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Abstract
Although classical significance testing is the most commonly used inferential technique in quantitative geo-
graphy, it is far from the only choice, and in some circumstances may not be the most appropriate. In the
statistical literature and other disciplines, its utility has come under question in a number of contexts. This
report overviews current progress in the development of quantitative inferential approaches, and considers
their use and appropriateness in a number of human geographical contexts.
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I Inference matters for
quantitative geographers

In a time where terms such as data science are

applied widely, the discipline of statistics is

sometimes overlooked (Widen et al., 2015).

However, one concern in ‘traditional’ statistics

of importance in human geography is that of

inference. Data analysis in human geography

is carried out to understand the world – mea-

surements, surveys and various forms of volun-

teered information are explored, analysed and

modelled to generate insights into underlying

processes and situations. Inference in this

framework is the process of making deductions

about the latter by observing the outcome of the

former. It is therefore an essential part of quan-

titative geographical research.

It is timely to consider inference for a number

of reasons. Firstly, within statistics – and by

implication spatial statistics – standard statisti-

cal approaches to inference (classical inference)

are being questioned. More generally, there is a

longstanding debate in geography – perhaps ini-

tiated by Gould (1970), and re-visited by Bruns-

don (2001), scrutinizing current practice as a

tool for geographers – focusing on assumptions

of homogeneity (characteristics of data being

the same everywhere) and spatial independence

(events at one location are not correlated to

nearby events). Secondly, data scientists are

also questioning these approaches, for different

reasons (e.g. Gigerenzer, 2004). Here, criticism

rounds more broadly on the fact that ‘tradi-

tional’ hypothesis tests do not necessarily pro-

vide answers to the questions that data analysts

frequently need to ask – a ‘right answer, wrong
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question’ situation. Thirdly, a number of

observers report that classical inference is

widely misunderstood (Sterne and Davey

Smith, 2001; Sterne, 2002). Relatedly, some

studies stress the idea of correctly interpreting

the testing procedures, rather than applying

them mechanistically (see Spicer and Gangloff,

2016).

II Key ideas of classical statistical
inference

1 The ‘classical’ approach and p-values

For many, the most familiar concept of statisti-

cal inference is the p-value, although arguably

this is frequently explained as part of a proce-

dure (plug numbers into a formula, check

whether p is greater than 0.05 or not) rather than

as an idea. The underlying idea is expressed by

Wickham et al. (2010: 974), who state:

Unlike the criminal justice system, in the statisti-

cal justice system (SJS) evidence is based on the

similarity between the accused and known inno-

cents, using a specific metric defined by the test

statistic. . . . To determine the guilt of the accused

we compute the proportion of innocents who look

more guilty than the accused. This is the p-value,

the probability that the accused would look this

guilty if they were actually innocent.

The SJS analogy is helpful to outline some

issues with the use of p-values as set out below

(although it suggests scepticism if convicting on

the basis of statistical evidence in an actual

courtroom).

2 What does a p-value tell us?

A p-value measures the plausibility of the null

hypothesis. Of itself, it doesn’t imply anything

directly about alternative hypotheses. Of

course, for a given null hypothesis, there are

many alternatives. Indirectly, potential alterna-

tive hypotheses do influence the testing proce-

dure, mainly through the choice of the test

statistic. But it is quite possible to test null

hypotheses that spatial parameters are zero in

both spatial lag and spatial error models, with

both tests rejecting H0. One may conclude there

is some kind of spatial process occurring, but

little has been learned about which spatial pro-

cess model might apply. So in a sense, this takes

only the very first footsteps toward understand-

ing an underlying spatial process. In terms of the

SJS analogy, this is fine if we know what charge

is levelled at the accused, but offers no way of

determining what the crime was, if it is not

known at the outset. The above tests screen for

the fact that there is no spatial process – an

important task but one which fails to determine

what kind of spatial process is occurring.

3 Multiple significance tests

Another important issue is the multiple use of

significance tests. This is especially relevant for

geographers concerned with identifying spatial

clusters such as ‘hot spots’ of disease or crime,

since it arises in the use of scan statistics such as

the Geographical Analysis Machine (GAM) of

Openshaw et al. (1987) or the scan statistic of

Kulldorf (1997). Rather than using data to

assess a single hypothesis or identify a specific

model, the aim is to look in a number of geo-

graphical locations to identify anomalies from

the norm, to answer questions such as: ‘Are

there certain places where the incidence of some

disease is notably higher than the population

average?’

