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Moser’s Inequality for a class of integral operators
by

FINBARR HOLLAND (Cork) and DAVID WALSH (Maynooth)

Abstract. Let 1 < p < oo, ¢ = p/(p — 1) and for f € LP(0,00) define F(z) =
(1/z) f3 F{t)dt, = > 0. Moser’s Inequality states that there is a constant Cp such that
o0
sup sup explaz?|F(z}|? — z)dz = Cp
ag1feBy o

where Bp is the unit ball of LP. Moreover, the value ¢ = 1 is sharp. We observe that
I = K f where the integral operator K7 has a simple kernel K. We consider the question
of for what kernels K (£,z), 0 < £, z < o0, this result can be extended, and proceed to
discuss this when K is non-negative and homogencous of degree —1. A sufficient condition
on K is found for the analogue of Moser's Inequality to hold. An internal constant ¢, the
counterpart of the constant a, arises naturally. We give a condition on K that 1 be sharp.
Some applications are discussed.

Introduction. Let 1 < p <C co. Let ¢ denote the exponent conjugate to

p: g =p/(p—1). Let LP denote the class of Lebesgue measurable functionsg
f on (0, 00) such that

17 = ( [ irora)” <o,
0

and let B, denote the unit ball of the resuiting Banach space under the

norm f — || fl,.
If f is Lebesgue measurable on (0, cc), we define

Flz)= i— j‘ f)dt, z>0.
0

The inequality of Moser mentioned in the title may be formulated as
follows.
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142 F. Holland and D. Walsh
THEOREM 1. There is o constant Cy,, depending on p only, such that

o0
(1) sup sup f explaz? | F(x)|? — zldz = C,
agl feB, o]

while

o0

sup f explazd|F(z)|9 — z]dz = o0
feBy 0

for every a > 1.

The purpose of this paper is to extend this result to the case where F ig
given in terms of f by any one of a class of integral operators.

Moser [11] proved a slightly different, but equivalent, formulation. of (1)
for non-negative functions in B, on the assumption that 2 < p, a result that
was subsequently extended to the full range of p by Jodeit [8], Adams [1],
and Marshall [9] amongst others. Apparently the argument given by Adams
in particular is based on an idea of Garsia which was never published. The
above statement follows easily from their work since By, is invariant under
the mapping f — |f] and

F@l <> [Iflta, 2o
0

There are now several proofs of this result in the literature, but the
hest constant Cp, remains to be determined, although Chang and Carleson
[3] have shown that the supremum is attained when p is an integer > 2.
However, thelr work does not yield a description of the extremum function
nor the value of the supremum.

Jodeit and Adams proved the above result by deriving estimates for the
distribution function

A= de(A) =Nz >0:2—a9F(z)? <A}
of 0 £ f € By, where | B} stands for the Lebesgue measure of a subset E of
{—~co,c0).
Recently, McCarthy [10] obtained the following sharp estimate for A —
dy(A):

sup dyp(A) = ulp)A,
0<feB,

where
ap) = (p— 1e 1+ 1;
equality is attained for every A > 0 by the function ¢ — A*/9¢(t/X), where

ety o o<t < ulp),
M”“{QMM)ﬁtzmm,
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and
C(t) = {(P" DNYat/p i 0<t<p,
(t —1)L/e ift > p.

To motivate the results of this paper we note first of all that the relation-
ship between f and F is linear, ' = K f, say, and that K, is a bounded
operator from LP to LP with norm ||K1|l, = ¢. This is a classical result,
which had its beginnings in early work by Hardy, and which was later re-
fined by him and others. A companion result [7] was shown by Hardy and
his co-workers to be true for the adjoint operator K7 defined by G = KTg,
where

G(y):fg-—(si)ds, y>0.
J

Indeed, a duality argument establishes that K7} : L? — LP and | K|, = p.
This circle of ideas suggests the following questions: Are there positive
constants by, O such that

=]
sup sup [ exp[by?G(y)? —y] dy = C}?
b<by 0<gEBy
If so, what are the best such constants?

Before concluding this section we show that this question has a pogitive
answer when p = 2. The result that follows motivates the rest of the paper,
which is devoted to a more complete analysis of a family of operators acting
on LP of which K, is one.

THEOREM 2. In the notation above, by = 1 and Cf = Cy. In other words,
e a]

() sup sup [ exp by’ G(y)* —yldy = Cq
b<10<g€Bs

and
sup [ exp [by*Gy)? —yldy = o0
0<LgeH, 0

for every b > 1.

Proof Let 0 < g € By and define f = Kfg—g. Then f € L? and
o0

£ = 1ET9 - gli =161 -2 [ Glyely) dy+ llgll3
0

[a-] o
d o
R TPRIE: TR S 2 0 12
= IIgHg+0f Gy) dy+0fydyG(y) dy = |lgll3
after an integration by parts, the integrated terms vanishing because
y(G{y))* — 0 both as y — 0 and as y — co. Thus f € Ba. By Moser’s
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theorem,
f explbz?| F(z)|? — :z:] dz < Cy
0

for every b < 1. But it readily follows from the definition of f and an
integration by parts that

F(m):Klf(ac)=% ff(t)dt=G(m), x>0
0

Hence the left hand side of (§) is less than or equal to Cl; thus by > 1 and
if bg == 1 then Cy < Ch.

We have shown above that, given g € Ly, the solution of f = K 10—g
is g = Ky f — f. This reasoning can be reversed. Given f € By, let g =
K1f—f = F-~ f. We observe that F'(z) = —F(z)/x + f(z)/z. In the same
way as we did above, by applying an integration by parts we can show that
lgllz = [If|l2. Indeed, it can be shown that f = K¥g—g and therefore G = F
as before.

It is now clear that by < I and further that if by = 1 then Cy < C%. The
result is immediate.

