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Abstract—This paper addresses an estimation problem for hid-
den Markov models (HMMs) with unknown parameters, where
the underlying Markov chain is observed by multiple sensors. The
sensors communicate their binary-quantized measurements to a
remote fusion centre over noisy fading wireless channels under
an average sum transmit power constraint. The fusion centre
minimizes the expected state estimation error based on received
(possibly erroneous) quantized measurements to determine the
optimal quantizer thresholds and transmit powers for the sensors,
called the optimal policy, while obtaining strongly consistent
parameter estimates using a recursive maximum likelihood (ML)
estimation algorithm. The problem is formulated as an adaptive
Markov decision process (MDP) problem. To determine an
optimal policy, a stationary policy is adapted to the estimated
values of the true parameters. The adaptive policy based on the
maximum likelihood estimator is shown to be average optimal.
A nonstationary value iteration scheme is employed to obtain
adaptive optimal policies which has the advantage that the
policies are obtained recursively without the need to solve the
Bellman optimality equation at each time step. We provide some
numerical examples to illustrate the analytical results.

I. INTRODUCTION

In recent years there has been an enormous research ef-
fort dedicated to wireless sensor networks (WSNs) due to
their wide range of current and potential applications. In
detection/estimation applications involving such WSNs, the
severe bandwidth constraints, limitations imposed by the fad-
ing wireless channels and the energy/power constraints of the
small battery-powered sensors have thrown up a new set of
challenges. To overcome these limitations, various estimation
problems with quantized (binary or with a small number of
bits) data have been studied, see, e.g., [1], [2].

In this paper, we focus on designing power-efficient binary
quantizers for estimation of hidden Markov models (HMM)
whose description depend on unknown parameters. The under-
lying Markov process is observed by multiple sensors which
communicate binary-quantized measurements to a central en-
tity, known as the fusion centre, over fading wireless channels
modeled by finite-state Markov chains.

Hidden Markov models have long been considered as useful
stochastic signal models in a broad range of areas, such as
robotics, econometrics, biochemistry, and biology. There are
many studies reported in the literature which address state
estimation of HMMs with various types of observations and
under different constraints (see, e.g., [3], [4], [5], [6]). In
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particular, a recent study [5] considered designing optimal
binary quantizers for state estimation of a general HMM using
an unconstrained Markov decision process (MDP) approach.
Furthermore, in a most recent study [6], the authors addressed
the same problem as in [5] using an alternative constrained
MDP approach which is shown to be more efficient in terms
of computations and memory requirements. In these studies,
though, it is assumed that the HMM parameters are known to
the state estimation algorithm.

In most real applications, however, parameters of the HMM
are unknown to the state estimator. Compared to those stud-
ies [5], [6], in this paper, we explore the problem of joint state
and parameter estimation of a general HMM with unknown
parameters using multiple sequences of binary-quantized ob-
servations. The optimization problem is formulated as an
adaptive Markov decision problem. We propose a coupled
algorithm in which state and parameter estimation are per-
formed jointly to compute optimal quantizer thresholds and
optimal sensor transmit power allocation, called the optimal
policy. The first component of this coupled algorithm is an
MDP module, called the MDP controller, whose function is to
obtain an optimal policy by performing state estimation so as
to minimize state estimation error constrained on an average
sum power budget across the sensors. The MDP controller
uses a nonstationary value iteration (NVI) scheme in order
to obtain adaptive optimal policies. The NVI scheme adapts
the optimal policy to the current estimate of unknown model
parameters received from the second component, referred to
as the parameter estimator module. This is a learning module,
which estimates the model parameters through interaction with
both the MDP controller and the underlying dynamical system.
The advantage of the NVI scheme is that the policies are
obtained in an iterative manner without the need to solve the
Bellman optimality equation at each time step, which in our
case is highly computation-intensive.

Notations: Throughout the paper, R and N denote the sets
of real numbers and positive integers, respectively. Pφ denotes
probability distribution, depending on a parameter (vector) φ,
with respect to some σ-finite measure. In this paper, vector
means a column vector and ′ denotes the transpose notation.

II. DYNAMICAL SYSTEM MODEL

Consider a dynamical system whose state evolves ac-
cording to a discrete-time finite-state homogeneous first-
order stationary Markov process {Xk}∞k=1 with state space
X(φ) = {x̃1(φ), · · · , x̃n(φ)} and transition probability matrix
X(φ) = [xij(φ)], where xij(φ) = Pφ(Xk = x̃j |Xk−1 = x̃i)
for i, j = 1, · · · , n. The order n ∈ N of the Markov process
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{Xk} is fixed and known, whereas, the state values x̃i are
unknown. The transition probability matrix X(φ) and state
space X(φ) depend measurably on a parameter (vector) φ in a
compact Euclidean space Φ. The ”true” value of the parameter
φ is denoted by φ◦ ∈ Φ, and is assumed to be fixed but
unknown. Note that for all φ ∈ Φ, we have xij(φ) ≥ 0 and∑

j xij(φ) = 1 for each i. The initial state probability vector
of {Xk} is denoted by π = [πi], where πi = P(X1 = x̃i).

The Markov process {Xk} is observed indirectly by
noisy measurements Ym,k = Xk + wm,k, m = 1 · · ·M , ob-
tained from M sensors where M is fixed. Write Yk =
(Y1,k, · · · , YM,k)′ as the random vector of measurements
obtained from the M number of sensors at time k. Also, let
{Yk}∞k=1 denote a vector of M random processes, with each
process {Ym,k}∞k=1 being a sequence of conditionally indepen-
dent random variables given a realization {xk} of {Xk}. Each
random measurement Ym,k is characterized by a conditional
density f(.|xk; θm(φ)) with respect to the Lebesgue measure
� for θm : Φ �→ Θ, where Θ is a Euclidean space. Write
wk = (w1,k, · · · , wM,k)′ and let {wk}∞k=1 be a vector of M
independent noise processes, where each process {wm,k}∞k=1

is assumed to be an i.i.d. sequence of scalar real-valued
innovations with known marginal distribution parameterized
by a vector θm(φ) ∈ Θ.

