
 

B-hadron fragmentation functions at next-to-next-to-leading order
from a global analysis of e+ e− annihilation data

Maral Salajegheh,1,* S. Mohammad Moosavi Nejad,1,3,† Hamzeh Khanpour,2,3,‡

Bernd A. Kniehl,4,§ and Maryam Soleymaninia3,∥
1Faculty of Physics, Yazd University, P.O. Box 89195-741, Yazd, Iran

2Department of Physics, University of Science and Technology of Mazandaran,
P. O. Box 48518-78195, Behshahr, Iran

3School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5531, Tehran, Iran

4II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149,
22761 Hamburg, Germany

(Received 18 April 2019; published 3 June 2019)

We present nonperturbative fragmentation functions (FFs) for bottom-flavored (B) hadrons both at next-
to-leading (NLO) and, for the first time, at next-to-next-to-leading order in the MS factorization scheme
with five massless quark flavors. They are determined by fitting all available experimental data of inclusive
single B-hadron production in eþe− annihilation, from the ALEPH, DELPHI, and OPAL collaborations at
CERN LEP1 and the SLD collaboration at SLAC SLC. The uncertainties in these FFs as well as in the
corresponding observables are estimated using the Hessian approach. We perform comparisons with
available NLO sets of B-hadron FFs. We apply our new FFs to generate theoretical predictions for the
energy distribution of B hadrons produced through the decay of unpolarized or polarized top quarks, to be
measured at the CERN LHC.
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I. INTRODUCTION

For a long time, there has been considerable interest in
the study of bottom-flavored-hadron (B-hadron) production
at hadron and eþe− colliders, both experimentally and
theoretically. Historically, the first measurements were
performed more than 3 decades ago by the UA1 collabo-
ration at the CERN Spp̄S collider [1] operating at center-
of-mass (c.m.) energy

ffiffiffi
s

p ¼ 630 GeV.
In the framework of the parton model of QCD, the

description of the inclusive single production of identified
hadrons h involves fragmentation functions (FFs),
Dh

aðx;Q2Þ. At leading order, their values correspond to
the probability that the colored parton a, which is produced
at short distance, of order 1=

ffiffiffiffiffiffi
Q2

p
, fragments into the

colorless hadron h carrying the fraction x of the energy of

a. Given their x dependence at some scale Q0, the
evolution of the FFs with Q2 may be computed perturba-
tively from the timelike Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [2–4]. The timelike
splitting functions PT

a→bðx; αsðQ2ÞÞ appearing therein are
known through next-to-next-to-leading order (NNLO)
[5–7]. In the case of eþe− annihilation, the hard-scattering
cross sections for the inclusive production of parton a, to
be convoluted with Dh

aðx;Q2Þ, are also known through
NNLO [5,8–11]. This allows one to interpret eþe− data of
the inclusive single production of hadron h at NNLO and
thus to extract FFs at this order [12–15]. Owing to the
factorization theorem, the FFs are independent of the
process by which parton a is produced. This allows one to
transfer experimental information from eþe− annihilation
to any other production mechanism, such as photopro-
duction, leptoproduction, hadroproduction, and two-pho-
ton scattering. Of all these processes, eþe− annihilation
provides the cleanest laboratory for the extraction of FFs,
being devoid of nonperturbative effects beyond fragmen-
tation itself. Presently, there is particular interest in
hadroproduction at the BNL Relativistic Heavy Ion
Collider (RHIC) and the CERN Large Hadron Collider
(LHC) due to ongoing experiments.
The parton model of QCD implemented in the modified

minimal-subtraction (MS) factorization scheme with nf
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massless-quark flavors, the so-called zero-mass variable-
flavor-number scheme (ZM-VFNS), can also be applied to
the open production of heavy flavors, such as D and B
hadrons, provided the hard energy scale characteristic for
the production process is sufficiently larger than the
heavy-flavor mass. This is certainly the case for all the
applications here, because MB ≪ MZ, mt. Recently, D
hadron FFs have been provided at NNLO in Ref. [16].
Here, we perform the first NNLO determination of
B-hadron FFs.
In Refs. [17,18], B-hadron FFs were extracted at NLO

