
lcc: an R package to estimate the
concordance correlation, Pearson
correlation and accuracy over time
Thiago P. Oliveira1,2,*, Rafael A. Moral3,*, Silvio S. Zocchi4,
Clarice G.B. Demetrio4 and John Hinde1

1 School of Mathematics, Statistics and Applied Mathematics, NUI Galway, Galway, Ireland
2 The Insight Centre for Data Analytics, NUI Galway, Galway, Ireland
3Department of Mathematics and Statistics, National University of Ireland, Maynooth, Maynooth,
Co. Kildare, Ireland

4 Departamento de Ciências Exatas, Luiz de Queiroz College of Agriculture - USP, Piracicaba,
São Paulo, Brazil

* These authors contributed equally to this work.

ABSTRACT
Background and Objective: Observational studies and experiments in medicine,
pharmacology and agronomy are often concerned with assessing whether different
methods/raters produce similar values over the time when measuring a quantitative
variable. This article aims to describe the statistical package lcc, for are, that can
be used to estimate the extent of agreement between two (or more) methods over
the time, and illustrate the developed methodology using three real examples.
Methods: The longitudinal concordance correlation, longitudinal Pearson
correlation, and longitudinal accuracy functions can be estimated based on fixed
effects and variance components of the mixed-effects regression model. Inference is
made through bootstrap confidence intervals and diagnostic can be done via plots,
and statistical tests.
Results: The main features of the package are estimation and inference about the
extent of agreement using numerical and graphical summaries. Moreover, our
approach accommodates both balanced and unbalanced experimental designs or
observational studies, and allows for different within-group error structures, while
allowing for the inclusion of covariates in the linear predictor to control systematic
variations in the response. All examples show that our methodology is flexible and
can be applied to many different data types.
Conclusions: The lcc package, available on the CRAN repository, proved to be a
useful tool to describe the agreement between two or more methods over time,
allowing the detection of changes in the extent of agreement. The inclusion of
different structures for the variance-covariance matrices of random effects and
residuals makes the package flexible for working with different types of databases.
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INTRODUCTION
Agreement indices are generally used when the same experimental unit is measured by
at least two methods or observers (King et al., 2007). Measurements of agreement between
raters or methods can be used in any field to explore their interchangeability considering
a certain degree of agreement between the measurements they provide (Barnhart &
Williamson, 2001; Chen & Barnhart, 2013). In biomedical sciences it is often necessary to
study the reproducibility of continuous measurements made using specific diagnostic
tools or methods, and that measurements can be taken over the time on the subjects of
interest, such as in the studies of Pandit, Chair & Schuller (2019); Shinar et al. (2019) and
Loecher et al. (2019).

The concordance correlation coefficient (CCC) introduced by Lin (1989) is a statistic
commonly used to measure the agreement between methods when the response is
continuous. Let Y1 and Y2 be two random variables with a joint normal distribution

Y1

Y2

� �
�N2

m1
m2

� �
; � ¼ s2

1 s12

s12 s2
2

� �� �
:

Here the expected value of the squared difference between Y1 and Y2 can be used as an
agreement value. However, it ranges from 0 (perfect agreement) to infinity, which makes
its interpretation difficult. Lin (1989) proposed standardizing this agreement index so that
its values lie between -1 and +1:

rCCC ¼ 1�
E Y1 � Y2ð Þ2
� �

s2
1 þ s2

2 þ m1 � m2ð Þ2
¼ 2s12

s2
1 þ s2

2 þ m1 � m2ð Þ2
¼ rCb

where m1 ¼ E Y1ð Þ, m2 ¼ E Y2ð Þ, s2
1 ¼ Var Y1ð Þ, s2

2 ¼ Var Y2ð Þ and s12 ¼ Cov Y1;Y2ð Þ.
This coefficient takes the value -1 when there is perfect disagreement, zero when there
is no agreement, and +1 when there is perfect agreement. Moreover, ρ, the Pearson
correlation coefficient (|ρ| ≤ 1), measures how far each observation deviated from
the best-fit line (a precision measure) and Cb, the accuracy (0 < Cb ≤ 1), measures
how far the best-fit line deviates from the 45� line through the origin, defined as
Cb ¼ 2 v þ v�1 þ u2ð Þ�1, where v = σ21/σ

2
2 is a scale shift and u ¼ ðm1 � m2Þ=

ffiffiffiffiffiffiffiffiffiffi
s1s2

p
is a

location shift relative to the scale (Lin, 1989). Note that Cb = 1 indicates no deviation from
the 45� line. In an attempt to improve the inferential ability, Liao (2003) extended the
concordance correlation coefficient by using two random paired measurements to the
identity line.

When pairs of samples Yi1k;Yi2kð Þ, for i = 1, 2,…, N subjects and k = 1, 2,… K repeated
measures, corresponding to observations on the same subject or experimental unit
over time, the use of generalized multivariate analysis of variance to compute a weighted
version of the CCC for repeated measurements is recommended (Chinchilli et al., 1996).
Moreover, this coefficient has also been expanded to assess the agreement between
more than two methods (King & Chinchilli, 2001).
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When it is necessary to add extra variability sources due to within-subject
measurements and/or other covariates in the model, the CCC can be estimated through the
variance components (VC) of a mixed-effects model (Carrasco, King & Chinchilli, 2009).
The advantages of the mixed-effects models are that they give a general approach to
analyse repeated measures and unbalanced data; they allow for the inclusion of different
variance-covariance structures for both random effects and sampling errors. The restricted
maximum likelihood (REML) approach can be used to obtain unbiased estimates of
the VC.

Nevertheless, sometimes the researcher is not interested in reducing the CCC for
repeated measurements to a single value, as proposed by Carrasco, King & Chinchilli
(2009) and Carrasco et al. (2013), but in describing the extent of agreement between
methods over time, as discussed by Liao (2005) in a non-parametric case. However, in the
parametric case, we can consider a linear or non-linear function of the time and/or
covariates in the model to describe the response variable, as proposed by Rathnayake &
Choudhary (2017) and Oliveira, Hinde & Zocchi (2018). Here, we present the
implementation of this methodology as an R (R Core Team, 2019) package lcc (Oliveira
et al., 2019), which provides functions for estimating the longitudinal concordance
correlation (LCC) between methods based on variance components and fixed effects
using polynomial mixed-effects models. It also computes estimates for the longitudinal
Pearson correlation (LPC), which measures the precision, and the longitudinal bias
correction factor (LA), which provides an accuracy measure.

The lcc() function gives fitted values and non-parametric bootstrap confidence
intervals for the LCC, LPC and LA statistics. Moreover, they can be estimated using
different structures for the variance-covariance matrices of the random effects and
different variance functions to model heteroskedasticity of within-group errors, with the
option of using time as a variance covariate.

The remainder of the article is organized as follows: Section 1 introduces the
theoretical definition of the LCC. Section 2 introduces the lcc() function input and
output, describing in detail the various options as well the summary() and other
generic methods. Section 3 briefly discusses model specification, which is illustrated
more extensively in Section 4 using three real data examples. The first and third shows
an application in biomedical science, while the second from food science was the
motivation for the development of the methodology and software and nicely shows the
utility of the approach. Section 5 provides a discussion about the lcc package, and the
importance of LPC and LA. Finally, Section 6 presents some final remarks about the
lcc package.