Preliminaries. We return to Moser’s Inequality as given by (1). In fact,
Moser observed that the integrals are finite for all real e but are unbounded
for a > 1. As noted above, F' = K, f, where the integral operator Ky
has a simple kernel K. We pose the following question: For what kernels
K = K(t,z) can the result (1) be extended? More precisely, suppose K =
K(t,z) is a measurable function on (0, co) x {0, o) and is non-negative and
homogeneous of degree —1 in ¢ and . We assume that

pd-1

fK(t ) dt = fff(u 1)% du = -2
? - :Eq_]‘ 1 U =
0 0 :
exists for each # > 0. For each f € L? we define
(2) H(z) = H(f,z) =z [ K(t,2)f(t)d.
0

It foliows from Hélder’s Inequality that

ry 1/q
H@) <o [ Kt,2)ds) " 5]y,

0

from which we obtain

(3) Y H(D)]? <
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for every = > 0 and for every f € By. From (3) it is immediate that

1
1—ay

oo
sup f expla|H{z)|? — z] de <
FeBy g

for every a < 1/4. .
Our aim is to find further conditions on K which ensure the following:
Let p > 1 and let H be defined as in (2). Then there exists a constant Cp

such that

o0

{4) fs;gp Df expley "M H(2)|! — 2] dz = C).

Before proceeding further there are a number of remarks to be made about (4).

Remarks. I, In the first place the integral exists for all f € L?; this is
a consequence of the fact that for fixed f € LP,

i /e =10.
®) T ()}
In order to see this let & > 0 be given. Choose 1 such that [ | f(£)[F dt < P
and choose § > 0 such that fo‘s K(u,1)f du < 9. Writing

Hiz) =z ffc(t, 2)f(8) dt = j"off(t/g:, DF(t) dt
0 o

- ( T n T)K{t/x,l)f(t)dtzh—klz,
0

b
we have

< ( Jiara)”( [ axuiyi)”
0

0
g 1/q
< fla(n [ Ku)2du) " < el fllp=,
0

while for the second term we have

) < ( e at) " (z T x, 12du) " < clipm) o
b §

if 6z > 1, Le. if 2 > g1 /6. Therefore, for such z, |H(z)| < (|| fl|p+%*/ )=/
and (5) follows. . _
2. We note that Theorem 1 is the special case of (4) in which

{1/93, 0<t <,

(6) . K(t,z) = 0, t> .
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3. We observe that the special kernel {6) is discontinuous at ¢ = =z.
This simple fact is no accident; it peints the way towards the extra condi-
tion required in order to prove the result indicated in (4). Indeed, we shall
show later that some such condition must be imposed on the kernel, for if
K(t,g) = 1/t + z) (¢t,z > 0), then K is smooth and satisfies the previous
requirements but (4) does not hold for K.

The main result. We can now formulate our main result. We continue
to assume the kernel K satisfies the earlier conditions.

THEOREM 3. Suppose the kernel K{t,x) lacks smoothness al 1 = z in
the manner prescribed by the following property: For 0 < uw < 1 let

1 14
Gi(w)'= [ K(t,1)7dt, Ga(u)?= [ K(t,1)?dt;
1-u 1

there extst numbers o, D, 0 < o £ 1,D > 0, such that

Giw)? = O, Gou)?!=0&") {(v—20)
and
(N Du® < |G1(uw)? — Ga(uw)?]  (u—0).
Then there exists a constant Cp, depending on p only, such that
(8) sup f exply ™ H ()| ~ z] dzx = Cyp.
feBy

Before giving the proof it is appropriate to make a number of qualifying
remarks about the statement above.

Remarks. 1. For an arbitrary f € LP the integral in (8) is finite. This
follows from (5).

2. The condition on K is satisfied if for instance K'{u,1) has a simple
discontinuity at u = 1.

3. The fact that the kernel is assumed to lack smoothness on the diagonal
is not significant. The lack of smoothness may occur on any line # = maz for
any m > 0.

4. The constant 1/+ in the exponent may be shown to be best possible
if we impose a certain integral-mean condition on K.

5. This theorem should be compared and contrasted with Lemma 1 of
Adams [1]. Moser’s original inequality is a particular case of both results.

However, neither result is contained in the other since the kernels used are
entirely different.

Proof of Theorem 3. Inthe course of the argument we shall invoke
a number of lemmas whose proof will be given in a later section. Without loss
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of generality we shall assume henceforth that ¢ = 1 and [ is non-negative,
with || fil, = 1. We shall write

1 oo
p=[ Kt,1)7dt, fr= J K@t,1)%dt, sothat fi +Br=1.
0 1

We proceed by adopting the method given in [1] of analysing the distribution
function of the exponent in (8). The basis of this approach is a subtle use
of Holder’s Inequality and a close examination of the cases where equality
almost holds there. To continue, let A be real, 0 < f € B, and set

Ex{f)={z € (0,00) iz~ H@)? <A}, dp(A) = |EA(f)]-

Tt is clear from (3) that we need only consider A > 0. It is a consequence of
(5) that for a given f, df(A) < 2 for large A. For, let us take £ = 1/21+t e,
A > y1/6, in the notation following (5). Then if z € Ej and H(x)? < x/2,
we have z < A+ H(z)? < A+2z/2, which implies 2 < 2A. On the other hand,

By {z: H@) > 2/2) € {z: H@)? = /2} € [0,1/6] € [0, A,

and therefore d¢()) < 2X. As a result the integral which appears on the left
hand side of (8) may be written

o oo (=)

[ e dds(3) = [e7d; (V]G + [eds()dr= [ e (N d

0 0 0
Tf we can show that a number N exists independent of ), f such that d () <
2N then Theorem 3 will follow with C' = 2NV,

Tn order to simplify the exposition we introduce the group of isometries

() : A > 0} on Ly defined by Inf(z) = A/Pf(Az), f € Lp. Tt is clear
that Iy maps L, onto itself and that ()™ =1 /»- For any kernel K

satisfying the conditions above, the integral operator K7, defined on Ly by
Kif(z)= me K({t,z)f(t)dt, has the property that it commutes with I':

F)\Kl = KT\
To see this, let f & L. Then

K f(z) = APE f(Oa) = AP [ K (8 de)f (8 db
0

o a)

= X7 [ (/0K (/3 2)f () db
0

= \M/P TK(u, ) f( ) du = KD f(z).
0
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Next we shall show that Fy\(f) = AEL (I f) for A > 0. We recall that
Ex(f)=A{z € (0,00) : 7 — z(K1 f(2))? < A}
From the commutativity property,
Ex(Inf) =A{y :y — ¢ EQDO W) € 1} = {y 1 y — y* I KL Fy))7 < 1}

={y:y -y KL (y)]? <1}
= {y: dy — Q) [KLf(A)]? < A}
= {y: v Br()} = 3B,

which is the desired result. It follows that ds{A) = Adp, ¢(1), which in turn

gives

sup dr(A)} = A sup ds(1).
fE€By feB;

It suffices therefore to take A = 1 in the sequel and we proceed to obtain a
bound on d(1). Let N be a positive number to be fixed later and let

E=E()=(EnNO,N)U(EN(N,)) = E UE".