in the ZM-VFNS by fitting to the fractional-energy dis-
tributions dσ=dxB of the cross section of eþe− → Bþ X
measured by the ALEPH [19] and OPAL [20] collabora-
tions at the CERN Large Electron Positron Collider (LEP1)
and the SLD collaboration [21] at the SLAC Linear
Collider (SLC).
In the meantime, also the DELPHI collaboration has

reported a similar measurement at LEP1 [22]. In the present
work, these data are, for the first time, included in a
B-hadron FF fit. On the other hand, we are not aware of any
other such data from eþe− annihilation. In want of NNLO
hard-scattering cross sections for inclusive single B-hadron
production from other initial states, we do concentrate here
on eþe− annihilation. We also go beyond Refs. [17,18] by
performing a full-fledged error estimation, both for the FFs
and the resulting differential cross sections, using the
Hessian approach [23].
The LEP1 experiments [19,20,22] identified the B

hadrons by their semileptonic decays, B → Dð�Þlν, while
the SLD collaboration [21] collected an inclusive sample of
reconstructed B-hadron decay vertices. The bulk of the
experimentally observed B hadrons is made up by B�,
B0=B̄0, and B0

s=B̄0
s mesons.

The outline of this paper is as follows: In Sec. II, we
describe the theoretical framework of inclusive single
hadron production in eþe− annihilation through NNLO
in the ZM-VFNS and introduce our parametrization of the
b=b̄ → B FF at the initial scale. In Sec. III, we explain the
minimization method in our analysis and our approach to
error estimation. In Sec. IV, our NLO and NNLO results are
presented and comparedwith the experimental data fitted to.
In Sec. V, we present our NLO predictions for the normal-
ized-energy distributions of B hadrons from decays of (un)
polarized top quarks. Our conclusions are given in Sec. VI.

II. QCD FRAMEWORK FOR B-HADRON FFs

As mentioned in Sec. I, we fit nonperturbative B-hadron
FFs to measured xB distributions of the cross section of

eþe− → ðγ⋆; ZÞ → Bþ X; ð1Þ

where X refers to the unobserved part of the final state. In
the following, we explain how to evaluate the cross section

of process (1) at NLO and NNLO in the ZM-VFNS.
Denoting the four-momenta of the virtual gauge boson and
the B hadron by q and pB, respectively, we have s ¼ q2,
p2
B ¼ m2

B, and xB ¼ 2ðpB · qÞ=q2. In the c.m. frame, xB ¼
2EB=

ffiffiffi
s

p
is the energy of the B hadron in units of the beam

energy. In the ZM-VFNS, we have

1

σtot

dσ
dxB

ðeþe− → Bþ XÞ

¼
X
i

Z
1

xB

dxi
xi

1

σtot

dσi
dxi

ðxi; μR; μFÞDB
i

�
xB
xi

; μF

�
; ð2Þ

where i ¼ g; u; ū;…; b; b̄ runs over the active partons with
four-momenta pi, dσiðxi; μR; μFÞ=dxi is the partonic cross
section of eþe− → iþ X differential in xi ¼ 2ðpi · qÞ=q2,
DB

i ðz; μFÞ is the i → B FF, and μR and μF are the
renormalization and factorization scales, respectively.
The latter are a priori arbitrary, but a typical choice is
μF ¼ μR ¼ ffiffiffi

s
p

. In the c.m. frame, z ¼ xB=xi is the fraction
of energy passed on from parton i to the B hadron. It is
customary in experimental analyses to normalize Eq. (2) by
the total hadronic cross section,

σtot ¼
4πα2ðsÞ

s

�Xnf
i

ẽ2i ðsÞ
�
ð1þ αsK

ð1Þ
QCD þ α2sK

ð2Þ
QCD þ � � �Þ;

ð3Þ

where α and αs are the fine-structure and strong-coupling
constants, respectively, ẽi is the effective electroweak

charge of quark i, and the coefficient KðnÞ
QCD contains the

NnLO correction. Here, we need Kð1Þ
QCD ¼ 3CF=ð4πÞ, with

CF ¼ 4=3, and Kð2Þ
QCD ≈ 1.411 [24].

