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Abstract—We consider physical-layer security in a novel MISO
cooperative overlay cognitive radio network (CRN) with a single
eavesdropper. We aim to design an artificial noise (AN) aided
secondary transmit strategy to maximize the joint achievable
secrecy rate of both primary and secondary links, subject to a
global secondary transmit power constraint and guaranteeing any
transmission of secondary should at least not degrade the receive
quality of primary network, under the assumption that global CSI
is available. The resulting optimization problem is challenging
to solve due to its non-convexity in general. A computationally
efficient approximation methodology is proposed based on the
semidefinite relaxation (SDR) technique and followed by a two-
step alternating optimization algorithm for obtaining a local
optimum for the corresponding SDR problem. This optimization
algorithm consists of a one-dimensional line search and a non-
convex optimization problem, which, however, through a novel
reformulation, can be approximated as a convex semidefinite
program (SDP). Analysis on the extension to multiple eaves-
droppers scenario is also provided. Simulation results show that
the proposed AN-aided joint secrecy rate maximization design
(JSRMD) can significantly boost the secrecy performance over
JSRMD without AN.

Index Terms—Overlay Cognitive Radio, physical-layer security,
amplify-and-forward relaying, artificial interference, semidefinite
relaxation

I. INTRODUCTION

Cognitive radio (CR) has been promoted as a promising tech-
nology to dramatically improve the efficiency of spectral uti-
lization. The key idea of CR is to allow unlicensed/secondary
users (SUs) to access the frequency spectrum originally li-
censed to primary users (PUs), as long as the transmission
of SUs does not generate adverse impact on the PUs’ perfor-
mance. Here we consider the overlay paradigm of the cognitive
radio network (CRN) [1], where the primary network leases
part of its channel access time to SUs to simultaneously share
the spectrum. In return, the SUs assign part of their power to
cooperatively assist (relay) the PUs’ transmission [1][2][3][4],
in order to at least offset the harmful interference on the
PUs caused by SUs’ transmission [1]. As a result, by SUs’
cooperative relaying, the achievable rate or reliability of the
primary network can be significantly improved [2][3] or can
be kept unchanged [4]; while the SUs gain opportunities to
access the spectrum for their own data transmission.

To achieve secure communication, physical-layer security
(PLS) approaches have been receiving growing attention re-
cently [5]-[14]. The fundamental basis of PLS was proposed
in the seminal work [5], which showed that it is possible to
perfectly prevent eavesdroppers from overhearing/interpreting
confidential messages purely by physical-layer transmit de-
signs, without relying on traditional complex key encryption
technqiues. An important performance measure for PLS is
called the ’secrecy capacity’, defined by [5] as the maximum
achievable rate that can guarantee reliable communication

while keeping eavesdroppers in complete ignorance. To achieve
a positive secrecy rate, the channel condition of the legitimate
receivers needs to be better than that of eavesdroppers [5][6],
which, however, may not be always possible in practice. To
overcome this limitation, multiple antennas based transmission
techniques can be employed by leveraging spatial degree of
freedom (DoF) to weaken the eavesdroppers’ received signal
quality substantially [7][8]. Another effective tool to enhance
secrecy capacity is artificial noise (AN). In AN-aided sys-
tems, the transmitters allocate portion of their power to send
artificially generated noise (jamming signal) to deliberately
cause interference at the eavesdropper receivers. With known
eavesdroppers’ CSI (ECSI), the authors of [10][11] showed that
generating spatially selective AN can gain a better secrecy rate
than keeping AN isotropic (normally used when no ECSI is
available). In addition, the role of inactive nodes acting as jam-
ming helpers by transmitting AN to confuse the eavesdroppers
has also been investigated in [9][12][14][21].

Secure transmission techniques have also been investigated
in CRNs. In [15], the authors considered a secondary secrecy
capacity maximization problem for a MISO undelay CRN,
while, a primary secrecy rate maximization problem for a more
general MISO underlay CRN was studied in [17]. In [16], the
authors proposed an alternative implementation of the concept
of spectrum leasing via cooperation, where, unlike the overlay
CRN, SUs do not relay PUs’ message but act as a helper
to improve the primary secrecy rate. However, to the best of
our knowledge, secrecy issues for cooperative-relaying-based
overlay CRN have not yet been explored in the literature. This
motivates the study presented in this paper.