MODELS AND COMPUTATIONAL METHODS
Suppose a researcher is interested in investigating the extent of agreement between two
or more methods, indexed as j = 1, 2, …, J. Let N be the number of subjects in the
experiment or observational study, indexed as i = 1, 2,…, N, and suppose that each subject
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is observed ni times (visits) with associated nuisance factors and/or covariates, these could
include, for example, the effect of block or group. Let yijk be a realization of a random
variable Yijk measured on the i-th subject by the j-th method at time tk, k = 1, 2, …, ni,
with additional subject level (nuisance) covariates xi. Here tk assumes values of the
time covariate t 2 T , where T denotes the set of measurement times. Hence, the
linear mixed-effects model including a polynomial function of time per method,
random effects of subject, as well random effects for as subject/time interactions, is
given by

Yijk ¼ gTxi þ
Pp
h¼0

bhjt
h
ik þ

Pq
h¼0

bhithik þ eijk;

with bi�MVN 0;Gð Þ and ei�MVN 0;Rið Þ
(1)

where h = 1, 2,…, q, q + 1,…, p is an index identifying the degree of the polynomial, with
q ≤ p; Yijk is the response measured on the i-th subject by the j-th method at time tik;
tik represents the time (seconds, minutes, days, etc) at which the i-th individual
was observed; γ is a vector of fixed effect parameters for the subject level covariates;

bj ¼ b0j;b1j; . . . ;bpj

h iT
is a (p + 1)-dimensional vector of fixed effects for the j-th method;

bi ¼ b0i; b1i; ; bqi
� �T

is a (q + 1)-dimensional vector of random effects with mean vector 0

and covariance matrix G; εi is a (J × ni)-dimensional error vector assumed to be
independent for different i and independent of the random effects, with independent
entries over j and k, with mean vector 0 and diagonal variance matrix Ri.

Under model (1), the longitudinal concordance correlation (LCC) function between
methods j and j′, j ≠ j′, is given by

rjj0 tkð Þ ¼ tkGtTk

tkGtTk þ 1
2

s2
e g tk; dj

	 

þ g tk; dj0

	 
� �
þ S2jj0 tkð Þ

n o ¼ r
ðpÞ
jj0 tkð ÞCjj0 tkð Þ (2)

where Sjj0 tkð Þ ¼ tk bj � bj0
� �

is the systematic difference between methods j and j′;
tTk ¼ t0k ; t

1
k ; . . . ; t

q
k

	 
T
; g(·) is a variance function assumed continuous in δ; δj is a vector of

variance parameters for observations measured by j-th method or observer. We have that
r
ðpÞ
jj0 tkð Þ is the longitudinal Pearson correlation (LPC) that measures how far each

observation deviated from the best-fit line at a fixed time tk = t, given by

r
ðpÞ
jj0 tkð Þ ¼ tkGtTkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tkGtTk þ s2
eg tk; dj
	 
� �

tkGtTk þ s2
eg tk; dj0
	 
� �q :

Cjj0 tkð Þ, the longitudinal accuracy (LA), measures how far the best-fit line deviates from the
45� line at a fixed time tk = t, given by

Cjj0 tkð Þ ¼ 2

vjj0 tkð Þ þ vjj0 tkð Þ
� ��1 þ u2jj0 tkð Þ

;
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where

vjj0 tkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Yijkl
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s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tkGtTk þ s2

eg tk; dj
	 


tkGtTk þ s2
eg tk; dj0
	 
s

denotes the scale shift at time tk = t, and

ujj0 tkð Þ ¼
E Yijkl
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Var Yijkl

	 

Var Yij0kl

	 
� �1
4

¼
tk bj � bj0
� �

tkGtTk þ s2
eg tk; dj
	 
� �

tkGtTk þ s2
eg tk; dj0
	 
� �
 �1

4

denotes the location shift at time tk relative to the scale (Lin, 1989; Oliveira, Hinde &
Zocchi, 2018). Consequently, when Var Yijkl

	 

¼ Var Yij0kl

	 

and E Yijkl

	 

¼ E Yij0kl

	 

then

Cjj0 tkð Þ ¼ 1 and there is no deviation from the 45� line.

Estimation and inference
Point estimation and statistical inference for the LCC rjj0 tkð Þ

� �
has been proposed by

Oliveira, Hinde & Zocchi (2018). It is estimated by replacing β and the variance
components by their respective REML estimates:

brjj0 tkð Þ ¼ tkbGtTk
tkbGtTk þ 1

2
bs2
e bg tk;bdj� �

þ bg tk;bdj0� �h i
þ bS2jj0 tkð Þ

n o :

Since the variance components are estimated using the REML approach, their estimates
are asymptotically normally distributed and the bias is smaller when compared to the
maximum likelihood (ML) approach. Moreover,Oliveira, Hinde & Zocchi (2018) showed a
satisfactory performance of the LCC even in settings with severe imbalance and only a
small number of subjects (N = 20).

A confidence interval (CI) for rjj0 tkð Þ can be constructed using a nonparametric
bootstrap based on M (e.g., 5,000) bootstrap samples with either the percentile method
(recommended for N ≤ 30) or, otherwise, a normal approximation confidence interval, as
described by Oliveira, Hinde & Zocchi (2018).

When we use a normal approximation for the CI, the Fisher Z-transformation given by

r�j;j0 tkð Þ ¼ 1
2
ln

1þ rj;j0 tkð Þ
1� rj;j0 tkð Þ

" #
should be used with the normal approximation made to the empirical distribution of
r�j;j0 tkð Þ (Lin, 1989). Consequently, the confidence limits can be estimated using the
bootstrap estimator of r�j;j0 tkð Þ for a fixed time tk = t given by

br�j;j0 tk ¼ tð Þ ¼ 1
2M

XM
m¼1

ln
1þ brðmÞ

j;j0 tð Þ

1� brðmÞ
j;j0 tð Þ

24 35; m ¼ 1; 2; . . . ;M;
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where brðmÞ
j;j0

n o
are the estimates from the M bootstrap samples. The standard deviation of

the bootstrap distribution of br�j;j0 tkð Þ for a fixed time tk = t given by

cSE�
j;j0 tk ¼ tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
m¼1

1
2
ln

1þ brðmÞ
j;j0 tð Þ

1� brðmÞ
j;j0 tð Þ

0@ 1A� br�j;j0 tð Þ
24 352

vuuut :

Thus, an approximate bootstrap confidence interval of level (1 - a) for ρj,j′ is LB;UB½ �,
where

LB ¼
exp 2 br�j;j0 tk ¼ tð Þ � zð1�a

2Þ
cSE�

j;j0 tk ¼ tð Þ
h in o

� 1

exp 2 br�j;j0 tk ¼ tð Þ � zð1�a
2Þ
cSE�

j;j0 tk ¼ tð Þ
h in o

þ 1

and

UB ¼
exp 2 br�j;j0 tk ¼ tð Þ � za

2
cSE�

j;j0 tk ¼ tð Þ
h in o

� 1

exp 2 br�j;j0 tk ¼ tð Þ � za
2
cSE�

j;j0 tk ¼ tð Þ
h in o

þ 1
;

where za
2
and zð1�a

2Þ denote the
a
2 and ð1� a

2Þ percentiles of the standard normal
distribution.

On the other hand, the CI based on the percentile method uses the percentiles of the
bootstrap distribution of brj;j0 tk ¼ tð Þ directly and is given by

brj;j0ða=2Þ tk ¼ tð Þ;brðj;j0Þð1�a=2Þ
tk ¼ tð Þ

� �
� brðmÞ

j;j0ða=2Þ
tk ¼ tð Þ;brðmÞ

ðj;j0Þð1�a=2Þ
tk ¼ tð Þ

� �
where brðmÞ

ðj;j0Þða=2Þ
tk ¼ tð Þ and brðmÞ

ðj;j0Þð1�a=2Þ
tk ¼ tð Þ are the ð100� a

2Þ�th and ð100� 1� a
2Þ�th

empirical percentiles of the brðmÞ
j;j0 tk ¼ tð Þ values, m = 1, 2, …, M. If the bootstrap

distribution of r�j;j0 tk ¼ tð Þ is approximately normal, then both proposed methods will give

very similar confidence intervals as N increases.
Inference for Cjj0 tkð Þ can be performed in a similar way as to that presented for the LCC.