The z distribution of the b → B FF at the starting scale μ0
is a genuinely nonperturbative quantity to be extracted from
experimental data. Its form is unknown, and an educated
guess is in order. The selection criterion is to score a
minimum χ2 value as small as possible with a set of fit
parameters as minimal as possible. As in Refs. [17,18], we
adopt here the simple power ansatz [25],

DB
b ðz; μ0Þ ¼ Nbzαbð1 − zÞβb ; ð4Þ

with fit parameters Nb, αb, and βb, and choose
μ0 ¼ mb ¼ 4.5 GeV. This ansatz was found to enable
excellent fits [17,18]. The i → B FFs for the other quarks
and the gluon are assumed to be zero at μF ¼ μ0 and are
generated through the DGLAP evolution to larger values of
μF. We take αsðMZÞ to be an input parameter and adopt the
world average value 0.1181 for nf ¼ 5 [26] both at NLO
and NNLO.
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As mentioned in Sec. I, we fit to ALEPH [19], DELPHI
[22], OPAL [20], and SLD [21] data. These datasets reach
down to very small xB values, which fall outside the range
of validity of our fixed-order approach. In fact, in the
small-xB limit, both the timelike splitting functions and the
hard-scattering cross sections develop soft-gluon logarithms
that require resummation. At the same time, finite-mb and
finite-MB effects become relevant there. We leave the
implementation of these refinements for future work, and
instead impose appropriate minimum-xB cuts for the time
being. Specifically, we only include ALEPH data points
with xB ≥ 0.25, DELPHI data points with xB ≥ 0.36, OPAL
data points with xB ≥ 0.325, and SLD data points with
xB ≥ 0.28. This enables acceptable fits within the fit range,
at the expense of certain deviations in the small-xB range, of
course. The fixed-order approach is also challenged in the
large-xB limit, by the emergence of threshold logarithms,
which also require resummation. In practice, however, these
effects do not jeopardize the quality of our fits, so that we
refrain from imposing maximum-xB cuts.

III. DETERMINATION OF B-HADRON FFs
AND THEIR UNCERTAINTIES

We now explain our fitting procedure. For a given set
p ¼ fNb; αb; βbg of fit parameters, the goodness of the
overall description of the experimental data by the theo-
retical predictions is measured by the global χ2 value,

χ2globalðpÞ ¼
XNexp

n¼1

wnχ
2
nðpÞ; ð5Þ

where n labels the Nexp ¼ 4 experimental datasets, wn are
their weight factors [27,28], which we take to be unity, and

χ2nðpÞ ¼
�
1 −N n

ΔN n

�
2

þ
XNdata

n

i¼1

�
N nF

exp
n;i − F theo

n;i ðpÞ
N nΔF

exp
n;i

�2

ð6Þ

is the χ2 value of dataset n. On the experimental side, F exp
n;i

is the central value of ð1=σtotÞdσ=dxB measured in bin i out
of the Ndata

n bins in dataset n, ΔF exp
n;i is its individual error

obtained by combining statistical and systematic errors in
quadrature,N n is the unknown overall normalization factor
of dataset n to be fitted, and ΔN n is its error as quoted by
the experimental collaboration. On the theoretical side,
F theo

n;i ðpÞ is the respective NLO or NNLO prediction.
We determine the fit parameters p by minimizing Eq. (5)

with the help of the Monte Carlo package MINUIT [29] from
the CERN program library. We adopt a two-step procedure.
In the prefitting stage, we determine the four values N n by
fitting them simultaneously with the three fit parameters p.
In the main fitting stage, we then refine the determination of
p with large statistics keeping N n fixed. In the evaluation
of χ2globalðpÞ=DOF, we take the number of degrees of

