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Abstract—We consider a wireless sensor network equipped
with energy harvesting technology. It contains M sensors that
observe a random process and transmit an amplified uncoded
analog version of the observed signal through fading wireless
channels to a remote station. The remote station, often called
the fusion center, estimates the realization of the random process
by using a best linear unbiased estimator. In this paper, we
consider the optimal energy allocation policy that minimizes
total distortion over a finite time horizon subject to energy
harvesting constraints at the sensors. We focus on two types
of available side information at the sensor, i.e. (1) causal side
information involving the present and previous channel states
and the previous values of the harvested energy and (2) full
(non-causal) side information, under both finite and infinite
energy storage capacity at each sensor’s battery. The derivations
and some structural properties of the optimal energy allocation
schemes are discussed, and numerical results presented.

I. INTRODUCTION

Recent developments in wireless communications and elec-
tronics have enriched various practical applications of in-
expensive, compact and versatile wireless sensor networks
(WSNs), such as in military, civil engineering or healthcare
[1]. In a WSN, each sensor in the network measures the
quantity of interest, creates a local signal and then conveys
it to the fusion center (FC), where the received signal is
processed and the final estimation of the observed quantity
computed accordingly. In order to achieve the optimal esti-
mation performance under limited resources, it is crucial to
wisely design energy management strategies for each specific
WSN. Energy allocation and management issues in WSN have
been studied quite extensively. For example, [2] considered a
WSN with an orthogonal multiple-access scheme from sensors
to the FC where the best linear unbiased estimator (BLUE)
[3] is implemented and derived optimal power allocation
policy that minimizes total distortion subject to sum power
constraint at the sensors. In [4], the authors considered the
same multiple-access scheme as [2] but studied the effect of
spatial source correlation and determined the optimal power
allocation that minimizes total transmission power under dis-
tortion constraints. In the past, most such studies focused on
WSN environments where the sensors were equipped with
fixed batteries which are hard to replace in general, leading
to multiple works on maximizing lifetime, or minimizing
power or energy consumption with a constraint on the quality
of estimation at the fusion centre. In many applications,
e.g. biomedical sensors implanted within the human body,
the battery lifetime can be prolonged by integrating energy

harvesting techniques that can harvest solar, magnetic, piezo-
electric or vibrational energy. As the harvested energy arrival
process in inherently random, energy management issues
become extremely important for such applications where the
performance of the WSN is evaluated over a time horizon.
Several previous works have considered throughput maximiza-
tion problems in wireless communication networks under en-
ergy harvesting constraints (EHC) via sophisticated dynamic
programming [5] techniques. In [6], throughput optimal and
mean delay optimal energy allocation policies over an infinite
time horizon in a single sensor node were studied. In [7], the
optimal energy allocation policies that maximize the mutual
information of a wireless link were derived under either causal
or full side information available at the transmitter. In [8], the
authors considered optimal energy allocation problems - (i)
maximizing the throughput by a deadline and (ii) minimizing
transmission completion time of the communication session,
over static and fading channels. Related work on minimizing
distortion or estimation error for a remote estimation problem
can be found in [9], where the authors consider the problem
of finding a communication scheduling strategy for the sen-
sor and an estimation strategy for the estimator that jointly
minimize an expected sum of communication and distortion
costs over a finite time horizon. See also [10] where state
estimation with energy harvesting sensors is considered with
fairness control.

