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Abstract—The paper investigates the problem of maximizing
the expected achievable sum rate in a fading multiple access
cognitive radio network when secondary user (SU) transmitters
have energy harvesting capability, and perform cooperative
spectrum sensing. We formulate the problem as maximization of
throughput of the cognitive multiple access network over a finite
time horizon subject to a time averaged interference constraint
at the primary user (PU) and almost sure energy causality
constraints at the SUs. The problem is a mixed integer non-
linear program with respect to two decision variables, namely,
spectrum access decision and spectrum sensing decision, and the
continuous variables sensing time and transmission power. In
general, this problem is known to be NP hard. For optimization
over these two decision variables, we use an exhaustive search
policy when the length of the time horizon is small, and a
heuristic policy for longer horizons. For given values of the
decision variables, the problem simplifies into a joint optimization
on SU transmission power and sensing time, which is non-convex
in nature. We present an analytic solution for the resulting
optimization problem using an alternating convex optimization
problem for non-causal channel state information and harvested
energy information patterns at the SU base station (SBS) or
fusion center (FC) and infinite battery capacity at the SU
transmitters. We formulate the problem with causal information
and finite battery capacity as a stochastic control problem and
solve it using the technique of dynamic programming. Numerical
results are presented to illustrate the performance of the various
algorithms.

I. INTRODUCTION

Spectrum scarcity is a significant issue in modern wireless
networks. This is due to the legacy of static allocation policy
of the radio spectrum, which prohibits unlicensed users to
exploit licensed spectrum even when it is idle. As a solution,
the paradigm of cognitive radio (CR) [1] has been proposed.
In the interweave paradigm of CR, unlicensed SUs can access
the PU licensed spectrum when the PU is idle. The SUs have
to vacate the licensed spectrum as soon as the PU becomes
active. To achieve this, the SUs sense the spectrum to check
whether the PU is active or not. The decision about spectrum
sensing is then taken in a cooperative manner by sending all
local spectrum sensing decision to an FC which makes an
overall decision regarding spectrum access.

The issue of energy efficiency is also a very important
aspect of wireless transmission. While traditionally mobile
devices have relied on rechargeable batteries, in many situ-
ations, periodic battery replacement of the wireless nodes is
not a feasible option in practice, such as in sensor networks.
Thus energy harvesting from natural sources like wind or solar
power is a viable and cost-effective solution for replenishing
energy. Recently, there has been significant research in the
domain of energy harvesting in wireless environment [2]. With
traditional battery limited transmission, ergodic throughput
with different wireless channel models has been investigated
in [3], while sensing-throughput tradeoff for a single CR user
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has also been studied rigorously in [4]. Capacity analysis of
wireless system with energy harvesting capability has been
studied in [5] as well. Energy harvesting in CR network has
also been investigated in [6], [7], and recently in [8], where the
authors have investigated achievable throughput optimization
in energy harvesting CR networks with respect to sensing time
and sensing threshold.

In this paper, we investigate a sensing-throughput op-
timization problem for a block fading multiple access CR
network with a single PU, where all CR nodes (or SUs)
are equipped with energy harvesting capability, and perform
cooperative spectrum sensing. In this work, we investigate
the tradeoff between sensing time and throughput of the CR
multiple access channel with respect to transmission power
and sensing time, keeping the sensing threshold fixed. Since
spectrum sensing also consumes energy, due to the unreliable
nature of harvested energy patterns, the CR nodes must make
an initial decision as to whether they would perform spectrum
sensing or not. All participating CR nodes’ sensing decisions
are combined at the SBS (also performing as the FC) to
arrive at a final spectrum access decision which is broadcast
to all CR nodes. If the PU is deemed to be absent, the
participating CR nodes use the remaining time in each fading
block for information transmission with a suitable transmis-
sion power. The problem we investigate is a mixed integer
nonlinear programming (MINLP) problem with respect to the
individual spectrum sensing (whether or not to participate)
and the overall spectrum access decisions, sensing time and
transmission power of each user. We consider both non-causal
and causal channel state information (CSI) and harvested
energy information (or information on the battery level at
each user) at the FC/SBS, for optimizing the CR multiple
access channel throughput over a finite time horizon, where
each user’s energy consumption in each fading block cannot
exceed their battery level at the beginning of the block (energy
causality constraint), a peak transmission power constraint and
an average interference constraint at the PU receiver.

