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IDEAS AND RESULTS FROM THE THEORY OF
DIOPHANTINE APPROXIMATION

デッタ ディキンソン (Detta Dickinson)1
Department of Mathematics, Logic House

NUI Maynooth, Republic of Ireland
$\mathrm{E}$-mail: ddickinson@maths.may.ie

In many areas ofmathematics problems of small divisors, or exceptional
sets on which certain desired qualities do not hold, appear. The obvious
question that then arises is how large are these exceptional sets? This
question leads to other questions regarding what do we mean by size.
For example there exist many sets of Lebesgue measure zero which
have positive Hausdorff dimension implying that although small they
are still uncountable. Similarly how does one compare two sets of the
same Hausdorff dimension – recent results using Hausdorff measure
are one possibility.

Diophantine approximation began as a study of how closely real num-
bers could be approximated by rationals. The aim of this paper is to
show how the classical results of real Diophantine approximation have
been adapted and extended to deal with other kinds of approximation
in other spaces. Three cases will be specifically discussed, those being
the classical $\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}^{-},\cdot$

. approximation by algebraic numbers and Diophan-
tine approximation on manifolds. There are many results regarding
the latter but various important open problems remain. At the end
of this article it will be shown that even by a simple translation the
approximation properties of a manifold can change.

To introduce notation, the example of the classical set of $\psi-$ approx-
imable $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}$ forms will be considered. Let

$\mathrm{W}(\mathrm{m}, n;\psi)$ $=$ { $X\in \mathbb{R}^{mn}$ : $|\mathrm{q}X-\mathrm{p}|<$ $\psi(|\mathrm{q}|)$

for infinitely many $\mathrm{q}\mathrm{E}$
$\mathbb{Z}^{m}$ , $\mathrm{p}\in \mathbb{Z}^{n}$ }. (1)

Here $X$ is an $m\cross n$ matrix, $\mathrm{q}$ is a row vector and $\mathrm{p}$ is a column vector.
If the approximating function $\psi$ is of the form $\psi(r)=r^{-}$” then the set
will be denoted by $W(m, n;\tau)$ . Clearly when $m=1$ the set $W(1, n;\psi)$

is the set of points $\mathrm{x}=$ $(x_{1}, . , , x_{n})\in \mathbb{R}^{n}$ which satisfy the system of
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inequalities

$.=1, \ldots n\max_{1}|x_{\mathrm{i}}$
$-p_{i}/q|<\psi(q)/q$

infinitely often. Thus, it is the set of points in $\mathbb{R}^{n}$ which are close to
infinitely many rational points of the form $(p_{1}/q, . | . ,p_{n}/q)$ . On the
other hand consider the case $n=1.$ In this case $W(m, 1;\psi)$ is the set
of points $\mathrm{x}\in[0,1]^{m}$ which satisfy the inequality

$|$ q.x $-p|<\psi(|\mathrm{q}|)$

for infinitely many vectors $\mathrm{q}\in \mathbb{Z}^{m}$ and integers $p\in$ $11$ (here, the dot
represents the usual scalar product between two vectors). Hence, this
set consists of those points in $\mathbb{R}^{m}$ which are “close” (within $\psi(|\mathrm{q}|)/|\mathrm{q}|$ )
to infinitely many rational hyperplanes with equation q.x $=p.$ It
should be obvious that all rational points $(p_{1}/q, .l\mathrm{D} ,p_{n}/q)$ are in
$W(1, n;\psi)$ for all $\psi$ and all rational hyperplanes with equations q.x $=p$
are contained in $W(m, 1;\psi)$ . The question then arises as to whether
there is anything else in these sets. The size of 14 $(\mathrm{r})\mathrm{z},$ $n;\psi)$ has been
completely determined in terms of Lebesgue measure, Hausdorff di-
mension and Hausdorff measure as detailed below. If $A$ is a set then
the Lebesgue measure of $A$ will be denoted $|A|$ .
Theorem 1 (Khintchine-Groshev). Let $\psi$ : $\mathbb{R}^{+}arrow \mathbb{R}^{+}$ $be$ a function
and supppose that for $m=1$ and 2, $r^{m}\psi(r)^{n}$ is decreasing. Then