Due to severe bandwidth limitations in sensor networks, the
measurements Yk are then quantized according to a threshold-
based binary quantization scheme, where the sequence

{rk}∞k=1

�
= {(r1,k, · · · , rM,k)}∞k=1 denotes the sequence of

quantization thresholds. Let Yq
k = (Y q

1,k, · · · , Y q
M,k)′ represent

the quantized data at time k, where Y q
i,k ∈ {b1, b2}. The m-th

sensor transmits its quantized output Y q
m,k, with power level

pm,k to a remote fusion centre over a discrete time flat fading
channel. The transmission power for each sensor is chosen
from a set V of finitely many discrete power levels, which
is generally the case for most practical sensor systems. Let

{pk}∞k=1

�
= {(p1,k, · · · , pM,k)}∞k=1 be the sequence of power

levels and Zk
�
= (Z1,k, · · · , ZM,k)′ be the sensors’ channel

state vector at time k. We model each channel state process
{Zm,k}∞k=1 as a stationary ergodic Markov chain1 with state
space C = {c̃1, · · · , c̃u} and transition probability matrix
Cm = [cmij ], where2 cmij = P(Zm,k = c̃j |Zm,k−1 = c̃i), 1 ≤
i, j ≤ u. Each channel state c̃i may represent a value of the
channel gain. The initial state distribution of {Zm,k} is given
by πm = [πm

i ], where πm
i = P(Zm,1 = c̃i).

Let Yf
k = (Y f

1,k, · · · , Y f
M,k)′ be the vector of de-

coded binary symbols at the fusion centre, where Y f
m,k ∈

{b1, b2}.Y f
m,k is described by the channel input-output tran-

sition probability qm
ij (c̃, p̃)

�
=P(Y f

m,k = bj |Y q
m,k = bi, Zm,k =

1Note that finite-state Markov chain models have often been used in
information theory literature to characterize wireless channels. The channel
is typically modeled by appropriately partitioning the range of the received
signal-to-noise ratio (SNR) into a set of intervals (states) using different
partitioning criteria, see, e.g., [7] and references therein.

2To simplify our subsequent analysis, we assume that cm
ij > 0 for all

1 ≤ i, j ≤ u and 1 ≤ m ≤ M .

c̃, pm,k = p̃), where i, j ∈ {1, 2}, c̃ ∈ C, p̃ ∈ V.
The off-diagonal entries in the input-output transition matrix

Qm(c̃, p̃)
�
= [qm

ij (c̃, p̃)] are called crossover (error) proba-
bilities. We assume that the sensors use a simple binary
phase shift keying (BPSK) modulation scheme to transmit the
binary quantized measurements over orthogonal additive white
Gaussian noise (AWGN) channels3. The crossover probability

can be computed4 as �m
k = Q(

√
γg2

m,kpm,kσ
−2
v d−ς

m ), where

γ is a constant, gm,k is gain of the wireless channel, σ2
v is

the variance of the Gaussian channel noise, dm is the distance
between the m-th sensor and the fusion centre, and ς is the
path loss exponent of the wireless channel. For further details
on computing the crossover probabilities, see [5].

We may now specify an HMM corresponding to the obser-
vation sequence {Yf

k}∞k=1 by H = (X(φ),X(φ), π,Ψ(θ(φ))),
where θ(φ) = (θ1(φ), · · · , θM (φ))′, and Ψ, the so-called
state-to-observation probability5 matrix, is a diagonal matrix
with i-th diagonal entry ψi(y

f
k , zk, rk,pk; θ(φ)), i = 1, · · · , n

being the conditional probability mass function of Yf
k with

respect to the counting measure � defined as Pφ(Yf
k =

yf
k |Xk = x̃i, rk,Zk = zk,pk; θ(φ)).
The task of the fusion centre is to find the optimal quantizer

thresholds rk and the optimal sensors transmit powers pk

while jointly estimating the state and the parameters of the
underlying Markov chain {Xk} with the objective being mini-
mization of average state estimation error subject to an average
sum power constraint across the sensors. If at each time
instant k, the values of the optimal quantization thresholds
rk and optimal power levels pk were exactly known, then
estimating the parameters of H was rather a straightforward
task and could have been done using existing estimation
techniques6. On the other hand, if the parameters of H were
exactly known, then optimal values of rk and pk could be
determined using our state estimation algorithms presented
in [5], or [6]. However, the crux of our present power-
constrained quantization problem with unknown parameters
is the lack of exact knowledge of the optimal (rk,pk) to the
parameter estimator and the lack of exact knowledge of the
true parameter to the MDP controller.

Definition 2.1: Define the information state vector
α̃k+1;φ̂(k) with i-th element α̃k+1;φ̂(k)(i), also known as
normalized HMM filter density or normalized forward
variable, being defined as Pφ(Xk+1 = x̃i|Dk+1,Bk+1; φ̂(k)),
where φ̂(k) = (X̂(k), X̂(k), θ̂(k)) denotes the sequence of
estimates of model parameters up to time k, and Dk, and
Bk are the σ-fields generated by (Yf

l ,Zl), and (rl,pl), for
l ≤ k, respectively. Also, define the filter state estimate as

X̂k+1;φ̂(k)
�
= Eφ[Xk+1|Dk+1,Bk+1; φ̂(k)].

