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Abstract: This paper studies the outage minimization problem for state estimation of a
scalar linear dynamical system using multiple sensors. The sensors amplify and forward their
measurements to a remote fusion center over wireless fading channels. For stable systems,
the resulting infinite horizon problem is a constrained Markov decision process (MDP) that
can be solved using dynamic programming techniques. A suboptimal power allocation that is
less computationally intensive is also proposed, and numerical results demonstrate very close
performance to the power allocation obtained from the solution of the MDP. For unstable
systems, a finite horizon formulation of the outage minization problem is also presented.
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1. INTRODUCTION

In real time applications notions of outage are often used
to quantify the time periods when the performance of a
system is below what is desired. For instance, in mobile
telephony outages could correspond to times where the
audio quality is very poor, and in tracking applications
outages might correspond to instances where the location
of a target cannot be determined to a desired accuracy.

In communications and information theory the notion of
delay-limited or zero-outage capacity was introduced in
Hanly and Tse (1998). The concepts of information outage
probability and outage capacity, and the optimal power
allocation to minimize the outage probability subject to
an average power constraint, was subsequently studied
in Caire et al. (1999). Extensions of the outage concept
in communications theory include the delay constrained
outage capacity problem in Negi and Cioffi (2002) and
the notion of service outage in Luo et al. (2005). In
the signal processing literature, the notion of estimation
outage for the distributed estimation of an i.i.d. source
was introduced in Cui et al. (2007).

In much of these previous works, the systems that have
been studied have been memoryless, so that how the re-
sources are allocated at one time instant does not neces-
sarily affect the evolution of the system at future times.
The focus of this paper is on extending the notions of
estimation outage, and solving the outage minimization
problem, for dynamical systems. In particular we consider
state estimation of a scalar linear dynamical system using
multiple sensors, where the sensors transmit their mea-
surements to a fusion center over wireless channels using
the analog amplify and forward technique of Gastpar and
⋆ This work was supported by the Australian Research Council.

Vetterli (2003), which is a scheme that has been shown to
be asymptotically optimal in certain distributed estima-
tion scenarios. An outage will be defined as the event that
the estimation error covariance exceeds a given threshold,
and we are interested in how to optimally allocate the
transmit powers of the sensors in order to minimize the
probability of outage, subject to an average sum power
constraint. In the case of stable systems, we formulate the
problem over an infinite horizon. This will turn out to be
a constrained Markov decision process (MDP), which we
can transform using a Lagrangian technique into an un-
constrained MDP, that can then be solved with standard
dynamic programming algorithms. In the case of unstable
systems, an infinite horizon problem formulation is not
appropriate since increasingly large amounts of power will
need to be transmitted, thus we use a finite horizon for-
mulation instead. Dynamic programming techniques have
also been used in solving related problems such as the
delay constrained outage capacity problem in Negi and
Cioffi (2002), and estimation error minimization problems
for hidden Markov model state estimation in Huang and
Dey (2006) and Ghasemi and Dey (2008).

The organization of the paper is as follows. Section 2
presents our system model and statement of the outage
minimization problem for stable systems. Section 3 derives
some conditions on the distortion threshold that affect
the solvability of the problem. The outage minimization
problem is solved in Section 4, and a sub-optimal policy is
proposed in Section 5. Numerical results are presented in
Section 6. Unstable systems are considered in Section 7.

2. SYSTEM MODEL

We consider a discrete time scalar linear system given by

xk+1 = axk + wk (1)
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where xk, wk, a ∈ R, and wk is white Gaussian noise 1 with
zero mean and variance σ2

w.

The system is observed by M different sensors with obser-
vations

yi,k = cixk + vi,k, i = 1, . . . ,M

with yi,k, vi,k, ci ∈ R, and vi,k is white Gaussian noise with
zero mean and variance σ2

i .