In this paper we aim to design optimal energy allocation
policies to minimize the total distortion or estimation error
of a random Gaussian source measured by multiple sensors
over a finite time horizon. Specifically, we consider a WSN
with M sensors employing an analog transmission system,
where the noisy sensor observations of a remote Gaussian
source are amplified and forwarded to the FC over fading
wireless channels, and each sensor has a battery that can be
replenished by randomly harvested energy. We assume that
the sensors are sampling measurements at a uniform interval
over the entire time horizon and their data queues are always
full. We consider two types of side information (SI) at each
sensor similar to [7]: (i) causal SI which consists of past
and present channel conditions and past values of harvested
energy, and (ii) full SI which consists of past, present and
future channel conditions and values of harvested energy. Our
novel contributions can be summarized as follows: (i) Section
III presents the optimal energy allocation policy for causal SI
by using a dynamic programming technique and also obtains
some structural properties of the optimal solution which help
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Fig. 1. System model

simplify the numerical search for the optimal policy, (ii) in
Section IV, the optimal energy allocation solution for full SI
is derived and is presented in closed form when the horizon
length K = 2 for a single sensor case, and (iii) finally, we
look the case of unlimited energy storage at the battery with
full SI in Section V and derive the closed form optimal energy
allocation scheme that minimizes the total distortion for any
finite horizon length.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model. Section VI illustrates
distortion performances from the derived energy allocation
policies under various SI assumptions and battery capacities.
Section VII presents some concluding remarks.

Notations: Boldface letters represent vectors. The value
of parameter X at time slot k is denoted by Xk. Define
X(:,k) = [X1,k, . . . , XM,k]

T , Xn,[k] = [Xn,1, . . . , Xn,k]
T

and X[:,[k]] =
[
XT

1,[k], . . . ,X
T
M,[k]

]T
. pY (. | z) represents the

probability density function (pdf) of a random variable Y
given z. E [·] denotes expectation. δ(.) denotes Dirac delta
function. ∂L

∂x∗ represents the partial differentiation of L with
respect to x evaluated at x = x∗. Also, � and � represent
componentwise inequalities.

II. SYSTEM MODEL

We consider a wireless sensor network (WSN) with M
sensors using an orthogonal multiple-access scheme as shown
in Fig. 1. The observation xm(t) from sensor m ∈ M =
{1, . . . ,M} within any time slot is represented as xm(t) =
θ(t) + vm(t), where the random process θ(t) denotes the
phenomenon of interest and vm(t) denotes the measurement
noise. We assume that θ(t) and vm(t) are independent and
identically distributed (i.i.d.) random processes and have zero
mean and variances σ2

θ and σ2
m, respectively. The sensors

transmit their measurements via orthogonal fading channels
to a fusion centre (FC) where θ(t) is estimated.

In this paper we assume that the transmitter adopts an
analog amplify and forward uncoded strategy [11]. Thus,
the transmitted signal from the m-th sensor is an amplified
version of the signal xm(t) with a power amplifying factor
αm,k at the time slot k ∈ K = {1, . . . ,K}. Without loss
of generality, we presume that each of the K time slots are
of duration 1. The energy consumption in time slot k can
be modelled as Em,k = αm,k

(
σ2
θ + σ2

m

)
where σ2

θ + σ2
m

is the average power of xm(t) per symbol. At the FC, an
estimate θ̂(t) of θ(t) is obtained from the received signals
zm,k(t) =

√
αm,kgm,kxm(t) + nm,k(t), m = 1, 2, . . . ,M

where √gm,k is the channel power gain between the m-
th sensor and the FC in slot k and nm,k(t) denotes i.i.d.

additive white Gaussian noise (AWGN) with variance ξ2m. For
simplicity, the channel noise variances are assumed to be the
same for all M sensors in this paper, i.e. ξ2m = ξ2.

A. Distortion measure
We presume that BLUE is utilized at the FC due to its

universality and simplicity (See [2] and references therein).
The achievable distortion at the receiver in the k-th time slot
is given by

Dk

(
E(:,k), s(:,k)

)
=


σ2
θ ,E(:,k) = 0

σ2
θ

[
M∑
m=1

dm,k (Em,k, sm,k)

]−1
,Otherwise

(1)

where dm,k (Em,k, sm,k) =
Em,ksm,k

1+γ−1
m Em,ksm,k

, sm,k =

gm,k

ξ2m(σ2
θ+σ

2
m)

and γm =
σ2
m

σ2
θ

.
Remark 1: It should be noted that the total distortion

Dk = σ2
θ

[
M∑
m=1

dm,k (Em,k, sm,k)

]−1
when E(:,k) � 0 [3].