3Note that under certain standard symmetry assumptions on the modulation
scheme and noise, the channel input-output transition probability matrix
becomes a symmetric matrix (the channel is called a binary symmetric channel
(BSC)), which is the case assumed in our analysis for simplicity.

4Q(.) is the complementary standard normal cdf function.
5see [5] for details on deriving the state-to-observation probabilities.
6e.g., off-line schemes such as Baum-Welch algorithm or on-line such

as [8].
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The state space of the forward variable α̃k+1;φ̂(k) can be
defined as the simplex Tα̃ = {α̃ ∈ Rn

+ | 〈α̃,1n〉 = 1} ⊂ Rn,
where 1n is the n-dimensional vector with all elements
equal to one. For numerical tractability, we approximate the
continuum information state α̃k+1;φ̂(k) by discretized vector
αk+1;φ̂(k) ∈ T, where T ⊂ Tα̃ is the state space of the
discretized forward variable αk+1;φ̂(k) . Note that after dis-
cretization, it is ensured that 〈α,1n〉 = 1, ∀α ∈ T (see [3] for
further details). Let U denote the range space of each variable
rm,k which is, in general, equal to R for ∀m ∈ {1 · · ·M}7.

III. THE MDP CONTROLLER

A. Notation and Preliminaries

Let S and A be Borel subsets of complete separable metric
spaces endowed with the Borel σ-algebra S and A respec-

tively. The cartesian product K
�
= S × A is endowed with

the corresponding product metric topology and the product
σ-algebra S ×A. Let (Ω,F) be the measurable space con-
sisting of a sample space Ω as the product space {K}∞ and
the corresponding product σ-field F of subsets of Ω. Let
{Q(S|K;φ) : φ ∈ Φ} denote the space of all stochastic kernels
on S given K, indexed by a parameter (vector) φ ∈ Φ, i.e.,
for a given parameter value φ ∈ Φ, a conditional probability
measure p ∈ Q(S|K;φ) is a function such that (i) for any
Borel set S ∈ S, the mapping p(S|.;φ) : K �→ [0, 1] is a
Borel measurable function on S; and (ii) for each κ ∈ K,
p(.|κ;φ) is a probability measure on the Borel σ-algebra
of S. Furthermore, let {G(.;φ) : φ ∈ Φ} be the space of
all continuous measurable functions, where for any g ∈ G,
{g(.;φ) : K �→ R, φ ∈ Φ} is a family of real-valued functions
indexed by a parameter φ.

Definition 3.1: Define (S,A, g(.;φ), p(.|.;φ)) to be an
adaptive MDP depending on an unknown parameter φ ∈ Φ,
where S and A are called state and action spaces, respectively.
S is assumed to be a nonempty countable (possibly infinite)
set endowed with the discrete topology8. The action space A is
assumed to be a nonempty Borel space. Further, g(.;φ) ∈ G,
the so-called immediate (or per-stage) cost function, is a
measurable function on K × Φ and p(.|.;φ) ∈ Q is the
transition law of the MDP. K is the set of admissible state-
action pairs defined as K

�
= {(s, a)|s ∈ S, a ∈ A(s)} which is

a topological subspace of S × A. Henceforth, for simplicity,
we may use shorter notations g(φ) and p(φ).

B. Adaptive Markov Decision Process Model

In this section, we formulate our quantization problem as
an adaptive infinite-horizon average cost MDP problem. Let
Mφ = (S,A, g(φ), p(φ)) be an adaptive MDP depending
on a parameter vector φ ∈ Φ as defined in Definition 3.1,
where S = T × CM , A = UM × VM are correspond-
ing state and action spaces, respectively. The immediate

7Note that the theory in Section III holds, in general, for U = R with the
usual topology. However, in further analysis, to simplify the implementation
of our value iteration algorithm, we restrict the action space U to a finite set
of discrete values in R.

8that is, the topology consisting of all open subsets of S.

cost function g(φ) is defined by g(αk;φ, zk, rk,pk;φ)
�
=

E(αk;φ) + βQ(pk), which is a weighted combination of two
cost functions: conditional expected state estimation error

E(αk;φ)
�
= Eφ[ |Xk − X̂k;φ|2

∣∣Dk,Bk;φ] =
∑n

i=1[x̃i(φ) −∑n
j=1 x̃j(φ)αk;φ(j)]2αk;φ(i), and total power consumption

across the sensors Q(pk)
�
=

∑M
m=1 pm,k, pm,k ∈ V. The

weighting factor β ≥ 0 is a trade-off parameter which assumes
the role of a Lagrangian multiplier in constrained optimization.

For a given parameter value φ ∈ Φ, if the MDP Mφ is in
state s = (α, z) ∈ S and action a = (r,p) ∈ A(s) is taken,
then the observation yf will be received at the fusion centre
and the MDP state changes to ś = (ά, ź) ∈ S according to the
transition probability distribution p(ś|s, a;φ) which is com-
puted by pz(ź | z)

〈
Ψ(yf , ź, r,p; θ(φ))X′(φ)α, 1n

〉
, where

for z = (c̃i1 , · · · , c̃iM
)′ and ź = (c̃j1 , · · · , c̃jM

)′, pz(ź | z)
is the product of M channel transition probabilities computed
by

∏M
m=1 c

m
imjm

for im, jm ∈ {1, · · · , u}. It is straightforward
to show that the value of the forward variable ά in the next
MDP state ś is obtained by recursion

[〈ᾱ, 1n〉−1 ᾱ
]
round

,
where [.]round : Tα̃ �→ T is the discretization operator for the
information state as described in [3], and ᾱ is the unnormalized
forward variable with respect to the Lebesgue measure �

computed by Ψ(yf , ź, r,p; θ(φ)) X′(φ)α.
For each (fixed) value of φ ∈ Φ, we specify an objective

function Jλ
φ (̊s), expressed as the long-term average expected

cost per time step, or simply the average cost defined by

Jλ
φ (̊s)