freedom (DOF) to be the overall number of data points
fitted to minus three for the proper fit parameters p. We find
the APFEL library [30] to be a very useful FF fitting tool.
We now describe our methodology for the estimation of

the uncertainties in the B-hadron FFs. We adopt the Hessian
approach to the propagation of uncertainties from the
experimental datasets to the FFs, which has proven of
value in global analyses of parton distribution functions and
has been frequently applied there. For definiteness, we
ignore additional sources of uncertainties, which are mostly
of theoretical origin and are negligible against the exper-
imental uncertainties taken into account here. In the
following, we briefly review our procedure. For more
details, we refer to Ref. [31].
In the Hessian approach, the uncertainty bands on the B-

hadron FFs, ΔDB
b ðzÞ, may be obtained through linear error

propagation,

½ΔDBðzÞ�2 ¼ Δχ2globalðp̂Þ
X
i;j

∂ΔDBðz; p̂Þ
∂pi

×H−1
ij ðp̂Þ

∂ΔDBðz; p̂Þ
∂pj

; ð7Þ

where pi (i ¼ 1, 2, 3) are the free parameters in Eq. (4), p̂i

are their optimized values, and H−1ðpÞ is the covariance
matrix, which is a default output of the MINUIT program
[29]. In Eq. (7), we have suppressed the label μF for the
factorization scale, which we take to be μ0. The error bands
ΔDBðzÞ are subject to DGLAP evolution in μF along with
the central values DBðzÞ. The confidence level (C.L.) is
controlled by T2 ¼ Δχ2global. We adopt the standard param-
eter fitting criterion by choosing T ¼ 1, which corresponds
to the 68% C.L., i.e., the 1σ error band. In Sec. IV, the
uncertainty bands thus determined are presented both for
the B-hadron FFs and for the physical observables evalu-
ated with them.

IV. RESULTS AND DISCUSSION

We are now in a position to present our results for the
B-hadron FFs both at NLO and NNLO and to compare
the resulting theoretical predictions with the experimental
data fitted to, so as to check directly the consistency and
goodness of our fits. We also compare our B-hadron
FFs with the NLO ones presented by Kniehl, Kramer,
Schienbein, and Spiesberger (KKSS) [18].
In Table I, for each of the four experimental datasets n,

from ALEPH [19], DELPHI [22], OPAL [20], and SLD
[21], the number Ndata

n of data points included in the NLO
and NNLO fits and the normalization factors N n and the
χ2nðpÞ values thus obtained are specified together with the
total number of data points and the values of χ2globalðpÞ and
χ2globalðpÞ=DOF. There are 59 − 3 ¼ 56 degrees of free-
dom. The NLO and NNLO fits are both excellent, with
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χ2globalðpÞ=DOF values of order unity. As expected on
general grounds, χ2globalðpÞ=DOF is reduced as one passes
from NLO to NNLO. This is also true for the individual
datasets, except for the most recent one, from DELPHI. The
NLO and NNLO fit results for p are summarized in
Table II.
In Fig. 1, the z distributions of the NLO and NNLO

b → B FFs at the initial scale μF ¼ μ0 are compared with
each other. The NLO and NNLO results agree in shape and
position of maximum, but differ in normalization. This
difference is induced by the Oðα2sÞ correction terms in the
hard-scattering cross sections and in the timelike splitting
functions, and it is compensated in the physical cross
sections to be compared with the experimental data up to
terms beyond Oðα2sÞ. The error bands determined as
described in Sec. III are also shown in Fig. 1. They are
dominated by the experimental errors, which explains why
they are not reduced by passing from NLO to NNLO. In
Fig. 1, the KKSS b → B FF [18] is included for compari-
son. It somewhat undershoots our NLO b → B FF, which
we attribute to the impact of the DELPHI data [22], which
were not available at the time of the analysis in Ref. [18].
In Fig. 2(a), the analysis of Fig. 1 is repeated for

