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Abstract: This paper studies the optimal control of linear systems over continuous valued
fading channels. The sensor measurements are sent over a fading wireless channel to a remote
controller using the analog amplify and forward technique. The controller then computes a
control signal, which is transmitted over another fading channel to the actuator. Under the
assumption of full channel state information (CSI) for both wireless links, we derive the optimal
LQG control law. In the case where full channel state information is not available but channel
statistics are available, we present the optimal linear static estimator and controller. Numerical
comparisons are made between the full CSI and statistical CSI solutions.
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1. INTRODUCTION

In recent years there has been increasing growth in the
use of wireless technologies in diverse applications such
as home automation, telecommunications, and industrial
monitoring and control. The challenges posed by wireless
channels due to its time-varying nature are considerable,
and much effort has been devoted to modelling and over-
coming these effects.

One way to model the wireless channel is to regard it as
a channel where packets can be received if the channel is
of sufficiently good quality, and dropped if the channel is
poor quality. The Kalman filtering problem with Bernoulli
packet losses has been studied in Sinopoli et al. (2004),
who showed the existence of a threshold, such that if
the packet arrival rate is below this threshold then the
expected error covariance becomes unbounded. This work
has been extended in various directions such as e.g. Huang
and Dey (2007); Epstein et al. (2008); Xu and Hespanha
(2005); Schenato (2006). The problem of control over such
packet dropping links has been studied in e.g. Sinopoli
et al. (2005, 2006); Imer et al. (2006); Gupta et al. (2007),
and conditions on the packet arrival rates for stability of
the closed loop system has been derived. See also Schenato
et al. (2007) and the references therein for a review of
related work.

Another way in which one can view the wireless chan-
nel is to regard it as a continuous valued channel with
time-varying channel gains, with commonly used channel
models such as Rayleigh or Nakagami. Kalman filtering
with continuous faded measurements has been studied in
e.g. Mostofi and Murray (2005); Dey et al. (2009), which
showed that under certain conditions on the fading distri-
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bution the expected error covariance will always remain
bounded.

In this paper we extend the work of Dey et al. (2009) to
LQG control over channels with continuous faded mea-
surements. We assume fading channels between both the
sensor and controller, and between the controller and ac-
tuator/plant. Under the assumption of full channel state
information (CSI) we derive the optimal control law and
show that the separation principle holds. We consider
both the finite horizon and infinite horizon problems. In
the case where channel state information is not available
but channel statistics are available, the optimal linear
estimator/controller will be presented, using results from
De Koning (1992).

2. SYSTEM MODEL

A block diagram of the model we study in this paper can
be found in Fig. 1. We consider a plant

xk+1 = Axk + Buk + wk (1)

where xk ∈ R
n and uk ∈ R

m. We have a sensor with
measurements

yk = Cxk + vk (2)

where yk ∈ R
l. The noise processes {wk} and {vk} are

i.i.d. zero mean Gaussian with covariances Σw > 0 and
Σv > 0 respectively. 1

The sensor transmits this measurement over a fading chan-
nel to a remote controller using the analog amplify and
forwarding technique (Gastpar and Vetterli (2003)), i.e.
the sensor simply amplifies and forwards its measurement
to the controller. We assume that all the measurement
components are sent separately via orthogonal channels

1 For a matrix X, we say that X > 0 if X is positive definite, and
X ≥ 0 if X is positive semi-definite.
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Fig. 1. System model