We propose a novel secure MISO cooperative overlay CRN
scheme with aid of AN in the presence of a single eavesdrop-
per, where a single-antenna primary transmitter-receiver pair
gives out half of its channel access time to share the spectrum
with a multiple-antenna secondary transmitter (SU-TX) for
delivering the secondary data to K single-antenna secondary
receivers (SU-RXs), in exchange for secondary cooperation
to relay primary’s data using the amplify and forward (AF)
scheme and protect the secrecy of both primary and secondary
links. The key contributions of this paper are listed below:
(1) Inspired by the non-CR secure networks [14][21], in
order to confuse the eavesdroppers as much as possible, the
proposed overlay scheme incorporates AN by letting both
of SU-RXs and SU-TX alternately jam the eavesdropper in
different phases of the AF scheme. More specifically, SU-
RXs are employed as jamming helpers in the first time slot,
while in the second time slot, apart from relaying primary data
and transmitting secondary data, the SU-TX also assigns part
of the total secondary transmit power to simultaneously send
certain amount of spatially selective AN. (2) Unlike existing
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work on CRN security which only focused on improving either
primary secrecy rate or secondary secrecy rate, we consider the
scenario where both primary and secondary messages must be
kept confidential from the eavesdroppers. (3) The proposed
overlay scheme advocates joint design of secondary transmit
beamforming for relaying primary information, transmit beam-
forming for secondary’s own data, spatial AN covariance at the
SU-TX, as well as transmit beamforming weights at SU-RXs,
to maximize the joint achievable secrecy rate of both primary
and secondary links, subject to a global secondary transmit
power constraint and the constraint that any SU transmission
should not degrade the received signal quality of the PU-RX,
under the assumption that global CSI is available. (4) Our
formulated optimization problem is non-convex in general. We
propose a computationally efficient approximation algorithm
based on a semidefinite relaxation (SDR) technique, where a
local optimum of the associated SDR problem can be obtained
by a two-step alternating optimization algorithm consisting of
a one-dimensional line search and a non-convex optimization
problem, which, however, can be approximated as a convex
semidefinite program (SDP) via a novel reformulation and
application of a ”Sequential Parametric Convex Approximation
Method”. (5) An analysis on the extension to the multiple
eavesdroppers scenario is also provided.

II. SYSTEM MODEL AND PROBLEM FORMULATION

(a) First time slot

(b) Second time slot

Fig. 1. System model of AN-aided cooperative overlay CRN

We consider a CRN consisting of a PU-TX, a PU-RX, a
SU-TX, K SU-RXs (K ≥ 2) and an eavesdropper, where
the SU-TX is equipped with M transmit antennas (M > K)
and all other terminals have a single antenna, and each node
operates in a half-duplex mode. To allow for efficient spectrum
sharing between PUs and SUs, a cooperative overlay CRN
paradigm with a two-phase transmission scheme is considered
as illustrated in Fig.1, where the PUs lease half of its time

slot to the SU to transmit its own data via the spectrum band
owned by the PU. In exchange, SU-TX has to employ part of
its power to relay the PU-TX’s message to at least offset the
resulting interference to PU-RX and while also preventing the
eavesdropper from decoding the messages from both PU-TX
and SU-TX by transmitting AN. More specifically, (1) in the
first time slot, the PU-TX transmits its signal to the PU-RX,
and the SU-TX listens to the primary transmission and obtains
the primary signal. Since SU-RXs are normally inactive in the
first time slot, here they are employed as temporary jamming
helpers to further confuse the eavesdropper [12]. (2) In the
second time slot, in addition to the PU-TX’s transmission, the
SU-TX relays the primary signal and simultaneously transmits
its own data and AN.