The sensors then send their measurements over wireless
channels to a fusion centre. We assume that the sensors
use the analog amplify and forward technique of Gastpar
and Vetterli (2003), where the sensor transmitter amplifies
yi,k by a factor αi,k and sends it to the fusion centre over a
fading channel. The different fading channels are taken to
be orthogonal, as in Cui et al. (2007). We remark that
a non-orthogonal multi-access transmission scheme can
also be considered, see Gastpar and Vetterli (2003), but
for simplicity we will restrict ourselves to the orthogonal
scheme in this paper. The received signals at the fusion
centre can be written as

zi,k = αi,k
√

gi,kyi,k + ni,k

= αi,k
√

gi,kcixk + αi,k
√

gi,kvk + ni,k, i = 1, . . . ,M
(2)

where gi,k ≥ 0 are the random channel gains which
are assumed to be known (i.e. we have channel state
information), ni,k is white Gaussian with zero mean and
variance σ2

n, and αi,k are the amplification factors in
the analog forwarding scheme. We assume a block fading
model, with the channel gains gi,k being i.i.d. over time.
We also assume that x0, wk, vi,k, gi,k and ni,k are mutually
independent.

Call zk = (z1,k, . . . , zM,k)T , gk = (g1,k, . . . , gM,k)T , C̄k =
(α1,k

√
g1,kc1, . . . , αM,k

√
gM,kcM )T , v̄k = (α1,k

√
g1,kv1,k +

n1,k, . . . , αM,k
√

gM,kvM,k+nM,k)T , R̄k = diag(α2
1,kg1,kσ2

1+

σ2
n, . . . , α2

M,kgM,kσ2
M + σ2

n). The equations in (2) can then
be written as

zk = C̄kxk + v̄k (3)

where v̄k has the time-varying covariance matrix R̄k. The
equations (1) and (3) form a linear time-varying system
whose state xk can be optimally estimated by a time-
varying Kalman filter at the fusion centre. Define the state
estimate and error covariance as

x̂k+1|k = E[xk+1|z1, . . . , zk, g1, . . . , gk]

Pk+1|k = E[(xk+1 − x̂k+1|k)2|z1, . . . , zk, g1, . . . , gk]

In the following, we will also use the short hand notation
Pk+1 = Pk+1|k.

One can then show from the time-varing Kalman filter
equations and an application of the matrix inversion
lemma that the recursion for the error covariance satisfies:

Pk+1 = a2Pk − a2P 2
k C̄T

k (C̄kPkC̄T
k + R̄k)−1C̄k + σ2

w

=
a2Pk

1 + Pk

∑M
i=1

α2
i,k

gi,kc2
i

α2
i,k

gi,kσ2
i
+σ2

n

+ σ2
w (4)

1 We call {wk} white if wk and wl are independent for k 6= l.

The sensor transmit power γi,k used by the i-th sensor in
transmitting its measurement to the fusion centre at time
k is defined as

γi,k = α2
i,kE[y2

i,k] = α2
i,k(c2

i E[x2
k] + σ2

i ) (5)

2.1 Problem statement

We will consider here stable linear systems, i.e. |a| < 1
(see Section 7 for the case of unstable systems). Then
E[x2

k] = σ2
w/(1 − a2) and (5) simplifies to

γi,k = α2
i,k

(

c2
i

σ2
w

1 − a2
+ σ2

i

)

Let us call αk = (α1,k, . . . , αM,k)T , γk = (γ1,k, . . . , γM,k)T .
The problem we consider in this paper is to choose the αk’s
(and hence the γk’s) to minimize the outage probability
subject to an average power constraint P on the sum of the
transmitted powers. Here, we declare an outage event if the
error covariance Pk+1 exceeds some distortion threshold D.
More formally, we want to solve over an infinite horizon
the problem:

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

Pr(Pk+1 > D)

= min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[1(Pk+1 > D)]

s.t. lim sup
K→∞

1

K

K−1
∑

k=0

E[
M
∑

i=1

γi,k] ≤ P

(6)

where 1(·) is the indicator function.

3. CONDITIONS ON D

In this section we will derive some conditions on the
threshold D which will affect the solvability of problem
(6).

For an initial simple bound, note that for stable systems
the following holds:

σ2
w < Pk ≤ σ2

w

1 − a2
,∀k.

Hence if D ≤ σ2
w, then Pk+1 will always exceed D, and if

D > σ2
w/(1−a2) then we will never have any outage events.

Also note from (4) that given Pk, the error covariance at
the next time instant Pk+1 is bounded by

a2Pk

1 + Pk

∑M
i=1

c2
i /σ2

i

+ σ2
w < Pk+1 ≤ a2Pk + σ2

w. (7)

Below we present some more precise conditions. In partic-
ular we will partition the range of D such that given Pk,
the condition Pk+1 ≤ D can either: i) always be achieved,
ii) never be achieved, or iii) can be achieved only for Pk

sufficiently small.