$|$ $W$ ( $m$ , $n_{}$
. ))) $|=\{$

oo if $\sum_{\mathrm{r}=1}^{\infty}\psi(r)^{n}r^{m-1}=\infty$ ,

0 if $\sum_{r=1}^{\infty}\psi(r)^{n}r^{m-1}<\infty$ .
The case $m=1$ was proved by Khintchine in [23] and Groshev [20]

proved the result for general $m$ .
Theorem 2 (Dodson). Let $\psi$ : $\mathbb{R}^{+}arrow \mathbb{R}^{+}$ $be$ a decreasing function and
let A be the lower order at infinity of $1/\psi$ . Then

$\mathrm{W}(\mathrm{m}, n;\psi)=\{\begin{array}{l}(m-\mathrm{l})n+\frac{m+n}{\lambda+1}if\lambda>\frac{m}{n}mnif\lambda\leq\frac{m}{n}\end{array}$

The result was proved for $W(1,1;\tau)$ by Jarnik [21] and independently
by Besicovitch [12] and is commonly called the Jarnik-Besicovitch $\mathrm{T}\mathrm{h}\triangleright$

orem.
The convergence part of the Khintchine-Groshev theorem and th$\mathrm{e}$

upper bound of the Hausdorff dimension in Theorem 2 ar$\mathrm{e}$ obtained
with straightforward covering and counting arguments. In what follows



57

(and above) the sets to which we are approximating will be called res-
onant sets; for example above, the resonant sets for II $(1, n;\psi)$ are the
rational points with common denominator $q$ and the resonant sets for
$W(m, 1;\psi)$ are the rational hyperplanes. To prove the divergence half
of the Khintchine-Groshev theorem and to determine the lower bound
for the Hausdorff dimension in Theorem 2 and indeed for any analogues
or generalisations of these theorems, detailed information regarding the
distribution of the resonant sets is needed. In fact, to extend or gen-
eralise these theorems to other spaces most of the work is in obtaining
such information. To this end, various general ideas have been devel-
oped to consider these problems. In particular, we draw attention to
the regular systems of Baker and Schmidt [1] and the ubiquitous sys-
tems of Dodson, Rynne and Vickers [19] leading to the local ubiquitous
systems of Beresnevich, Dickinson and Velani [7]. Regular systems were
developed in order to investigate approximation by algebraic numbers
and ubiquitous system were developed when considering approxima-
tion by rational hyperplanes. Previous methods were not particularly
useful when the resonant sets were not positively separated and had
dimension $\geq 1.$ It has been shown that with a slight change, regular
and ubiquitous systems are equivalent [25] when the resonant sets are
zero dimensional (points). Many adaptations of these systems are now
in use – the idea of a local ubiquitous system is presented below (in
[7] the system is called locally $m$-ubiquitous where $m$ is a measure on
a space $\Omega$ , however in this paper only Lebesgue measure is used). For
simplification, given the setting of this paper, the definition and the
theorem following are not given in $\mathrm{f}\mathrm{u}\mathrm{U}$ generality. For further details
the reader is referred to [7].

Let 0 denote a compact Lebesgue measurable set. Let $R_{\alpha}$ denote a
resonant set indexed by $\alpha$ and let $\mathrm{d}_{\alpha}$ be a weight assigned to this set.
The set of all resonant sets will be denoted by $\mathcal{R}$ and ) denotes the
dimension of each $R_{\alpha}$ . Let $J_{n}=$ {a : $k^{n}\leq$ $\mathrm{f}1_{\alpha}$ $\leq k^{n+1}$ } where $k$ $>1$ is
some fixed constant. We will use $B(R_{\alpha}, \delta)$ to denote a $\delta$-thickening of
the resonant set $R_{\alpha}$ ; i.e.

$B(R_{\alpha}, 5)$ $=$ { $x\in\Omega$ : dist $(x,$ $R_{\alpha})<\delta$} .
The system $(\mathcal{R}, \beta)$ is said to be a local ubiquitous system with respect
to the function $\rho$ if there exists a constant $\kappa$ $>0$ such that for every
ball $B\subset\Omega$