Since Cðj;j0Þð1�a=2Þ
tk ¼ tð Þ belongs to the interval [0, 1], we suggest the use the arc-sine

transformation

C�
ðj;j0Þð1�a=2Þ

tk ¼ tð Þ ¼ sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cjj0 tkð Þ

q
instead of the Fisher Z-transformation, nor logistic transformation (used by Oliveira,
Hinde & Zocchi (2018)) to approximate the distribution of Cðj;j0Þð1�a=2Þ

tk ¼ tð Þ by a normal
distribution. Thus, the confidence limits can be estimated using the bootstrap estimator
of C�

j;j0 tkð Þ for a fixed time tk = t given by

bC�
j;j0 tk ¼ tð Þ ¼ 1

M

XM
m¼1

sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibCðmÞ
j;j0 tð Þ

q
; m ¼ 1; 2; . . . ;M;
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and standard deviation of the bootstrap distribution of bC�
j;j0 tkð Þ for a fixed time tk = t is

given by

cSE�
Cj;j0

tk ¼ tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
m¼1

sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibCðmÞ
j;j0 tð Þ

q
� bC�

j;j0 tð Þ
� �2vuut

Therefore, an approximate bootstrap confidence interval of level (1 - a) for bCj;j0 is
LBC;UBC½ �, where

LBC ¼ sign bC�
j;j0 tk ¼ tð Þ� zð1�a

2Þ
cSE�

Cj;j0
tk ¼ tð Þ

h i
sin bC�

j;j0 tk ¼ tð Þ� zð1�a
2Þ
cSE�

Cj;j0
tk ¼ tð Þ

h in o2

and

UBC ¼ sign bC�
j;j0 tk ¼ tð Þ � za

2
cSE�

Cj;j0
tk ¼ tð Þ

h i
sin bC�

j;j0 tk ¼ tð Þ � za
2
cSE�

Cj;j0
tk ¼ tð Þ

h in o2
;

where za
2
and zð1�a

2Þ denote the ð
a
2Þ and ð1� a

2Þ quantiles of the standard normal
distribution. Bootstrap percentile intervals are calculated in the obvious way from the
bootstrap values bCðmÞ

j;j0 ðtÞ, m = 1, 2, …, M.

OVERVIEW OF THE PACKAGE lcc AND R SYNTAX
This section provides some details on the implementation of the function lcc and explains
its technical arguments, whose default settings were carefully chosen. The package is freely
available for download from the CRAN website https://CRAN.R-project.org/package=lcc,
and installation can be performed using

R> install.packages(“lcc”)

R> library(lcc)

The lcc package has 21 arguments that are briefly summarised in Table 1.
We present a more detailed description of some arguments below:
1. data: must be a data frame containing the following variables: response, subject

identification, method, and time;
2. method: name of the method variable in the dataset. The lcc package recognizes the

first level of the variable associated with this argument as the gold-standard method, and
then compares it with all other levels;

3. qr: when we specify qr = 0 a random intercept is included in the polynomial model
while qr = 1 specifies random intercepts and slopes. If qr = qf = q, with q ≥ 1, all
polynomial terms are specified to have random effects at the individual level.

4. time_lcc: a named list with values for arguments time, from, to, and n used in the
time_lcc() function to generate a regular sequence merged with specific or experimental
time values of the time variable used for LCC, LPC and LA predictions. Argument time
is a vector of specific or experimental time values of a given length, where the experimental
time values are used as default; from and to are used to define, respectively, the starting
and end values of the time variable, and n is used to define the desired length of the
sequence. We recommend a grid t ¼ t1; t2; . . . ; tn�ð ÞT of n� points in T to construct the
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agreement curve and confidence intervals. In practice, n� between 30 and 50 is generally
adequate. Example:

R> Time <- seq(0,20,1)

R> str(tk <- time_lcc(time=Time, from=min(Time), to=max(Time),

+ n=30))

num [1:49] 0 0.69 1 1.38 2 …

5. pdmat: the lcc package provides six standard classes of positive-definite matrix
structures that can be included in the model to estimate the LCC, LPC and LA statistics.
Available standard classes are pdSymm, pdLogChol, pdDiag, pdIdent, pdCompSymm
and pdNatural. More information about these classes are available in Pinheiro & Bates
(2000).

6. var.class: a class of variance functions that are used to model the variance structure
of within-group errors using covariates (Pinheiro & Bates, 2000). We generalize this class as

Var eijk
	 


¼ s2
eg tk; dð Þ; (3)

where g(·) is the variance function assumed continuous in δ; tk is the time covariate and δ is
a vector of variance parameters. The lcc package provides two different standard variance
functions classes that are included in the nlme library (Pinheiro et al., 2017).

The first one is the varIdent class that represent a variance model with different
variances for each level of a stratification variable s, s = 1, 2, …, S, given by

Var eijk
	 


¼ s2
ed

2
sijk
:

As we have S + 1 parameters to represent S variances, we need to add the restriction
δ1 = 1, and consequently δ′s� = δs�/δ1, s� = 2, 3,…, S and δ′s� >0. Here each level of method/
observer or time represents a stratum of a homogeneous subgroup.

The second variance function is an exponential function of the variance covariate, the
varExp class, represented as

Var eijk
	 


¼ s2
e exp 2dsijk tk

� �
where δsijk is unrestricted, so the variance model (4) allows Var eijk

	 

to increase or

decrease over time.
7. weights.form: a varFunc class object, representing a constructor to the form

argument in the nlme library. The weights.form argument is based on a one-sided formula
specifying a variance covariate and, optionally, a grouping factor for the variance parameters.
Moreover, this argument must be specified only when var.class is specified as well.

The first class varIdent represents a variance model with different variances for each
level of the grouping factor and has two options of weights.form in the lcc package:

(a) “method”: specifies a variance model with different variances for each level of factor
method/observer and is given by

Var eijk
	 


¼ s2
ed

2
methodj ; j ¼ 1; 2; . . . ; J;
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Table 1 Input arguments for LCC package.

Argument Type Description Default Required

data data.

frame

Specifies the input dataset Yes

resp Character
string

Name of the response variable Yes

subject Character
string

Name of the subject variable Yes

method Character
string

Name of the method variable Yes

time Character
string

Name of the time variable Yes

interaction Logical An option to estimate the interaction effects between method and time. If TRUE the interaction
effects are estimated. If FALSE only the main effects of time and method are estimated

TRUE No

qf Numeric An integer specifying the degree of the polynomial time trends, usually 1, 2 or 3 (0 is not allowed). 1 No

qr Numeric An integer specifying terms having random effects to account for subject-to-subject variation,
such that qr ≤ qf , and qr=0 means there is just a random intercept.

0 No

covar Character
vector

Names of the covariates (factors and/or variables) to include in the model as fixed effects, for
example, block, group, etc.

NULL No

gs Character
string

Name of method level which represents the gold-standard. first
level

No

pdmat Function Standard classes of positive-definite matrix structures available in the nlme package. pdSymm No

var.class Function Standard classes of variance function structures used to model the variance structure of
within-group errors using covariates.

NULL No

weights.form Formula An one-sided formula specifying a variance covariate and, optionally, a grouping factor for the
variance parameters in the var.class. If var.class = varIdent, the form “method”, (or∼ 1 |
method), or “time.ident” (∼ 1 | time), must be used. If var.class = varExp, the form
“time” ( ∼ time), or “both” (∼ time | method), must be used.

NULL No1

time_lcc List Regular sequence for time variable merged with specific or experimental time values used for LCC,
LPC, and LA predictions.

NULL No

ci Logical An optional non-parametric boostrap confidence interval for the LCC, LPC and LA statistics.
If TRUE confidence intervals are calculated and printed in the output.

FALSE No

percentileMet Logical An optional method for calculating the non-parametric bootstrap intervals. If FALSE the normal
approximation method is used. If TRUE the percentile method is used.

FALSE No2

alpha Numeric Confidence level for the CI. 0.05 No2

nboot Numeric An integer specifying the number of bootstrap samples. 5,000 No2

show.warnings Logical An optional argument that shows the number of convergence errors in the bootstrap samples.
If TRUE shows in which bootstrap samples the errors occurred. If FALSE shows the total number
of convergence errors.