A null hypothesis that the local occurrence

rate is the population average is applied. Places

in which the p-value falls below some given

threshold are mapped. However, the p-values

refer to the chance of a false positive when there

is just one test. When there are several tests, this

must be allowed for. If there were 100 tests, and

the threshold for significance is p¼ 0.05 then on

average, in a world where H0 is true everywhere,

one would expect to see on average five signif-

icant results. Thus, for the question ‘Are there

any clusters of this disease?’, a false positive
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answer is quite likely. Returning to the SJS ana-

logy, if 100 innocent people were tried, then,

given the ‘trial’ is based on the characteristics

of the innocent population, around five of them

would ‘look guilty’ despite not being so. If the

results of the trials were used to answer the

question ‘Did anyone commit this crime?’, it

is quite likely that a completely innocent group

of defendants could provide the wrong answer.

How this is addressed depends on the

research question. If it is of the form above –

‘Are there any exceptions to H0? – then consider

the probability of obtaining at least one signif-

icant result for a given p-threshold. This is

referred to as the Family Wise Error Rate

(FWER). One way of dealing with the multiple

testing problem is to set the FWER at a desired

level (say 0.05) and work backwards to identify

an individual level p (see Šidàk, 1967). To get

an FWER of 0.05, individual tests must have a

much lower threshold for p. This is the approach

adopted by Getis and Ord (1992).

However, this comes at a price. Evidence

against H0 for each test must be very strong to

merit rejecting the hypothesis. However, this

has implications for the type II error: p-values

are defined in terms of the type I error – the

probability of rejecting H0 when it is actually

true – whilst the type II error is the probability of

not rejecting H0 when it is false. Going back to

the SJS analogy, type II error is the probability

of convicting an innocent defendant, whilst type

I error is the probability of acquitting a guilty

party. Since very strong evidence against H0 is

required for multiple testing based on the

FWER, smaller deviations from H0 are less

likely to be detected. In short, in reducing the

risk that any of the tests return a false positive,

the chances of false negatives (i.e. failure to

identify a genuine anomaly) are notably

increased. Such a procedure is termed conser-

vative, as it will flag anomalies only with a great

deal of caution, preferring to fail to identify

them rather than falsely flag a non-anomalous

situation. For example Wheeler (2007) notes in

a study of childhood leukaemia in Ohio: ‘the

spatial scan method [ . . . ] does not find statisti-

cally significant local clusters, while the kernel

intensity function method suggests statistically

significant clusters in areas of central, southern,

and eastern Ohio’.

This is reasonable if the key research ques-

tion is to attempt to demonstrate the existence

(or otherwise) of, say, clusters of some disease.

However in many situations, this is not the case.

Wheeler states:

Numerous studies have focused on childhood leu-

kemia because of its relatively large incidence

among children compared with other malignant

diseases, its apparent tendency to cluster, and the

substantial public concern over locally elevated

leukemia incidence. (emphasis added)

This suggests that, in this case, the key objec-

tive is to scan for potential clusters of a disease

that has exhibited clustering in other studies.

The issue is not the existence of clustering, but

whether there are any clusters in Ohio. In this

context, the FWER is perhaps an inappropri-

ate metric. A more helpful measure of relia-

bility may be the False Discovery Rate

(Benjamini and Hochberg, 1995; Benjamini

and Yekutieli, 2001). This is the probability

that, if a test flags an anomaly, it does so

incorrectly. This differs from the FWER,

which measures the chances that any false

alarms occur. In the SJS analogy this is the

probability of a mistaken conviction, given a

conviction has occurred. A mathematical dif-

ference is that the denominator of this rate is

the number of all significant results, regard-

less of whether H0 is true. For FWERs, the

denominator is the number of cases where

H0 is true. The adjustment in this case is not

a simple formula to replace each unprocessed

p-value, but generally the individual tests are

less conservative. This approach is relatively

rare in geographical studies, but see Brunsdon

and Charlton (2011) and Caldas de Castro and

Singer (2006) for examples.
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III Broader inference issues

Here I review alternatives to classical inference;

the various situations in which they may be used

will be considered, and their strengths and

weaknesses.