However when E(:,k) = 0, the best estimate of θ(t) is simply
E[θ(t)] = 0, leading to the maximum distortion Dk = σ2

θ . It

can be easily shown that σ2
θ

[
M∑
m=1

dm,k(., .)

]−1
is a convex

function over E(:,k) for a given s(:,k) when E(:,k) � 0.
The discontinuity of the distortion function at E(:,k) = 0 is
not a problem as convex functions can be discontinuous at
boundary points. In fact, using the property that the distortion
function is a decreasing function of E(:,k) and also that it
attains its maximum value at E(:,k) = 0, it can be shown that
Dk

(
E(:,k), s(:,k)

)
is convex for E(:,k) � 0.

B. Energy storage
Assume that each sensor consumes energy Em,k at time

slot k from the energy storage or battery. The battery energy
of sensor m from slot 1 to k is given by Bm,[k] � 0. During
time slot k, the energy harvester collects an amount of energy
Hm,k ≥ 0, which is then stored in the battery which has a
maximum storage capacity B̃m. At the time instant k + 1,
the energy in battery is typically assumed to follow a linear
model [7],[8], given by,

Bm,k+1 = min
{
B̃m, Bm,k +Hm,k − Em,k

}
,∀k, ∀m

(2)
Note that the harvested energy Hm,k is stored in time slot
k and thus cannot be used in time slots 1 to k. Let B̃ =[
B̃1, . . . , B̃M

]T
be the vector of maximum storage energy

of M batteries. In this article, the channel power gain gm,k
and the harvested energy Hm,k are assumed to be constant
in slot k and vary from slot to slot in an i.i.d. manner. We
also assume that harvested energy and channel power gains
across the M sensors are also independent. We define cm,k =
(gm,k, Hm,k−1, Bm,k) as the system state (SI) in slot k at
sensor m, for k = 1, 2, . . . ,K and m = 1, 2, . . . ,M .

Remark 2: Note that it is quite common to consider a
more general finite-state Markov chain model for the fading
channels and the harvested energy [7]. The techniques in our
paper can be easily extended to this general case by using a
Markov decision process (MDP) approach where the optimal
transmission energy allocation problem can be solved as a
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stochastic control problem. This approach will be considered
in an extended version of this paper where structural properties
of the optimal energy allocation policy derived later in this
paper will be used to prove computationally simple policies
such as a threshold policy in the case of a binary action space
(two possible choices for the transmission energy) [12].

III. CAUSAL SIDE INFORMATION

In this section, we assume that in the k-th time slot, the
FC knows the direct channel power gains of all sensors,
g[:,[k]] (due to availability of receiver side channel state
information), the initial battery energy B:,1 of all sensors
and the harvested energy H[:,[k−1]] of all sensors for time
slots l = 1, 2, . . . , k − 1. The information Hm,k−1 (in the k-
th slot) and Bm,1 (at the onset) can be communicated from
the m-th sensor to the FC via a separate control channel.
We aim to find the optimal energy allocation strategy for the
sensors that minimizes the expected total distortion measure
over K time slots by exploiting causal SI. To this end, the FC,
being equipped with more computational and communication
capability, can compute the optimal energy level E∗m,k off-
line and then store it in a lookup table. In real time, the FC,
based on its causal SI, can access the appropriate optimal
transmission energy and instruct the sensors to use the same
via feedback. The optimization problem in this part can be
stated as follows:

min .
E[K]�0

Dcausal =
K∑

k=1

Eck

[
Dk

(
E(:,k)(c(:,k)), s(:,k)

)]
subject to (2).

(3)

Note that the expectation of the distortion in the k-th slot
(3) is computed over all random variables for a given initial
storage energy B(:,1) and it represents the expected distortion
in time slot k. It is worth mentioning that the optimal Em,k
cannot be computed independently since it is constrained by
Bm,k which is also the function of Em,k−1. We can use
dynamic programming techniques to solve this problem, as
described below in Section III-A.