Suppose B # § and let # € E”. For any such x we have by Hoélder’s
Inequality °

©)  e-1<HE) =01 f FOOK (4, ) db + j?f(t)K(t',m) at}’
4] T
<={( f 7 dt)l/p( f E(t,1)? dt)”q
0 0
N ( j?fp dt)lfp( TK(:&, 1y dt)l/q}q
l .

i p ® 1/pyq
<o{g/t( [ o) gy f ma) )
0 x
Equality holds in Hélder’s Inequality if and only if

(10)  f(2) =P R (4 2)70 = o MVEK (12, 1) = g (2),

the extremal function at z. The term in curly brackets on the right hand
side of (9} is less than or equal to 1 by another application of H&lder’s
Inequality. It is clear from (10) that = can be arbitrarily large depending
on f. Consequently, if 1/x is small, it follows from (9), on division by z,
that we would have what we may call approximate equality in Hlder’s In-
equality and we would expect that f is close to the extremal function v,.
This is indeed so and it is of key importance in the proof to be able to
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measure the difference. We can do this by means of Clarkson’s Inequali-
ties, and the result given in Lemma 1 says: there exists a constant A such

that
I f —wvallf < A=,

If = vallg < A/z,

2<p<oo,

(11) l<p<?,

provided 1/x < 1.

Already from these inequalities we can deduce that E” is contained in a
finite interval [0, Q(f)]. However, we can deduce more than this on exploiting
the homogeneity of the kernel. Let z,y € E” with 2 < y. It is not hard to
see that if t € Fy(vs) then at € E,(vg,) for all @ > 0. This suggests that we

consider the ratios y/z, 1/z, so we introduce the new variables
y-z 1
(12) U = T 1 ,’.,6 z -

We use Hélder’s Inequality once more as in (9), this time writing the integral
for H as a sum of three parts and applying the inequality to each part
separately to get

w——lg:c{(jf?’dt)]/p(BflK(t,l)th)l/q

. ( jﬁ P dt) 1/p( ?/‘Q:K(t: 1)th) 1/q

T 1

+ ( Tfp dt)lfp( fK(t, 1)¢ dt)l/q}q.
y Yl

It is convenient at this point to introduce the function

1
[ K1),
1/(1+u)

and we note that ¥ (u)¢ ~ G1(u)? as u — 0. The last inequality now becomes

Y (u)? =

@

(13) 1-1/z < {ﬁ}/“( [ dt)m) + ( fy 7 dt)wc;*z(u)

0 e
+ (B — Gg(u)q)lffI( ‘Tfp dt)l/P}q_
Y

It is appropriate alsoc to include here the companion inequality of (13); it is
a consequence of the fact that y € E” and is derived in the same way (see
the case 1 < p < 2 below for the details):
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18) -y {6 -vnye( [ ra)”
0

g

+( j j’Pdt)l/pY(U)+ﬁél/q( Tfp dt)w} :
P Y

We note that the right hand side in both cases is bounded by 1. Invoking
Lemma 2 allows us to assume that there is a number M, depending on p, K
only, such that w < Af for all u satisfying (13). Indeed, it is further true that
if 4 — 0 then so does u, independently of f. The proof of this statemnent is
contained in Lemma 3.

The final step in the proof is to show that there exists ¥ such that u <
Ny for all u,p, f for which (13) holds. For, once this has been established,
then

y—e <N
and hence |E"| € N giving in turn d¢(1) < 2N. As has already been said,
this would complete the proof of the theorem with ¢ = 2N.

Suppose that the claim above i8 not true. Then, for arbitrarily large N
we would be able to find functions f and numbers w, 1 satisfying (13) such
that p < u/N. Since we know u < M it follows that 4 — 0 as N -» co and
consequently that also u — 0.

To finish the argument we shall show that these statements are in conflict
with (7} and this will establish the clain,

Proceeding to the proof of the final step we suppose for definiteness that
G3(u) > Ga(u) for small u. We shall split the argument into two cases and
shall assume first that 2 < p < co.

The case 2 < p < co. We recall (11) says that
(14) I — vyl < Aly < Ap

wheny € B,y > 2, p = 1/z is small. In other words, f is then close to vy,
and it is convenient here to introduce numbers 7;, 1 € 4 < 3, which describe
the difference more explicitly. Accordingly we set

( [ at) " = (8~ Y,
(15) ’

( Tfpdt)l/pmﬁ;/p+n2, ( j‘f fp dt)l/z:
u

I

== Y('U,)q—"l -+ 173,

These definitions make sense if we recall what vy, @1, fs, ¥(u) are. It is
readily seen that fom vhdt = B1—Y (u)?, I vhdt =Y (u)? and fym vhdt = Ba.

&
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Clearly then,

i = |( [ ra) "= ( Jopa)”| < (17 -epma)”
0 0

0
< —uyllp < cul?®,

with similar estimates holding for 7. and r3. Here c is a positive constant,
though not always the same one, and this convention applies hereafter.
Henceforth also, we shall often write ¥ for ¥(u), and G for Gy(u). The
numbers 7; may be positive or negative and they satisfy the consistency
equation

(16)  [(Br=Y(@))? 4 mlP + (857 + ma)? + (Y (w)7 +3) = 1.
From this equation we deduce the second important piece of information we

need about the #;. It is contained in the following relation, whose proof is
deferred to Lemma 4:

A7) B+ el =Y p~ (Y 4 ma)P/p
— L= 1)(mB P + 2By )
+mY 9 (gB") + O}, 3, Y3, niY 9).