$|B \cap\bigcup_{\alpha\in J_{n}}B$( $R_{\alpha}$ , $\rho(k^{n})$ ) $|\geq\kappa|B|$

for $n$ sufficiently large. The main difference between the local ubiqui-
tous systems for Lebesgue measure and the original ubiquitous systems
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in [19] is the range in $\sqrt n$ which means that a Khintchine-Groshev type
theorem can be proved together with a Hausdorff measure result (see
below); as is shown in [7] this restriction on the range of $J_{n}$ can be
somewhat relaxed. The definition in its full generality requires con-
ditions on the measure (automatically satisfied for Lebesgue measure)
and some intersection conditions, on the measure of a thickened resO-

nant set with an arbitrary ball, which are satisfied in the cases we will
be considering. Basically this definition means that the set of resonant
sets with weights in a certain range, when thickened by an appropri-
ate amount cover a given proportion of any ball. The set of points in
$\Omega$ which lie within $\psi(\beta_{\alpha})$ of infinitely many resonant sets $R_{\alpha}$ will be
denoted by $\Lambda(\psi, \mathcal{R})$ , that is
$\Lambda(\psi, \mathcal{R})$ $=$ { $x\in\Omega$ : dist $(x,$ $R_{\alpha})<\psi(\beta_{\alpha})$ for infinitely many $R_{\alpha}\in \mathcal{R}$}

$=$ $\mathrm{n}_{N=}^{\infty}x$ $\bigcup_{\beta_{a}>N}B$ ( $R_{\alpha}$ , $l(l_{\alpha}’))$ .

Theorem 3. Let $\Omega$ be a subset of $\mathbb{R}^{d}$ and suppose that $(\mathcal{R}, \mathrm{f}1)$ is $a$

locally ubiquitous system with respect to $\rho$ and that $\psi$ is a decreasing
function. Assume that either

$\lim_{iarrow}\sup_{\infty}\frac{\psi(k^{i})}{\rho(k^{i})}>0$ (2)

or

$\sum_{i=1}^{\infty}(\frac{\psi(k^{i})}{\rho(k^{i})})d-\gamma=\infty$ $(3)$

Then
$|\mathrm{A}$( $\#$ , $\mathcal{R}$) $|=|\Omega|$ .

Let $f$ be a dimension function such that $r^{-d}f(r)arrow\infty$ as $rarrow 0$ and
is decreasing and furthermore, suppose that $r^{-\gamma}f(r)$ is increasing. Let

$G= \lim_{farrow}\sup_{\infty}f(\psi(r))\psi(r)^{-\gamma}\rho(r)^{\gamma-d}$ .

If $G<$ oo and there exists a constant $c$ such that $\rho(k^{i})$ $\leq \mathrm{c}\rho(k^{\dot{|}+1})$ then
$H^{f}(\Lambda(\psi, \mathcal{R}))=\infty$ if

$\sum_{i=1}^{-}\dot{.}\frac{f(\psi(k^{l}))}{\psi(k)^{\gamma}\rho(k^{i})^{d-\gamma}}=\infty$ .

Also, if $G=$ oo then $fl^{f}(\Lambda(\psi, \mathcal{R}))=\infty$ .
In the classical case it is not difficult to show that the set of rational

hyperplanll es with equations $\mathrm{q}X=\mathrm{p}$ are locally ubiquitous with respect
to $\rho(\mathrm{r})$

$=r^{-}(\mathrm{r}\mathrm{o}+n)/n$ . Here, as the set of $\psi$-approximable numbers is

$Also_{J}$ if $G=\infty$ then $fl^{f}$ ( $\Lambda$ ( $\psi$ , $\mathcal{R}))=\infty$ .
In the classical case it is not difficult to show that the set of rational

hyperplanll es with equations $\mathrm{q}X=\mathrm{p}$ are locally ubiquitous with respect
to $\rho(r)=r^{-(m+n)/n}$ . Here, as the set of $\mathrm{V}$’-approximable numbers is
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invariant under integer translations, $\Omega$ is taken as $[0, 1]^{mn}$ . The dimen-
sion of the hyperplanes is $7=(m-1)n$ and the weight is $|\mathrm{q}|$ . Also,
$W(m, n;\psi)$ can be written as $\Lambda(\phi$,7% $)$ where $\mathrm{q}$ is the set of such hy-
perplanes and $/(\mathrm{r})$ $=\psi(r)/r$ . Hence, the above theorem immediately
implies the divergence half of the Khintchine-Groshev theorem and
also shows that the Hausdorff measure of 14 $(\mathrm{r}\mathrm{r}\mathrm{z}, n;\tau)$ is infinite at the
critical dimension $(m-1)n+ \frac{m}{\tau}A_{\frac{n}{1}}+$ (this is the case when the dimension
function $/(r)$ $=r^{s}$ where $s=(m-1)n+ \frac{m}{\tau}+\pm_{\frac{n}{1});}$ this was first proved
in [17].