All channels involved are assumed to be independent and
identically distributed (i.i.d.) and undergo quasi-static flat fad-
ing. The channel coefficients from PU-TX to PU-RX, PU-TX
to the eavesdropper, PU-TX to the ith SU-RXs (represented
as SU-RXi, ∀i = 1, . . . ,K), SU-RXi to PU-RX, and SU-
RXi to the eavesdropper, are denoted by the complex scalars
hpp, hpe, hpsi , fspi and fsei , respectively. The 1×M complex
channel vectors from the PU-TX to the SU-TX, and SU-RXi

to the SU-TX are represented by hps and fssi , i = 1, . . . ,K,
respectively. Let gsp ∈ C

M×1, gssi
∈ C

M×1, ∀i = 1, . . . ,K,

and gse ∈ C
M×1 indicate the complex channel vectors from

SU-TX to PU-RX, SU-TX to SU-RXi, ∀i = 1, . . . ,K, and
SU-TX to the eavesdropper, respectively. Thus, the received
signals at the PU-RX, the eavesdropper and the SU-TX in the
first time slot, are given, respectively, as,

yp,1 =
√

Pphppsp +
K∑
i=1

fspi
φiz + np,

ye,1 =
√

Pphpesp +

K∑
i=1

fseiφiz + ne,

yST =
√

PphHpssp +
K∑
i=1

fHssiφiz + nST , (1)

where H denotes the Hermitian transpose; sp denotes the
primary transmit symbol with E[|sp|2] = 1; Pp is the transmit
power of PU-TX; z ∼ CN (0, 1), is a common jamming
signal transmitted by each SU-RXs with complex weights
φ1, . . . , φK , respectively [13][22], to confuse the eavesdrop-
pers in the first time slot. Np, ne and nST denote the additive
white noise at the PU-RX, the eavesdropper and the SU-TX,
respectively, and are modelled as np ∼ CN (0, σ2), ne ∼
CN (0, σ2) and nST ∼ CN (0, σ2IM ). Since the received pri-
mary signal at the SU-TX is contaminated by jamming signals
from SU-RXs, a pre-filtering weight vector u ∈ C

M×1 is ap-
plied to the received signal yST at the SU-TX to null out these
undesirable jamming signals, resulting in the recovered primary

signal yst = uHyST =
√
PpuHhHpssp + uHnST , where u can

be chosen to be u = argmax
u

|uHhHps|2, subject to uHfHssi =

0 ∀i = 1, . . . ,K; and |u|2 = 1. Let Fss ∈ C
M×K �

[fHss1 , . . . , fHssK ]. Then according to [13], the optimal solution

for u is given by u =
(IM−Fss(FHssFss)

−1FHss)hHps
||(IM−Fss(FHssFss)−1FHss)hHps||

. Note that if

SU-RXs are inactive in the first time slot, then u reduces to

u =
hHps
||hHps||

.

In the second time slot, an amplify-and-forward (AF) scheme
is employed at the SU-TX for relaying the primary signal.

2

IEEE ICC 2014 - Cognitive Radio and Networks Symposium

1664Authorized licensed use limited to: Maynooth University Library. Downloaded on June 01,2021 at 16:17:28 UTC from IEEE Xplore.  Restrictions apply. 



Similar to [3], the SU-TX first normalizes the received pri-
mary signal yst by scaling it with the normalization fac-
tor cp = 1√

uH(PphHpshps+σ2IM )u
, so that s′p = cpyst =

cp
√

PpuHhHpssp + cpuHnST satisfies E[|s′p|2] = 1. Then it
concurrently transmits both the primary stream s′p re-encoded

with a beamforming vector w ∈ C
M×1 and the secondary’s

own data stream {ss1 , . . . , ssK}, where ssi is the transmit
symbol intended for SU-RXi and E[|ssi |2] = 1, precoded
by a beamforming vector vi ∈ C