A. Optimal solution via dynamic programming

For a given initial state, the optimization problem (3) can
be solved by using Lemma 3.1.

Lemma 3.1: Given c(:,1) = c̃(:,1), the minimum distortion,
D∗causal = Q1(c̃(:,1)), can be determined recursively through
Bellman’s equations, from k = K to k = 1 as follows:

QK(g(:,K),H(:,K−1),B(:,K))
= min .

0�E(:,K)�B(:,K)

DK(E(:,K), s(:,K)) = DK(B(:,K), s(:,K))

(4)
Qk(g(:,k),H(:,k−1),B(:,k)) = min .

0�E(:,k)�B(:,k)

Dk(E(:,k), s(:,k))

+Q̄k+1(g(:,k),H(:,k−1),B(:,k) −E(:,k))
(5)

where sm,k =
gm,k

ξ2m(σ2
θ+σ

2
m)

and Q̄k+1 is given by

Q̄k+1(g(:,k),H(:,k−1),y(:,k))
= Eg(:,k+1),H(:,k)

[
Qk+1(g(:,k+1),H(:,k),

min
{
B̃,y(:,k) + H(:,k)

}
) |g(:,k),H(:,k−1)

] (6)

Given g(:,k) in the present time slot and H(:,k−1) in the past
time slot, the expectation in (6) is computed over g(:,k+1) and
H(:,k) which represent the channel power gain in the next slot
and the harvested energy for the present slot, respectively. �

Proof: Similar to [7], one can apply Bellman’s equations
[5] and use (2) to obtain the above equations.

Intuitively, (4) implies that each sensor spends the remaining
energy to obtain the minimum distortion in the last time slot
(slot K). However, when 1 ≤ k ≤ K − 1, the sensor has to
consider the tradeoff between the distortion in the current slot
k and the expected value of the total distortion in the future
slots.

B. Structural properties of the optimal solution

In this part, we will utilize Theorems 1 and 2 to show that
the search of the optimal is in systematic manner.

Theorem 1: Given g(:,k) and H(:,k−1), the functions
Qk(·, ·,B(:,k)) and Q̄k(·, ·,B(:,k)) are convex in B(:,k) for
all k. �

Theorem 2: Given g(:,k) and H(:,k−1), the optimal en-
ergy allocation E∗m,k(g(:,k),H(:,k−1),B(:,k)), which solves
(4) and (5), is non-decreasing in Bm,k regardless of
E∗n,k(g(:,k),H(:,k−1),B(:,k)), for all k ∈ K, m ∈ M and
n 6= m. �
Proofs of Theorem 1 follows from basic properties of convex
analysis (see [13] for more details) and proof of Theorem 2
is provided in the Appendix.

Intuitively, Theorem 1 reveals the convexity property of
the problem and Theorem 2 implies that searching for
the optimal E∗m,k can be done systematically as E∗m,k(B)
is non-decreasing in Bm,k and the search can be carried
out in one direction for a given Bm,k. To obtain E∗m,k,
one can first solve an unconstrained minimization (without
EHC), i.e. T ∗m,k = arg min .

Tm,k≥0
Dk(Tm,k) where Dk(T(:,k)) =

Dk(T(:,k), s(:,k)) + Q̄k+1(g(:,k),H(:,k−1),B(:,k)−T(:,k)) for
given g(:,k) and g(:,k−1). Then, the optimal T∗(:,k) is given by

solving ∂Dk(T(:,k))

∂Tm,k
= 0, for all m. Hence, the optimal solution

can finally be written as

E∗m,k(B) =


0 , T ∗m,k ≤ 0
T ∗m,k , 0 ≤ T ∗m,k ≤ Bm,k
Bm,k , T ∗m,k ≥ Bm,k

(7)

Note that since E∗m,k is a function of E∗n,k, n 6= m, so the
computation of E∗m,k cannot be carried out independently for
each m.