FALSE No

components Logical An option to estimate the LPC and LA statistics. If TRUE the estimates and confidence intervals for
LPC and LA are printed in the output. If FALSE provides estimates and confidence intervals only
for the LCC statistic.

FALSE No

REML Logical The estimation method. If TRUE the model is fit by maximizing the restricted log-likelihood.
If FALSE full maximum likelihood is used.

TRUE No

lme.control List A list of control values passed to the estimation algorithm to replace the default values of the
function lmeControl available in the nlme package.

empty
list

No

numCore Integer Number of cores used in parallel during bootstrapping computation 1 No

Notes:
1 Required when var.class is specified.
2 It can only be specified when ci = TRUE.
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where g methodj; dj
	 


¼ d2methodj is the variance function, and δmethodj is the variance
parameter for observations measured by the jth method. The form argument in the
varFunc is form = ∼ 1|method;

(b) “time.ident”: specifies a variance model with different variances for each level of
stratification in the time variable and is given by

Var eijk
	 


¼ s2
ed

2
tk
; k ¼ 1; 2; . . . ;K;

where g tk; dkð Þ ¼ d2tk is the variance function, and δtk is the variance parameter for
observations measured at time tk = t, with t 2 t0; tK½ � and t0 ≥ 0. The form argument in the
varFunc class is form = ∼ 1|time.

The class varExp represents a variance model whose variance function g(.) is an
exponential function of the variance covariate. This class has also two options of weights.
form in the lcc package:

(a) “time”: specifies a variance model given by

Var eijk
	 


¼ s2
e exp 2dtkð Þ;

where the variance function g tk; dð Þ ¼ exp 2dtkð Þ is an exponential function of the time
tk = t; and δ is the variance parameter. The form argument in the varFunc class is
form = ∼ time;

(b) “both”: specify a variance model for each level of the factor method given by

Var eijk
	 


¼ s2
e exp 2dmethodj tk

	 

; j ¼ 1; 2; . . . ; J;

where the variance function g tk;methodj; d
	 


¼ exp 2dmethodj tk
	 


is an exponential
function of the time tk = t for each level of method; and δmethodj is the variance parameter
for the jth level of method. The form argument in the varFunc class is form = ∼ time|

method;
The lcc package uses the REMLmethod as default because it is less biased, less sensitive

to outliers, and deals more effectively with high correlations when compared to standard
ML estimation (Harville, 1977; Giesbrecht & Burns, 1985). However, we offer the user
the possibility to change the estimation method to ML because this approach should be
used when comparing models with nested fixed effects but with the same random effects
structure. Furthermore, the package depends on the nlme (Pinheiro et al., 2017) and
ggplot2 (Wickham, 2009) packages, and imports some functions from packages gdata
(Warnes et al., 2017), gridExtra (Auguie & Antonov, 2017) and hnp (Moral, Hinde &
Demétrio, 2017).

Generic functions and outputs
A typical call of the lcc function is similar to a call to lme as the LCC estimation is based
on a mixed-effects regression model. Several variations in the specifications of linear
mixed-effects models to estimate the LCC are possible, and we can query the fitted lcc

Oliveira et al. (2020), PeerJ, DOI 10.7717/peerj.9850 10/29

http://dx.doi.org/10.7717/peerj.9850
https://peerj.com/


object through different generic functions. Table 2 gives details of a set of S3 generic
extractor functions for objects of class lcc.

The output of the summary() function includes the values of Akaike Information
Criterion (AIC) (Akaike, 1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978),
log-likelihood value, and a goodness of fit measurement gof, which is calculated using the
concordance correlation coefficient (Lin, 1989) between fitted values extracted from the
mixed-effects model and observed values. This measure can be used, with care, to describe
the overall agreement between observed and fitted values, where a value equal to -1
represents a perfect disagreement between them, zero represents no agreement, and +1
perfect agreement. Clearly, a high model performance is related with a high positive value
of gof (generally between 0.8 and 1).

The fitted curves of LCC, LPC, or LA values versus the time covariate, as well as
their bootstrap confidence intervals, can be visualised through the lccPlot() function,
which is specified as lccPlot(obj, type, control), where obj is an object of class
lcc; type specifies required output that could be type=“lcc” for the LCC, the default,
type=“lpc” for the LPC, or type=“la” for the LA statistics; and control is a list of
control values or character strings returned by the plotControl() function used to
modify the plot structure. This function uses the ggplot2 package internally to build the
final plot, where predicted values are joined by lines, sampled observations are represented
by circles, and confidence intervals by a ribbon (grey as default) defined by its lower
and upper bounds.

Table 2 Generic functions for use with objects of class lcc.

Function Description

print() A simple printed display

summary() Returns an object of class summary.lcc containing the relevant summary statistics (which has a print()method). If type = “lcc”
it provides information about rjj0 tkð Þ, and if components = TRUE in the lcc() function, also provides information about rðpÞjj0 tkð Þ,
and Cjj0 tkð Þ. If type = “model” it provides additional information about the linear mixed-effects fit. The default is type = “model” .

anova() Summarise and compare likelihoods of fitted models from lcc objects

coef() The fixed effects estimated and corresponding random effects estimates are obtained at subject levels less or equal to N. The resulting
estimates are returned as a data frame, with rows corresponding to subject levels and columns as coefficients.

fitted() Fitted values for brjj0 tkð Þ, brðpÞjj0 tkð Þ, or bCjj0 tkð Þ. The output depends on the argument type, where type = “lcc” (the default),
type = “lpc”, or type = “la” gives output for brjj0 tkð Þ, brðpÞjj0 tkð Þ, or bCjj0 tkð Þ, respectively.

getVarCov() Returns the variance components estimates.

residuals() Extract residuals (response, Pearson, and normalized), defaulting to Pearson. residuals

ranef() Extract the estimated random effects.

vcov() Returns the variance-covariance matrix of the fixed effects.

AIC() Compute the Akaike criterion

BIC() Compute the Bayesian criterion

logLik() Extract the log-likelihood

plot() A series of six built-in diagnostic plots to evaluate the assumptions underlying the linear mixed-effects regression model. Comprises: a
plot of conditional residuals against fitted values; plot of conditional residuals over time; box-plot of residuals given subject;
observed against fitted values; normal Q-Q plot with simulation envelopes for the conditional errors; and normal Q-Q plot with
simulation envelopes for the random effects are provided.
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SPECIFYING MODELS IN THE lcc() FUNCTION
In the lcc package, to describe the LCC we need to specify the subject, response, method
and time variables, a polynomial mixed-effect model, and the data. These arguments
are specified through an easy-to-use syntax. Consider a first degree polynomial model
with random intercepts for a continuous dependent variable y observed on N subjects
(i = 1, 2, …, N) using J methods at times tk (k = 1, 2,…, ni). Such model can be written as

Yijk ¼ b0j þ b0i þ b1jtk þ eijk; with b0i � Nð0;s2
b0
Þ and eijk � N 0;s2

e

	 

Thus, the LCC based on fixed effects and variance components at time tk is given by

rjj0 tkð Þ ¼
s2
b0

s2
b0
þ s2

e þ
1
2
b01 � b02 þ b11 � b12ð Þtk½ �2

and the syntax to specify this model in the lcc() function is
R> library(lcc)

R> data(simulated_hue_block)

R> m1 <- lcc(data = simulated_hue_block, subject = “Fruit”,

+ resp = “Hue”, method = “Method”, time = “Time”,

+ qf = 1, qr = 0)

where qf = 1 represents the polynomial degree for the fixed effects, and qr = 0 specifies a
random intercepts model. Here, the names of the columns in the dataframe data are
supplied as strings to the arguments of the lcc() function.