M×1, i = 1, . . . ,K [3] [4].
Meanwhile, in order to confuse the eavesdropper, SU-TX also
emits a jamming vector (AN) [10][14]. Thus, the resulting
transmit signal vector (M × 1) at the SU-TX is given by

x = ws′p +
∑K

i=1 vissi + z, where z ∈ C
M×1 ∼ CN (0,Qz) is

the AN with covariance Qz = E[zzH]. And the transmit power

of SU-TX can be expressed as |w|2 +
∑K

i=1 |vi|2 + Tr(Qz).
Accordingly, in this subslot, the signals received at the PU-
RX, the eavesdropper and each SU-RXs from both PU-TX
and SU-TX, can thus be written as,

yp,2 =
√

Pp

(
hpp + qgHspw

)
sp + cpgHspwuHnST

+

K∑
i=1

gHspvissi + gHspz + np,

ye,2 =
√

Pp

(
hpe + qgHsew

)
sp + cpgHsewuHnST

+

K∑
i=1

gHsevissi + gHsez + ne,

ysi =
√

Pp

(
hpsi + qgHssiw

)
sp + cpgHssiwuHnST

+ gHssivissi +
K∑

j=1,j �=i

gHssivjssj + gHssiz + nsi ,

i = 1, . . . ,K (2)

where q = cpuHhHps and nsi ∼ CN (0, σ2) is the additive white
Gaussian noise at the SU-RXi, i = 1, . . . ,K.

Let φH ∈ C
1×K � {φ1, . . . , φK}, fsp ∈ C

K×1 �
{fsp1

, . . . , fspK
}T and fse ∈ C

K×1 � {fse1 , . . . , fseK}T .
All the SU-RXs, PU-RX and eavesdropper only decode their
desirable signals and treat the remaining interference as noise.
The eavesdropper is interested in both the primary and sec-
ondary signals. Then based on (1) and (2), the achievable rate
at the PU-RX and the eavesdropper are correspondingly given
as [20][21][3],

Rp =
1

2
log

(
1 +

Pp|hpp|2
σ2 + |φHfsp|2

+
Pp|hpp + qgHspw|2

σ2(1 + c2p|gHspw|2) +∑K
i=1 |gHspvi|2 + gHspQzgsp

)
,

Re =
1

2
log

(
1 +

Pp|hpe|2
σ2 + |φHfse|2

+
Pp|hpe + qgHsew|2 +∑K

i=1 |gHsevi|2
σ2(1 + c2p|gHsew|2) + gHseQzgse

)
(3)

where the scalar factor 1
2 is added due to the two-phase

transmission process. The sum rate of secondary network is
given by

Rsum
s =

K∑
i=1

1

2
log

(
1 +

|gHssivi|2
Y (w) +

∑K
j �=i |gHssivj |2 + gHssiQzgssi

)
,

(4)

where Y (w) � σ2(1 + c2p|gHssiw|2) + Pp|hpsi + qgHssiw|2.

Therefore, the secrecy rate maximization problem for our
overlay CRN can be formulated as,

maximize
w,{vi}Ki=1,Qz�0,φ

Rsecrecy = [Rp +Rsum
s −Re]

+

subject to
Pp|hpp|2

σ2
≤ Pp|hpp|2

σ2 + |φHfsp|2
, (5a)

Pp|hpp|2
σ2

≤ Pp|hpp + qgHspw|2
σ2(1 + c2p|gHspw|2) +∑K

i=1 |gHspvi|2 + gHspQzgsp
,

(5b)

|w|2 +
K∑
i=1

|vi|2 + Tr(Qz) + |φ|2 ≤ Ps. (5c)

Note that the secrecy rate must be non-negative, otherwise
the secondary network will not transmit. Constraints (5a) and
(5b) guarantee that at each time slot, the transmission of
secondary network should at least not degrade the received
SINR at the PU-RX. (5c) is the global secondary transmit
power constraint and Ps is the maximum transmit power of the
secondary network. Obviously, constraint (5a) can be written
as |φHfsp|2 = 0, which implies zero jamming interference
at the PU-TX in the first time slot. Problem (5) is non-
convex in general and thus it is very difficult to find its
globally optimal solution. However, (5) can be rewritten as a
nonconvex quadratic optimization problem and the semidefinite
relaxation (SDR) technique [23] can be applied to obtain a
computationally efficient approximate algorithm for solving
Problem (5).