IV. FULL SIDE INFORMATION WITH ARBITRARY B̃

In this section, we relax the problem by assuming that the
sensor has prior (non-causal) knowledge of the initial energy
B(:,1), entire channel state g[:,[K]] and harvested energy state
H[:,[K−1]] in any transmission slot for all k. Thus, the side
information in this case can be treated as deterministic.

Lemma 4.1: Given g[:,[K]] and H[:,[K−1]], the minimum
distortion, D∗full = Q1(B(:,1)), can be determined recursively
through Bellman’s equations, from k = K to k = 1 as
follows:

QK(B(:,K)) = min .
0≤E(:,K)≤B(:,K)

DK(E(:,K), s(:,K))

= DK(B(:,K), s(:,K))
(8)

Qk(B(:,k)) = min .
0≤E(:,K)≤B(:,K)

[
Dk(B(:,k), s(:,k))

+Qk+1(min
{
B̃,B(:,k) −E(:,k) + H(:,k)

}
)
]

(9)

for k = 1, . . . ,K − 1. �
To gain some insight into the solution, we derive the optimal

energy allocation strategy in the simple case of a single sensor
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when K = 2. Note that we drop the subscript m in this
case for obvious reasons. Given full SI (B1, H1, g1, g2), the
optimal transmission energy per slot, 0 ≤ E∗1 (B1) ≤ B1 is
given by

E∗1 =



0 , H1 > B̃ and W(B1) ≤ W(0)
B1 , H1 > B̃ and W(B1) >W(0)
0 , H1 ≤ B̃ and W(T ∗1 ) ≤ W(0)
B1 , H1 ≤ B̃, W(B1) >W(0)

and 0 < T ∗1 ≤ B1 + H1 − B̃
T ∗1 , H1 ≤ B̃, W(T ∗1 ) >W(0),

and B1 + H1 − B̃ ≤ T ∗1 < B1

(10)

where T ∗1 =
√
g2√

g1+
√
g2

(B1 + H1) and W(E1) =

D1(E1,
g1

σ2
θ+σ

2 ) +D2(min
{
B̃, B1 +H1 − E1

}
, g2
σ2
θ+σ

2 ). �
The above solution implies that the sensor can decide to turn
off in slot 1 if the distortion from BLUE in the first slot
is more than σ2

θ . Otherwise, E∗1 > 0. Next, if the energy in
time slot 2 exceeds the maximum energy storage capacity, the
sensor will consume all available energy B1. We compute the
optimal energy E∗1 =

√
g2√

g1+
√
g2

(B1 +H1). Clearly, the sensor
tends to spend more energy in the first slot if it knows that
the channel gain

√
g2 is high. Thus, the amount of remaining

energy
√
g1√

g1+
√
g2

(B1 +H1) in slot 2 is sufficient to obtain the
satisfactory level of total distortion.

V. FULL SIDE INFORMATION WITH INFINITE B̃

Finally, we derive the optimal energy allocation strategy of
the distortion minimization problem with full SI available at
each sensor and B̃m →∞. Clearly, this is the most idealistic
but impractical scenario. However, the performance achieved
in this setting can be used as the benchmark for the smallest
achievable distortion.

As each sensor has an infinite energy storage capacity with
an initial stored energy of Bm,1, the finite horizon distortion
minimizing problem solved in Lemma 4.1 can be formulated
as follows:

min .
E(:,k)�0, ∀k∈K

D∞ =
K∑
k=1

Dk

subject to
k∑
l=1

Em,l −Bm,1 −
k−1∑
l=1

Hm,l ≤ 0, ∀m and ∀k.
(11)

Let λm,k denote the Lagrange multiplier of the EHC of
sensor m in k-th time slot. Thus, we can write the associated
Lagrangian as

L =
K∑
k=1

Lk(E(:,k))