1 Exploratory data analysis

The points above relate to difficulties geogra-

phers may have using classical approaches in

quite specific situations – and could be summar-

ized by calling for attention to the nature of the

hypotheses being tested, and a move away from

‘button clicking’ on statistical software to pro-

vide p-values with insufficient regard to the

meaning of a significant result. However, there

are broader debates questioning the nature of

significance testing itself. Firstly, in the past

century statistical theory relating to a number

of approaches exists, but disproportionate atten-

tion has been focused on significance testing.

Gigerenzer (2004) notes:

Textbooks and curricula (p. 588) in psychology

almost never teach the statistical toolbox, which

contains tools such as descriptive statistics,

Tukey’s exploratory methods, Bayesian statistics,

Neyman–Pearson decision theory and Wald’s

sequential analysis.

Similar could be said of geography, with the

exception of descriptive statistics. However,

Tukey (1977)’s approaches, Bayesian inference

and decision theory all have potential uses in

geographical data analysis. For example, Will-

mott, Robeson and Matsuura (2007) modify

Tukey’s idea of a box plot to explore geographi-

cal data. This is a box plot modified so that each

observation is weighted by the physical land

area associated with it. This report proposes a

physical geography technique, but by substitut-

ing physical land area for population, the

method could be used to explore human geogra-

phy data. For example, in Figure 1 a population-

weighted box plot is shown above a standard

box plot for percentage of households adopting

broadband for Irish electoral districts in the

2011 census. Taking population weighting into

account shows that on a ‘per-household’ basis,

the uptake is somewhat higher than suggested

with the standard boxplot, although a skew dis-

tribution with a left-hand tail having very low

levels of adoption is seen.

The outlying EDs from the geographical box

plot are shown as a map in Figure 2. It illustrates

that many of these low uptake areas are in rural

parts of Ireland, particularly in the midlands.

Although no formal approach is employed here,

this inferential technique is clearly useful –

identifying noteworthy geographical patterns

and possibly informing policy.

Another important idea for exploratory data

analysis is the cartogram, in particular maps

whose projections are designed to reflect the

underlying population in each region, rather

than their physical size. A recent algorithm

is given by Sun (2013). Dorling, Barford and

Newman (2006) make powerful arguments for

the use of this approach. In Figure 3, Gastner

and Newman’s (2004) algorithm is used to

show the low broadband uptake outliers. Here

the inferential purpose of the visualization is a

precautionary one. The EDs in more populous

parts of Ireland are relatively small. On a

standard map it may be possible that a shaded

area (corresponding to an outlier) may not be

seen. On the cartogram, no such outliers

occur.

Figure 1. Standard vs. geographical boxplots.
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Figure 2. Conventional map of outliers.
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2 A Bayesian approach

The EDA approach considered above provides a

less formal approach to inference and is partic-

ularly useful if no prior hypotheses have been

formulated. But the significance testing

procedures considered earlier are not the only

formal approach. One alternative being widely

adopted is the Bayesian approach (see Withers,

2002, for a useful discussion on its adoption in

human geography). In recent years, Rohde,

Figure 3. Cartogram of outliers.
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Corcoran and Chhetri (2010) demonstrate the

use of Bayesian inference to analyse patterns

in the occurrence of urban fires, and Jonker

et al. (2013) apply this approach to analyse geo-

graphical variation in life expectancy.

The most contentious aspect of this

approach is the inclusion of prior beliefs in

the analysis – which can be seen as adding a

subjective element to an approach generally

intended to be objective. Although there are

many mathematical parallels between Baye-

sian and classical approaches, philosophically,

the meaning of probability differs fundamen-

tally between them (Spiegelhalter, 2004). Due

to this distinction and some other factors, the

Bayesian approach can be seen as extending

the portfolio of analytical techniques rather

than replacing existing ‘classical’ approaches.

Others also argue that the subjective element

of Bayesian inference is necessary: ‘Bayesian

statistics treats subjectivity with respect by

placing it in the open and under the control

of the consumer of data’ (Berger and Berry,

1988: 163).