III. AN SDR-BASED APPROACH FOR THE OVERLAY CRN
SECRECY RATE MAXIMIZATION PROBLEM

Let Gssi = gssi
gHssi , ∀i = 1, . . . ,K, Gse = gsegHse,

Gsp = gspgHsp, and wH = [wH, 1], then |hpp+qgHspw|2, |hpsi+
qgHssiw|2 and |hpp + qgHspw|2 can be expressed as,

|hpp + qgHspw|2 = wH
[
q2Gsp qhppgsp

qhHppgHsp |hpp|2
]

w

� wHApw

|hpsi + qgHssiw|2 = wH
[

q2Gssi qhpsigssi
qhHpsig

H
ssi

|hpsi |2
]

w

� wHAsiw

|hpe + qgHsew|2 = wH
[
q2Gse qhpegse

qhHpegHse |hpe|2
]

w

� wHAew (6)

Similarly, let Bp �
[
c2pGsp 0

0 1

]
, Bsi �

[
c2pGssi 0

0 1

]
and

Be �
[
c2pGse 0
0 1

]
, then, we can obtain (1 + c2p|gHspw|2) =

wHBpw, (1 + c2p|gHssiw|2) = wHBsiw and (1 + c2p|gHsew|2) =
wHBew. Let Fse = fsefHse, Fsp = fspfHsp, W = wwH,

Vi = vivHi , ∀i = 1, . . . ,K, and Φ = φφH. By applying
xHAx = Tr(AxxH), Rsecrecy can be equivalently written as (7)

(shown on the top of the next page), where a = 1 +
Pp|hpp|2

σ2 ,
and Problem (5) can be equivalently formulated as the follow-
ing rank-constrained optimization problem:

maximize
W,{Vi}Ki=1,Qz,Φ

Rsecrecy

subject to Tr(FspΦ) = 0; (8a)
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Rsecrecy =
1

2

[
log

(
a+

PpTr(ApW)

σ2Tr(BpW) +
∑K

i=1 Tr(GspVi) + Tr(GspQz)

)

+

K∑
i=1

log

(
1 +

Tr(GssiVi)

σ2Tr(BsiW) + PpTr(AsiW) +
∑K

j �=i Tr(GssiVj) + Tr(GssiQz)

)

− log

(
1 +

Pp|hpe|2
σ2 + Tr(FseΦ)

+
PpTr(AeW) +

∑K
i=1 Tr(GseVi)

σ2Tr(BeW) + Tr(GseQz)

)]+

(7)

PpTr(ApW)

σ2Tr(BpW) +
∑K

i=1 Tr(GspVi) + Tr(GspQz)
≥ Pp|hpp|2

σ2
;

(8b)

Tr(W) +

K∑
i=1

Tr(Vi) + Tr(Qz) + Tr(Φ) ≤ Ps + 1; (8c)

Tr

([
0M×M 0M×1

01×M 1

]
W
)

= 1; (8d)

Rank(W) ≤ 1; Rank(Vi) ≤ 1, ∀i; Rank(Φ) ≤ 1; (8e)

W � 0,Vi � 0, ∀i = 1, . . . ,K, Qz � 0, Φ � 0. (8f)

By relaxing (neglecting) the non-convex rank one constraints
(8e), Problem (8) reduces to,

maximize
W,{Vi}Ki=1,Qz,Φ

Rsecrecy

subject to (8a)− (8d); (8f). (9)

which is known as an SDR of Problem (5), and is generally
an approximation (upper bound) to Problem (5).

Remark 1: If the optimal W, {Vi}Ki=1 and Φ of the SDR-
based (Problem (9)) are of rank-one or zero, the solution to the
SDR problem is also optimal to the original Problem (5) and
thus the beamforming vectors w, {vi}Ki=1 and φ for Problem
(5) can be obtained via conducting an eigenvalue decomposi-
tion on W, {Vi}Ki=1 and Φ respectively. Otherwise, some other
rank-one decomposition-based approximation approaches, such
as the Gaussian randomization technique (see [23][10] for
more details), can be applied to turn the SDR solution into
an approximate solution for the original Problem (5).
In the following, we will focus on solving the SDR Problem
(9). At this point, Problem (9) is still hard to solve due to
the non-convexity of the objective function. However, we find

that by letting ς � 1 +
Pp|hpe|2

σ2+Tr(FseΦ) be fixed, Problem (9) can

be approximately reformulated as a convex optimization prob-
lem. Motivated by this, the alternating optimization algorithm
(AOA) can be employed to obtain a locally optimal solution
for Problem (9).