1) Suppose that at time k, Pk = σ2
w/(1 − a2). Then

a2Pk

1 + Pk

∑M
i=1

c2
i /σ2

i

+ σ2
w =

a2σ2
w

1 − a2 + σ2
w

∑M
i=1

c2
i /σ2

i

+ σ2
w

≡D1

Hence we have the condition that if D ≥ D1, then Pk+1 ≤
D can be achieved in one time step for all Pk ≥ D.
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2) Consider the values of Pk such that

a2Pk

1 + Pk

∑M
i=1

c2
i /σ2

i

+ σ2
w > Pk.

This can be easily shown to be equivalent to

Pk <
−B +

√

B2 + 4σ2
w

∑M
i=1

c2
i /σ2

i

2
∑M

i=1
c2
i /σ2

i

≡ D2,

with B = (1 − a2 − σ2
w

∑M
i=1

c2
i /σ2

i ). Hence we now have
the condition that if D ≤ D2 and Pk ≥ D, then Pk+1 ≤ D
cannot be achieved (in one time step and therefore cannot
be achieved in all subsequent time steps). This is a tight
form of the condition D ≤ σ2

w always resulting in outage
mentioned at the start of this section.

3) In the case where D satisfies D2 < D < D1, we have
the situation where given Pk, the condition Pk+1 ≤ D can
only be achieved for Pk sufficiently small, more precisely
when

a2Pk

1 + Pk

∑M
i=1

c2
i /σ2

i

+ σ2
w < D

or

Pk <
D − σ2

w

a2 − (D − σ2
w)

∑M
i=1

c2
i /σ2

i

.

If this is not the case, then it will require more than one
time step to bring the error covariance below the distortion
threshold D. This has implications in that one cannot
directly use the analogue of a scheme considered in Caire
et al. (1999) as a suboptimal policy, see Section 5.

4. MDP SOLUTION

Problem (6) can be regarded as a constrained average cost
MDP with (Pk, gk) = (Pk, g1,k, . . . , gM,k) as the composite
“state” and γk = (γ1,k, . . . , γM,k) as the “action”. In order
to obtain non-trivial solutions to (6), we assume that the
condition D2 < D ≤ σ2

w/(1− a2) of Section 3 holds for D.
We will solve (6) using a similar approach to Ghasemi and
Dey (2008), by converting the constrained MDP into an
unconstrained MDP. We first introduce the Lagrangian:

Lβ = lim sup
K→∞

1

K

{

K−1
∑

k=0

E[1(Pk+1 > D)] + β

K−1
∑

k=0

E[

M
∑

i=1

γi,k]

}

where β ≥ 0 is a weighting parameter that takes on the
role of a Lagrange multiplier, and specifies the trade-off
between the relative importance of total transmit power
and outage probability. Note that from (4), Pk+1 is a
function of Pk, gk, γk, while γk is assumed to be a function
of Pk and gk. We then have the unconstrained problem

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[lβ(Pk, gk, γk)|P0, g0] (8)

where lβ(Pk, gk, γk) ≡ 1(Pk+1 > D)+β
∑M

i=1
γi,k. In order

to obtain numerical solutions to (8) we will need to dis-
cretize the range of the quantities Pk, gk = (g1,k, . . . , gM,k)
and γk = (γ1,k, . . . , γM,k). Let P d

k , gd
k = (gd

1,k, . . . , gd
M,k),

and γd
k = (γd

1,k, . . . , γd
M,k) be the discretized versions of Pk,

gk, γk respectively. One then has the following problem (9),
the solution of which will approximate the solution to (8):

min
{γd

k
}
lim sup
K→∞

1

K

K−1
∑

k=0

E[lβ(P d
k , gd

k, γd
k)|P d

0 , gd
0 ] (9)

The Bellman equation associated with problem (9) can
then be written as follows, with λ representing the optimal
average cost per stage, and h the differential cost vector:

λ + h(P d
k , gd

k)

= min
γd

k

[lβ(P d
k , gd

k, γd
k)

