics are available, one can instead derive the best
linear estimator similar to [20], and its performance can
be analyzed similarly.

6.2. Orthogonal access scheme

Another extension is to use an orthogonal access
scheme, such as considered in [11]. Here instead of
the sum (3), the sensors each transmit via orthogonal
channels, so that the fusion center receives

zi,k = αi,khi,kyi,k + ni,k, i = 1, . . . , M.

For time-invariant channels, the steady state error co-
variance can be shown to be

P o
∞ =

A2 − 1 + QSo +
√

(A2 − 1 + QSo)2 + 4QSo

2So
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with So ≡ ∑M
i=1

α2

i
h2

i
C2

i

α2

i
h2

i
Ri+N

. Asymptotic behaviour of

the error covariance and optimal power allocation can
also be done for this scheme, and compared with the
multi-access scheme considered in this paper.

7. Conclusion

This paper has investigated the use of analog for-
warding in the distributed estimation of stable scalar
linear systems. Under a multi-access scheme, we have
shown a 1/M scaling behaviour of the error covariance
in a number of different situations, and have also formu-
lated and solved some optimal power allocation prob-
lems.
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