Classical inference does have some subjec-

tive elements, such as the choice of variables to

include in a regression model, or the choice of

sampling methods in a survey. By explicitly

including a subjective prior distribution, a more

open treatment of this occurs. Others often

employ a noninformative prior – typically a uni-

form distribution – to represent a state of no

prior knowledge. In such cases, the posterior

distribution is often similar to the likelihood

function of classical theory, although the mean-

ing of the two expressions differs notably

between the two approaches.

A key practical advantage of the Bayesian

approach is the ability to use simulation-based

methods such as Markov Chain Monte Carlo

(MCMC) to generate random numbers drawn

from the posterior for relatively complex mod-

els that may not be evaluated analytically. For

example, Wheeler et al. (2014) use this

approach to model house prices so that complex

and more realistic geographical processes may

be incorporated, in which the connections

between drivers of house price and the price

itself vary geographically.

3 The Akaike Information Criterion

A quite different approach to inference is evi-

dent in Akiake’s (1973) Information Criterion

(AIC). Rather than focusing on parameter esti-

mates or hypotheses tests, a key goal of this tool

is model selection (Burnham and Anderson,

2002, 2004). Fitting a number of models using

maximum likelihood, the AIC of each model is

computed as

2k � 2logðLÞ ð1Þ
where L is the likelihood of the model, and k is

the number of parameters. Very generally,

lower AICs indicate better models. The criter-

ion is derived in terms of information theory,

and tries to estimate the information loss in

approximating the process that generated the

data by each of the models under consideration.

None of the models is considered to be ‘true’,

and the aim is to mitigate information loss by

choosing appropriate models. Generally, advice

is not always to choose the model having the

lowest AIC without question, but to consider

relative differences in AICs. If the ‘winner’ is

clearly ahead of the others then this model is

favoured. But in less clear circumstances it may

be that the set of appropriate models is narrowed

down to a smaller ‘shortlist’ rather than one

individual model. Hirschfield et al. (2014) offer

an example of the use of the AIC (alongside

other inferential tools), applying a number of

spatial models to patterns in urban crime rates.

As well as simply detecting that some form of

spatial process is at work, this allows some

degree of comparison as to which spatial pro-

cess is most likely, and to use this as an

approach towards gaining better understanding

of underlying social processes and human beha-

viour patterns driving crime patterns.
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4 Graphical inference

A very recent development is the concept of

graphical inference (Wickham et al., 2010). It

is based on the idea that if a statistical model

encapsulates a real world process faithfully,

synthetic data generated from it should ‘look

like’ real world data. Thus, maps of house prices

simulated from a hedonic model should look

like maps of real house prices. Although precise

definitions of ‘looks like’ may be elusive, one

approach is to use several human subjects to

assess similarity. Subjects view a number of

maps (or other graphic displays), one of which

was created using real world data, whilst the

others were simulated. Each is asked to identify

which map is the ‘odd one out’. If the model is a

poor reflection of reality, a high proportion of

subjects should easily identify the real world.

For example, in Figure 4 six maps show patterns

in reported household burglary – where either

forced entry was used (grey) or no force was

used to enter the property (black). One map is

based on hypothetical data where unforced

entry was more common closer to the centre

of the study area. The other five aspatial models

were created by randomly assigning forced or

unforced to each burglary location in the same

proportion. (The top left map differs from the

rest – although of course in a real example this

would have to be put to the test).

The approach, although novel in some ways,

has a very similar framework to classical

hypothesis testing. Returning to the statistical

justice system (SJS) analogy, the graphical test

works like an identity parade, and consensus is

sought as to whether any member appears to be

the guilty party. Following the original phrase,

consensus is actually sought as to whether any

member ‘looks’ more guilty. Also, although this

appears to be an informal approach, it can be re-

cast in a more formal way. If the survey in which

observers are asked to identify the distinct item

is a randomized trial, and a formal significance

test of the hypothesis that no map is more likely

to be chosen is used, the result is no less valid

than any other well-founded trial.

However, there are still methodological

questions. When choosing a particular symbol-

ogy on maps, are some kinds of pattern more

visually striking than others? In which case,

although the trial may be well founded, it may

not be very powerful, with a high type II error.