Suppose now that the experimental design in the previous example was a randomized
complete block design. Then, the fixed effect of blocks can be included in that model by
specifying the covar argument, that is,

R> m2 <- update(m1, covar =“Block”)

If we suppose different variances for each level of the method factor, the corresponding
model would include a variance function such as g dj

	 

¼ s2

ed
2
j , and the syntax would then

be
R> m3 <- update(m2, var.class = varIdent, weights.form = “method”,

+ lme.control = list(opt=“optim”))

To visualize the summary and graphical output of model m3 we call summary(m3) and
lccPlot(m3), respectively.

Many other possible models can be built to estimate the LCC through the function
lcc() options, see Section 1. Model selection can be performed using likelihood-ratio tests
for nested models; or using the AIC or BIC criteria, for example,

R> AIC(m2, m3); BIC(m2, m3); anova(m2, m3)

EXAMPLES
We will now use three example datasets, drawn from Lloyd et al. (1998), Martin et al.
(2002) and Oliveira, Hinde & Zocchi (2018), to illustrate the implemented functions in the
following sections of this article. The first dataset is an observational study of a cohort of 82
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adolescent females to assess the percentage body fat and the aim is to determine the
agreement profile between measurements made over time using a skinfold caliper and
dual-energy X-ray absorptiometry. The second is a canonical example from agriculture
and was the motivation for the original development of these methods; here the goal is
to investigate if a colorimeter can compete with a digital scanner in measuring the peel
hue of papayas over time. The final example is again related to medicine and the goal here
is to verify the agreement between cortisol concentration measured on patients every hour
and every 2 h.

Percentage body fat dataset
These data came from a longitudinal observational study conducted as part of the Penn
State YoungWomen’s Health Study (Lloyd et al., 1998). Percentage body fat was measured
using skinfold calipers and dual-energy X-ray absorptiometry (DEXA) on a cohort of
82 adolescent white females attending public schools in Pennsylvania. The initial visit
occurred at age 12 (baseline) and subsequent visits occurred every 6 months, in which one
skinfold caliper and one DEXA measurement were taken to assess the percentage of body
fat. As the skinfold measurement is the most frequently used method for laboratory
and field studies, the objective was to determine the agreement profile between the skinfold
caliper and DEXA measurements. Figure 1 shows that the agreement between skinfold
and DEXA apparently decreases over the visits. King et al. (2007) explained that this
phenomenon may occur because the skinfold method is only capable of detecting
subcutaneous fat, while DEXA detects subcutaneous, breast, lower body and visceral fat.
Moreover, female adolescents may have a considerable fat increase in breast, lower body
and/or visceral fat over this age range (King et al., 2007). Consequently, this reinforces
the interest in estimating the agreement profile between these methods for the body fat
measurements over ages ranging from 12.5 to 13.5 years old, rather than summarizing it in
a single coefficient as proposed by King et al. (2007). Hence, we created a new variable
called TIME given by 12 × (age - 12), which represents the time in months after the first
visit (baseline).

12.5 (Visit 2) 13 (Visit 3) 13.5 (Visit 4)

15 20 25 30 15 20 25 30 15 20 25 30

20

25

30

DEXA

S
ki

nf
ol

d 
ca

lip
er

Figure 1 Scatter plot of body fat data, where the panels represent visits, the blue line is the best fit
line, and the black line is the line of equality. Full-size DOI: 10.7717/peerj.9850/fig-1
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Now let yijk be the measurement taken on the i-th individual, by the j-th method at the
k-th visit. We then fit a random intercepts and slopes linear regression model, given by

yijk ¼ b0j þ b0i þ b1j þ b1i
� �

tk þ eijk

b ¼ b0i; b1i½ �T�N2 0;Gð Þ and eijk�N 0;s2
e

	 

;

(4)

where vechðGÞ ¼ s2
b0
;sb01 ;s

2
b1

h iT
(vech(·) is the half-vectorization of a symmetric matrix

G formed from only the lower triangular part). Using model (4), we estimate the LCC, LPC
and LA statistics as well as their 95% bootstrap confidence intervals based on 10,000
pseudo-samples using the lcc() function:

R> data(bfat, package = “cccrm”)

R> library(dplyr)

R> bfat < - bfat %>%

+ mutate(VISITNO = replace(VISITNO, VISITNO == 2, 12.5)) %>%

+ mutate(VISITNO = replace(VISITNO, VISITNO == 3, 13)) %>%

+ mutate(VISITNO = replace(VISITNO, VISITNO == 4, 13.5)) %>%

+ mutate(SUBJECT = factor(SUBJECT)) %>%

+ mutate(MET = factor(MET, labels = c("1 hour", "2 hours")))

R> bfat$TIME < - 12 � (bfat$VISITNO - 12)

R> set.seed(134)

R> m.bfat.1 <- lcc(data = bfat, subject = “SUBJECT”, resp = “BF”,

+ method = “MET”, time = "TIME", qf = 1, qr = 1,

+ components = TRUE, ci = TRUE, nboot = 10000)

Convergence error in 902 out of 10,000 bootstrap samples.

The output of model m.bfat.1 indicates that in 902 (9.02%) of the pseudo-samples,
the likelihood maximization algorithm failed to converge, where most of these failures
were a consequence of specific bootstrap sample patterns. An alternative procedure to
decrease the percentage of convergence failures is by increasing the iteration limit and/or
changing the optimization method from nlminb to optim. In the lcc() function, the user
can include a list of optimisation control additional arguments in the lme.control()
function:

R> set.seed(134)

R> m.bfat.2 <- update(m.bfat.1, lme.control = list(opt = “optim”))

Convergence error in 76 out of 10,000 bootstrap samples.

The output of m.bfat.2 shows a lower number of failures (0.76%) compared with the
previous approach. We proceed to examine the bootstrap confidence intervals computed
for the LCC, LPC and LA:

R> summary(m.bfat.2, type = “lcc”)

Longitudinal concordance correlation model fit by REML

AIC BIC logLik

2182.068 2215.59 -1083.034
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gof: 0.9201

Lower and upper bound of % bootstrap confidence

Number of bootstrap samples:

DEXA vs. skinfold

$LCC

Time LCC Lower Upper

1 6 0.6653516 0.5687779 0.7395459

2 12 0.5589258 0.4516374 0.6442955

3 18 0.4588008 0.3353932 0.5599172

$LPC

Time LPC Lower Upper

1 6 0.8065578 0.7415331 0.8558988

2 12 0.7826493 0.7092871 0.8378992

3 18 0.7620551 0.6676806 0.8300397

$LA

Time LA Lower Upper

1 6 0.8249273 0.7431156 0.8898124

2 12 0.7141458 0.6201347 0.7923521

3 18 0.6020573 0.4934167 0.6961643

We may then plot the LCC, LPC and LA with their respective confidence intervals by
executing

R> lccPlot(m.bfat.2)

R> lccPlot(m.bfat.2, type = “lpc”)

R> lccPlot(m.bfat.2, type = “la”)

The estimates of LCC, LPC and LA, their confidence intervals, and figures indicate that
the agreement and accuracy profiles between the skinfold caliper and DEXA
measurements decrease over time, while the precision profile, represented by LPC, remains
constant (Fig. 2). Therefore, a first conclusion is that the agreement profile decreases over
time because the accuracy is decreasing.