�
= lim sup

N→∞

N−1
N∑

k=1

Eλ
s̊,φ

[
g(αk;φ, zk, rk,pk;φ)

∣∣α1 = α̊,Z0 = z̊
]

(1)

where s̊ = (α̊, z̊) is the initial condition, λ = (r,p) ∈ Λ
is a policy, and Λ is the non-empty space of all admissible
randomized history-dependent policies. For each fixed value
of φ ∈ Φ, Eλ

s̊,φ denotes the expectation with respect to Pλ
s̊,φ

which is the unique probability measure on (Ω,F) for a given
policy λ ∈ Λ, and initial state s̊ ∈ S. The function Jλ

φ (̊s) is
a performance metric for our quantization problem measuring
the performance when a given policy λ is used and the system
starts with the initial condition s̊.

Our quantization problem may then be expressed as an
adaptive stochastic control problem defined as following. De-
termine an average-optimal policy λ∗φ◦ and its corresponding
average optimal cost J∗

φ◦ as the solution to the following
optimization problem

(P) : inf
λ∈Λ

Jλ
φ (s), for ∀s ∈ S,

where Jλ
φ is the function defined in (1). It is clear that if

we had the exact knowledge of the true parameter φ◦, then
the solution to the problem (P) would reduce to finding
optimal policies to the average cost MDP problem defined

by J∗
φ◦(s)

�
= infλ∈Λ Jλ

φ◦(s), for ∀s ∈ S, which is the
problem associated with Mφ◦ and has been studied earlier
in [5]. However, since the true parameter is unknown, the
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idea to approach this problem is to compute a sequence of
estimates {φ̂k}∞k=1 of the true parameter φ◦, and show that
if φ̂k converges to φ◦ Pλ

s,φ◦–a.s. as k → ∞ then poli-
cies (suitably9) adapted to the approximating MDP sequence
Mφ̂k

= (S,A, g(φ̂k), p(φ̂k)) are average-optimal for the true
MDP Mφ◦ [9]. We discuss this approach in the following
section. We introduce the following assumptions.

Assumptions 3.1: For the adaptive MDP Mφ the following
hold:
A1) Each state s ∈ S is associated with a nonempty measur-
able compact set A(s) ⊆ A of admissible actions when the
MDP is in state s.
A2) The immediate cost g(s, a;φ) is a continuous function of
a ∈ A(s) for ∀s ∈ S uniformly in φ ∈ Φ.
A3) For some constant G, the immediate cost function g
satisfies |g(s, a;φ)| ≤ G <∞ uniformly in φ.

C. φ-Optimality Equation

It has been shown (cf. Theorem 5.5.3 [10]) that the search
domain for optimal policies in the stochastic control problem
(P) may be restricted only to the space of Markov policies
instead of the general domain Λ of randomized history-
dependent policies. Let F denote the space of all deterministic
Markov decision rules defined as measurable functions λφ(s) :
S×Φ �→ A such that λφ(s) ∈ A(s) for every s ∈ S and φ ∈ Φ.
Assume that for each φ ∈ Φ, the action ak = (rk,pk) at each
time step k is determined by a stationary deterministic Markov
policy λ∞φ = {λφ, λφ, · · · }, where ak = λφ(sk). Henceforth,
for brevity, λ∞φ may be denoted by λφ. We introduce the
following assumption.

Assumption 3.2: For any a = (r,p) ∈ A, yf ∈ {b1, b2}M ,
z ∈ CM , the matrix Ψ(yf , z, r,p; θ(φ))X′(φ) is primitive and
non-singular uniformly in φ.

Remark 3.1: Notice that Assumption 3.2 holds under very
mild conditions for the noise process {wk}∞k=1. For further
details see [6].

For each φ ∈ Φ, the φ-optimality equations (φ-OEs), also
known as the Bellman equations10, associated with the adap-
tive average cost MDP problem (P) may be expressed as

min
λφ∈F

[ ∑
yf ,ź

J
λφ

φ (ś)p(ś|s, a;φ) − J
λφ

φ (s)
]

= 0 (2)

J
λφ

φ (s) + v(s;φ) = min
λφ∈F

[
g(s, a;φ)+
∑
yf ,ź

v(ś;φ)p(ś|s, a;φ)
]

(3)

where a = λφ(s) ∈ A(s), ś = (ά(yf ), ź), Jλφ

φ is the average
per-stage cost in steady state which we are after its optimal
value J∗

φ . The term
∑
yf ,ź

v(ś;φ) p(ś|s, a;φ) is called cost-to-go

function in which v ∈ B(S × Φ) with B(.) being the Banach

9a suitably adapted policy refers to an NVI adaptive policy to be introduced
in the next section.

10cf. [10, Section 8.4.]

space of real-valued bounded measurable functions v with the

uniform norm ‖ v ‖ �
= sups∈S,φ∈Φ | v(s;φ) |. The function

v(.;φ), referred to as the differential cost, is defined as the
expected total difference between per-stage cost g(.;φ) and the
stationary cost Jλφ

φ . We introduce the following assumption:
Assumption 3.3: The cost-to-go function is a continuous

function of a = (r,p) ∈ A(s) for every s = (α, z) ∈ S,
φ ∈ Φ, and v ∈ B(S × Φ).

In order to establish the existence of solutions to the φ-OEs
for every φ ∈ Φ, we need to provide the following ergodicity
condition.

Lemma 3.1: Suppose that Assumption 3.2 holds. Then,
there exists an MDP state s̄ ∈ S and a positive number e0
such that the inequality p(s̄|s, a;φ) ≥ e0 holds uniformly in
φ for ∀s ∈ S, and ∀a ∈ A.