(Cui et al. (2007)) within the measurement time interval.
The controller thus receives

zk = Hkαkyk + nk (3)

where Hk = diag(h1
k, . . . , hl

k), with hi
k ≥ 0, i = 1, . . . , l,

are the channel gains, αk = diag(α1
k, . . . , αl

k) are the
amplification factors in the analog forwarding technique,
and nk is additive noise that represents the channel noise
in the communication channel between the sensor and
controller. The controller computes a control signal uc

k ∈
R

m, which is then sent over another fading channel to
the actuator/plant, again using the analog forwarding
technique. The control input to the plant is thus

uk = Gkβkuc
k + mk (4)

where Gk = diag(g1
k, . . . , gm

k ), with gj
k ≥ 0, j = 1, . . . ,m,

are the channel gains, βk = diag(β1
k, . . . , βm

k ) are the am-
plification factors and mk is the channel noise between the
controller and plant. The noise processes {nk} and {mk}
are i.i.d. zero mean Gaussian with covariances Σn and
Σm respectively. In this paper we assume the block fading
model (see e.g. Caire et al. (1999)), such that the channels
stay constant within each fading block represented by the
time index k, but are independent from block to block.
We also allow the fading processes Gk and Hk to have
continuous distributions in general. The noise processes
wk, vk, nk,mk and fading processes Gk,Hk are assumed to
be mutually independent.

The system (1)-(4) above can be rewritten as

xk+1 = Axk + B̄kuc
k + w̄k

zk = C̄kxk + v̄k
(5)

if we define B̄k = BGkβk, C̄k = HkαkC, w̄k = Bmk +
wk, v̄k = Hkαkvk + nk. The noise processes {w̄k} and
{v̄k} have covariances Σw̄ = BΣmBT + Σw and Σv̄k

=
HkαkΣvαkHk + Σn respectively.

3. OPTIMAL LQG CONTROL UNDER FULL CSI

We first consider the case where we have full CSI (so full
knowledge of Gk and Hk is available to the controller
at time k). The amplification factors αk and βk are
usually chosen to satisfy power constraints at the sensor
transmitter and in the transmission of the control signals.
Here αk and βk are taken to be either constant or known
functions of time.

3.1 Finite horizon

In the finite horizon case, we have a cost

JN = E

[

xT
NQNxN +

N−1
∑

k=0

(xT
k Qkxk + ucT

k Rkuc
k)

]

(6)

where Qk ≥ 0,∀k and Rk > 0,∀k. With full CSI, the
information set available to the controller at time k is

Ik = {z0, . . . , zk, uc
0, . . . , u

c
k−1,H0, . . . ,Hk, G0, . . . , Gk}

(7)
Our objective is to minimize JN for system (5), where the
minimization is over {uc

k}, with uc
k being a function of the

information set Ik at each time k.

Lemma 1. The optimal control uc∗
k that minimizes JN in

(6), subject to uc
k being a function of the information set

Ik in (7), is

uc∗
k = −(B̄T

k Kk+1B̄k + Rk)−1B̄T
k Kk+1Ax̂k (8)

where x̂k = E[xk|Ik], B̄k = BGkβk, and {Kk} are given
recursively by

KN = QN ,

Kk = E[AT (Kk+1 − Kk+1B̄k

× (Rk + B̄T
k Kk+1B̄k)−1B̄T

k Kk+1)A] + Qk.

(9)

The expectation in (9) is with respect to Gk (since B̄k =
BGkβk).

Proof The proof uses dynamic programming and is along
similar lines to e.g. Bertsekas (2000), see also Imer et al.
(2006). Define

VN (IN ) = E[xT
NQNxN |IN ],

Vk(Ik) = min
uc

k

E[xT
k Qkxk + ucT

k Rkuc
k + Vk+1(Ik+1)|Ik]

We have

VN−1(IN−1)

= min
uc

N−1

E{xT
N−1QN−1xN−1 + ucT

N−1RN−1u
c
N−1

+ (AxN−1 + B̄N−1u
c
N−1 + w̄N−1)