=
K∑
k=1

(
Dk +

M∑
m=1

λm,k

[
k∑
l=1

Em,l −Bm,1 −
k−1∑
l=1

Hm,l

])
(12)

From Karush-Kuhn-Tucker (KKT) necessary conditions, we
have

∂L
∂E∗m,k


≥ 0 , E∗m,k = 0

= 0 , 0 < E∗m,k < Bm,1 +
k−1∑
l=1

Hm,l −
k−1∑
l=1

E∗m,l

≤ 0 , E∗m,k = Bm,1 +
k−1∑
l=1

Hm,l −
k−1∑
l=1

E∗m,l

(13)

Define U∗m,k = Bm,1+
k−1∑
l=1

Hm,l−
k−1∑
l=1

E∗m,l which represents

the largest amount of energy that the m-th sensor can use
in slot k. Then, applying (13), the optimal energy allocation
strategy can be expressed as given in Lemma 5.1 below.

Lemma 5.1: Suppose that each sensor has full SI and the
energy capacity of the battery at its transmitter is infinite. The
optimal energy allocation in slot k, E∗m,k, is given by

E∗m,k =


0 ,

[
M∑

m=1

dm,k

(
Ω∗m,k, sm,k

)]−1

≥ 1

Ω∗m,k ,

[
M∑

m=1

dm,k

(
Ω∗m,k, sm,k

)]−1

< 1

(14)
where Ω∗m,k is given by

Ω∗m,k =

{
0 ,Ωm,k ≤ 0
Ωm,k , 0 < Ωm,k < U∗m,k

U∗m,k ,Ωm,k ≥ U∗m,k

(15)

where Ωm,k = 1
γ−1
m
√
sm,k

(
Dk
σθ

√
νm,k − 1√

sm,k

)
and νm,k =(

K∑
l=k

λ∗m,l

)−1
. �

See [13] for a Proof of Lemma 5.1. We can also characterize
the following property of νm,K :

0 ≤ νm,1 ≤ . . . ≤ νm,K <∞ (16)

Proof of all but the last inequality follows from the definition
of νm,k above. The fact that νm,K < ∞ can be shown by
contradiction. This non-decreasing property of νm,k over k
is helpful for the computation of the optimal solution. This
property of νm,k can be also used to verify that the closed-
form optimal solutions in Section IV and in this section are
the same when K = 2 for the single-sensor scenario. (See
Remark 3 in [13])

VI. NUMERICAL RESULTS

We present some numerical results on the performance of
the optimal energy allocation strategies for both causal and full
SI. We assume that the channel power gain gm,k and harvested
energy Hm,k are i.i.d. across the sensors and over the time
slots. The channel power gain is assumed to be exponentially
distributed (Rayleigh fading) with mean E [gm,k] = ḡ. The
battery at each sensor is presumed to be identical, i.e. the
maximum storage energy capacity B̃m = B̃ for all m.
The initial energy Bm,1 and the harvested energy Hm,k are
assumed to take a value in {0, 1, 2, 3} (in millijoules) with
equal probability. We use σ2

θ = 1 W., ξ2m = 10−2 W. and
γm = 10−2. A comparative performance evaluation of various
schemes is illustrated in Fig. 2 by plotting average total
distortion per slot against the average channel gain ḡ. The
results are generated by Monte Carlo simulations averaged
over 104 independent random channel realizations.

Given a fixed B̃, average distortion per slot performances
for both causal and full SI case are obviously the same when
K = 1, since sensors cannot exploit the side information
of the future slot. For K > 1 and M = 2, the distortion
performance is improved when the number of total time slots
K increases for both causal and full SI. As K increases, the
average total distortion is reduced significantly when K is
small, but the decrement becomes less substantial when K
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Fig. 2. Average total distortion per slot against average channel gain under
various energy allocation schemes

is large for both causal and full SI cases. Further, the per-
formance improvement is more significant as K grows when
full SI is exploited as sensors can gain advantage from side
information of the future slots. Given a fixed K > 1 and M ,
Fig. 2 reveals that, as the maximum energy storage capacity B̃
increases, the average total distortion per slot performance is
also improved as the sensors have more flexibility in choosing
transmission power levels. Finally, Fig. 2 also illustrates the
advantage of multiple sensors as the distortion performance
can be improved by increasing the number of sensors, which
is well known.