Now, consider the case of approximation by algebraic numbers. Here,
the resonant sets will be algebraic numbers $\alpha$ of degree $\leq n$ and the
weight of each resonant set will be its height $H(\alpha)$ (the maximum of
the coefficients of its minimal polynomial). Let $I\mathrm{f}_{n}(\tau)$ denote the set
of $x\in[0,1]$ such that the inequality

$x-\alpha|<(H(\alpha))^{-(n+1)\tau}$

is satisfied for infinitely many algebraic numbers $\alpha$ of degree $\leq n.$

Clearly Ki(r) $=$ W(m, 1; $2\tau-1$ ). Approximation by algebraic num-
bers was originally discussed by Baker and Schmidt [1] when they de-
termined that the Hausdorff dimension of Kn{r) was $1/\tau$ for $\tau>1.$

Since then a Khintchine-Groshev theorem has been obtained by Bernik
(convergence) [9] and Beresnevich (divergence) [3]; the latter obtained
a “best regular system” which was then used by Bugeaud [13] to solve
the question of Hausdorff measure, (also determined in [7]). This “best
regular system” shows that the set of algebraic numbers with degree
at most $n$ is a local ubiquitous system with respect to the function
$\rho(r)$ $=r^{-(n+1)}$ . Obviously every algebraic number is the root of some
integer polynomial so the set Kn (r) is closely related to the set of $x$ for
which the inequality $|7$ $(x)|<H(P)^{-v}$ is satisfied for infinitely many
integer polynomials $P$ of height $H(P)$ and degree $n$ , see [10] for details
(if $|7$ $(x)|$ is small then $x$ must be close to a root of $P$ ). Rewriting
this, shows that this is the same problem as considering the set of
points lying on the Veronese curve $\{(x_{1}, ’ |( , x_{n})\in \mathbb{R}^{n} :. i=x_{1}^{i}\}$ which
are also in $W(n, 1;v)$ and this leads to the question of Diophantine
approximation on manifolds.

To state the problem generally we will now consider points which
are restricted to some $m$-dimensional submanifold $M$ embedded in
Euclidean space $\mathbb{R}$n. Here the two main types of approximation which
arise have very different characteristics depending on whether the $\mathrm{r}\dot{\mathrm{e}}\mathrm{s}\mathrm{o}-$

nant sets are rational points (simultaneous approximation) or rational
hyperplanes intersected with the manifold (dual approximation). First
the case of dual approximation will be considered as the results that



so
exist here are very similar to those of the classical set although the
proving of them was a great deal more difficult. Let $L(M;\psi)$ denote
the set of dually $\psi$-approximable points lying on the manifold $M$ em-
bedded in $\mathbb{R}^{n}$ : that isフ

$L(M;\psi)$ $=$ { $\mathrm{x}\in M$ : $|\mathrm{q}.\mathrm{x}-$ $p|<$ $\psi($ $|\mathrm{q}|$ )
for infinitely many $\mathrm{q}\mathrm{E}$ $\mathbb{Z}^{n},p\in \mathbb{Z}$}, (4)

again if $\psi(r)=r^{-}$” then the set will be denoted $L(M;\tau)$ . A good
account of many of the results can be found in [10]. Since this book
was published there have been some major advances. First, it was
shown by Kleinbock and Margulis [24] that the Lebesgue measure of
$L(M;n+\epsilon)$ was zero for all non-degenerate manifolds if $\epsilon>0$ proving
that if $M$ is non-degenerate then it is extremal. This solved a long
standing conjecture of Sprindzuk. Things advanced further when a
complete Khintchine-Groshev theorem for such manifolds was proved
[4], [i1] and [6]. Obviously the Lebesgue measure of $M$ is zero if $m<n$
so instead we take the Lebesgue measure induced on the manifold.
Regarding other results, R. C. Baker [2] showed that the Hausdorff
dimension of the $\mathrm{Z}(\mathrm{F};\tau)$ with $\tau>2$ was 3/(r+l) for any planar curve
$\Gamma$ which has non-zero curvature almost everywhere. There also exists a
lower bound for the Hausdorff dimension of any extremal manifold [14]
but the upper bound remains an open problem. A Hausdorff measure
result for non-degenerate manifolds was obtained in [7] – the results
in [24] were enough to show that the resonant sets (the intersection
of hyperplanes, with equations q.x $=p,$ with the manifold $M$ so they
have dimension $m-1$ and weight $|\mathrm{q}|$ ) were locally ubiquitous with
respect to the function $\mathrm{p}(\mathrm{r})=r^{-(n+1)}$ . The Hausdorff measure was
shown to be infinite on the divergence of the appropriate volume sum
(as in Theorem 3).