Our contributions are listed as follows: (i) We investigate
the problem of throughput maximization in a multiple access
cognitive network environment with energy harvesting and
both infinite/finite battery settings. We first derive an analytic
closed form solution for the general horizon problem for the
case of non-causal CSI using an alternating convex optimiza-
tion approach converging to a locally optimum solution, (ii)
For short horizon lengths, we employ an exhaustive search to
find the optimal values of the Boolean variables, namely the
spectrum sensing and access decisions, whereas for longer
horizons, motivated by the NP hard nature of the problem,
we propose a heuristic algorithm to determine these variables
in a suboptimal manner, (iii) The problem involving finite
battery and causal CSI and harvested energy information is
solved using the dynamic programming (DP) algorithm with
discretized levels of power and sensing times, (iv) and finally,
illustrative numerical results are presented to demonstrate the
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comparative performance of the various algorithms proposed
in this work. Due to limited space, all proofs are omitted and
can be found in a longer version of this work (available online)
[9].

Figure 1: System model for Cognitive MAC.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study the system model as depicted in Fig.1. The
system under consideration has N number of SUs commu-
nicating to the SBS/FC. In the adopted cooperative spectrum
sensing model each SU decides whether to participate or not
in sensing the PU spectrum (due to the random nature of
harvested energy), and sends its individual spectrum sensing
decision (if participating) to the FC, which makes the overall
decision and broadcasts it to all the SUs.

We assume that time is slotted, where each slot represents
a block where the all fading channels remain invariant and
change from one block to another in a statistically independent
manner. All relevant parameters, random variables and opti-
mization variables used in this paper are described in Table I.
Each time slot of T time units is utilized by the SUs for the
spectrum sensing and data transmission. In the kth time slot
SUs spend τk time units for spectrum sensing and remainder
of the slot (T − τk) time units for data transmission, provided
the spectrum sensing result indicates PU spectrum vacancy.
In the kth time slot, ith SU first makes a decision to perform
spectrum sensing or to be idle on the basis of the individual
decision to sense ai,k, 1 ≤ i ≤ N, 1 ≤ k ≤ M , where M is
the length of time horizon over which the system performance
is optimized, and ai,k ∈ {0, 1}, 1 (or 0) representing the
decision to perform (or not to perform) spectrum sensing. The
decision to sense ai,k is obtained by the individual SUs by the
following rule [10] ai,k = 1, if Bi,k ≥ psτk and 0 otherwise,
where ps is the sensing power and Bi,k is the battery state in
the ith SU at the beginning of the kth slot. With a battery of
finite capacity Bmax, Bi,k can be expressed as:

Bi,k+1 = min {Bmax, Bi,k − Ei,k +Hi,k} (1)
where Hi,k is the energy harvested by the ith SU in the kth
time slot. In (1), Ei,k is the amount of energy used by ith SU
at kth time slot, which can be expressed as Ei,k = ai,k(psτk+
pi,k(T −τk)(1−θk)), where θk is the overall spectrum access
decision indicating PU is present if θk = 1 (details in the next
subsection). One can also express Bi,k as

Bi,k = min

{
Bmax, Bi −

k∑
r=1

Ei,r +
k−1∑
r=1

Hi,r

}
(2)

where Bi is the initial battery level of ith SU. Note that in
the infinite battery scenario Bi,k from (2) simplifies to Bi,k =

Bi −
∑k
r=1Ei,r +

∑k−1
r=1 Hi,r.

A. Spectrum Sensing Model

If an SU decides to sense, it collects the samples of the
received signal from PU by dividing sensing time interval τk

to a number of mini-slots, where the length of the mini-slots
is a constant and pre-decided. The PU spectrum availability
is decided by the following received signal model under
hypothesis H0 (PU absent) and H1 (PU present).

H0 : yi,k,m = ni,k,m
H1 : yi,k,m = qixk + ni,k,m (3)

where xk denotes the PU’s transmitted signal for the kth time
slot, where it is assumed to be real valued and distributed as
xk ∼ N (0, σ2

x). qi is the CSI between PU transmitter and ith
SU sensing device, which is assumed to be known at the SU
throughout the spectrum sensing process. yi,k,m and ni,k,m
are the real valued received signal and noise components
respectively for the ith SU, in kth time slot and mth mini-
slot. The noise is distributed as ni,k,m ∼ N (0, σ2

n). We adopt
the energy detection policy of [11] for each SU. The local
spectrum sensing decision at the ith SU in kth horizon is
defined as θi,k = I

{
1
S

∑S
m=1 y

2
i,k,m ≥ γ

}
, where I is the

indicator function, S is the number of mini-slots in a particular
time slot and γ is the detection energy threshold. These local
decisions are sent to the FC by error-free control channels
and combined using the OR logic fusion. In this scenario,
probability of false alarm is Pfa = Pr {θk = 1|H0}.