+
∑

gd
k+1

,P d
k+1

p(P rnd
k+1, g

d
k+1|P d

k , gd
k, γd

k)h(P rnd
k+1, g

d
k+1)]

= min
γd

k

[lβ(P d
k , gd

k, γd
k)

+
∑

gd
k+1

,P d
k+1

p(gd
k+1)p(P rnd

k+1|P d
k , gd

k, γd
k)h(P rnd

k+1, g
d
k+1)]

= min
γd

k

[lβ(P d
k , gd

k, γd
k) +

∑

gd
k+1

p(gd
k+1)h(P rnd

k+1, g
d
k+1)]

(10)

where P rnd
k+1

is the value of Pk+1 (given P d
k , gd

k, γd
k) rounded

to the nearest discretized value, such as in Huang and Dey
(2006). The last line of (10) holds because P rnd

k+1
is a deter-

ministic function of P d
k , gd

k, γd
k , so that p(P rnd

k+1
|P d

k , gd
k, γd

k)
is either 0 or 1.

Now given any two error covariances Σ1 and Σ2 satisfying
D2 ≤ Σ1 ≤ σ2

w/(1 − a2) and D2 ≤ Σ2 ≤ σ2
w/(1 − a2),

one can easily construct policies that can take Σ1 to Σ2 in
a finite number of time steps. We may then use standard
results from e.g. Bertsekas (2000) to conclude the existence
of solutions to the Bellman equation (10). In this paper
we will obtain solutions to the Bellman equation (10)
numerically by using the relative value iteration algorithm,
see e.g. Bertsekas (2000) and Puterman (1994).

5. SUBOPTIMAL POLICIES

The MDP approach of Section 4 is computationally de-
manding, particularly as the number of sensors increases
since the dimensions of gk and γk will increase with each
extra sensor. In this section we will consider a simpler
power allocation policy, that can be easily implemented
even for large numbers of sensors, and whose performance
is very close to that obtained from solving the MDP.

The motivation for our suboptimal policy comes from
the solution of the outage minimization problem from
communications theory studied in Caire et al. (1999).
There, an outage is defined as the event that

IM (gk, γk) ≡ 1

M

M
∑

i=1

log(1 + gi,kγi,k) < R (11)

for some rate R, and where IM (gk, γk) is defined as the
instantaneous mutual information. The M in (11) refers
to the number of different blocks of an M -block fading
channel, rather than different sensors, though the analogies
with our situation are apparent. The index k here is used
to denote a frame of M blocks.

The problem considered in Caire et al. (1999) is then to
allocate the power over the M blocks to minimize the
outage probability subject to an average power constraint,
i.e.
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min Pr(IM (gk, γk)) < R

s.t. E

[

1

M

M
∑

i=1

γi,k

]

≤ P

The solution to this problem involves solving a sub-
problem:

min
1

M

M
∑

i=1

γi,k

s.t. IM (gk, γk) = R

(12)

that minimizes the power usage over the M blocks
1

M

∑M
i=1

γi,k, subject to the constraint IM (gk, γk) = R. If
this minimizing sum power is less than a power threshold
s∗, then the optimal power allocation is as given by the
solution to the sub-problem (12). On the other hand, if
the sum power required to solve the sub-problem exceeds
the threshold s∗, then the optimal allocation is for trans-
mission to be turned off. The threshold s∗ is the one that
will satisfy the average sum power constraint, and can be
determined either analytically in simple cases or via Monte
Carlo simulations.

Motivated by this solution, the simple power allocation
policy we propose for problem (6) is the following: Given
Pk and gk, solve the sub-problem that minimizes the
sum power subject to the constraint Pk+1 = D. If the
required sum power is less than a power threshold s∗,
use this power allocation, otherwise don’t transmit. The
threshold s∗ is again determined by the average sum power
constraint. However, there is a difference with the situation
of Caire et al. (1999) in that for our problem the quantity
Pk is not memoryless and thus the sub-problem is not
always feasible, so it may not always be possible to satisfy
Pk+1 = D in a single time step for arbitrary Pk, depending
on which of the conditions of Section 3 the distortion
threshold D satisfies.