Turning to simultaneous Diophantine approximation on manifolds
another example of the type of question which might arise is: for which
$x\in \mathbb{R}$ are the inequalities $|x-p/q|<\psi(q)$ and $|x^{2}-r/q|<\psi(q)$ simul-
taneously satisfied infinitely often? This is equivalent to asking which
points lying on the parabola with equation $y=x^{2}$ are also in $W(1,2;\phi)$

where $\phi(r)=\psi(r)[r$ . The results for simultaneous approximation on
manifolds are rather more curious than in the dual case and much less
is known. First we define the set

$S(M;\psi)$ $=$ {$x\in M$ : $\max|qx_{i}-p_{i}|<\psi(q)$

for infinitely many $\mathrm{p}\in \mathbb{Z}^{n}$ , $q\in \mathbb{Z}$ }; (5)
as before if $\psi(r)=r^{-}$” the set will be denoted $S(M;\tau)$ . Recent results
indicate that the Hausdorff dimension will have a different formula

for infinitely many $\mathrm{p}\in \mathbb{Z}^{n}$ , $q\in \mathbb{Z}$ }; (5)
as before if $\psi(r)=r^{-\tau}$ the set will be denoted $S(M;\tau)$ . Recent results
indicate that the Hausdorff dimension will havea different formula
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depending on the size of $\tau$ . In [8] a Khintchine-Groshev theorem was
proved for planar curves with non-zero curvature almost everywhere. It
was also shown that the Hausdorff dimension of $5(\mathrm{F};\tau)$ where $\Gamma$ is such
a curve is (2-r)(l $+\tau$ ) when $1/2\leq\tau\leq 1.$ (For $\tau\leq 1/2,$ Dirichlet’s
Theorem implies that the set is of full measure.) On the other hand,
for $\tau>1$ different results are obtained for different curves, unlike in the
dual case where they all had the same properties. For example, it is not
difficult to show (using Wiles’ Theorem) that if $\Gamma$ is the curve satisfying
the equation $x^{n}+y^{n}=1$ for $n>2$ then $\mathrm{S}(\mathrm{T};\tau)$ is empty for $\tau>n-1.$

Also, if $\tau>1$ it has been shown that if $\Gamma$ represents the parabola
(given by $y=x^{2}$ ) $[5]$ or the unit circle centred at the origin [15] then
$5(\mathrm{F}, \tau)=1/(1+\tau)$ . Similarly, when $\Gamma$ is a polynomial curve of
degree $n$ the Hausdorff dimension is 2/[n(r+l)] [16] for $\tau>n-1.$

Although together these results completely solve the problem for the
parabola and the circle the obvious questions are what happens for
other curves and in the case of polynomial curves of higher degree
what happens in the middle range $1\leq\tau\leq n-1$ ? These questions
are as yet unanswered. As can be seen the results in simultaneous
Diophantine approximation on manifolds depend very much on the
arithmetic properties of the manifold whereas in the dual case they
depend solely on the geometric properties (curvature for example). To
illustrate these peculiarities we will investigate polynomial curves in $\mathbb{R}^{2}$

and show that even when one manifold is a simple translate of another
its simultaneous approximation properties may change.

Let $\Gamma=$ { $(x,$ $y)\in[0,1]\cross$ I: $y=P(x)$ } where $P$ is an $n\mathrm{t}\mathrm{h}$ degree
integer polynomial, and $I$ $\subset \mathbb{R}$ is a suitable interval. The results below
can be proved for any box (rather than [0, 1] $\cross$ I) but restricting $x$

to $[0, 1]$ reduces some technical calculations. The remainder of the
results in this paper will show that when $\Gamma$ is translated by some vector
$\mathrm{a}=(\alpha, \beta)$ then its approximation properties change depending on how
well approximable the vector a is. As an example let $n=2$ , $P(x)=x^{2}$

and a $=(0, \alpha)$ ; i.e. we are considering points on a parabola shifted
vertically by a distance $\alpha$ . Let $\mathrm{F}(\mathrm{a})=\sup(\tau$ : $\alpha\in W($ 1, 1; $\tau)$ }. Hence,
if $\tau>$ F(a) then $\alpha\not\in W(1,1;\tau)$ . Let $\Gamma(\alpha)=$ P(x) $y)\in[0,1]^{2}$ : $y=$
$x^{2}+\alpha\}$ , then we are interested in the set