We consider the CSI between the SU transmitters and FC
as well as SU transmitters and PU receiver being distributed as
exponential random variables with unity mean, without loss
of generality. It is also assumed that SUs have the ability
of mitigating the interference caused by PU, although the
proposed algorithms in this paper can be extended to the
case where PU interference can be explicitly considered. We
also model the primary user activity as a stationary random
process, with the probability of the PU being present being κ
within each time slot.

Table I: System Parameters
τk Time taken to perform the spectrum sensing in the kth

slot.
pi,k Transmission power for ith SU in the kth time slot.
κ PU activity probability.
hi,k The CSI between ith SU Transmitter and FC in the

kth time slot.
gi,k The CSI between ith SU Transmitter and PU Receiver

in the kth time slot.
qi The CSI between PU Transmitter and and ith SU in

the kth time slot.
ps Power allocated to sensing.
Pmax The peak power limit on pi,k.
Bi The initial battery state for ith user.
Hi,k Energy harvested for ith SU for the kth time slot.
ai,k Spectrum access decision variable for the ith SU in

kth time slot.
θk Spectrum sensing decision for the kth horizon.
Qavg The average interference limit to the PU.

B. Throughput Maximization
For a finite horizon of length M , the sensing-throughput

optimization problem for a CR multiple access channel with
an average interference constraint at the PU receiver, peak SU
transmit power constraint, and energy causality constraints can
be formulated as (with 1 ≤ i ≤ N, 1 ≤ k ≤M )

max
ai,k,θk,pi,k,τk

E

{
M∑
k=1

T − τk
MT

log2(1 +

N∑
i=1

pi,khi,kai,k(1− θk))

}
(4)

s.t.
1

M

M∑
k=1

E

{
T − τk
T

N∑
i=1

pi,kgi,kai,k(1− θk)

}
≤ Qavg (5)

0 ≤ pi,k ≤ Pmax; 0 ≤ τk ≤ T ; Ei,k ≤ Bi,k a.s. (6)
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Remark The average interference term in the constraint
(5) is normalized by the primary activity factor κ, where
Qavg = Q/κ, Q being the actual interference limit, since no
interference is caused when the primary is not active. Note also
that although the optimization variables indicate ai,k, θk, τk
separately, they are interdependent due to the dependence of
ai,k, θi,k, and τk.

The above mentioned optimization problem is a MINLP
problem with respect to the allocated transmission power pi,k,
the sensing time τk, decision to sense ai,k and spectrum
sensing result θk. In principle, one can employ computa-
tionally intensive global optimization methods (e.g. see [12])
to solve such NP hard problems. In this paper, for short
horizon lengths, we employ an exhaustive search policy for
determining the integer variables ai,k, θk. For longer horizons,
we will employ a heuristic policy to be described in the next
subsection. For the exhaustive search policy, the optimization
is performed at the SBS, and all relevant decision variables
are exchanged between the SUs and SBS via control channels.

For a fixed choice of ai,k and θk , the problem becomes an
optimization over pi,k and τk, which is a non-convex jointly in
pi,k and τk. However, the problem becomes convex if we fix
any one of the variables τk or pi,k,∀i. We take the approach
of alternating convex optimization (see e.g. [13]), where one
alternates between optimizing over τk with fixed pi,k and vice
versa until one reaches a local minimum.

C. Heuristic Policy for ai,k and θk
The exponential complexity of an exhaustive search algo-

rithm for optimizing over ai,k and θk can quickly explode for
large values of M and N . For this scenario, we propose a
heuristic suboptimal policy as described below. This heuristic
policy is based on the idea that limiting the maximum value of
Pfa on individual SUs would in turn impose a lower bound
τl on sensing time for each horizon. If Pfa is bounded by
the constraint Pfa ≤ α, for some α > 0, then we can have
a corresponding lower bound for τk as τl ≤ τk, which can

be obtained by [4] τl = 1
fs

{
Q−1(α)
γ

σ2n
−1

}2

. where Q(·) is the

complementary distribution function of the standard Gaussian
random variable. Then ai,k = 1 if Bi,k > psτl and vice versa.
θi,k is determined on the basis of the particular τk resulting
from the alternating convex optimization method, and the final
decision θk is obtained by combining the individual θi,k at the
FC using the OR fusion rule.