T QN

× (AxN−1 + B̄N−1u
c
N−1 + w̄N−1|IN−1}

= E{xT
N−1(A

T QNA + QN−1)xN−1|IN−1}

+ E{w̄T
N−1QN w̄N−1}

+ min
uc

N−1

{ucT

N−1(B̄
T
N−1QN B̄N−1 + RN−1)u

c
N−1

+ 2E[xT
N−1|IN−1]A

T QN B̄N−1u
c
N−1}

which gives

uc∗
N−1 = −(B̄T

N−1QN B̄N−1 + RN−1)
−1B̄T

N−1QNAx̂N−1

Substituting back into the expression for VN−1(IN−1), we
obtain

VN−1(IN−1) = E{w̄T
N−1QN w̄N−1}

+ E{(xN−1 − x̂N−1)
T P̃N−1(xN−1 − x̂N−1)|IN−1}

+ E{xT
N−1K̃N−1xN−1|IN−1}

where

P̃N−1 =AT QN B̄N−1(RN−1+B̄T
N−1QN B̄N−1)

−1B̄T
N−1QNA,

K̃N−1 = AT QNA + QN−1 − P̃N−1

For period N − 2 we have
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VN−2(IN−2)

= min
uc

N−2

E{xT
N−2QN−2xN−2

+ ucT

N−2RN−2u
c
N−2 + VN−1(IN−1)|IN−2}

= E{xT
N−2QN−2xN−2|IN−2}

+ min
uc

N−2

[ucT

N−2RN−2u
c
N−2 + E{xT

N−1K̃N−1xN−1|IN−2}]

+ E{(xN−1 − x̂N−1)
T PN−1(xN−1 − x̂N−1)|IN−2}

+ E{w̄T
N−1QN w̄N−1}

Now

min
uc

N−2

[ucT

N−2RN−2u
c
N−2 + E{xT

N−1K̃N−1xN−1|IN−2}]

= min
uc

N−2

[ucT

N−2RN−2u
c
N−2

+ E{(AxN−2 + B̄N−2u
c
N−2 + w̄N−2)

T K̃N−1

× (AxN−2 + B̄N−2u
c
N−2 + w̄N−2)|IN−2}]

= min
uc

N−2

{ucT

N−2RN−2u
c
N−2+ucT

N−2B̄
T
N−2E[K̃N−1]B̄N−2u

c
N−2

+ 2ucT

N−2B̄
T
N−2E[K̃N−1]Ax̂N−2}

+ E[xT
N−2A

T K̃N−1AxN−2|IN−2]+E[w̄T
N−2K̃N−1w̄N−2]

and so

uc∗
N−2 = −(B̄T

N−2E[K̃N−1]B̄N−2 + RN−2)
−1

× B̄T
N−2E[K̃N−1]Ax̂N−2

Continuing on, we will obtain

uc∗
k = −(B̄T

k Kk+1B̄k + Rk)−1B̄T
k Kk+1Ax̂k

where Kk are given by

KN = QN ,

Kk = E[AT (Kk+1 − Kk+1B̄k

× (Rk + B̄T
k Kk+1B̄k)−1B̄T

k Kk+1)A] + Qk.

�

The optimal control uc∗
k in (8) is a linear function of

x̂k = E[xk|Ik], which can be computed with the standard
time-varying Kalman filter. Hence a separation principle
holds for this problem. Further define

x̂k+1|k = E[xk+1|Ik]

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |Ik]

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)T |Ik]

Below, we summarise the Kalman filtering equations:

x̂k = x̂k|k−1 + Sk(zk − C̄kx̂k|k−1)

x̂k|k−1 = Ax̂k−1 + B̄k−1u
c
k−1

Sk = Pk|k−1C̄
T
k (C̄kPk|k−1C̄

T
k + Σv̄k

)−1

Pk|k = Pk|k−1 − SkC̄kPk|k−1

Pk|k−1 = APk−1|k−1A
T + Σw̄

where B̄k = BGkβk, C̄k = HkαkC, Σw̄ = BΣmBT + Σw

and Σv̄k
= HkαkΣvαkHk + Σn.

Remark : The expectation in (9) is in general difficult to
compute analytically, due to the difficulty in explicitly
evaluating the expectation of the nonlinear term. However
in cases such as scalar control signals, closed form expres-
sions can be obtained for specific fading distributions. See
Section 5 for an example with Rayleigh fading.