More specifically, we first write Problem (9) as:

maximize
ς

Ω(ς)

subject to ςmin < ς ≤ 1 +
Pp|hpe|2

σ2
. (10)

where ςmin = 1 +
Pp|hpe|2

σ2+|φHfse|2max
with |φHfse|2max =(√

PsfHse(IK−fsp(fHspfsp)−1fHsp)fse
||(IK−fsp(fHspfsp)−1fHsp)fse||

)2

and

Ω(ς) � max
W,{Vi}Ki=1,Qz,Φ

Rsecrecy|
1+

Pp|hpe|2
σ2+Tr(FseΦ)

=ς

subject to 1 +
Pp|hpe|2

σ2 + Tr(FseΦ)
≤ ς

(8a)− (8d); (8f). (11)

Note that the lower bound of ς in Problem (10) is obtained
by allocating all of Ps to the SU-RXs for sending jamming
signals in the first time slot, which results in no transmission
on SU-TX (i.e., W = 0,Vi = 0, ∀i,Qz = 0 ). Thus, in that
case, the secrecy rate maximization problem (5) becomes,
maximize

φ
|φHfse|2, subject to |φHfsp|2 = 0 and |φ|2 = Ps,

which leads to the above value of ςmin.
Then, starting with an arbitrary initial value of ς , the

following two steps are iteratively applied until convergence:
Step 1: With a fixed value of ς , find a locally optimal

W, {Vi}Ki=1,Qz,Φ by solving the Problem (11).
Step 2: With the resulting W, {Vi}Ki=1,Qz,Φ, update the

optimal ς by solving Problem (10).
This two-step AOA algorithm is guaranteed to converge, since
the secrecy rate is non-decreasing at each iteration.

Problem (10) in Step 2 is a single-variable optimization
problem and can be easily solved by a one-dimensional line
search method. Thus the main difficulty of implementing
the above AOA algorithm is how to solve the non-convex
optimization problem (11) in Step 1. To overcome this
difficulty, we will first reformulate Problem (11) into a DC
programming problem, which can then be approximated into
a convex optimization problem, such that a local optimum of
Problem (11) can be obtained.

By introducing a set of auxiliary variables,
Γ0, . . . ,ΓK+1, F0, . . . , FK+1, Problem (11) can be
equivalently expressed as,

maximize
W,{Vi}Ki=1,Qz,Φ,{Γj},{Fj}

1

2

[
K+1∑
i=0

log(Γj)−
K+1∑
i=0

log(Fj)

]+

subject to

Pp|hpe|2 ≤ (ς − 1)(σ2 + Tr(FseΦ)); (12a)

a

(
σ2Tr(BpW) +

K∑
i=1

Tr(GspVi) + Tr(GspQz)

)

+ PpTr(ApW) ≥ Γ0; (12b)

σ2Tr(BpW) +

K∑
i=1

Tr(GspVi) + Tr(GspQz) ≤ F0; (12c)

σ2Tr(BsiW) + PpTr(AsiW) +

K∑
j �=i

Tr(GssiVj)

+ Tr(GssiQz) + Tr(GssiVi) ≥ Γi, ∀i = 1, . . . ,K; (12d)

σ2Tr(BsiW) + PpTr(AsiW) +

K∑
j �=i

Tr(GssiVj)

+ Tr(GssiQz) ≤ Fi, ∀i = 1, . . . ,K; (12e)

σ2Tr(BeW) + Tr(GseQz) ≥ ΓK+1; (12f)

4

IEEE ICC 2014 - Cognitive Radio and Networks Symposium

1666Authorized licensed use limited to: Maynooth University Library. Downloaded on June 01,2021 at 16:17:28 UTC from IEEE Xplore.  Restrictions apply. 