Returning now to (13) we have, on substituting from (15) and dropping the
power g,

1= 1/z < BB = Y (@))7 4 m) + Ga)[¥ (w)* ™ + 7
+ (837 4 n2)(Ba — Ca(w))™,
which yields, on expanding by Taylor’s Theorem,
L-1/z < BB (1= Y/ (08) + O(Y™) +m)
+ (87 +m)8H1 - G/ (gba) + O(GF)} + Y71 G2 + Gams.

Cn simplifying we get

Ye/p+GYfq— Y IGs < 1/z+mB" + mBy/0

+ Gams — Gima/(48,/%) + O(¥™).

We notice that we can substitute for two of the terms on the right hand side

using (17), whose significance will now become apparent. On doing this and
recalling that p < 4/N we obtain

(18) Y4/p+Gi/g-YI G,
Su/N+Yp— (Y +m3)P/p
+ {13G — Gina/ (aB'™) + m¥ 9/ (¢617)}
= Yo~ DRBF + 03y~ F) + O(nf, m3, Y29, 2V 9).
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Our purpose is to derive a contradiction from (18) after some inttial sim-
plification. While the right hand side may seem inordinately unwieldy, in
fact many of the terms can be incorporated in a single term of the form
cu®/NY/? because they are of the same order of magnitude. The estimates
for the n;, obtained by means of Clarkson’s Inequality, now allow us to do
this for the three terms in curly brackets. Thus

|n3G2(u)| < culfpua/Q/Nl/p < cu“/Nl/P, ImY(w)i| < cua-l-l/‘p/lep,

with a similar inequality for the remaining term.

Equally important is the fact that all the terms involving 11, 172 may now
be discarded from the right hand side. This fortuitous circumstance owes its
validity to the simple observation that the two terms involving 17,72 have
coeflicients which are constants with negative sign. Since the term in the
square brackets dominates the higher order terms in the n;, 1 = 1,2, we
may safely discard all these terms while still preserving the ineguality. The
remaining “O” term is of the form O(u?®), which, according to Lemma 3,
is of the order cu®/N'/?. Combining all these remarks we can say that the
right hand side of (18) is less than

cu® /NP L ¥ /p — (VI714o3)P /.

Since [na/Y 97| < 1 (uw¥P INYPY o fu®/?) < ¢/N/P the second and third
terms may be combined to give Y'¢{—pna/Y* ! — (§) (/Y12 + .. . }/p,
which is of the order ¥®/N'/?. Finally, therefore, we have in place of (18),

(19) Yi/p+ Gllg— YT Gy < cu® /NP,

However, this is impossible by virtue of our initial assumption (7). The
Arithmetic-Geometric Mean Inequality tells us that the left hand side of
(19) is greater than or equal to 0 with equality if and only if Y = G5, What
we have in (19) Is approximate equality in the Arithmetic-Geometric Mean
Inequality, as we previously had in the Holder Inequality, and an estimate
for the size of the difference between ¥ and G2 may be obtained from this.
We carry out this analysis in Lemma 5 and the result is

g, [3P9 |
Y{w)? — Ga(u)? < G Ve cu® [N/p
< Y9/ 2yl [NV ER) < oy fNY/(2P),

But this is in direct conflict with our hypothesis (7}, which says that Y'(u)?—
Ga(u)? > Du® as v — 0, bearing in mind that N may be arbitrarily large.
It is seen here that the assumption (7} was designed to prevent Y and Gs
from being too close. Therefore {19) cannot hold for arbitrarily large N and
so there exists a constant N such that w < Ny for all u, g, f for which (13)
holds.
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We assumed above that both 8; > 0 and 8y > 0; the argument is easier
if one of these is zero and this applies also to what follows. The final step
has therefore been demonstrated and the proof of the Theorem is complete
for the case 2 < p < oo.

The case 1 < p < 2. In this case the estimate which replaces (14) is,
by Clarkson’s Inequality,

If = wlls < C(l/y)l/q

with an exponent 1/g on the right hand side, whereas in the previgus case
the exponent was 1/p. This difference marks a change in the analysis and
unfortunately the straightforward estimates that we used in the last case no
longer suffice entirely. This will become obvious in a moment.

From the inequality above we have the following estimates for the e
Ini| < ellf —vyllp < c(1/y)V/9, 1 € i < 3. The inequality (18) follows as
hefore but we shall not be able to discard terms on the right hand side as

easily as before. The difficulty arises with the term n3. We cannot a priori
assume that

(20) I13Ga(w)] < cu® /NP,

as we had in the previous case. Indeed, on the basis of this estimate for 3
we can only say that |nsGa(u)| < cul/9u®/9/NV/9, and the exponent of u
may well be less than a. In order to surmount this difficulty we shall need
to derive another estimate for 73 similar to that in the previous case, which
will in turn give an analogue of (20). To achieve this, we note that y € B
implies that y—1 < H(y)¢ and we simply write down the counterpart of (13)
for this case.

This yields, on first using the homogeneity and then dropping the power g,

voiso{( [ ra)”( ] Kewra)”
0 0
w( [ ra)” (] reaa)”

o0

N ( j?fp dt) 1/13( f K(i,y)th) 1/Q}‘1

Yy
S y{[(Br = Y OUP 4 ) (81 — Y)H/9
Y ]y 4 (8377 - ma) B

8

Consequently,

1= 1/y< B — YO (B~ YOUT 4 1Y + Y9+ By + 10 BL09,
which reduces to



@
154 F. Holland and D. Walsh lm

0< 1y +usY + B/ + By’ — mY 9/ (aB/") + O(Y™).
On substituting from (17} we get
0< Ly+mY +Y¥p— (Y +n3)"/p
— o — 1) (m3B VP 4 3By
+mY9/(aB") ~ mY Y/ (aB'?) + Onf n3, Y, n}y ),
Cancelling and rearranging gives
(21) (YO )P fp S p+msY +Y9/p
— p— 1087 + ngBy )
+O(nt, n3, Y9, niY ")
ST+ me)Y - Y g+ p+O(Y).
Put z =13 + ¥ %71 so that z > 0. Then z satisfies
(22) P LpYz—(p— 1Y+ pu+ O(Y).