Remark : If the fading process {Gk} is discrete (i.e. com-
ponents of Gk take on discrete values), then the optimal
controller can also be derived by using results on optimal
control of jump linear systems, see Chizeck and Ji (1988).

Remark : System (5) is a time-varying linear system. If we
attempt to apply the standard solution of the time-varying
LQG problem to (5) directly, we obtain

uc
k = −(Rk + B̄T

k Kk+1B̄k)−1B̄T
k Kk+1Ax̂k|k (10)

where Kk are given by

KN = QN ,

Kk = AT (Kk+1 − Kk+1B̄k

× (Rk + B̄T
k Kk+1B̄k)−1B̄T

k Kk+1)A + Qk.

(11)

However, the recursions given by (11) are non-causal since
Kk requires knowledge of Gk+j , j = 1, 2, . . . , and so uc

k
given by (10) is not a function of the information set Ik

in (7). We will however use this non-causal solution in
numerical comparisons with the optimal causal solution in
Section 5.

3.2 Infinite horizon

In the infinite horizon case we take αk = α, βk = β,Qk =
Q > 0, Rk = R > 0,∀k. 2 We will assume that the pairs

(A,B) and (A,Σ
1/2
w ) are stabilizable, and the pairs (A,C)

and (A,Q1/2) are detectable. We now have a cost function

J∞ = lim
N→∞

JN

N
= lim

N→∞

1

N
E

[

N−1
∑

k=0

(xT
k Qxk + ucT

k Ruc
k)

]

(12)
We have the following result:

Lemma 2. Assume that α and β are invertible, the com-
ponents of Gk have continuous distributions such that
Pr(gi

k > 0) = 1,∀k, i, and the components of Hk

have continuous distributions such that Pr(hj
k > 0) =

1,∀k, j. Furthermore assume that A is invertible and that
max(0, log ||H0C||) is integrable. Then
(i) The expected error covariance E[Pk|k] remains bounded
as k → ∞.
(ii) The optimal cost J∗

∞ is finite, and the optimal control
uc∗

k that minimizes J∞ in (12), subject to uc
k being a

function of the information set Ik in (7), is

uc∗
k = −(B̄T

k KB̄k + R)−1B̄T
k KAx̂k (13)

where x̂k = E[xk|Ik], and K is the unique solution of the
fixed point equation

K = E[AT (K −KB̄k(R + B̄T
k KB̄k)−1B̄T

k K)A] + Q (14)

Proof
(i) Under the assumptions of Lemma 2, the boundedness
of the expected error covariance E[Pk+1|k] (and hence
E[Pk|k]) for Kalman filtering with faded measurements
(and no control) has previously been shown in Dey et al.
(2009). Noting that the Kalman filtering recursions for
Pk|k do not depend on the control signals uc

k (Anderson
and Moore, 1979, p.110), the result follows.
(ii) We first show that the optimal control takes the form
(13). From the finite horizon recursions (9) and reversing

2 For instance, the case αk = 1, βk = 1 would correspond to direct
forwarding of the sensor measurements and control signals without
any scaling.
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the time index as in Imer et al. (2006), we have the
recursion

Ḱk+1 = E[AT (Ḱk − ḰkBGβ(R + βGBT ḰkBGβ)−1

× βGBT Ḱk)A] + Q

Under our stabilizability and detectability assumptions, it
can be shown that as k → ∞, Ḱk converges to the unique
fixed point of the equation

K =E[AT(K−KBGβ(R+βGBT KBGβ)−1βGBT K)A]+Q

by using a similar proof to Theorem 3.3 of Dey et al.
(2009). Taking the limit N → ∞ of the solution to the
finite horizon problem then gives the desired result.