Proof: The proof is straightforward and for brevity the
detail is omitted here.

Using Lemma 3.1, we establish the following ergodicity
result.

Lemma 3.2: For any stationary deterministic Markov policy
λφ ∈ F, there exists a unique invariant probability measure
Γλφ

of the Markov state process {sk}∞k=1 induced by the
stationary policy λφ. Γλφ

is defined as the unique proba-
bility measure on S which for a = λφ(s) ∈ A(s) satisfies
Γλφ

(j) =
∑

s∈S
p(j|s, a;φ)Γλφ

(s), ∀j ∈ S.
Proof: The argument may be verified by the implications

in part (a) of Lemma 3.3 in [9].
From Lemma 3.2, for a given φ ∈ Φ, Markov chains

induced by every stationary policy λφ ∈ F have a single
irreducible class. In fact, under Assumption 3.2, the average
cost MDP problem (P) associated with Mφ forms a recurrent
(ergodic) MDP. This means that the transition matrix cor-
responding to every deterministic stationary policy consists
of a single recurrent class and no transient state. This is
because using Lemma 3.2 it can be shown11 that the cost
associated with every deterministic stationary Markov policy
λφ is uniform in s, that is, Jλφ

φ (s) = j
λφ

φ ∈ B(Φ) for ∀s ∈ S.
Since, under Assumption 3.2, the structure of every Markov

chain induced by a deterministic stationary policy is classified
as a recurrent Markov chain, we may characterize optimal
policies and their corresponding average costs using only the
single φ-optimality equation (3). The reason for this is that
the φ-optimality equation (2) holds for every Jλφ

φ (s) which is
uniform in s and thus it always holds for every λφ ∈ F and
as such is uninformative. Therefore, for each φ ∈ Φ, we may
characterize the optimal policy and the associated optimal cost
only through a single φ-OE as following:

j
λφ

φ + v(s;φ) = min
λφ∈F

[
g(s, a;φ) +

∑
yf ,ź

v(ś;φ)p(ś|s, a;φ)
]

(4)

Now, we establish existence of solutions to the φ-optimality
equation (4) which is used in the following theorem. Under
Assumptions 3.1 and 3.3 and using the ergodicity result in

11cf. part (b) of Lemma 3.3 in [9].
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Lemma 3.1, it can be shown12 that there exists a solution
{j∗φ, v∗(.;φ)} to the φ-optimality equation (4), where j∗φ ∈
B(Φ) is a real-valued bounded measurable function on Φ and
v∗(.;φ) : S × Φ �→ R is a real-valued bounded measurable
function on S for each φ ∈ Φ.

Theorem 3.3: Suppose that Assumptions 3.1 and 3.3 hold,
and there exist functions j∗φ ∈ B(Φ), and v∗(.;φ) ∈ B(S×Φ)
in the Banach spaces of real-valued bounded measurable
functions which satisfy the φ-OE (4). Assume there is a
stationary deterministic Markov decision rule λ∗φ ∈ F which
minimizes the right-hand side of the φ-OE (4), i.e., for each
φ ∈ Φ and s ∈ S

j∗φ + v∗(s;φ) = g(s, λ∗φ(s);φ) +
∑
yf ,ź

v∗(ś;φ)p(ś|s, λ∗φ(s);φ),

where λ∗φ(s) ∈ A(s). Then, the stationary policy λ∗φ is
average-optimal for the MDP Mφ, that is, action ak =
(rk,pk) = λ∗φ(sk) at time k ≥ 2 determined by the stationary
policy λ∗φ = {λ∗φ, λ∗φ, · · · } minimizes the cost Jφ defined in (1)
and the value of the optimal cost is j∗φ.

Remark 3.2: This theorem is essentially the φ-analogue
(parameterized version) of the existence theorem13 for optimal
policies in average cost unichain models.

D. Nonstationary Value Iteration

In this section, we develop the formulation for approx-
imating MDP models Mφ̂k

and introduce a nonstationary
value iteration (NVI) scheme and corresponding NVI adaptive
Markov policies and show that under appropriate assumptions
these adaptive policies are average-optimal for the limit (true)
MDP Mφ◦ . The approach followed in this section is inspired
by results on approximations and adaptive policies for average
cost MDPs presented in [9].

Let {φ̂k}∞k=1 be a sequence in Φ converging to the true
parameter φ◦ according to the following definition, where Hk

refers to the vector space of admissible histories up to time k

for k ≥ 0, where H0
�
= S and Hk

�
= Kk × S = K×Hk−1 for

k ≥ 1.
Definition 3.2: A sequence {φ̂k}∞k=1 of measurable func-

tions φ̂k : Hk �→ Φ is defined to be a sequence of strongly
consistent estimators of the true parameter φ◦ such that
lim

k→∞
φ̂k = φ◦ Pλ

s,φ◦–a.s. is satisfied uniformly in λ for every

s ∈ S

Remark 3.3: Note that there are several methods to estimate
parameters of the HMM H in sense of the Definition 3.2. How-
ever, at this point, to maintain readability of the manuscript,
it is simply assumed that the strongly consistent estimator
{φ̂k}∞k=1 is available. This task is performed by the recursive
maximum likelihood (ML) parameter estimator module which
is discussed in Section IV.