This imposes a bound on z which in turn imposes a bound on 73 as we shall
see. We define F(z) = 2P — pYz + (p — 1)Y7, so that (22) becomes

(23) F(z) < pu+ O(Y™),

Appealing to Lemma 6 we get the required bound on 7, namely |ns] <
cu”‘/p/Nl/(z‘ﬂ. The proof now proceeds as in the case 2 < p < oo. We look
at (13) again and derive the inequality (18) as before:

(18) Yi/p+Gijq—-YilG,
Su/N+Y o~ (Y +n3)? fp

+{n3Gs — Gim/(aBa'™) + mY9/(aB™)}

— 5o~ DB 36y
+ O(nl ) 7721 qus nlyq)
We now have the right estimates for the term in curly brackets:
|"'73G2i < cum/Nl/(M): |771qu < Cuu-{—l/Q/Nl/q,

with a similar estimate for its third part, so that this term may certainly
be replaced by cu®/N'/120) We estimate the sum of the second and third
terms just as before and find that this is of the order u®/N1/(39). Similar
considerations as before now lead finally to

Y+ Gljp— YLt < eu/NVCD,

But we know that this gives a contradiction.
The proof of the Theorem is therefore complete.
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Auxiliary lemmas. We give here the proofs of the lemmas invoked in
the course of the proof of the Theoremn.

Suppose ({2, u) is a measure space and p, ¢ are conjugate exponents with
1<p< oo Iff,gare measurable functions on (2 with valies in [0,00], and
I ftr = llallg = 1 then, by Hélder’s Inequality,

0<i- f fgdu
_ I?;
with equality holding if and only if f = g9~ !. The question arises: how small

is f— g% if 0 < 1— [, fgdu? An answer to this is given by Clarkson’s
Inequalities [1):

THEOREM {Clarkson). Suppese u,v € LP.
(i) If 2<p < oo, then

w4 ull?

_ P P P
” £l [umof il
P p
(i) If 1 <p < 2, then
(25) u+vl|?  |u—ulf® < lullf -+ [v]E q“l.
2 o 2 o - 2

With the aid of these inequalities we provide an angwer to the question
posed.

LemmA 1. Let f,g be non-negative meosurable functions on §2 with
1fllp = llgllg = 1. Suppose that

Eml—ffgd,u>0.
Re!
(1) If 2 <p<oc, then
if =g HE < p2Ple.
(if) If 1 < p < 2, then
I = g% g g2 e
Proof Let v = g?7*. Then v € L*(du) and [[v]|} = |gli§ = 1. By the
Hahn-Banach Theorem we have

HH “ —-sup{ [f (f +u)hdu| - h e L2(dp), i|h||q—1}

§{f fgdu+fquﬂ}
2 2

> 5‘ f (f+v)gdﬂl =
§2

(2-8)=1-.
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Now let 2 < p < 00. We deduce from the last displayed inequality and (24)

that
P
pE
< —_— L

from which (i) follows. The proof of (ii) is similar. This completes the proof
of Lemma 1.

f—v
2

COROLLARY. Let a, b be non-negative sequences such that 3 af =3 b}

=1 and
1<) ab;.
Then, if 2 <p < oo, we have

> o - BITHP < p2r e,
while if 1 < p < 2, we have

(o - )" < q2imte.

LEMMA 2. There is a constant M depending on p, K only, independent
of the values of x, y, f, such that w < M for all u satisfying (13) or (13').

Proof Suppose otherwise and choose functions f, and numbers z,,, yn
€ E", zy < Y, such that the corresponding sequence {u, } tends to infinity.
Then 2, /yn — 0 and 1/yn = {(1/2n){(@n/yn) < &n/{(Nyn) — 0 as n — oo;
furthermore,

limY {u,)? = 5.
T
Recall the inequality (13") related to (13):

1- 1/ < {( f 12 dt)llp(ﬁl — ¥ (ug) )4
o

vn = 1/pyq
o frma)” Vi) + &' [ fra) "}
Tn Y
Thus the right hand side can he made arbitrarily close to one. We define
finite sequences (a;(n)), (bi(n)), 1 <1 < 3, as follows:

Yn
(n)? = f 2 dt, ag(np—f FP dt,
Un
bl n)q wﬁl - Y(un L] b?(n) - (un)7 bS(n)q ﬁ27
and note that Ez L ai(n)f=1= Zle b;(n)?, and Ei=1 ai(n)bi(n) > 1 -
1/Yn. Assuming first that 2 < p < oo and applying the Corollary we deduce

a(n)f = [ f2dt, a
0
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that
E la; — b3 P < Afy,, and therefore lima, (r)=0.
b

But we already know that |} f,, — Uz, |5 < Af2, < AN < 5,/3if N is large
enough. Since fo vl dt = B, this gives a contradiction and establishes our
claim in case f3; > G

If 1 =0 then §3 =1 and ¥ (u,,) = 0 for all n > 1. The argument above
vields f.™ f2dt < A/yn. But the fact that ||f,, — vy, |? < A/z, implies that

ff: vE dt)llp < (A2 )P + (A/y,) /P, However,

T«;P dt-—f Kt/a:n, 4 dp = 1}%1{15 (t,1)7 dt
Ty 1

—->1 as n — oo,

These two estimates give a contradiction if we assume, as we may, that IV
is sufficiently large. The case 1 < p < 2 follows similarly.

Next we show that if u, u, f satisfy (13') and x — 0 then also u — 0,
independently of f.

LEemMMA 3. Suppose u, pu, f satisfy (13'}. Then

< {cn” if 2<p < oo,
et/ ifl<p<

Proof. If 4 is bounded away from 0 then since u is bounded by Lemma
2, the inequality above is clearly satisfied. It suffices therefore to consider
values of u which are close to 0. Accordingly, we shall take a sequence {f,.}
of functions and real sequences {z,}, {ya} With 2.,y € EY{f2), Tn < ¥n,
such that (13') is satisfied and lim, z, = co. We assume 1 < p < 2 and
apply the Corollary above to (9) on writing

ai {(n)? =T fdt, ax(n)f = }of}f dt,
0

o =p, b= fo,
and we obtain |( ;™ f2dt)H/P - BH?| < efz/9, with a similar inequality

with 2, replaced by y,,. From theqe we deduce that

Y
<6177 + eyl 1y —

(J )’

(817 — /ey /2P

< C/5571,/(3%1) = 6#111/(:04)_

It follows that lim,, ff: fPdt = 0 and we note that the convergence to
0 depends only on u,. We now apply the Corollary once more, this time to
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(13") with the sequences

Ty o)
a(ny = [ 2, ag(np—f fodt, as(n)f = [ f2dt,

0 Un
bi(n)? = f1 — ¥ (un)", bz( ) =Y(ua), bs(n)? = p,
and we conclude that |as(n) ~ ba(r)7~ 1| < ¢/ys’?. Consequently,
V(un)?™ ! <€ cul/ D 4 epl/t < cul/P0)

or Y(u,)? < c,u,li/ 7. Since ¥ (un)? > Du? the result follows for this case. The
case 2 < p < oo is similar. This completes the proof.