We now show that the optimal cost J∗
∞ is finite. Let us call

Lk = −(B̄T
k KB̄k + R)−1B̄T

k KA and ek = xk − x̂k. Noting
that E[x̂keT

k ] = E[ekx̂T
k ] = 0, we have

1

N
E

[

N−1
∑

k=0

(xT
k Qxk + uc∗T

k Ruc∗
k )

]

=
1

N
E

[

N−1
∑

k=0

(xT
k Qxk + x̂T

k LT
k RLkx̂k)

]

=
1

N
E

[

N−1
∑

k=0

(xT
k (Q + LT

k RLk)xk − eT
k LT

k RLkek)

]

=
1

N
E

[

N−1
∑

k=0

[

Tr((Q + LT
k RLk)xkxT

k ) − Tr(LT
k RLkekeT

k )
]

]

=
1

N

N−1
∑

k=0

Tr(E(Q + LT
k RLk)E(xkxT

k ))

−
1

N

N−1
∑

k=0

Tr(E(LT
k RLk)E(Pk|k))

where the last line holds since xk does not depend on Gk

(and hence Lk). The second term above remains bounded
as N → ∞ by part (i). The first term above will also be
bounded as N → ∞ if we can show E(xkxT

k ) is bounded
for the system

xk+1 = Axk+B̄kLkx̂k+w̄k = (A+B̄kLk)xk−B̄kLkek+w̄k

By similar arguments as in Imer et al. (2006), this is true
if and only if the system

ξk+1 = (A + B̄kLk)ξk

is mean square stable. We can verify that

(A + B̄kLk)T K(A + B̄kLk) + LT
k RLk + Q

= AT KA − AT KT B̄k(B̄T
k KB̄k + R)−1B̄T

k KA + Q

and so

K = E[(A + B̄kLk)T K(A + B̄kLk) + LT
k RLk + Q]

Hence
E[ξT

k+1Kξk+1 − ξkKξk]

= E[ξT
k ((A + B̄kLk)T K(A + B̄kLk) − K)ξk]

= −E[ξT
k E(LT

k RLk + Q)ξk]

where the last line holds since ξk does not depend on Gk.
Therefore

E[ξT
k+1Kξk+1] = E[ξT

0 Kξ0] −
k

∑

i=0

E[ξT
i E(LT

i RLi + Q)ξi]

Using similar arguments to Imer et al. (2006) (see also
Bertsekas (2000)), we can then show that E[ξT

k ξk] → 0 as

k → ∞. �

Thus for any fading processes Gk and Hk satisfying the
conditions of Lemma 2, the problem of minimizing (12) is
well defined, and the minimum J∞ will be finite.

4. OPTIMAL LINEAR CONTROL WITH
STATISTICAL CSI

In this section we consider the case where we don’t have
knowledge of the values Gk and Hk (e.g. either because it
is too difficult or requires too many resources to obtain),
but know their channel statistics. By similar arguments
to Schenato et al. (2007), the optimal controller can be
shown to be generally nonlinear and difficult to derive.
One alternative is to derive the optimal linear controller
and estimator. Here we will use a static linear estimator
and controller of the form

x̂k+1 = Fx̂k + Kzk

uc
k = −Lx̂k

(15)

We again consider the infinite horizon case where we take
αk = α, βk = β,Qk = Q > 0, Rk = R > 0,∀k, and

assume that the pairs (A,B) and (A,Σ
1/2
w ) are stabilizable,

and the pairs (A,C) and (A,Q) are detectable. The cost
function that we wish to minimize is the infinite horizon
cost

J∞ = lim
N→∞

1

N
E

[

N−1
∑

k=0

(xT
k Qxk + ucT

k Ruc
k)

]

(16)

where the minimization is over (F,K,L). The situation
above falls within the framework of systems with white
parameters. In De Koning (1992) necessary and sufficient
conditions for minimizing (16) subject to the estimator
and controller being of the form (15) is derived, using
techniques such as the matrix minimum principle. A
method for computing the optimal F,K and L is then
also given. Below we will present the method of De Koning
(1992) adapted to our situation. 3