Let Mφ̂k
= (S,A, g(φ̂k), p(φ̂k)), for k ∈ {0, 1, · · · }, be a

sequence of MDPs, called the approximating MDP sequence,
and φ̂k be a sequence of estimates in Φ converging to

12cf. [9, Corollary 3.6].
13cf. [10, Theorem 8.4.4].

the true parameter φ◦ according to the Definition 3.2. It is
clear that each of the approximating MDPs Mφ̂k

satisfies
Assumptions 3.1, 3.2, and 3.3. Therefore, the ergodicity result
in Lemma 3.2 holds for each Mφ̂k

. The approximating MDP
sequence {Mφ̂k

}∞k=0 converges to the true MDP Mφ◦ in the
following sense:

Convergence criterion:
For any φ◦ ∈ Φ and any sequence of parameter estimates
{φ̂k}∞k=1 in Φ such that φ̂k converges to φ◦ Pλ

s,φ◦–a.s. as
k → ∞, the following sequences

ζk(φ◦)
�
= sup

s∈S,a∈A(s)

|g(s, a; φ̂k) − g(s, a;φ◦)|

ρk(φ◦)
�
= sup

s∈S,a∈A(s)

‖ p(.|s, a; φ̂k) − p(.|s, a;φ◦) ‖tv

satisfy lim
k→∞

ζk(φ◦) = 0 and lim
k→∞

ρk(φ◦) = 0, where ‖ . ‖tv

denotes the total variation norm for finite signed measures.
Remark 3.4: The above convergence criterion is in fact a

continuity condition of the per-stage cost function g(φ) and
the MDP transition kernel p(φ) in the parameter φ ∈ Φ
uniformly on K. This criterion is basically used in order to
prove Lipschitz continuity of the NVI function14 v̄k(.;φ),
which is introduced in Definition 3.3, in φ uniformly on
S. However, it is straightforward to show15 that instead it
is sufficient if g(φ) and p(φ) satisfy a regularity condition
(Lipschitz continuity) in φ uniformly on K. This is stated in
the following assumption.

Assumption 3.4: There are constants L1 and L2 such that
the following inequalities is satisfied uniformly in κ = (s, a) ∈
K for every φ, φ́ ∈ Φ.

|g(κ;φ) − g(κ; φ́)| ≤ L1d̄(φ, φ́),

‖ p(.|κ;φ) − p(.|κ; φ́) ‖tv ≤ L2d̄(φ, φ́),

where d̄ is the metric on the parameter space Φ.
Remark 3.5: Using the Mean Value Theorem, it is trivial

to show that Assumption 3.4 holds for the functions g(φ) and
p(φ) due to the fact that both functions are differentiable a.e.,
and their first derivatives are upper-bounded Pφ–a.e., that is,
bounded by an essential upperbound.

We define nonstationary value iteration (NVI) functions
v̄k(s; φ̂k−1) recursively as follows.

Definition 3.3: Let v̄0(.) be an arbitrary function defined in

B(S × Φ), e.g., v̄0(.)
�
= 0, and for every s ∈ S, and k ≥ 0

v̄k+1(s; φ̂k)
�
= min

a∈A(s)

[
g(s, a; φ̂k)+
∑
yf ,ź

v̄k(ś; φ̂k−1)p(ś|s, a; φ̂k)
]

(5)

It is clear from Definition 3.3 that the NVI functions
v̄k(s; φ̂k−1) are obtained in an iterative manner starting from
an arbitrary initial function v̄0(.) without the need to solve

14cf. [9, Proposition 5.6].
15the proof is similar to that of [9, Theorem 4.8]. For brevity, the detail is

omitted here.
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the Bellman φ-optimality equation (4) at each time step k,
which in our case is computationally intensive. This advantage
makes the NVI scheme directly applicable to our problem.
The NVI adaptive policy corresponding to the NVI functions
v̄k(.; φ̂k−1) is defined as following.

Definition 3.4: Let λ̄ = {λ̄k}∞k=0, called the NVI adaptive
policy, be a sequence of deterministic Markov decision rules,
where for each k ≥ 0, λ̄k(.; φ̂k) ∈ F is a measurable function
such that the action a obtained by a = λ̄k(s; φ̂k) ∈ A(s)
minimizes the right hand side of the φ-optimality equation (5)
for every s ∈ S. It is clear that the initial action at time k = 0
is determined by λ̄0(s; φ̂0) = arg mina∈A(s)g(s, a; φ̂0).

The following theorem establishes the average optimality of
the NVI adaptive policy λ̄ for the true MDP Mφ◦ .

Theorem 3.4: Suppose that Assumptions 3.1–3.4 hold. Let
{φ̂k}∞k=0 be any sequence of measurable functions in Φ
converging to the true parameter φ◦ Pλ

s,φ◦–a.s. . Also, let
λ̄φ◦ = {λ̄k}∞k=0 be an adaptive policy as defined in Defini-
tion 3.4, where λ̄k(sk; φ̂k(hk)) ∈ F for every hk ∈ Hk. Then
λ̄φ◦ is an average-optimal policy for the true MDP Mφ◦ .

Remark 3.6: Theorem 3.4 is the φ-analogue of [9, Theorem
6.6] for average cost MDPs. The proof is similar to that of [9,
Corollary 7.8, pp. 80] and the detail is omitted here.

IV. RECURSIVE ML PARAMETER ESTIMATOR

In this section, we develop the formulation for a recursive
(on-line) expectation maximization (EM) algorithm to estimate
the parameters of the HMM H = (X(φ),X(φ), π,Ψ(θ(φ))).
The proposed method is an adaptation of the on-line estimation
algorithm based on relative entropy information measure pre-
sented in [8]. As such, we only present the variations necessary
to our problem and all further details are omitted.