$S(\Gamma(\alpha), \tau)$ $=$ { $(x, y)\in\Gamma(\alpha)$ : $|x-p/\mathrm{c}\mathrm{y}|<q$
$-\tau$ , $|y-r/q\mathrm{l}$ $<q^{-\tau}$

for infinitely many $p$ , $q$ , $r\in \mathbb{Z}$}. (6)

Lemma 1. Assume $\tau>1.$ $S(\Gamma(\alpha),\tau)=/)$ for $\tau>2\omega(\alpha)+$ $1$ .
As already mentioned, for the parabola $\Gamma$ with equation $y=x^{2}$ it is

known that $\dim(S(\Gamma, \tau))=1/(1+1)$ so that $S(\Gamma,\tau)$ is an uncountable
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set for all $\tau>1.$ It is well known that for almost all ct $\in[0,1]$ , $\omega(\alpha)=1.$

Hence, this lemma implies that $5(\mathrm{F}(\mathrm{a}), \tau)$ is empty if $\tau>3$ for almost
all $\alpha$ .
Proof. Let $(x, y)\in$ 5(F(a), $\tau$ ) so that

$x$ $=$ $\frac{p}{q}+\epsilon$

$y$ $=$ $\frac{r}{q}+\mathrm{j}/$

where $\epsilon=\epsilon(p/q)$ , $\eta=$ $/(r/q$ and $\epsilon$ , $7=o(q^{-\tau-1})$ , for infinitely many
$p,q$ , $r\in \mathbb{Z}$ . Then

$\frac{r}{q}+\eta=\frac{p^{2}}{q^{2}}+2\epsilon\frac{p}{q}+\epsilon^{2}+\alpha$.

Hence
$q^{2}\alpha-rq-p^{2}=o((q^{2})^{\mathrm{L}^{1}A-r}2)$

which is impossible for infinitely many $p$ , $q$ , $r\mathrm{E}$ $\mathbb{Z}$ if $\tau>2\omega(\alpha)+1$ .
Therefore $S(\Gamma(\alpha), \tau)=\emptyset$ as required. $\square$

More generally we can prove the following theorem. Let $\mathrm{F}(\mathrm{a})=$

$\{(x, y)\in[0,1]\cross I: y=P(x+\alpha)+\beta\}$ where a $=(\alpha, \beta)$ and $P$ is an
$n\mathrm{t}\mathrm{h}$ degree integer polynomial. Also let

$v(\mathrm{a})=(\begin{array}{l}P(,\alpha)+\sqrt P’(\alpha)/2!P’(\alpha)\vdots P^{(n-1)}(\alpha)/(n-\mathrm{l})!\end{array})$

For a vector $\mathrm{v}\in[0,1]^{n}$ let $\omega(\mathrm{v})=\sup\{\tau : \mathrm{v}\in W(n, 1;\tau)\}$ . Again, for
almost all vectors $\mathrm{v}\in[0,1]^{n}$ , $\omega(\mathrm{v})=n.$

$\emptyset \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}$

$4$ . Assume $\tau>n-1$ If $\tau>n\omega(v(\mathrm{a}))+n-1$ then $5(\mathrm{F}(\mathrm{a}), \tau)=$

Again, it has already been mentioned that if $\Gamma$ is the curve with
equation $y=P(x)$ then $\dim(S(\Gamma, \tau))=2/[n(\tau+1)]$ so that the set is
uncountable for all $\tau>n-1.$

Proof. Let $\mathrm{x}\in$ 5(F(a), $\tau$ ) so that

$x$ $=$ $\frac{p}{q}$ % $\epsilon$

$y$ $=$ $\frac{r}{q}+$ $\mathrm{t}7$ ,

$x$ $=$
$\wedge-+\epsilon q$

$y$ $=$ $\frac{r}{q}+\eta$

where $\epsilon=\epsilon(p/q)$ , $\eta=\eta(r\prime q)$ and $\epsilon$ , $\eta=o(q^{-\tau-1})$ , for infinitely many
$p$ , $q$ , $r\in \mathbb{Z}$ . Then

$\frac{r}{q}+\eta=\frac{p^{2}}{q^{2}}+2\epsilon\frac{p}{q}+\epsilon^{2}+\alpha$.