Also, are there biases associated with the loca-

tion of the ‘true’ map – are people more likely to

choose the top left map regardless of pattern, for

example? Widen et al. (2015) consider a num-

ber of these issues in a geographical context,

together with a number of applications (see also

Brunsdon and Comber, 2015). Despite the need

to consider some methodological questions, this

approach holds promise. It allows complex

models to be assessed, since simulation of the

process being modelled is required, rather than a

full maximum likelihood approach in order to

perform a classical hypothesis test.

5 Machine learning

The machine learning approach, although very

computational, differs from the classic, Baye-

sian, AIC and graphical inference approaches

in that it does not require a generative model –

that is, a statistical model for the data, outlining

a stochastic process that could have generated it.

Machine learning focuses more on using algo-

rithms to detect patterns in data, rather than on

calibrating models or testing formal hypotheses.

This emphasis on pattern detection tends to lead

to a stronger focus on either prediction (where

patterns relating to a response variable and a num-

ber of predictor variables are sought) or explora-

tion (where patterns are sought more generally).

A distinction between this method and the others

listed is the generality of what constitutes a pat-

tern. As outlined in Gahegan (2003: 70):

Inferential statistics uses observations to condi-

tion (shape) the form of a distribution model that

is usually provided by the analyst. . . . By
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contrast, many machine learning techniques con-

struct a distribution model using evidence

gleaned from the data alone, i.e. they are data-

driven.

This data-drivenness is a strength and a weak-

ness. The danger lies in the idea that this leads to

an ‘end of theory’ (Anderson, 2008) – inference

in this world-view consists merely of identifying

regularities in the data, rather than offering any

explanation of how they came into being. This

viewpoint is not without criticism (Kitchin,

2014; Brunsdon, 2015). However, even when

this is considered, the application of machine

learning techniques can still play some inferen-

tial role – perhaps in identifying patterns, whose

explanation can then be sought. Inference here is

perhaps taking on the role of hypothesis genera-

tor rather than hypothesis evaluator.

IV Conclusions

This report has provided an overview of infer-

ential tools for quantitative geography, ranging

from the very traditional (such as significance

testing), to the emergent at the time of writing

(graphical inference). Many textbooks in quan-

titative geography place emphasis on the tradi-

tional approaches. However, new methods are

being derived, and in the statistical literature

and beyond, the universal application of well-

established procedures such as significance

testing are being questioned. It is timely for

geographers working with quantitative data to

take stock of this, and consider which – if any –

of the inferential tools currently being devel-

oped best suit their needs. Some of the newer

approaches offer promise. A major inferential

task that could be usefully addressed is that of

distinguishing which kind of spatial process is

the most appropriate model. Tests of a null

hypothesis of spatial independence are essen-

tially screening for situations in which there

actually is a geographical process. But to many

geographers, once this basic situation is estab-

lished a more interesting question is: ‘what kind

of geographical process is occurring?’ – or ‘is a

particular spatial model appropriate?’

Some of the inferential approaches outlined

here may be more appropriate than others. For

example, a graphical inference approach could

be used to compare simulated data from a given

spatial process with real data – rather than simu-

lated data without spatial pattern. Classical

inferential processes could be used to test com-

pound models, with components from several

kinds of process, for example, a model with both

a spatial error and a spatial lag term, both of

whose coefficients could be tested – although

this increase in model complexity has conse-

quences for the sampling distribution of para-

meters and the type II error of the tests involved.

Some of the ideas could be adapted to answer

different kinds of question. AIC seems to be

best suited to the model selection question –

‘which of a set of candidate models are most

appropriate?’ – but graphical inference could

also address this problem. If the real data was

in map 1, and maps 2 to n were of data generated

from competing candidate models, observers

could be asked to state which of maps 2 to n

most resembled map 1. Inference could then be

drawn from the proportions prefering each map

about its associated data generating model’s

plausibility as a generator of the actual data.

In summary, this is a call for geographers to help

shape development in inferential tools for spa-

tial data, by looking more critically at existing

approaches, and considering how they may be

adapted (or entirely new approaches developed)

to best answer questions arising in geography.
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