Define φ̂k
�
= (X(φ̂k),X(φ̂k), θ̂k(φ̂k)) ∈ Φ as the estimate

of model parameters at time k ≥ 0. Let OK
k ∈ OK

k denote
the observable (incomplete) data at the fusion centre from
time instant k up to time K, where OK

k is the σ-field
generated by (Yf

l ,Zl, rl,pl), for k ≤ l ≤ K. For simplicity,
we denote Ok

1 by Ok, and Ok
k by Ok. Henceforth, using

this notation, for brevity the state-to-observation probabil-
ity distribution ψi(y

f
k , zk, rk,pk; θ(φ)), i = 1, · · · , n may be

denoted by ψi(Ok; θ(φ)). Let ϕk = {φ̂t}k
t=0 denote the

sequence of model estimates till time k based on the ob-
servations Ok. Also, denote the sequence of unobservable
Markov chain states till time k by Xk = {Xt}k

t=1. In the
following, lc(.) denotes a probability measure on (Ω,F) with
respect to some σ-finite measure. It is shown in [8] that the
M -step of the on-line EM algorithm maximizes the relative
entropy information measure which is equivalent to maxi-

mizing J (φ)
�
= Eφ◦

[
log lc(Ok;φ)

]
, where lc(Ok;φ) is the

marginal likelihood function of the observable (incomplete)
data parameterized by φ. The M -step may be expressed as

following:

φ̂k = arg maxφ∈Φ Q̄k(Ok, ϕk−1;φ), k ≥ 1, (6)

subject to:
n∑

j=1

xij(φ) = 1, ∀i = 1, · · · , n

xij(φ) ≥ 0, ∀i, j = 1, · · · , n
where Q̄k(.) for k ≥ 1 is computed in the E-step as following:
E-step:

Q̄k(Ok, ϕk−1;φ)
�
= EXk

[
log lc(Ok,Xk;φ)|Ok, ϕk−1

]
,

where lc(Ok,Xk;φ) is the likelihood function of the complete
data if Xk were fully observable.

Remark 4.1: Note that in the optimization problem (6),
depending on the distribution of the sensors’ observations
further constraints on the elements of the parameter vector
φ might be required. As an example, for zero-mean Gaussian
measurement noise processes {wk}∞k=1, the standard deviation
parameter θm(φ) in the conditional density f(.|xk; θm(φ))
must be strictly positive16.

Lemma 4.1: From Theorem 3.4 suppose at each time step
k ≥ 1, action (rk,pk) is determined according to a determin-
istic NVI adaptive policy λ̄k(.; φ̂k) ∈ F. Further assume that
the trajectory Ok+1 ∈ Ok+1 has been observed. Then, for
k ≥ 0, the function Q̄k+1(.) may be evaluated as following:

Q̄k+1(Ok+1, ϕk;φ) =
k+1∑
t=1

χt|k+1(φ) +
k+1∑
t=1

χ̄t|k+1(φ,Ot)

+
k∑

t=1

log pz(zt+1 | zt) +
M∑

m=1

u∑
i=1

δ̄(zm,1 − c̃i) log πm
i , (7)

where δ̄(.) is the Kronecker delta function, and the functions
χt|k+1(.) and χ̄t|k+1(.) are evaluated as following

χt|k+1(φ) =
n∑

i=1

n∑
j=1

ξ̄t−1|k+1(i, j) log s2ij(φ)

χ̄t|k+1(φ,Ot) =
n∑

i=1

γ̄t|k+1(i) logψi(Ot;ϑ(φ)), (8)

where ξ̄t|k(i, j) = Pφ(Xt = x̃i,Xt+1 = x̃j |Ok, ϕk−1) and
γ̄t|k(i) = Pφ(Xt = x̃i|Ok, ϕk−1) are the standard variables
used to implement the forward-backward procedure in order
to evaluate Q̄k(.) in the EM algorithm. These variables can
be computed recursively using standard recursions which can
be found in [8], and are not presented here due to space
limitations.

Remark 4.2: From (7) we may write the following recur-
sion for the function Q̄k+1(.):

Q̄k+1(Ok+1, ϕk;φ) = Q̄k(Ok, ϕk−1;φ) + log pz(zk+1 | zk)
+ χk+1|k+1(φ) + χ̄k+1|k+1(φ,Ok+1) , k ≥ 1 (9)

16Note that for tractability purposes, in our simulations, we shall deal
with unconstrained optimization, where we assume a new parameterization
to ensure positiveness of the parameter elements by considering square roots
as φ = (S(φ), X(φ), ϑ(φ)), where S(φ) = [sij(φ)] with sij =

√
xij , and

ϑm =
√

θm.
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We now present the following stochastic approximation
algorithm which recursively adjusts the parameter vector φ by
finding the (local) maximum of the objective function Q̄k(.)
at each time step. Approximately, under appropriate regularity
conditions, the M -step of the on-line EM algorithm can be
written as the following recursion:

M -step: φ̂k+1 = φ̂k + εk+1(φ)S(φ̂k,Ok+1), k ≥ 0 (10)

where εk+1(φ) is a sequence of decreasing small scalar
gains which satisfy certain well-known conditions17 and
S(φ̂k,Ok+1) is the score function defined by

S(φ̂k,Ok+1)
�
= ∇φ Q̄k+1(Ok+1, ϕk;φ)

∣∣∣
φ=φ̂k

(11)

Convergence analysis of the stochastic approximation al-
gorithm given by (10) can be carried out using the mean
ODE approach (see [11], [12]) under some regularity assump-
tions on the observation probability distributions along with
an additional geometric ergodicity condition on an extended
Markov chain [13]. A detailed convergence analysis is pre-
sented in [14].