III.NON-CAUSAL OPTIMIZATION WITH INFINITE BATTERY

In this section we analyze the problem first in the context
of non-causal CSI (gi,k, hi,k) and harvested energy (Hi,k)
scenario with the assumption of infinite battery, for fixed
values of the integer variables ai,k and θk (obtained either
via exhaustive search or the heuristic policy). We incorporate
the aforementioned alternating convex optimization scheme.
For the general M -horizon problem, we obtain a closed form
solution for the optimization problem involving pi,k, when
τk is fixed. We also show that the optimization involving τk
(when pi,k is fixed) is a linear programming problem, which
can be solved by any established LP solver.

A. Optimal Power Allocation Policy

For a fixed τk, the optimization problem for transmit power
is given below:

max
pi,k

M∑
k=1

T − τk
MT

log2(1 +
N∑
i=1

pi,khi,kai,k(1− θk))

s.t.
1

M

M∑
k=1

T − τk
T

N∑
i=1

pi,kgi,kai,k(1− θk) ≤ Qavg

(7)
0 ≤ pi,k ≤ Pmax; 1 ≤ i ≤ N, 1 ≤ k ≤M

(8)
k∑
r=1

ai,r(psτr + pi,r(T − τr)(1− θr)) ≤ Bi +
k−1∑
r=1

Hi,r

(9)
The Lagrangian of the above mentioned convex optimiza-

tion problem is given by
L({pi,k} , λ, δi,k, ηi,k, µi,k) =
M∑
k=1

T − τk
MT

× log2(1 +
N∑
i=1

pi,khi,kai,k(1− θk))

− λ( 1

M

M∑
k=1

T − τk
T

N∑
i=1

pi,kgi,kai,k(1− θk)−Qavg)

+
M∑
k=1

N∑
i=1

ηi,kpi,k −
M∑
k=1

N∑
i=1

δi,k(pi,k − Pmax)

−
M∑
k=1

N∑
i=1

µi,k(
k∑
r=1

ai,r(psτr + pi,r(T − τr)(1− θj))

−Bi −
k−1∑
r=1

Hi,r) (10)

where λ, ηi,k, δi,k and µi,k are the non-negative dual variables
associated with the average interference constraint, transmis-
sion power lower bound, upper bound and the energy causality
constraint respectively. Now we define D as the set of pi,k’s
which satisfies (8) and (9). The Lagrange dual function is
defined as: g(λ) = max{pi,k}∈D L({pi,k} , λ, ηi,k, δi,k, µi,k),
and the dual problem is defined as minλ≥0 g(λ). The Lagrange
dual function g(λ) can be obtained by solving the correspond-
ing optimization problem using the associated Karush-Kuhn-
Tucker (KKT) conditions, leading to the expression for p?i,k
by following the same approach as in [3], as described below.

Lemma 1: Let i and j be any two arbitrary users,
i, j ∈ 1, 2, . . . , N , with p?i,k > 0 and p?j,k = 0, then
one must have ci,k

λdi,k+ei,k
≥ cj,k

λdj,k+ej,k
, , ∀k, where

ci,k, di,k, ei,k are given by the following expressions: ci,k =
T−τk

MT log 2hi,kai,k(1 − θk), di,k = T−τk
MT gi,kai,k(1 − θk), and

ei,k =
∑M
r=k µ

?
i,rai,r(T − τr)(1− θr).

Now let π be a permutation over {1, 2, . . . , N} such that
cπ(i),k

λdπ(i),k+ei,k
≥ cπ(j),k

λdπ(j),k+ej,k
when i < j, i, j ∈ {1, 2, . . . , N}.

Suppose there are |I| users that can transmit, where I ⊆
{1, 2, . . . , N} denotes this set of users. It can be verified that
I = {π(1), . . . , π(|I|)}. The cardinality of the set I, |I| is
the largest value of x such that

cπ(x),k

λdπ(x),k + eπ(x),k
>

1 +
x−1∑
b=1

Pmaxhπ(b),kaπ(b),k(1− θk) (11)

and the optimal transmission power for π(|I|)th user is given
by the following expression:

p?π(|I|),k = min(Pmax, (
cπ(|I |),k

λdπ(|I |),k+eπ(|I|),k

−1−
∑|I|−1
b=1 Pmaxhπ(b),kaπ(b),k)

1
hπ(|I|),k

(12)
Note that the solution for p?π(c),k is Pmax if c < |I|. If

c > |I| , then p?π(c),k = 0. Only for the case when c = |I|,
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then p?π(c),k is given by (12).
As an example if we consider a specific case of M = 2

and number of SUs N = 3, then for any horizon if τk is fixed,
the optimal transmission power would be lie in the open set
(0, Pmax) for at most one of the 3 SUs. All the other SUs
either transmit with Pmax or do not transmit.