Define the following recursions:

X1,k+1 = AT X1,kA − LT
k (E[B̄T

k X1,kB̄k] + R

+ E[B̄T
k X2,kB̄k] − E[B̄T

k ]X2,kE[B̄k])Lk

+ Q + E[C̄T
k KT

k X2,kKkC̄k] − E[C̄T
k ]KT

k X2,kKkE[C̄k]

X2,k+1 = (A − KkE[C̄k])T X2,k(A − KkE[C̄k])

+ LT
k (E[B̄T

k X1,kB̄k] + R

+ E[B̄T
k X2,kB̄k] − E[B̄T

k ]X2,kE[B̄k])Lk

X3,k+1 = AX3,kAT − Kk(E[C̄kX3,kC̄T
k ] + E[Σv̄k

]

+ E[C̄kX4,kC̄T
k ] − E[C̄k]X4,kE[C̄T

k ])KT
k

+ Σw̄ + E[B̄kLkX4,kLT
k B̄T

k ] − E[B̄k]LkX4,kLT
k E[B̄T

k ]

X4,k+1 = (A − E[B̄k]Lk)X4,k(A − E[B̄k]Lk)T

+ Kk(E[C̄kX3,kC̄T
k ] + E[Σv̄k

] + E[C̄kX4,kC̄T
k ]

− E[C̄k]X4,kE[C̄T
k ])KT

k

(17)

3 Note that in our situation Σv̄k
is time-varying, however it can be

verified that the role of W in De Koning (1992) can be replaced by
E[Σv̄k

] here.
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Fk+1 = A − E[B̄k]Lk − KkE[C̄k]

Kk+1 = AX3,kE[C̄T
k ](E[C̄kX3,kC̄T

k ] + E[Σv̄k
]

+ E[C̄kX4,kC̄T
k ] − E[C̄k]X4,kE[C̄T

k ])†

Lk+1 = (E[B̄T
k X1,kB̄k] + R + E[B̄T

k X2,kB̄k]

− E[B̄T
k ]X2,kE[B̄k])†E[B̄T

k ]X1,kA

(18)

where † represents the Moore-Penrose inverse. We also
have the concept of mean square compensatability intro-
duced in De Koning (1992).

Definition: We say that (A, B̄k, C̄k) is mean square com-
pensatable if there exist F,K,L such that the system

x′
k+1 = Φ′

kx′
k

has E[||x′
k||

2] → 0 as k → ∞, where

Φ′
k =

[

A −B̄kL
KC̄k F

]

.

We then have the following:

Lemma 3. (i) Assume that (A, B̄k, C̄k) is mean square
compensatable. Then starting from X1,0 = 0,X2,0 =
0,X3,0 = 0,X4,0 = 0 (where 0 here represents the
zero matrix), the recursions (17)-(18) converge to limiting
values as k → ∞. The optimal F ∗,K∗, L∗ for (15) are
given by the limiting values of the Fk,Kk, Lk recursions
respectively.
(ii) (A, B̄k, C̄k) is mean square compensatable if and only
if the recursions (17)-(18) converge to limiting values as
k → ∞.

Proof (i) This is essentially Theorem 3 of De Koning
(1992).
(ii) See Theorem 4 of De Koning (1992).
�

The expectations involved in (17)-(18) can usually be com-
puted without difficulty. For instance, we have E[B̄k] =
BE[Gk]β = Bdiag(E[g1], . . . , E[gm])β, and E[C̄k] =
diag(E[h1], . . . , E[hl])αC. Next call

Γ =











E[g2
1 ] E[g1]E[g2] . . . E[g1]E[gm]

E[g2]E[g1] E[g2
2 ] . . . E[g2]E[gm]

...
...

. . .
...