Moreover, there is a moderate to weak agreement profile, where the greatest LCC
estimate was 0.6654 at age 12.5 (95% CI [0.5688–0.7395]) and the smallest LCC estimate
was 0.4588 at age 13.5 (95% CI [0.3354–0.5599]). This result reinforces the discussion
presented by King et al. (2007), who provided physiological explanations for this
phenomenon due to fact that the skinfold method is not capable to detect breast, lower
body and visceral fat, which increases over this age range. Clearly, as the skinfold method
detects less fat than the other, the accuracy between them tends to decrease since the
expected value difference is greater (Fig. 2C). The concordance correlation coefficient
between fitted values of the mixed-effects model and observed values is presented as
goodness of fit (gof) and was approximately 0.92. This result shows that the model can
reproduce the observed values quite well.
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The papaya peel hue dataset
In commercial fruit classification, one of the most important variables is the peel hue
because it is used to determine fruit ripeness (Mendoza & Aguilera, 2004; Oliveira,
Zocchi & Jacomino, 2017). This is very important to plan harvesting procedures. In an
experiment described in Oliveira, Hinde & Zocchi (2018), the hue component was
measured for a sample of 20 papaya fruits using a flat-bed scanner (HP Scanjet G2410) and
a colorimeter (Minolta CR-300) (Konica Minolta, 2003). The hue of each fruit was
measured daily using both devices for a period of 15 days, where four equidistant points
on the equatorial region were observed using a colorimeter, and 1,000 points over the
same region were observed using a scanner. The circular mean hue was calculated for
the ith fruit, i = 1, 2, . . . ,N, measured by the jth method, j = 1, 2 at time tik, 390 k = 1, 2, . . . ,
ni. As the multivariate von Mises distribution of the hue is highly concentrated around
its overall mean, we assume that its distribution can be treated as a normal distribution
with mean mh = 391 and covariance matrix R = I σ2ε .

The aim of the agreement study here was to determine whether the scanner can
reproduce the mean hue measurements taken by the colorimeter on the same fruit over
time. The colorimeter is faster and easier to use than a flatbed scanner. Additionally,
each image obtained with the scanner needs to processed by an image manipulation
program to select the object and extract its pixel-by-pixel information. Our major interest
here is in the longitudinal accuracy profile, because high values over time would suggests
that the fruit’s topography does not influence the measurements taken by the scanner.

We start by making a plot of individual profiles grouped by measurement device, as
well as a scatterplot of the hue data (Fig. 3). We fit a second-degree polynomial model
over time for each fruit considering all observations taken by both devices, and obtain the
95% confidence intervals for the coefficients (Fig. 3C). Apparently, there is a moderate
agreement between the scanner and the colorimeter, which increases as the mean hue
decreases. However, this could be due to the smaller number of fruits at the end of the
experiment (fruits that presented disease had to be dropped out of the study).
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Figure 2 Estimate and 95% bootstrap confidence interval for the (A) longitudinal concordance
correlation (LCC); (B) longitudinal Pearson correlation (LPC); and (C) longitudinal accuracy (LA)
between percentage body fat measured on adolescent girls by skinfold caliper and DEXA. Points
represent (A) the sample CCC, (B) sample Pearson correlation and (C) sample accuracy.

Full-size DOI: 10.7717/peerj.9850/fig-2
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Let yijk be the peel hue measured on fruit i, using method j at time point k. We start by
fitting a second degree polynomial mixed-effects model with random intercepts, linear and
quadratic coefficients, written as

yijk ¼ b0j þ b0i þ b1j þ b1i
� �

tk þ b2j þ b2i
� �

t2k þ eijk;

b ¼ b0i; b1i; b2i½ �T � N3 0;Gð Þ and eijk � N 0;s2
e

	 

;

(5)

where vechðGÞ ¼ s2
b0
;sb01 ;sb02 ;s

2
b1
;sb12 ;s

2
b2

h iT
. Under the model (5), the LCC is given

by

rjj0 tkð Þ ¼ tkGtTk

tkGtTk þ s2
e þ

1
2
S2jj0 tkð Þ

:

We can fit this model to estimate the LCC, LPC and LA statistics as well as to compute
their 95% bootstrap confidence intervals based on 10,000 pseudo-samples using the lcc()
function directly:

R> data(hue)

R> set.seed(6836)

R> m.hue.2 <- lcc(data = hue, subject = “Fruit”, resp = “H_mean”,
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Figure 3 (A) Scatterplot of hue data considering all repeated measurements with a blue line
representing the best fit line and the black one the line of equality, (B) Individual profiles of the
peel hue of 20 papaya fruits measured by a colorimeter and a scanner, and (C) individual 95%
confidence intervals for second degree polynomial coefficients fitted to the data on each fruit
considering all methods together. Full-size DOI: 10.7717/peerj.9850/fig-3
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+ method = “Method”, time = “Time”, qf = 2, qr = 2,

+ ci = TRUE, nboot = 10000, components = TRUE)

Convergence error in 3133 out of 10000 bootstrap samples.

The model used to estimate rjj0 tkð Þ as well as its sampled and fitted values can be
extracted by using summary(m.hue.2, type = “model”) and summary(m.hue.2,

type = “lcc”), respectively. Moreover, a graphical representation of fitted values and
confidence intervals for LCC, LPC and LA can be obtained by executing

R> lccPlot(m.hue.2)

R> lccPlot(m.hue.2, type = “lpc”)

R> lccPlot(m.hue.2, type = “la”)

Apparently, the estimated LCC increases over time (Fig. 4A). However, note that it is
necessary to check whether the model assumptions were fulfilled because the estimates
for the LCC and its bootstrap confidence intervals may be biased under a misspecified
model. We therefore checked (i) the normality assumption for the errors, by producing a
normal plot of the within-group standardized residuals (Fig. S1A), which indicates that
this assumption for the within-group errors is almost plausible, and is not far from a
normal distribution; (ii) the homoscedasticity over time was evaluated via a plot of the
standardized residuals versus time (Fig. S1B), which indicates an apparent residual
correlation for observations taken by the colorimeter and greater between-subject variance
for observations taken by the scanner (Fig. S2); (iii) the normality assumption for the
random effects (Fig. S1C), which are verified by producing a normal plot for b0i; b1i and b2i.
Additionally, the goodness of fit (gof) was 0.992, indicating a high concordance among
the model fitted values and observed values. Thus, we update the model m.hue.2 to
include different variances for each level of the factor “method”, where the variance
function is given by:

Var eijk
	 


¼ s2
ed

2
j ; with j ¼ 1; 2:

To ensure identifiability we assume that d1 ¼ 1. We also created a regular sequence
from the time variable that can be used to make predictions

R> lcc_time <- with(hue, list(time = Time, from =min(Time), + to=max

(Time), n=50))

This model can be specified in the lcc() as
R> set.seed(6836)

R> m.hue.3 <- update(m.hue.2, var.class = varIdent,

weights.form = "method",

+ time_lcc = lcc_time,

+ lme.control = lmeControl(opt = "optim"))

Convergence error in 1187 out of 10000 bootstrap samples.

As models m.hue.2 and m.hue.3 are nested, we can use the likelihood ratio to test the
hypothesis H0 : d

2
2 ¼ 1 versus Ha : d

2
2 6¼ 1:

R> anova(m.hue.2, m.hue.3)
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Model df AIC BIC logLik Test L.Ratio p-value

1 13 1938.125 1994.107 -956.0625

2 14 1934.920 1995.207 -953.4598 1 vs 2 5.205331 0.0225

The result shows that we reject H0 in favour of Ha at a significance level of a = 0.05,
that is, the inclusion of the function gðdjÞ ¼ d2j was significantly important in explaining
the extra variability between observations taken at different times.

Moreover, the gof between fitted and observed values for m.hue.3 model has,
practically, the same value as presented for the m.hue.2 model.

R> summary(m.hue.3, type = “lcc”)$gof

[1] 0.9915905

Although the parameter δ22 was important to explain the variability by method, we can
see in Fig. S3 that the model assumptions were still not completely fulfilled because there is
a possible correlation among residuals for the colorimeter methodology. However, this
model is more plausible than the first one. The sample semivariogram estimate is
presented in Fig. S3B and it appears to vary non-randomly around 0.9. Further studies
involving the inclusion of correlation structures for the within-group residuals to compute
the longitudinal concordance correlation function are still in development.

The agreement profile changes over time, being smaller at the beginning of the
experiment and increasing to values close to 1 (Fig. 5). If we consider values above 0.80 for
the lower bound of the CI as an indication for interchangeability between the use of the
two methods, the colorimeter could be used from the 12th day onwards.