ς
(
σ2Tr(BeW) + Tr(GseQz)

)
+ PpTr(AeW)

+

K∑
i=1

Tr(GseVi) ≤ FK+1; (12g)

Tr(FspΦ) = 0; (12h)

|hpp|2
σ2

(
σ2Tr(BpW) +

K∑
i=1

Tr(GspVi) + Tr(GspQz)

)

≤ Tr(ApW); (12i)

Tr(W) +

K∑
i=1

Tr(Vi) + Tr(Qz) + Tr(Φ) ≤ Ps + 1; (12j)

Tr

([
0M×M 0M×1

01×M 1

]
W
)

= 1; (12k)

W � 0, Vi � 0, ∀i = 1, . . . ,K, Qz � 0, Φ � 0. (12l)

Problem (12) is a DC programming problem. We introduce
another auxiliary variable t and rewrite Problem (12) equiva-
lently as,

maximize
W,{Vi}Ki=1,Qz,Φ,{Γj},{Fj},t

1

2

[
K+1∑
i=0

log(Γj)− t

]+

subject to

K+1∑
i=0

log(Fj) ≤ t;

(12a)− (12l). (13)

So far, Problem (13) is still nonconvex due to the non-convexity

of the constraint
∑K+1

i=0 log(Fj) ≤ t. However, the Sequential
Parametric Convex Approximation Method (SPCA), proposed
in [18][19], can be applied here to find at least a locally
optimal solution for Problem (13). The idea is to replace the
non-convex function log(Fj) by its first-order taylor series
expansion at a given point Fcj (a linear approximation based
upper bound), namely,

log(Fj) ≈ log(Fcj) +
1

Fcj
(Fj − Fcj). (14)

So that Problem (13) approximately becomes a convex opti-
mization problem as below:

maximize
W,{Vi},Qz,Φ,{Γj},{Fj},t

1

2

[
K+1∑
i=0

log(Γj)− t

]+

subject to

K+1∑
i=0

[
log(Fcj) +

1

Fcj
(Fj − Fcj)

]
≤ t;

(12a)− (12l). (15)

which is a convex SDP and can be solved efficiently
via interior points methods using CVX. Thus the SPCA
algorithm, with guaranteed convergence [18][19] to at least
a local optimum of Problem (13) (which is equivalent to
Problem (11)), can be formally summarized as below:

SPCA Algorithm

Initialize n = 1 and F(0)
c = {Fc

(0)
0 , . . . , F c

(0)
K+1};

Repeat
(1) Find the optimal W(n), {V(n)

i }Ki=1,Q(n)
z ,Φ,

{Γ(n)
j }K+1

j=0 , {F (n)
j }K+1

j=0 , t(n) by solving Problem (15)

using CVX, with given Fcj = Fc
(n−1)
j , ∀j;

(2) Update F(n)
c = {F (n)

0 , . . . , F
(n)
K+1};

(3) n=n+1;
Until convergence.

IV. EXTENSION TO THE MULTIPLE EAVESDROPPERS

SCENARIO

In this section, we will consider the overlay CRN secrecy
communication problem in the presence of L eavesdroppers
(L ≥ 2). The eavesdroppers are assumed to individually over-
hear the communication without any collusion. Let fseil , ∀i =
1 . . . ,K, ∀l = 1, . . . , L represent the complex channel coef-
ficient from the SU-RXi to the lth eavesdropper, in the first
time slot. The channel from PU-TX to the lth eavesdropper
are denoted by the complex scalars hpel , l = 1, . . . , L, and
gsel ∈ C

M×1, ∀l = 1, . . . , L indicate the complex channel

vectors from the SU-TX to the lth eavesdropper. Then, let
fsel ∈ C

K×1 � {fse1l , . . . , fseKl
}T , ∀l, the achievable rate

at each eavesdroppers is given as, for ∀l = 1, . . . , L,

Rel =
1

2
log

(
1 +

Pp|hpel |2
σ2 + |φHfsel |2

+
Pp|hpel + qgHselw|2 +∑K

i=1 |gHselvi|2
σ2(1 + c2p|gHselw|2) + gHselQzgsel

)
(16)