B. Optimal Sensing Time Policy

Fixing the transmission power would result in the opti-
mization problem in {τk}:

max
{τk}

M∑
k=1

T − τk
MT

log2(1 +
N∑
i=1

pi,khi,kai,k(1− θk))

s.t.
1

M

M∑
k=1

T − τk
T

N∑
i=1

pi,kgi,kai,k(1− θk) ≤ Qavg

0 ≤ τk ≤ T ; 1 ≤ k ≤M
k∑
r=1

ai,r(psτr + pi,r(T − τr)(1− θr)) ≤ Bi +
k−1∑
r=1

Hi,r

The above optimization problem can be reformulated as a
linear program and solved using a typical LP solver.

It can be shown that the objective function for the al-
ternating convex optimization approach is upper bounded
and monotonically non-decreasing at each iteration, which
indicates that it must converge. Since the original problem
is non-convex, this convergence is only guaranteed to reach a
local optimum.

IV.CAUSAL OPTIMIZATION WITH FINITE BATTERY

While the non-causal information pattern is unrealistic, it
serves as a benchmark for the more realistic scenario of causal
CSI and battery state information with finite battery capacity.
The resulting problem can be formulated as a finite horizon
stochastic control problem and thus solved by a dynamic
programming algorithm. The values of ai,k and θk can be
found either via an exhaustive search or suboptimally by
the previously discussed heuristic policy depending on the
complexity concerned with a given scenario.

A. Information Pattern

During each time slot k, FC receives the CSI between
SU transmitter and PU receiver gk = {g1,k, g2,k, . . . , gN,k}
causally, either via cooperation from the PU receiver (or base
station), or via feedback from a cooperative node located
close to the PU receiver. The CSI between SU transmitter
and FC hk = {h1,k, h2,k, . . . , hN,k} and the SU battery state
information Bk = {B1,k, B2,k, . . . , BN,k} are assumed to be
received by FC via typical channel estimation techniques and
feedback from the SUs to the FC. Information available to FC
at kth horizon is given by the tuple Jk = {gk,hk,Bk,Jk−1}.
B. Dynamic Programming Algorithm

The reward function of the stochastic control problem
corresponding to a fixed horizon k can be written as

C(pi,k, τk) =
T − τk
MT

log2(1 +
N∑
i=1

pi,khi,kai,k(1− θk))

−λ(T − τk
MT

N∑
i=1

pi,kgi,kai,k(1− θk)−Qavg) (13)

Here λ is the Lagrange parameter corresponding to average
interference constraint. We define the feasible set for the op-
timization variables as: S = {(pi,k, τk) : pi,k, τk satisfy(6)}.
With λ fixed, the optimal value of transmission power and
sensing time can be determined by the following theorem:
Theorem 1. With the initial condition J1 = {g1,h1,B1},

the value of the finite horizon finite battery problem with
causal information is given by V1(g1,h1,B1), which can be
computed by the backward Bellman dynamic programming
equation:

Vk(g,h,B) = max(pi,k,τk)∈S [C(pi,k, τk) +

E[Vk+1(gk+1,hk+1,Bk+1|pi,k, τk)]]
The solution of the causal optimization problem, which

can be computed numerically by searching over discretized
values of the optimization variables, is obtained as:{

p?i,k, τ
?
k

}
= argmaxpi,k,τk∈S [C(pi,k, τk) +

E[Vk+1(gk+1,hk+1,Bk+1|pi,k, τk)]]
The optimal value of λ from (13) is found by the solving the
following equation:

λ

[
E

{
M∑
k=1

T − τk
T

N∑
i=1

pi,kgi,kai,k(1− θk)

}
−Qavg

]
= 0

(14)
In practice, one can solve for the optimal λ using a bisection
search based iterative method. In this method, each new iterate
of λ can be substituted in (14) to find the corresponding
optimal p?i,k, τ

?
k , which in turn are substituted in (14) to

solve for a new value of λ and so on. Convergence of such
algorithms follow from monotonicity of the left hand side of
(14) in λ. Details can be found in [9]. Note that this procedure
is performed offline purely based on the statistics of the
channel gains and harvested energy information. Based on this
procedure, the FC creates a lookup table for optimal values
of pi,k and τk corresponding to discrete quantized values of
gk,hk,Hk. In real time FC receives the channel gains and
battery states and check for the closest quantization point in
its lookup table. The optimal sensing and transmission power
are fetched from the look-up table and sent to the individual
SUs, and then used for sensing and information transmission.