μF ¼ MZ, the c.m. energy of the experimental data fitted
to. Our NLO and NNLO b → B FFs are now closer
together, the remaining difference being entirely due to
the Oðα2sÞ corrections to the hard-scattering cross sections.
On the other hand, the difference between the NLO b → B
FF and the KKSS one is hardly affected by the DGLAP
evolution from μ0 to MZ, as it is due to a difference in the
collection of experimental data fitted to. Figure 2(b) is the
counterpart of Fig. 2(a) for the g → B FF, which is
generated by DGLAP evolution from the initial condition

DB
g ðz; μ0Þ ¼ 0, as explained in Sec. II. Our NLO and

NNLO results are now very similar; the KKSS result again
falls below our NLO result. The comparisons between our
NLO and NNLO results for the b → B and g → B FFs are
refined in Figs. 2(c) and 2(d), respectively, where these FFs
and their error bands are normalized with respect to the
central values at NLO. Deviations occur at small and large
values of z, which are outside the focus of our present
study. They are due to large soft-gluon and threshold
logarithms, respectively, which are included through
Oðα2sÞ at NNLO, but only to OðαsÞ at NLO. These
logarithms invalidate the fixed-order treatment at small
and large values of z and should be resummed. This is,
however, beyond the scope of our present analysis and left
for future work.
In Fig. 3, the NLO and NNLO results for

ð1=σtotÞdσðeþe− → Bþ XÞ=dxB evaluated with our
respective B-hadron FF sets are compared with the exper-
imental data fitted to. The uncertainty bands stem from
those of the B-hadron FFs and are of experimental origin.
We observe that the experimental data are in good mutual
agreement and are well described both by the NLO and
NNLO results down to xB values of 0.4, say, as for both line
shape and normalization. The NNLO description does
somewhat better at lower values of xB, which explains
the lower value of χ2globalðpÞ=DOF in Table I. The failure of
the theoretical descriptions in the small-xB regime is, of
course, a direct consequence of the small-xB cuts applied.
For better visibility, we present the information con-

tained in Fig. 3 as data over theory plots in Fig. 4, one for
each experiment. Specifically, the experimental data are in
turn normalized to the NLO and NNLO central values. As
already explained above, the NLO and NNLO uncertainty
bands are very similar. As already visible in Fig. 3, the

TABLE II. Values of the fit parameters in Eq. (4) obtained at
NLO and NNLO.

Order Nb αb βb

NLO 2575.014 15.424 2.394
NNLO 1805.896 14.168 2.341

FIG. 1. Line shapes of zDB
b ðz; μ0Þ with μ0 ¼ 4.5 GeV at NLO

(green dashed line) and NNLO (red dot-dashed line) and their
experimental uncertainty bands (green and red hatched areas).
The KKSS result [18] (blue solid line) is shown for comparison.

TABLE I. Numbers Ndata
n of data points from dataset n included

in the NLO and NNLO fits and normalization factors N n and χ2n
values thus obtained; total number of data points; χ2globalðpÞ
values; and χ2globalðpÞ=DOF values.

Collaboration Ndata
n N NLO

n N NNLO
n χ2;NLOn χ2;NNLOn

ALEPH [19] 18 1.0008 1.0011 14.376 12.269
DELPHI [22] 8 0.9993 1.0058 7.535 15.377
OPAL [20] 15 0.9951 0.9958 35.594 20.002
SLD [21] 18 1.0030 0.9996 25.675 14.195
Total 59 83.180 61.844
χ2globalðpÞ=DOF 1.485 1.104
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experimental data consistently undershoot the NLO and
NNLO results in the small-xB regime. On the other hand,
their large-xB behavior is nonuniform. While the ALEPH
and OPAL data overshoot the NLO and NNLO results in
the upper xB range, there is nice agreement for the DELPHI
and SLD data.