Remark. We note that the hypothesis (7) has been used above.
Our next step is to prove a relation between the 7.
LeMMA 4. The gquantities 1; introduced in (15) satisfy
(A7) mB By =Yy~ o - DORBT B8
= (YT )P Jp 4+ Y (gByP)
+O(n,n3, Y1, njY%).
Proof. We begin by setting down the consistency equation for the n;:
(16) (8" m)? + (B = Y (@)D 4] + (V) 4 73) = 1.

The usual Taylor expansion gives _
6 14 o7 (5) 837 + 0G| + (v ey
+ (=YL +m(B - YTV =1,
Also,
1+ m(B = YO PP =1+ ppu P (L — Y9/ )7
= (B)mBr 0= vos8 e + Ot
=1+ pn /71 + Y@/(pﬂl) + 0¥ 4y}
+ (2>m “2/’”{1 + + O(YZQ)} +0md)

=1+4+pmBT" +m Yq/ﬁl'H/I’
2 Y e

(o ()

12y T oY, 4i).

Therefore, on multiplying this by £ — Y9, we get on the right hand side,
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pmY? P 1-2
v (o)
+mY/BP + Oy ¥, i, 2y ?)
=Bi+pmB Y- (o~ )Yy /5"
( )77 'Bl 9/p + O(Yzq:'fhﬂhyq)
Combining our results we get, from (16),
L= (f1 + B2)+ P(?hﬁll/q + ?72/62/‘1) -1
+ (YT pa)P + ( )[nlﬁf P 3y

~ (p— \m¥YY/B"" + OV, 3,53, Y ),

B+ pmﬁi/q -

whence
mBy ! +mBy T =Y p— Lo — 1) P +nfy ")
— (Y ms)P [p+ mY Y/ (g5 )
+ OV, m2 miY9),
which is (17), the required result.

We turn next to the situation of approximate equality in the Arithmetic-
Geometric Mean Inequality and an estimation of the closeness of the terms.
We formulate the result in general terms.

LeEmMMA 5. Let 1 < p < oo and let g be the conjugate index to p. Suppose
a>b>0and 0<a/p+blg—a'/Pb/? < §. Then a —b < +/3pqbé when §
is small.

Proof Put a = e°, b = e* where s >¢. Then
e fp+et/qg— eS/Ptfe — e{1/p+ e /g — e(t—a)/q}
1+t~ —-8)?/2+ ...
s
g

- (1+(t—s)/q+((f—8>/q)2§l‘!+“‘)}

PR AT
B es{ (t?q;) +& 3!;) (1-1/¢%) +O((t - 3)"‘)}

(o) Lo (1))




160 F. Holland and D. Walsh
_fa-b EL_ a—b\3all +(141/9)/3]
o b 2pq b 2pq

a—b\"
(%))
_ 2
_ alle=b)/Y)
3pg
when (a — b)/b is small enough. Since the left hand side is less than § we

get ((a—b)/b)* < 3pgd/a or (a—b)/b < /3pgé/a. The required result now
follows.

COROLLARY. If (19) holds then
V(u)? ~ Gp(u)? < cu®/NY/3P),

Proof Let a =YY b= G in Lemma 5.

For the final lemma we take 1 < p < 2 and we recall that z = ng+¥Y?71 >
0, F(z) = 2F —pYz + (p ~ 1)Y4, and the inequality (23) holds, namely
F(z) < pu + O(¥?9), Since ¥(u)%? < cu®u® < cu®p!/? by Lemma 3, and
since u < u/N, we may rewrite (23) as follows:

(23) F{z) < cu®/NY1,

LEMMA 6. Under the above conditions there is a constant ¢ depending
only on p, such that |ng| < cu®/?/N/(24),

Proof. It is readily checked that F(z) has alocal minimum at z = V7%,
that is, when 5z = 0, and that F(z) = 0 at this point. Since, according to
(23), F is small, we expect that z is close to the minimum value and we
shall therefore write z = (1 - 6)Y¢7!. Consequently,

P(z) =Y{(1+8)" —p(L+6) +p - 1} = YIL(8),

say. From (23), YIL(6) < cu®/N1/4. Since, according to our assumption,
Y4 > Dwu®, it follows that L(§) must be small. Elementary calculus shows
that L(6) has a local, indeed an absolute minimum, at § = 0, with value 0,
and is strictly decreasing to the left and strictly increasing to the right of 0.
This implies that é can be made arbitrarily small depending on N. We may
therefore expand L{§) to obtain

Y‘f{ @) 8%+ 0(53)} < cu® /N4,

There is therefore a constant ¢ such that 62 < ¢/N1/9, ie. [§] < ¢/NV/20),
and so |3 = 16Y Y| < cu®/P/N/(29), The proof is complete.

This completes the proofs of the auxiliary lemmas.
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Some applications. We present here a few applications to demonstrate
the power of Theorem 3.

L. The kernel for fractional integration of order » with 1/p < r < 1 is

K(t,z)= { (z—t)" e ift <,
' 0 if t > .

We require r > 1/p to ensure that H(z) = H(f,z) is defined for all f € L?.
We then have, with our earlier notation,

T

H(@)=z [ 27" (z—t)"" f(t) dt,
0

while

o) 1
o= [ K1) du= [ (1-u)® dy=
0 0

where 0 < oo < 1. In this case

11
1—g(l—7) &’

1 1
Gi(w)? = [Kt1)%dt= [ (-0 Vdt=ua,
1-1u 1—u
while G5 = 0. The condition (7) is satisfied with @ = 1 — ¢(1 — 7). While
Theorem 3 of course applies and (8) follows, it is worth pointing out that

the analysis simplifies enormously and a much simpler proof can be given.
We note that 82 = 0 while (9) gives

g

z—1< a:c{(l/a)lfq( f i dt)l/;p}q = :r:( fm i dt)q_l,
0 0

from which we deduce that f;o fBdt < ¢/x. This inequality can be used
instead of {11) and Clarkson’s Inequality is not needed. The rest follows
routinely. The case r = 1 gives the original inequalify of Moser.