E[gm]E[g1] E[gm]E[g2] . . . E[g2
m]











Then note that E[GXG] = Γ ◦ X, where ◦ is the
Hadamard or element-wise product (Horn and Johnson
(1991)). Hence E[B̄kXB̄T

k ] = BE[GβXβG]BT = B(Γ ◦
(βXβ))BT and E[B̄T

k XB̄k] = β(Γ ◦ (BT XB))β. Similarly,
if we call

Λ =











E[h2
1] E[h1]E[h2] . . . E[h1]E[hl]

E[h2]E[h1] E[h2
2] . . . E[h2]E[hl]

...
...

. . .
...

E[hl]E[h1] E[hl]E[h2] . . . E[h2
l ]











,

then E[C̄kXC̄T
k ] = Λ ◦ (αCXCT α) and E[C̄T

k XC̄k] =
CT α(Λ ◦ X)αC. We also have E[Σv̄k

] = Λ ◦ (αΣvα) + Σn.

Remark : The stability criteria of Lemma 3 (ii) involves
checking if (X1,k,X2,k,X3,k,X4,k) converges as k → ∞ in
the recursion (17)-(18). Determining whether the recur-
sions converge can be achieved via numerical computation
as described above, however analytical criteria seem to be
more complicated to obtain.

5. NUMERICAL EXAMPLE

We consider a scalar system, with gk and hk both Rayleigh
distributed, so that g2

k and h2
k are exponentially distributed

with means 1/λg and 1/λh respectively.

The optimal control in the case of full CSI is then

uc∗
k =

−gkaKk+1βkb

g2
kβ2

kb2Kk+1 + Rk
x̂k

with

KN = QN

Kk = E

[

a2Kk+1Rk

g2
kβ2

kb2Kk+1 + Rk

]

+ Qk

=
λga

2Rk

β2
kb2

exp

(

λgRk

β2
kb2Kk+1

)

E1

(

λgRk

β2
kb2Kk+1

)

+ Qk

where E1(x) is the exponential integral.

In the computation of the optimal linear controller in the
case with statistical CSI, the terms in the recursions sim-

plify to E[B̄k] = βb
√

π
4λg

, E[C̄k] = αc
√

π
4λh

, Σw̄ = b2σ2
m +

σ2
w, E[Σv̄k

] =
α2σ2

v

λh
+ σ2

n, E[B̄T
k XB̄k] = E[B̄kXB̄T

k ] =
β2b2

λg
X, E[C̄T

k XC̄k] = E[C̄kXC̄T
k ] = α2c2

λh
X.

We will consider a case with b = c = 1, σ2
w = σ2

v = σ2
n =

σ2
m = 1, α = β = 1, Q = R = 1, λg = 2, λh = 5. In

Figure 2 we plot the finite horizon expected cost JN for
horizon N = 10, and various values of a. We compare
between the causal control given by (8)-(9), and the non-
causal control given by (10)-(11). The causal solution can
be seen to perform quite closely to the non-causal solution.

0.8 1 1.2 1.4 1.6 1.8
0

200

400

600

800

1000

1200

1400

a

J
N

Causal solution

Non−causal solution

Fig. 2. Scalar system, finite horizon. Comparison between
causal and non-causal control.

In Figure 3 we plot the infinite horizon cost J∞ for
the infinite horizon solution with full CSI (13)-(14), and
infinite horizon solution with statistical CSI of Section 4,
for different values of a. From numerical computation, we
find that for values of a greater than around 1.35, the
stability criteria is no longer satisfied in the case with
statistical CSI and the infinite horizon cost diverges.
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Fig. 3. Scalar system, infinite horizon. Comparison be-
tween full CSI and statistical CSI solutions

6. CONCLUSION

In this paper we have considered the optimal control of a
system where there are continuous valued fading channels
between the sensor and controller, and between the con-
troller and actuator. We have derived the optimal LQG
controller under full CSI and statistical CSI assumptions.
Future work will include jointly optimizing the powers
used in transmitting the sensor measurements and control
signals over the fading channels, by optimizing the choices
of the amplification factors αk and βk.
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