V. B-HADRON PRODUCTION
BY TOP-QUARK DECAY

As a topical application of our B-hadron FFs, we study
inclusive single B-hadron production at the LHC. B
hadrons may be produced directly or through the decay
of heavier particles, including the Z boson, the Higgs
boson, and the top quark. For definiteness, we concentrate
here on the latter process, t → BWþ þ X, where X collec-
tively denotes any other final-state particles. This allows
one to study properties of the top quark, such as its degree
of polarization in a given production mode, which includes
single and pair production. We thus consider both unpo-
larized and polarized top quarks.

FIG. 3. The NLO (green dashed line) and NNLO (red dot-
dashed line) results for ð1=σtotÞdσðeþe− → Bþ XÞ=dxB evalu-
ated with our respective B-hadron FF sets are compared with the
experimental data fitted to, from ALEPH [19], DELPHI [22],
OPAL [20], and SLD [21]. The uncertainty bands (green and red
hatched areas) stem from those of the B-hadron FFs.

(a) (b)

(c) (d)

FIG. 2. Line shapes of (a) zDB
b ðz;MZÞ and (b) zDB

g ðz;MZÞ at NLO (green dashed lines) and NNLO (red dot-dashed lines) and their
experimental uncertainty bands (green and red hatched areas). The KKSS results [18] (blue solid lines) are shown for comparison. NLO
and NNLO results for (c) zDB

b ðz;MZÞ and (d) zDB
g ðz;MZÞ normalized with respect to the NLO central values.
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We work in the rest frame of the top quark. The partial
width of the decay t → BWþ þ X, differential in the scaled
B-hadron energy xB and the angle θP enclosed between the
top-quark polarization three-vector P⃗ and the B-hadron
three-momentum p⃗B is given by

d2Γ
dxBd cos θP

ðt → BWþ þ XÞ

¼ 1

2

�
dΓunpol

dxB
þ P

dΓpol

dxB
cos θP

�
; ð8Þ

where P ¼ jP⃗j is the degree of polarization. In the
ZM-VFNS, we have

dΓunpol=pol

dxB
¼

X
i¼b;g

Z
xmax
i

xmin
i

dxi
xi

×
dΓunpol=pol

i

dxi
ðxi; μR; μFÞDB

i

�
xB
xi

; μF

�
; ð9Þ

where dΓunpol
i =dxi and dΓpol

i =dxi refer to the parton-level
decay t → iWþ þ X, differential in the scaled energy xi of
parton i ¼ b, g. In the top-quark rest frame, we have xB ¼
EB=Emax

b and xi ¼ Ei=Emax
b , where EB and Ei are the

energies of the B hadron and parton i, and Emax
b is the

maximum energy of the bottom quark. In our application of
the ZM-VFNS, where mb ≪ μF ¼ OðmtÞ, the bottom
quark is taken to be massless. By the same token, we also
neglect the B-hadron mass mB. So far, dΓunpol

i =dxi and
dΓpol

i =dxi are only available through NLO; analytic expres-
sions may be found in Refs. [32–34] and Refs. [35–38],
respectively. In Ref. [38], θP is taken to be enclosed
between P⃗ and the W-boson three-momentum p⃗W .
Although a consistent analysis is presently limited to
NLO, we also employ our NNLO B-hadron FF set to
explore the possible size of the NNLO corrections.
In our numerical analysis, we use mb ¼ 4.5 GeV,

mW ¼ 80.379 GeV, andmt ¼ 173.0 GeV [26], and choose
μR ¼ μF ¼ mt. In Fig. 5(a), we present the NLO predic-
tions of dΓunpol=dxB and dΓpol=dxB, evaluated with our
NLO B-hadron FF set. For comparison, the evaluations