The blood draw dataset
The blood draw dataset was used as an example in the cccrm package developed by
Carrasco et al. (2013). This dataset comes from a study conducted by the Asthma Clinical
Research Network (ACRN) (Martin et al., 2002). In this double-blinded clinical trial, 144
subjects were randomized to one of six inhaled corticosteroid combinations, and the
primary aim of the study was to estimate dose-response curves with respect to adrenal
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Figure 4 Estimate and 95% bootstrap confidence interval for the (A) longitudinal concordance
correlation (LCC); (B) longitudinal Pearson correlation; and (C) longitudinal accuracy between
observations measured by the scanner and the colorimeter with points that represent the (A)
sample CCC, (B) sample Pearson correlation coefficient and (C) sample accuracy, using model
(5). Full-size DOI: 10.7717/peerj.9850/fig-4
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suppression. After two weeks, the subjects were admitted for overnight testing once a
week, for the next five weeks (visits). Blood samples were collected hourly between
8pm and 8am. Then, the plasma cortisol area under the curve (AUC) was calculated using
the trapezoidal rule. A secondary objective here was to assess the agreement of the results
from blood sampling performed hourly or every two hours, when calculating the
plasma cortisol AUC. As an example, we used all individual profiles whose expected value
can be described using a second or lower degree polynomial mixed-effects model:

R> data(bdaw, package = “cccrm”)

R> bdaw$SUBJ < - as.factor(bdaw$SUBJ)

R> bdawMET < - as.factor(bdaw$MET)

R> levels(bdaw$MET) <- c(“1 hour”, “2 hours”)

R> length(unique(bdaw$SUBJ))

R> library(nlme)

R> fit_list <- lmList(AUC ~ poly(VNUM, 4) | SUBJ, data = bdaw)

R> int <- intervals(fit_list)

R> zero_included <- function(x) {

+ flag <- min(x) < 0 & max(x) > 0

+ return(flag)

+ }

R> selected_subj<- names(

+ which(apply(int[,,4], 1, zero_included) &

+ apply(int[,,5], 1, zero_included)))

R> bdaw_subset <- subset(bdaw, SUBJ %in% selected_subj)

The scatterplot of the AUC taken every two hours as a function of the AUC taken each
hour and plots of the 19 selected individual profiles are presented in Fig. 6.

There seems to be a moderate to strong agreement between the plasma cortisol AUC
measurements from blood draw samples taken hourly and every two hours (Fig. 6A).
Furthermore, we can also see high variability between subjects and that the AUC decreases
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Figure 5 Estimate and 95% bootstrap confidence interval for the (A) longitudinal concordance
correlation (LCC); (B) longitudinal Pearson correlation; and (C) longitudinal accuracy between
observations measured by the scanner and the colorimeter with points that represent the (A)
sample CCC, (B) sample Pearson correlation coefficient and (C) sample accuracy, using the model
that estimates different variances for each method. Full-size DOI: 10.7717/peerj.9850/fig-5
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over time for some subjects (Fig. 6B). We begin by fitting a first degree polynomial model
with a subject random intercept and slope model.

R> m.bw.1 <- lcc(data = bdaw_subset, subject = “SUBJ”,

+ resp = “AUC”, method = “MET”, time = “VNUM”,

+ qf = 1, qr = 1)

R> summary(m.bw.1, type = “lcc”)$gof

[1] 0.8850628

This model gives only a moderate fit to the data and this is confirmed by the estimated
CCC between fitted and sampled values of 0.885 (Fig. 7C). Two possible reasons are
(i) we need a higher degree polynomial mixed model to correctly describe some subject
profiles, and/or (ii) a possible heteroscedasticity across time, potentially caused by three
somewhat different subject profiles, that should be included in the model (Fig. 7B).
In addition, the normality assumptions for the within group error and random effects were
easily checked by producing the normal plot with simulation envelope (Figs. 7E and 7F)
and seem to be broadly plausible.

R> plot(m.bw.1, which = c(1, 2, 4, 5, 6))

We now fit a second degree polynomial model with random subject effects for all
coefficients and compute the 95% bootstrap confidence intervals based on 10.000
bootstrap samples for LCC, LPC and LA components.

R> m.bw.2 <- update(m.bw.1, qf = 2, qr = 2, components = TRUE,

+ time_lcc = list(from = 3, to = 7, n = 50),

+ ci = TRUE, nboot = 10000, show.warnings = TRUE,

+ lme.control = lmeControl(msMaxIter = 200,

+ msMaxEval = 600, maxIter = 200), numCore = 4)

Convergence error in 0 out of 10000 bootstrap samples.

The summary of the mixed effects model used to estimate LCC, LPC and LA is
presented below:

R> summary(m.bw.2)

Linear mixed-effects model fit by REML

4

5

6

4 5 6
AUC every 1 hour

AU
C

 e
ve

ry
 2

 h
ou

rs

1 hour 2 hours

3 4 5 6 7 3 4 5 6 7

4

5

6

Visits

AU
C

A B

Figure 6 (A) Scatterplot of the blood draw data considering all repeated measurements (best fit line
in blue and equality line in black), and (B) individual profiles of the plasma cortisol AUC calculated
from measurements taken every hour and every 2 h. Full-size DOI: 10.7717/peerj.9850/fig-6
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Data: Data

AIC BIC logLik

33.93831 75.73247 -3.969153

Random effects:

Formula: ~fmla.rand - 1 | subject

Structure: General positive-definite

StdDev Corr

fmla.rand(Intercept) 3.1753653 fm.(I) fd=qr=T

fmla.randpoly(time, degree = qr, raw = TRUE)1 1.3857944 -0.986
fmla.randpoly(time, degree = qr, raw = TRUE)2 0.1404521 0.961 -0.991
Residual 0.1269293

Fixed effects: resp ~ fixed - 1

Value Std.Error DF t-value p-value

fixed(Intercept) 6.0147 0.75167 166 8.0018 0.0000

fixedmethod2 hours 0.0471 0.26203 166 0.1796 0.8576

fixedPoly1 -0.0277 0.32744 166 -0.0847 0.9326

A B C

D E F

Figure 7 (A) plot of standardized residuals versus fitted values, (B) standardized residuals versus visits; (C) observed values versus fitted values;
(D) normal Q-Q plot with 95% simulation envelop for the conditional residuals; and (E and F) normal Q–Q plot with 95% simulation envelop
for random effects. Full-size DOI: 10.7717/peerj.9850/fig-7
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fixedPoly2 -0.0101 0.03315 166 -0.3046 0.7611

fixedmethod2 hours:Poly1 0.0107 0.11083 166 0.0967 0.9231

fixedmethod2 hours:Poly2 -0.0017 0.01101 166 -0.1500 0.8809

Correlation:

fxd(I) fxdm2h fxdPl1 fxdPl2 f2h:P1

fixedmethod2 hours -0.174
fixedPoly1 -0.986 0.167

fixedPoly2 0.961 -0.160 -0.991
fixedmethod2 hours:Poly1 0.172 -0.989 -0.169 0.165

fixedmethod2 hours:Poly2 -0.168 0.966 0.168 -0.166 -0.993

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.97645030 -0.48398412 0.03947773 0.59922913 1.87267383

Number of Observations: 190

Number of Groups: 19

Now we can test the hypotheses

H0 : s
2
b0 > 0;s2

b1 > 0;sb12 > 0;s2
b2 ¼ sb02 ¼ sb12 ¼ 0 vs: Ha : D is positive definite

which is equivalent to testing whether the additional variance components of the model m.
bw.2 in relation to m.bw.1 are equal to zero:

R> m.bw.3 <- update(m.bw.1, qf = 2)

R> anova(m.bw.3, m.bw.2)

Model df AIC BIC logLik Test L.Ratio p-value

m.bw.3 1 10 207.642 239.792 -93.821
m.bw.2 2 13 33.938 75.732 -3.969 1 vs 2 179.70 <.0001

and these results clearly show that those additional variance components are important.
Furthermore, the CCC between fitted and observed values also indicates that model m.
bw.2 fits better than model m.bw.1, and m.bw.3.