V. PERFORMANCE EVALUATION

In this section, we first illustrate the performance of the
on-line EM parameter estimation algorithm. Unless otherwise
mentioned, the variables which are assumed fixed throughout
the following experiments are as follows: the step size in
discretizing the information state α̃k+1;φ̂(k) is 0.01; the path
loss exponent of the wireless channel is ς = 2 for deployment
of the sensors in an open rural area; the constant coefficient
γ for computing crossover probabilities is γ = 2. For these
simulations, we generated random sequences of 80000 obser-
vations obtained by two sensors measuring a two-state Markov
chain {Xk}∞k=1 with state space X(φ◦) = {−0.2, 2.5} and

transition kernel X(φ◦) =
[

0.94 0.06
0.28 0.72

]
. The measurement

noises {wm,k}∞k=1 of the sensors are assumed to be zero-
mean white Gaussian noise processes with the noise variance
vector θ(φ◦)2 = σ2(φ◦) = (0.5, 0.3)′. The sensors are located
at different distances from the fusion centre with distance vec-
tor d = (80.0, 180.0)′, where the figures are given in meters.
The wireless channels from the sensors to the fusion centre
are assumed to be independent and each channel is modeled
by a two state Markov chain with state space C = {c̃1, c̃2}.
The channel states c̃1 and c̃2 represent the corresponding
channel gains g2

1 = 3 × 10−8 and g2
2 = 2 × 10−9 respectively.

The channels are assumed to be asymmetric, that is, having
different fading statistics with the transition probability matri-

ces given by C1 =
[

0.66 0.34
0.61 0.39

]
, C2 =

[
0.79 0.21
0.32 0.68

]
.

The noise power of the wireless channel for every sen-
sor is σ2

v = 3 × 10−14 W . The power levels for each sen-
sor is chosen from the action space V = {65, 30, 10},
with the figures being in mW . The action space of the

17the conditions are εk(φ) ≥ 0,
∑

k
εk(φ) = +∞,

∑
k

ε2k(φ) < ∞,
see [11] for further details.
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Fig. 1. Convergence of the state level parameters (a) x̃1(φ̂k) and (b) x̃2(φ̂k)
for various initial conditions. The true values x̃1(φ◦) = −0.2 and x̃2(φ◦) =
2.5 are marked by the red lines.

quantization thresholds for each sensor is given by the
finite set U = {−0.8, 0.7, 1.8, 3.5}. The tradeoff parame-
ter is set to β = 0. We picked εk(φ) = 1/(υ1 + k)υ2(φ),
where υ2 takes different values depending on the parameter
type18. The typical values chosen in our simulations are
υ1 = 50, υ2(X) = 0.7, υ2(X) = 0.25, υ2(θ) = 0.62.

For the Markov chain state levels x̃1(φ) and x̃2(φ),
we have examined four different initial estimates in the
range around ±3σ away from the true values x̃1(φ◦), and

x̃2(φ◦), where σ
�
= max

m
{σm(φ◦)}. The initial state level

estimates are φ1 = (x̃1(φ1), x̃2(φ1))′ = (−0.5,−0.2)′,
φ2 = (−2.0,−1.0)′, φ3 = (−2.2,−2.0)′, and
φ4 = (2.5, 5.0)′. The remaining elements of these
initial parameter estimates are the same and given by
(x11, x12, x21, x22, θ

1, θ2) = (0.75, 0.25, 0.4, 0.6, 6.25, 0.25).
Fig. 1 shows the effect of the initial estimates on the

convergence of the state level parameters x̃1(φ̂k) and x̃2(φ̂k)
respectively. The estimates are averaged over each 5 × 103

time steps. Convergence is achieved in all cases, though, it
is slower only in cases where initial estimates of more than
one parameter elements are ±3σ or further apart from the
true values as in φ4. Even in cases where initial estimate of
a particular parameter element is close or equal to the true
value of some other element, we still achieve a relatively fast
convergence, as in φ1.

Fig. 2 shows the convergence of the NVI adaptive cost jλ̄k

φ̂k

18υ1 may also be chosen based on the parameter type to further improve
the convergence rate.
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Fig. 2. Convergence of the NVI cost j
λ̄k

φ̂k
under different initial conditions.

The green line represents true optimal cost j∗φ◦ .

for various initial conditions. It is clear that φ4 has slower
convergence regarding the NVI cost because convergence of
its parameters is also achieved in a slower rate as can be seen
in Fig. 1. Nevertheless, under all the given initial conditions,
the NVI cost does converge to the true optimal cost j∗φ◦

obtained by the relative value iteration algorithm (with the
true parameter values) presented in [4]. Note that after the
transient period, the relative error between the NVI cost and
j∗φ◦ reduces to less than 4 × 10−3 for k ≥ 50000.

Fig. 3 shows the optimal state estimation error for various
average sum power values across the sensors (obtained by
varying the trade-off factor β) for the NVI adaptive policy
λ̄k as k → ∞ and the optimal policy λ∗φ◦ (obtained by the
relative value iteration algorithm of [4] for the true parameter
values). As the available average sum power becomes low,
clearly the quality of the parameter estimates becomes poorer.
As a result, the difference between the average state estimation
error computed by the NVI policy and the one computed based
on the true optimal policy becomes larger. The solution to
this is (if possible) to first compute the parameter estimates
using the highest power levels at the sensors in order to
learn the model parameters more accurately. This could be
thought of as a training phase. Then, based on these estimated
parameters, we may perform state estimation to obtain the
optimal quantization thresholds and power allocation using the
relative value iteration algorithm of [5] for a given average
power constraint (see also [4]). The performance of this
scheme is shown by the red curve as ’Estimated Policy’ in
Fig. 3. As expected, the performance of this scheme is closer
to that of the optimal policy λ∗φ◦ , particularly when β → ∞.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a novel method for de-
signing optimal binary quantizers for state and parameter esti-
mation of hidden Markov models using observations obtained
by multiple sensors. A coupled recursive ML based parameter
estimation algorithm and a nonstationary value iteration (NVI)
based adaptive MDP algorithm is proposed at the fusion centre
for minimizing the average expected state estimation error
under an average sum power constraint across the sensors.
Convergence of the parameter estimates and the asymptotic
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Fig. 3. Optimal and NVI Error/Power curves.

performance of the NVI algorithm are illustrated via extensive
numerical studies.
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