For those D’s satisfying the condition D ≥ D1 of Section
3, the sub-problem is always feasible and this policy can
be applied directly. For the condition D2 < D < D1 of
Section 3, if Pk is such that Pk+1 = D cannot be achieved
in one time step, one should arguably still transmit with
some power (since not transmitting will actually cause
the error covariance to increase even further) to reduce
Pk+1 so that in future time steps, e.g. Pk+2 = D can
then be achieved. The heuristic we propose in this case
is to transmit with sum power equal to ηs∗, using the
allocation that minimizes Pk+1 subject to the constraint
∑M

i=1
γi,k = ηs∗. Here s∗ is the power threshold and

η ≤ 1 is a constant to be chosen by us. From numerical
simulations, we have found that values of η around the
range 1/5 − 1/20 result in very good performance.

To summarise, the proposed suboptimal power allocation
policy that covers both the situations D ≥ D1 and D2 <
D < D1 is as follows:

• Let Pk, gk be given.
• If Pk+1 = D can be achieved for this value of Pk,

solve the following problem:

min
αk

M
∑

i=1

γi,k =

M
∑

i=1

α2
i,k

(

c2
i σ

2
w

1 − a2
+ σ2

i

)

s.t. Pk+1 = D

(13)

· If the minimizing sum power is less than the
threshold s∗, then transmit using this power
allocation, and update the error covariance as
Pk+1 = D.

· Otherwise transmission is turned off, and update
the error covariance as Pk+1 = a2Pk + σ2

w.

• If Pk+1 = D cannot be achieved for this value of Pk,
solve the following problem:

min
αk

Pk+1

s.t.

M
∑

i=1

α2
i,k

(

c2
i σ

2
w

1 − a2
+ σ2

i

)

= ηs∗
(14)

· Transmit using the power allocation provided
by the solution to (14), and update the error
covariance using (4).

The sub-problems (13) and (14) have previously been
shown to be convex optimization problems, and further-
more can be solved analytically for any number of sensors,
see Leong et al. (2008), also Cui et al. (2007), for further
details.

6. NUMERICAL RESULTS

6.1 Single sensor

Consider first an example with a = 0.8, c1 = 1, σ2
1 = 1,

σ2
w = σ2

n = 1. With these parameters the quantities D1

and D2 from Section 3 have values D1 = 1.4706, D2 =
1.3700. Also, σ2

w/(1 − a2) = 2.7778. The fading channel
is assumed to be Rayleigh, with gk being exponentially
distributed with mean 1.

Figure 1 plots the outage probability and average power
obtained from the MDP solution, for various D values. We
use 100 discretization points for each of the quantities Pk,
gk, γk. We discretize Pk over the range D2 to σ2

w/(1−a2),
and gk over the range 0 to 15. The discretization range
for the power γk is from 0 to γmax, where γmax varies for
different average power/outage probability requirements.
As a rule of thumb we took γmax to be at least twice
the maximum power s∗ used in the suboptimal policy, for
a similar average power/outage probability trade-off. The
relative value iteration algorithm is run for 20 iterations in
solving (10) for each value of the weighting parameter β.
We see from Figure 1 that smaller D values require more
power to be transmitted for a given outage probability.

We next compare the performance of the suboptimal
policy with the MDP solution. Figure 2 plots the outage
probability and average power obtained from the MDP
solution and suboptimal policy, for D = 2.0. Since 2.0 >
1.4706 = D1, this is the case where Pk+1 = D can always
be achieved in one time step. Figure 3 plots the outage
probability and average power obtained from the MDP
solution and suboptimal policy, for D = 1.4. In this case
we have D2 ≤ D ≤ D1, and we will use η = 1/5 for
the suboptimal policy. In both graphs, it can be seen that
the suboptimal policy gives very close performance to the
solution obtained by solving the MDP.

To shed some insight into why the suboptimal policy
performs so well, in Figure 4 we plot for D = 2.0 and
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Fig. 1. Outage probability and average power for various
D values.
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Fig. 2. Outage probability and average power for MDP
and suboptimal policy, with D = 2.0.
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Fig. 3. Outage probability and average power for MDP
and suboptimal policy using η = 1/5, with D = 1.4.