In this case, the secrecy rate maximization problem for the
overlay CRN with multiple eavesdroppers, can be formulated
as

maximize
w,{vi}Ki=1,Qz�0,φ

Rsecrecy =

[
Rp +Rsum

s −max
l

Rel

]+
subject to (5a)− (5c). (17)

The Problem (17) can be written as,

min
l∈{1,...,L}

R∗secrecyl
(18)

where

R∗secrecyl
� maximize

w,{vi}Ki=1,Qz�0,φ
[Rp +Rsum

s −Rel ]
+

subject to (5a)− (5c). (19)

This implies that Problem (17) can be decomposed into
L independent subproblems, where the lth subproblem (19)
corresponds to finding the maximum secrecy rate to the lth

eavesdropper. The algorithm proposed in Section III for solving
Problem (5) for the single eavesdropper case can be directly
applied, and followed by picking the solution that gives the
minimum value of R∗secrecyl

.

V. NUMERICAL RESULTS

In this section, we will evaluate the joint secrecy rate
performance of our AN-aided cooperative overlay CRN ob-
tained by the proposed SDR-based approximation algorithm
(termed as the ”AN-aided joint secrecy rate maximization
design (JSRMD)’”) via numerical simulations. All the channels
involved are assumed to be independent and undergoing iden-
tical Rayleigh fading, i.e., each channel follows an complex
Gaussian distribution with zero mean and unit variance. The
number of transmit antennas at SU-TX is M = 3 and the
number of SU-RXs is K = 2. The constant primary transmit
power Pp is set to be 0 dB.

Fig.2 illustrates the secrecy rate performance of the pro-
posed AN-aided JSRMD algorithm versus the secondary trans-
mit power Ps for a single eavesdropper case, and compares
these results with the corresponding secrecy rate performance
of JSRMD without any help of AN, i.e., the No-AN JSRMD
case. The striking observation from Fig.2 is that the proposed
AN-aid JSRMD provides a significant performance improve-
ment over No-AN JSRMD. The performance gain of AN-
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Fig. 2. Secrecy rates versus the secondary transmit power for one eavesdrop-
per case

Fig. 3. Secrecy rates versus the number of eavesdroppers with Ps = 10 dB

aided JSRMD is not very obvious when Ps is small (e.g.
when Ps ≤ 0 dB), since not much spare power could be
used for generating AN. But with increasing Ps, the benefit
of AN becomes more and more pronounced. For example, the
performance gap between the AN-aided JSRMD and No-AN
JSRMD at Ps = 5 dB and Ps = 15 dB are approximately
0.1536 nats/channel use and 0.2811 nats/channel use respec-
tively. This is very encouraging since it shows that AN can
significantly enhance the security of our overlay CRN even
for a single eavesdropper case.

Fig.3 displays the secrecy rate performance versus the
number of eavesdroppers with Ps = 10 dB for the proposed
AN-aid JSRMD and No-AN JSRMD, respectively. It can be
seen from Fig.3 that, for any of these two curves, the secrecy
rate performance decreases as number of eavesdroppers K
increases, as expected. We also observe from Fig.3 that the
proposed AN-aid JSRMD yields a superior performance than
No-AN JSRMD, even for the K = 5 eavesdroppers case. This
further confirms the benefit of using AN in our overlay CRN.

VI. CONCLUSIONS AND EXTENSIONS

This paper has considered an AN-aided joint secrecy rate
(for both primary and secondary links) maximization prob-
lem for a novel MISO cooperative overlay cognitive radio
network (CRN) with a single eavesdropper, subject to a
global secondary transmit power constraint and a guarantee
of improvement or no degradation at the least of the pri-
mary network’s performance, under the assumption of global
CSI knowledge. Our formulated optimization problem is non-

convex and hard to solve in general. We dealt with this
difficulty by resorting to the semidefinite relaxation (SDR)
technique, so that a computationally efficient algorithm for
obtaining a local optimum for the corresponding SDR problem
can be developed. An extension to the multiple eavesdroppers
scenario was also discussed. Simulation results illustrated that
the proposed scheme can significantly enhance the secrecy
performance of our overlay CRN. Future work will involve
extending these results to the case of imperfect or completely
unknown CSI for the eavesdroppers.
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