Hence
$q^{2}\alpha-rq-p^{2}=o((q^{2})^{\frac{l^{--\prime}}{2}})$

which is impossible for infinitely many $p$ , $q$ , $r\in \mathbb{Z}$ if $\tau>2\omega(\alpha)+$ 1.
Therefore $S(\Gamma(\alpha), \tau)=\emptyset$ as required. $\square$

More generally we can prove the following theorem. Let $\Gamma(\mathrm{a})=$

{ $(x,$ $y)\in[0,1]\cross$ I: $y=P(x+\alpha)+\beta$} where $\mathrm{a}=(\alpha, \beta)$ and $P$ is an
$n\mathrm{t}\mathrm{h}$ degree integer polynomial. Also let

$v(\mathrm{a})=(\begin{array}{l}P...P\end{array}$

For a vector $\mathrm{v}\in[0,1]^{n}$ let $\omega(\mathrm{v})=\sup\{\tau : \mathrm{v}\in W(n, 1;\tau)\}$ . Again, for
almost all vectors $\mathrm{v}\in[0,1]^{n}$ , $\omega(\mathrm{v})=n.$

$\emptyset \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}4$

. Assume $\tau>n-1$ If $\tau>n\omega(v(\mathrm{a}))+n-1$ then $S(\Gamma(\mathrm{a}), \tau)=$

Again, it has already been mentioned that if $\Gamma$ is the curve with
equation $y=P(x)$ then $\dim(S(\Gamma, \tau))=2/[n(\tau+1)]$ so that the set $\mathrm{i}_{\mathrm{S}}$

uncountable for all $\tau>n-$ 1.

Proof. Let $\mathrm{x}\in S(\Gamma(\mathrm{a}), \tau)$ so that

$x$ $=$

$y$ $=$

$\frac{p}{q}+\epsilon$

$\frac{r}{q}+\eta$ ,
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where $\epsilon=$ e $(\mathrm{p}/\mathrm{q})$ , $\eta=\eta(r/q)$ and $\epsilon$ , $\eta=o(q^{-\tau-1})$ . We have $y=$

$P(x+ \alpha)+\beta=\frac{r}{q}+\eta$ . There are various ways of rearranging this
equation and one such is

$q^{n}[P(\alpha)+’]$ $+$ $q^{n-1}pP’( \alpha)+\frac{q^{n-2}p^{2}P’(\alpha)}{2!}+\supset$ c $-+ \frac{qp^{n-1}P^{(n-1)}(\alpha)}{(n-1)!}$

$+$ $p^{n}-rq^{n-1}=\eta q^{n}+$ R(p/q, $\alpha,$
$\epsilon$ )

where $R$ (p/q, $\alpha,$
$\epsilon$ ) consists of the remaining terms all of which contain

$\epsilon$ . The RHS of this equation is $o(q^{n-\tau-1})$ Let $\mathrm{q}_{\mathit{0}}=(q^{n},pq^{n-1},$
$\ulcorner 3\mathrm{C}$ , $qp^{n-1}$

then the equation (which must be satisfied infinitely often) can be
rewritten

$\mathrm{q}_{\mathit{0}}$ . $v(\mathrm{a})-(rq^{n-1}-p^{n})=o(q^{n-\tau-1})$

As $|\mathrm{q}\mathit{0}|$ $\leq q^{n}$ we have
$\mathrm{q}_{\mathit{0}}.v(\mathrm{a})-(rq^{n-1}-p^{n})=o(|\mathrm{q}_{\mathit{0}}|^{(n-\tau-1)/n})$

which is impossible if $\tau>$ nu(v(a)) $+-$ $n-$ $1$ . Hence $S(\Gamma(\mathrm{a}), \tau)=\emptyset$ as
required. $\square$

Clearly there are many more questions to be considered such as is
$\mathrm{n}\mathrm{u}(\mathrm{v}(\mathrm{a}))+n-1$ best possible – almost certainly not given that the
$\mathrm{q}_{\mathit{0}}$ is of such a particular form. The other obvious question is what
happens in the middle range $1\leq\tau\leq$ nu(v(a)) $+$- $n$ –1 if it exists
and can anything be said regarding curves which are not polynomial?
Similar questions can be asked regarding higher dimensional manifolds
- in particular polynomial surfaces embedded in $\mathbb{R}^{d}-$ These and other
questions are the subject of ongoing work.
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