Pk = 2.28, the power allocation obtained from solving the
MDP as a function of gk, together with the corresponding
value of Pk+1 when using this power allocation. For values
of gk less than around 5, the power allocation is such that
Pk+1 = D = 2.0 is met provided the power required is less

0 5 10 15
0

0.5

1

1.5

g
k

γ k

0 5 10 15
1.5

2

2.5

g
k

P
k
+

1

Fig. 4. Power allocations obtained from MDP solution, for
a fixed Pk

than some threshold, which corresponds to the behaviour
of the suboptimal policy. Since P (gk > 5) = exp(−5) ≈
6.74 × 10−3 is quite small, we see that most of the time
the MDP solution behaves like the suboptimal policy. For
values of gk greater than 5, the power allocated is more
than that required to satisfy Pk+1 = D, until around
values of gk greater than 10, where the power allocated
makes Pk+1 ≈ 1.5625. We notice that a2 × 1.5625 + σ2

w =
2.0, so the value of Pk+1 = 1.5625 implies that Pk+2 = D
will be achieved even without the sensor transmitting
anything at time k + 1. This qualitative behaviour in
the power allocation functions obtained from the MDP
solution can also be observed for other values of Pk.

6.2 Multiple sensors

We now consider a two sensor example with a = 0.8,
c1 = 1, c2 = 1, σ2

1 = 1, σ2
2 = 2, σ2

w = σ2
n = 1. With these

parameters the quantities D1 and D2 now have the values
D1 = 1.3441, D2 = 1.2806. The fading channels for both
sensors are assumed to be Rayleigh. Due to the increase
in computational complexity, we now use 20 discretization
points for each of the quantities Pk, g1,k, g2,k, γ1,k, γ2,k

here when solving the MDP. Figure 5 plots the outage
probability and average sum power obtained from the
MDP solution and suboptimal policy using η = 1/5, for a
distortion D = 1.3. Again the two graphs are very close to
each other.

We next consider the effect of increasing the number of
sensors M . For simplicity we consider a “symmetric” situa-
tion with a = 0.8, σ2

w = σ2
n = 1, ci = 1, i = 1, . . . ,M, σ2

i =
1, i = 1, . . . ,M . The fading channels are all taken to be
Rayleigh, and we let the distortion threshold D = 1.5. As
solving the MDP is prohibitively expensive computation-
ally for M > 2, we will only present the results for the
sub-optimal policy, which can be easily generated. Figure
6 plots the outage probability and average sum power
for this situation, where we can readily see the outage
performance improvements from using multiple sensors.
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Fig. 5. Two sensor case. Outage probability and average
sum power for MDP and suboptimal policy using
η = 1/5, with D = 1.3.
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Fig. 6. Outage probability and average sum power for
different numbers of sensors, using the sub-optimal
policy

7. UNSTABLE SYSTEMS

In this section we will consider the outage minimization
problem for unstable systems. Since for unstable systems
meeting the outage constraints requires increasingly large
amounts as power as the time increases, we will instead
consider a finite horizon version of problem (6). 2 We can
write this as

min
{γk}

1

K

K−1
∑

k=0

E[1(Pk+1 > D)]

s.t.
1

K

K−1
∑

k=0

E[

M
∑

i=1

γi,k] ≤ P
(15)

where K is the finite horizon over which we wish to solve
the problem. The sensor transmit powers are as defined in
(5), but for unstable systems E[x2

k] is now time varying,
and given by

E[x2
k] = a2kP0 + (a2k−2 + · · · + a2 + 1)σ2

w

2 Another possibility is to consider a discounted cost version of
problem (6).

with initial covariance E[x2
0] = P0. Introducing the La-

grangian

Lβ,K =
1

K

{

K−1
∑

k=0

E[1(Pk+1 > D)] + β

K−1
∑

k=0

E[

M
∑

i=1

γi,k]

}

,

we now wish to solve the unconstrained problem

min
γk

1

K

K−1
∑

k=0

E[lβ(Pk, gk, γk)|P0, g0] (16)

where lβ(Pk, gk, γk) ≡ 1(Pk+1 > D) + β
∑M

i=1
γi,k. The

discretized version of problem (16) may then be solved
numerically using the standard dynamic programming
algorithm. Numerical results for the finite horizon unstable
case cannot be included here due to space limitations and
will be reported elsewhere.

8. CONCLUSION

We have considered the outage minimization problem for
state estimation of scalar linear systems. For stable sys-
tems we used an infinite horizon problem formulation and
for unstable systems we used a finite horizon formulation.
Extensions of this work to vector systems is currently
under investigation.
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