R> summary(m.bw.1, type=“lcc”)$gof

[1] 0.8850628

R> summary(m.bw.2, type=“lcc”)$gof

[1] 0.9830078

R> summary(m.bw.3, type=“lcc”)$gof

[1] 0.8856218

Figure 5 shows the fitted LCC, LPC, and LA for concentration of plasma cortisol AUC
between measurements taken every hour and taken every 2 h and their respective 95%
confidence intervals.

R> lccPlot(m.bw.2, control = list(scale_y_continuous = c(0.85, 1)))

R> lccPlot(m.bw.2, type = “lpc”,

+ control = list(scale_y_continuous = c(0.85, 1)))

R> lccPlot(m.bw.2, type = “la”

+ control = list(scale_y_continuous = c(0.85, 1)))
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These results show that even though the trend across time is essentially linear at the
population level, there is a non-linear trend at the individual level to be more investigated.
We can observe that the fitted values and confidence intervals for the LA component were
very close to 1 over time, indicating a very high accuracy between methods (Fig. 8C).
Consequently, the LCC values depend almost exclusively on the LPC, which indicates a
possible problem related to the precision between methods over time, suggesting the use of
blood sampled every hour, rather than every two hours, is desirable for this group of
patients. It is worthy to note that, as the diagnostic seems broadly plausible for the second
degree mixed effects polynomial model (m.bw.2), under this model the LCC, LPC, and LA
are fourth degree polynomials functions of the time variable.

Additionally, as the lcc() function includes the interaction between time and method
as default through the argument interaction = TRUE, we can test if the interaction
effect is necessary using, for example, the following code:

R> m.bw.4 <- lcc(data = bdaw_subset, subject = “SUBJ”,

+ resp = “AUC”,method = “MET”, time = “VNUM”,

+ qf = 2, qr = 2, REML = FALSE, interaction = FALSE)

R> m.bw.5 <- update(m.bw.4, interaction = TRUE)

R> anova(m.bw.4, fit.bw5)

Model df AIC BIC logLik Test L.Ratio p-value

m.bw.4 1 11 -2.5416 33.176 12.271

m.bw.5 2 13 1.2332 43.445 12.383 1 vs 2 0.22520 0.8935

The large p-value (0.8935) obtained from the likelihood ratio test, as well as the lower
AIC and BIC values obtained for model (4) when compared to model (5), suggests no
evidence that a model with different slopes describes the data significantly better.
Therefore, we opt for the reduced model (4) to analyse the blood draw data. Thus, all of
these examples show that our methodology is very flexible and can be applied to many
different data types, but the user should be careful about avoiding overfitting. We have also
created a Shiny app (https://prof-thiagooliveira.shinyapps.io/lccApp/) using simulated
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Figure 8 Estimate and 95% bootstrap confidence interval for (A) longitudinal concordance
correlation (LCC); (B) longitudinal Pearson correlation; and (C) longitudinal accuracy for the
plasma cortisol AUC between measurements taken every hour and taken every 2 h. In addition,
points that represent the sample CCC, sample Pearson correlation coefficient, and sample
accuracy, respectively. Full-size DOI: 10.7717/peerj.9850/fig-8
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data in order to stimulate people to learn more about the LCC and verify how each
parameter’s value can affect the estimation of the LCC, LPC, and LA.

DISCUSSION
The package lcc provides a convenient and versatile tool for estimation and inference
about the LCC, LPC and LA. The estimation of these three statistics provides a complete
evaluation of the agreement between methods over time (Oliveira, Hinde & Zocchi, 2018).
These statistics are also very appealing for graphical illustration.

The package supports balanced or unbalanced (dropouts) experimental designs or
observational studies, multiple methods, inclusion of covariates in the linear predictor
to control systematic variation in the response, and the inclusion of different variance-
covariance structures for random-effects and residuals. Residual diagnostic and goodness
of fit can be evaluated easily via the generic function plot(), which provides up to six
built-in diagnostic plots. Furthermore, the anova(), AIC() and/or BIC() functions can
be used to aid in model selection.

Statistical inference for the estimators of rjj0 tkð Þ, rðpÞjj0 tkð Þ and Cjj0 tkð Þ can be obtained
using bootstrap confidence intervals based on approximations of their empirical
distributions by the normal distribution, or from percentiles of their bootstrap sampling
distribution. These methods are, however, computationally intensive.

To the best of our knowledge, there is no package available to estimate the extent of
longitudinal agreement between methods. The lcc package can be viewed as an
extension of the R and SAS cccrm package developed by Carrasco et al. (2013). This
package handles the time as a factor in the model, and computes the concordance
correlation coefficient, which can be viewed as a measure that summarises the
interchangeability between methods in relation to all their measurements.

The importance in estimating the LPC, as a measure of precision, and the LA, as a
measure of accuracy, was demonstrated in Section 4 (Fig. 5). In particular, both of these
statistics can be used jointly to determine if a moderate or small agreement between
methods at time tk = t is related to a precision or an accuracy problem, as suggested by
Lin (1989); Barnhart & Williamson (2001); Lin (1992); Ma et al. (2010). In the papaya
hue example, the moderate LCC is highly influenced by a moderate LPC, suggesting that if
we increase the number of points observed with the colorimeter on the equatorial
region up to day 10, the colorimeter will probably be able to reproduce the measurements
taken by the scanner. Future studies involve the determination of the sample size over
time based on the least acceptable LCC, assuming we can accept up to a certain amount of
loss in the LPC and in the LA, as discussed by Lin (1992).

It would be useful to mention that, as a naive analysis, the Bland-Altman method
(Bland & Altman, 1986) is commonly used to calculate the mean difference between
two methods (as a measurement of “bias”) with the addition of 95% limits of agreement
(LoA) in the analysis of repeated-measures studies (including longitudinal data). If these
methods are being compared without a ‘golden standard’ reference (Lin, 1989), an
improved Bland-Altman interval approach is preferred (Liao & Capen, 2011).
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Although these approaches are not suitable to analyse repeated-measures designs,
researchers still use it to explore the data because the method is simple to use. However,
even if the Bland-Altman method has observations outside of LoA range, two methods
can have a very high concordance correlation when the correct variance-covariance
structure is accounted for in the model, as discussed by Zhao et al. (2009). This
demonstrates the value of the availability of packages that enable the selection of matrix
structures for random effects and error term when calculating the longitudinal
concordance correlation.

Another interesting remark is that when the systematic difference between methods is
zero, the CCC calculated based on a mixed-effects model is equivalent to the intraclass
correlation coefficient (ICC) (Carrasco, King & Chinchilli, 2009). In the same direction,
the ICC as a function of the time variable is a particular case of the longitudinal
concordance correlation function when S2jj0 tkð Þ ¼ 0. If we consider the repeated measures,
the ICC gives us the percentage of total variability explained by subject over time, and,
consequently, it is not comparable with the LCC in terms of a longitudinal agreement
index between methods.

Finally, all examples discussed in Section 4 show that our methodology is flexible,
and can be applied to many different data types. One limitation of the lcc package is that,
for the time being, the covar argument only allows for including fixed-effect covariates
in the linear predictor. We plan to update our package in the near future to handle with the
inclusion of fixed-effects and random-effects covariates, as well as interaction effects.

CONCLUSION
The lcc package implements methods to estimate the LCC, LPC and LA functions as
well as their bootstrap confidence intervals. In this package, we included different
structures for the variance-covariance matrices of random-effects and residuals, allowing
estimation of the extent of longitudinal agreement between methods under different
assumptions. Functions plot(), for diagnostics, summary() and lccPlot(), for
numerical and graphical summaries, respectively, and anova(), AIC(), BIC(), for model
selection, make the package flexible and easy to use. Furthermore, the mixed-effects
model based approach to compute the LCC allows us to work with both balanced and
unbalanced experimental designs and observational studies.
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