FIG. 4. (a) ALEPH [19], (b) DELPHI [22], (c) OPAL [20], and (d) SLD [21] data of ð1=σtotÞdσðeþe− → Bþ XÞ=dxB normalized with
respect to our NLO (green hatched bands) and NNLO (red hatched bands) results.
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with our NNLO B-hadron FF set are also included. We
observe from Fig. 5(a) that switching from the NLO
B-hadron FF set to the NNLO one slightly smoothens
the theoretical prediction, decreasing it in the peak region
and increasing it in the tail region thereunder. At the same
time, the peak position is shifted towards smaller values of
xB. The change in normalization is of order 5% at most.
These effects should mark an upper limit of the total NNLO
corrections because the as-yet-unknown NNLO corrections
to dΓunpol

i =dxi and dΓpol
i =dxi are expected to give rise to

some compensation if FF universality is realized in nature.
In Fig. 5(b), the results for dΓpol=dxB in Fig. 5(a) are
compared to the evaluation with the KKSS B-hadron FF set
[18]. As in Figs. 1, 2(a), and 2(b), the NLO result is
somewhat reduced by switching to the KKSS B-hadron
FF set.

VI. SUMMARY AND CONCLUSIONS

In this paper, we determined nonperturbative FFs for B
hadrons, both at NLO and NNLO in the ZM-VFNS, by
fitting to all available experimental data of inclusive single
B-hadron production in eþe− annihilation, eþe− → Bþ X,
from ALEPH [19], DELPHI [22], OPAL [20], and SLD
[21]. We then applied these B-hadron FFs to provide NLO
predictions for inclusive B-hadron production by top-quark
decay, t → BWþ þ X, both for unpolarized and polarized
top quarks.
Our analysis updates and improves similar ones in the

literature [17,18] in the following respects. We included the
DELPHI data [22], which had not been available then. For
the first time, we advanced to NNLO in a fit of B-hadron
FFs. We performed a careful estimation of the experimental
uncertainties in our B-hadron FFs using the Hessian
approach.

We adopted the simple power ansatz of Eq. (4) and
obtained for the three fit parameters appearing therein
the values listed in Table II. The goodness of the NLO
and NNLO fits turned out to be excellent, with χ2=DOF
values of 1.485 and 1.104, respectively (see Table I). As
expected on general grounds, the fit quality is improved
by ascending to higher orders of perturbation theory.
We encourage the LHC collaborations to measure the xB

distribution of the partial width of the decay t → BWþ þ X,
for two reasons. On the one hand, this will allow for an
independent determination of the B-hadron FFs and thus
provide a unique chance to test their universality and
DGLAP scaling violations, two important pillars of the
parton model of QCD. On the other hand, this will allow for
a determination of the top-quark polarization, which should
depend on the production mode.
The theoretical framework provided by the ZM-VFNS

was quite appropriate for the present analysis, since the
characteristic energy scales of the considered processes,
MZ and mt, greatly exceeded the bottom-quark mass mb,
which could thus be neglected. Possible theoretical impro-
vements include the inclusion of finite-mb and finite-mB
effects, and the resummation of soft-gluon logarithms,
which extend the validity towards small values of xB, and
the resummation of threshold logarithms, which extends
the validity towards large values of xB. The general-mass
variable-flavor-number scheme (GM-VFNS) [39–42] pro-
vides a consistent and natural finite-mb generalization of
the ZM-VFNS on the basis of the MS factorization
scheme [43]. The processes considered here, eþe− →
Bþ X [44], t → BWþ þ X [34], and tð↑Þ → BWþ þ X
[45], have all been worked out in the GM-VFNS at NLO,
but not yet at NNLO. Finite-mB effects may be conven-
iently incorporated using the approach of Refs. [46–48].
The implementation of such theoretical improvements
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FIG. 5. (a) NLO predictions of dΓunpol=dxB (green dotted line) and dΓpol=dxB (red dashed line), evaluated with our NLO B-hadron FF
set. For comparison, the evaluations with our NNLO B-hadron FF set are also included (blue dot-dashed and black solid lines). (b) The
results for dΓpol=dxB in Fig. 5(a) are compared to the evaluation with the KKSS B-hadron FF set [18] (green dotted line).
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reaches beyond the scope of the present analysis and is left
for future work.
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