II. We consider the operator adjoint to the previous one. With the same
kernel as in I, the integral operator in this case is, for f € LP,

H(z) =12 Tff(x,t)f(t) dt = j‘ot'”"(t — )" F(t) dt;
a b
also,

o0 o0
p= [ K@ufdu= [ (u=1)"Du""du=Bla,q-1).
0 1
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Again (7) is satisfied with G1(u) = 0 and
14

Ga(w)?= [ (-1 D d~u /o (u - 0).
1
The result therefore holds for this kernel.
We remark that if r = 1 then a = 1l and ™1 = (B(l,g~ 1)) ' =¢~ 1,

which equals 1 if and only if ¢ = 2. In other words, the following dual to the
original Moser Inequality holds:
Let H{z) =z [~ (f(¢)/t) dt. There is a constant C}, such that

f exp{(¢ - V)H () —2}dz < G,
0

for all f € B,.
One might wonder as to what can be said if the kernels in T and 1T were
combined. Thus define
_Jlz—-t)"eTm if0 <t <,
K(t,z) = { (t—z)" " ift> o
We readily infer from what has been said above that G'1(u)? ~ Ga(u)4, as

u — 0, and therefore (7) does not hold. However, a slight modification of
the kernel does work.

III. Define

. _Jdlz—t)eT" f0<t<a,
K(t,z) = { (t—z) "4 ift> x,

where d is positive and unequal to 1. Tt follows that v = fom K{t,1)4dt =
d¥/a+ Blo,q— 1) and |G (u)? — Ga(u)?| ~ |d? — 1|u®/a as u — 0, so that
{7) holds. The result (8) is true in consequence.

A counter-example. We show next that some lack of smoothness on
the kernel K is necessary in order that (8) holds. To see this we shall take
a smooth kernel K(f,y) = 1/(t+v), y,¢ > 0, which does not satisfy (7),
but does have all the other properties required of it, and shall show that (8)
does not hold for K,

Suppose ¢ = 2 so that ¥ = j'0°°(1 +u)"?du = 1. We fix z > 0 for the
moment and take a particular function f, namely, the normalized extremal

at z, f(t) = Vz/(t+z) Hf”o = 1. Then

(26) H(y) —yf d.'t y\/_f o (t+m)dt : j"_/_ylgg

t+y
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on using partial fractions and evaluating. We wish to show that

(27) f exp{H(y)* — g} dy = ;f p{@% (1og§-)2 ~vjdy

is unbounded as z — co. Under the change of variable ¥ = s, the right
hand side of {27) becomes
2

foollitn(nt) o

Tor our purpose it is enough to consider values of s in the range 0 < s < 1 for
which (1—s)/s < & where ¢ is fixed and small, say ¢ < 1/10. In other words,
s lies in the interval [1/(1 4+ £),1). The Taylor expansion for the logarlthm

yields
loglzlog(l-{—l—s)
8 5
1—s 1(1~3>2 1(1—5)3 ((1%5)4)
= -z + = +0 s
s 2 ] 3 8 s
and so
] _ 1 N2 N3
log(l/s)ml 1~1 1-3 +_1 N\ 4o 1—s ‘
1-—s 8 2 s 3 8 5

Hence, on squaring,

(%):é{l—1:S+g“"”)z@ﬁ)W((l?)S)}

for the values of & considered. From (27), therefore, we have

[~}

[ ep{HY)” - y}dy

R s (e BT

1/(l+£

1
>z f exp{m(l—s)(S*l)/s}dsw-
1/{1+£)
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say. Make a change of variable, u = (1 — 5)+/x, so that
ev/z/{1+e)
I=x f exp(—u?/s) du.
0

Now u?/s < u2?(1 +¢), and consequently,

ev/a/(1+¢]
I>z exp(—u*(1+£)) du.
0

Letting v = u+/(1+ ), whence 0 < v < £4/2/(1 + ¢), we have

I> ( f exp(—vz)dv)x/:c/(1+s)—>oo as & - 00,

0

because the integral on the right hand side tends to /7 since ¢ is fixed. Tt
follows that the left hand side of (27) tends to co at least as fast as ¢1/z and
the assertion is proved.

A similar argument works for other values of g. We take f{f) =
AYP[(t + )9 where A = (g — 1)z?, so that [ fllz = 1. Then,

T f(t) Up [ dt
S df = AP

Uft-l—y 5f(t+m)q-1(t+y)

Al/p

=P, 1,q,1 -z
qu_g(q_l) (11 7Q7 3‘/y)ﬂ

where we have recourse to a hypergeometric function for the evaluation of
the integral [5]. We also note that v = 1/(¢ — 1). We choose values of y for
which y/z is close to 1, expand F(1,1,¢,1 — x/y) by the hypergeometric
series, proceed as above, and the required result follows.

The sharpness of the constant. At this point we come back to the
question whether the constant =1 in (8) is sharp. In considering this ques-
tion we looked at the case of the kernel of fractional integration of order .
When r = 1, the original case of Moser, we know it is sharp. Our investiga-
tion showed that it is sharp also for general r, 1 /p < r < 1, and that this
depends on a special property of the fractional integral operator. Specifically,
if f e L? and if

£@) = [ e -ty an
0

then Hardy and Littlewood [6] showed that f, belongs to the little Lipschitz
class Ay with § = » — 1/p. Using this property it is not hard to prove
our assertion. Moving now to the general case, we would like to state the

icm

Moser’s Inequality 165

property we _require explicitly in terms of the kernel K. Accordingly, we
impose the following integral-mean condition on K- There exist positive
constants M, g, § with Ag < 1 such that

(28) { J 1K (u,1) - K()\u,l){qdu}l/q SMOI-2°, MN<A<I
0

THEOREM 4. If, in addition, the kernel K satisfies the condition (28)
then the constant 1/v in (8) is best possible.