VII. CONCLUSION

We considered the problem of minimizing the distortion
incurred in estimating a random source via multiple sensors
with energy harvesting capability over a finite time horizon.
In this article, several energy allocation policies were derived
based on the available side information (causal or full) and the
size of energy storage (finite or infinite). We also discussed
some structural properties of the optimal solutions. Numerical
results were presented to illustrate the distortion performances
corresponding to these various scenarios. Future work will
consider the use of MDP based optimal control formulation
over a finite or infinite horizon and derivation of computation-
ally simple energy allocation policies such as threshold type
policies based on similar structural properties as derived in
this paper.

APPENDIX

Proof of Theorem 2
To facilitate the proof of Theorem 2, we use Lemma A.1.
Lemma A.1: Let E∗k(B) = arg maxF (B,Ek) , where the

maximization is over the interval [El(B), Eu(B)] and El(B)
and Eu(B) are non-decreasing in B. Provided F (·) has non-
decreasing differences in (B,Ek), i.e. ∀E′ ≥ E, B′ ≥ B,

F (B′, E′)− F (B,E′) ≥ F (B′, E)− F (B,E) (17)

, the maximal and minimal selections of E∗k(B) denoted as
Ē(B) and E(B), are non-decreasing.

Proof: Please refer to Theorem 2 in [14]
For given g(:,k),H(:,k−1), we consider Em,k and Bm,k by
fixing any arbitrary En,k and Bn,k, ∀n 6= m. Then, the
optimal E∗m,k(B(:,k)) can be rewritten as

E∗m,k(B(:,k)) = E∗m,k(Bm,k)
= arg max .

0≤Em,k≤Bm,k

[
−Dk(E(:,k), s(:,k))

−Q̄k+1(g(:,k),H(:,k−1),B(:,k) −E(:,k))
] (18)

For arbitrary En,k, (18) suggests that Em,k is only con-
strained by energy storage in the battery Bm,k which al-
lows us to apply Lemma A.1. Let Fm(Bm,k, Em,k) =
−Dk(E(:,k), s(:,k)) − Q̄k+1(g(:,k),H(:,k−1),B(:,k) − E(:,k))
for fixed En,k and Bn,k. It is obvious that the optimal
Em,k is bounded by Elm,k(Bm,k) = 0 ≤ Em,k ≤
Bm,k = Eum,k(Bm,k) and these bounds are non-decreasing in
Bm,k. Now, we have to show that Fm(Bm,k, Em,k) satisfies
Lemma A.1 by three following steps: (1) −Dk(E(:,k), s(:,k))
is independent of Bm,k and obviously has non-decreasing
differences in (Bm,k, Em,k). (2) Due to convexity of
Q̄k+1(g(:,k),H(:,k−1),y(:,k)) in y(:,k) from Theorem 1,
G(ym,k) = −Q̄k+1(·, ·, ·) is concave in ym,k for fixed
yn,k. Thus for ym,k ≤ zm,k and εm,k ≥ 0, we have
G(zm,k + εm,k) − G(zm,k) ≤ G(ym,k + εm,k) − G(ym,k).
By replacing ym,k = Bm,k − E′m,k, z = Bm,k − Em,k and
εm,k = B′m,k−Bm,k in G(.), we can use Lemma A.1 to show
that −Q̄k+1 has non-decreasing differences in (Bm,k, Em,k)
for arbitrary given En,k and Bn,k. (3) Since Fm(Bm,k, Em,k)
has non-decreasing differences in (Bm,k, Em,k) for any m, the
proof of Theorem 2 is completed.
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