V. SIMULATION RESULTS

In this section we present numerical results for the causal
and non-causal CSI and battery state scenarios for the opti-
mization problem under consideration. We assume the energy
harvesting process is an exponentially distributed random
process with unity mean. The PU activity probability is set
to κ = 0.8. The sensing channel signal to noise ratio (SNR)
is assumed to be −15dB. The PU signal variance is taken
to be σ2

s = 1 mW. We use N = 2 SUs. The length
of a time slot is taken as T = 2 ms. The probability of
false alarm Pfa is taken to be 0.03. The sampling frequency
is assumed to be 1 MHz and the normalized threshold of
detection is assumed to be γ

σ2
n

= 1.006. This corresponds
to a minimum sensing time limit τl = 0.1 ms. For a fair
comparison, this constraint on the minimum sensing time has
been applied to all of the non-causal, causal and heuristic
policy based methods.Transmission power is assumed to be
upper bounded by Pmax = 1 mW. The initial battery level for
each SU is assumed to be 0.4 mW. For dynamic programming
gk,hk,Hk are quantized into 5 different discrete levels. In
Fig.2, we plot the average sensing time for non-causal CSI
and battery state scenario denoted by τavg with respect to
average harvested energy denoted by µH , keeping the mean
of the channel distribution denoted by µg and µh constant,
for M = 2, 3, 4. The averages are taken over 50 Monte-Carlo
simulations. From Fig.2, it is evident that average sensing time
τavg decreases monotonically by increasing the length of the
horizon. This is due to the fact that increasing the length of
horizon M in the non-causal CSI and battery state scenario
helps to spread out the sensing time over multiple time
slots, which means on average transmission time increases
and sensing time decreases with increasing M . Fig.3 shows
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Figure 2: Normalized average sensing time τavg vs Average harvested
energy µH with ratio of SU Tx-FC Rx and SU Tx-PU Rx average
channel gain µh/µg fixed.
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Figure 3: Average throughput vs Bmax with causal and non-causal
information patterns with M = 2, 3, 4.

the optimized average throughput, i.e. average throughput
plotted against battery capacity Bmax for non-causal CSI and
battery state scenario with exhaustive search technique and
causal CSI and battery state scenario with exhaustive search
and heuristic policy. As expected the average throughput
increases with increasing horizon and non-causal CSI and
battery state scenario provides an upper bound for the causal
counterpart. Also the heuristic policy by choosing ai,k and
θk performs inferior to both of them, but serves as a less
computationally complex alternative to its optimal counterpart.
As a numerical comparison, it should be noted that for M = 3
and Bmax = 1µJ the average throughput loss with exhaustive
search and heuristic policy in causal CSI and battery state
scenario compared to non-causal counterpart are 5.7 and 14.7
percent respectively. Fig.4 shows the heuristic policy-based
optimized average throughput as a function of varying battery
capacity in the causal CSI and battery state scenario with
finite battery. These plots are obtained for three different
significantly longer horizon lengths M = 10, 15, 20, due to
the reduced complexity of the heuristic policy.

VI.CONCLUSION

This paper investigated a MINLP problem of maximizing
the expected achievable sum throughput in a fading multiple
access CR network with the energy harvesting constraints
where the CR nodes perform cooperative spectrum sensing.
An analytical solution is obtained for the system with non-
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Figure 4: Average throughput vs Bmax for the heuristic policy with
M = 10, 15, 20.

causal CSI and infinite battery capacity. This provides an
upper bound on the throughput of a more realistic scenario
involving causal CSI and finite battery capacity, which can
be formulated as a stochastic control problem and solved
using a dynamic programming algorithm. To combat the
exponential complexity of handling exhaustive search policies
involving the decision variables in the causal CSI scenario, a
heuristic policy is proposed. The problem can be extended to
incorporate the concept of infinite horizon optimization and
energy sharing between the SUs, and also the innovation of
better performing heuristic policies.
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