Proof. Suppose that x > 0 is fixed for the moment and that f is
the normalized extremal at z: f(t) = AK(t,2)7"! where AP = xI=1 .
With H(y) = Ay [ K(t,y)K{t, z)¥' dt, we have H(z) = Azyp /2971 =
(@1 /) Pz /p11 = (29)/9. Tt can now be shown that there exists
M > 0 such that
y-zl|

(29) |H(y) — H(z)| < M2/ . z/2<y<a

Assuming for the momeént that (29) holds, and, without loss of generality,
that ¢ = 1, we proceed to prove our assertion. By (29) we have, for 2/2 <
y <&,

)
H(y) 2 H(z) — Myz/a|¥ "2
X

Suppose now that b is any number greater than one. We then have

ANE
) —@/ZO;

provided that 1 — M)(y — z)/2|® > b=1/9(y /&)'/2. That this is possible for
y close to z is a consequence of the following argument: Let
Flu)y=1-MQ1—u)? -7Vl gcy<1.
Since F is continuous and F(1) = 1—4719 > 0, it is clear that there exists
Uy < 1, depending only on F, such that
Flu) 2 F(1)/2>0
Consequently, for upz <y <z, bH (17 —y >0, and

&
f exp[bH (1) — y]dy > z(1 - wp),

WU

¥y—

bH(y) —y > bw(I—Ml

for ug < u < 1.

Since ug is independent of & the integral tends to infinity as & — oco. We
have shown that (8) is not valid for arbitrary b > 1 and therefore that the
constant is best possible.
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It remains to prove (29). We therefore take /2 <y < z and once more,
without loss of generality, i = 1. We have, on substituting v = ¢/y,

AW) - H@) =25 fKu DK (uy/a, 1)~ du — =7 f K (u,1)%du
- ;“11/75 T{K(%l)K(uy/m,l)““l~K(uy/m, 1)7} du
0
- [ G/, 1) - (1)) du
]
=11+I2 -‘[‘Ig

By Holder’s Inequality,

nl < =L f K(uy/z,1)* K (v, 1) - K{uy/=,1)| du

IA
H»d
e
k=]
—t—,
@iy oc

=] 1/p &
Yy q r—Yy < 1/q Ty
gxl/p{ OfK(u,l) dv} M|— 1 < Myt —
Next,
£y 1q(Z Y
Il < z/p | z

To handle I, we first observe that the inequality a? — b < g{a — b)a?™!
holds for 0 < & < a. Now,

0
x max{ K {u, )97, K(uy/z, 1)} du

< f B (1) ~ K(uy/z, 1] du} i

j? K (u, 1) - K({uy/z, 1) du < g jo | K (u, 1) ~ K(uy/z,1)]|
0

X { Of [ (u, 1)? + K (uy/z, 1)@]@}””

5
—x
S31/qu’yT’ )
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since z/y < 2. In other words,

]
;]2| < 31/qu9:1/q y—z

Combining these estimates and assuming 0 < § < 1, we get

|H(y) = H(z)| < (M +3PqM + 1)22/0| =2

which is (29). This completes the proof.

Remarks. 1. The condition (28) is satisfied for the case of the fractional
integral operator. In fact, the argument of Hardy-Littlewood referred to
above can be used virtually unchanged to show that (28) holds with & =
r—1/p.

2. The assumption (28) makes for some redundancy in the hypothesis of
Theorem 3. For then we have Gy(u)? = O(u®) as u — 0 with & = §, and

similarly for Gg. To see this, let A < 1,4 =1 — A. Then fl K(t, 1) dt =
fo [K(t, 1)7 — AK(M¢,1)9] di. Now the estimate for Io obtamed above gives

1
J 1K@, 1)7 — K (A 1)9]dt < Ma(1 - MY,
]

for some M,. Consequently,

1
J K1)~ MK (A,1)7] dt = fl[K(t,l)‘i‘—K(At,l)’f]dt
0

0
1
+ [ KM, 1)7 = AK(At,1)9] dt
0
and taking absolute values,

1
[ K@ D7dt < Myl - A + (1~

L-w

281 € Ms(l— Ay = Mau?,

on supposing, as we may, that 1/2 < A < 1. This gives the desired estimate
for Gl-

3. The kernel K(t,y) = 1/(t +¥), y,t > 0 satisfes (28) (with § = 1,
Ao = 1/2, when p = 2) but (7) does not hold.
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The stability radius of an operator of Saphar type
by

CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. A hounded linear operator T on a complex Banack space X is called an
operator of Saphar type if its kernel is contained in its generalized range Moy T*(X) and
T is relatively regular, For T of Saphar type we determine the supremum of all positive
numbers ¢ such that T — AT is of Saphar type for |A| < &.

I. Terminology and introduction. Throughout this paper let X de-
note a Banach space over the complex field C and let £(X) denote the
algebra of all bounded linear operators on X. If ' € £(X), we denote by

N(T) the kernel and by T'(X) the range of 7". The generolized range of T is
defined by

T (X) = ﬁ " (X).
n=1

We write o(I') for the spectrum of 7 and g(7") for the resolvent set C\ o(7).
The spectral radius of T is denoted by r(T).

In [6, Theorem 3] T. Kato showed that for 7" in £(X) the set
ox(T) = {A € C: (T = M)(X) is closed and N(T — \I) C (T — A[)>(X)}
is an open subset of C. Since o(T") € ¢x (7)), the complement ox(T) =
C\ ex(T) is a compact subset of o(T). We showed in [10, Satz 2] that
00(T) C ok (T), thus ok (T) # 0.

We call T' € L(X) relatively regular it T'ST = T for some § € £(X). In
this case T'S is a projection on T'(X) (hence 7'(X) is closed), I — ST" is a
projection on N (T, and we say that S is a pseudo-inverse of T :

T is called an operator of Saphar type if T is relatively regular and
N(T) € T°(X). This class of operators has been studied by P. Saphar [9]
{see also [2] and [12]). Operators in this class have an important property:

THEOREM 1. T' € L(X) is of Saphar type if and only if there is a neigh-
bourhood U C C of 0 and a holomarphic function F : U — L(X) such
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