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We characterise the closure in C®(R, R) of the algebra generated by an arbitrary
finite point-separating set of C* functions. The description is local, involving
Taylor series. More precisely, a function fe C® belongs to the closure of the
algebra generated by y, ..., ¥, as soon as it has the “right kind” of Taylor series
at each point a such that Y/ (a)= -.- =y,(a)=0. The “right kind” is of the form
qo(TXY—V¥y(a), ... T Y, — . (a)), where g is a power series in r variables, and
Ty, denotes the Taylor series of Y, about a.  © 1998 Academic Press

1. INTRODUCTION AND NOTATION

By C*(R% R") we mean the Fréchet space of infinitely-differentiable
functions from R¥ to R". The usual topology on C®(R? R") is metrisable,
and a sequence f, converges to a function f in this topology if and only if
the partial derivatives 0'f,, — 0’f uniformly on compact subsets of R? for
each multi-index i. We abbreviate C*(R% R) to C*(R?), or just C*, when
the value of d is clear from the context.

Suppose we take r functions Y, ..., ¥, € C®(R?) and consider the real
algebra R[V, ..., ¥, ] that they generate. It is of interest to describe the
closure of the algebra in C*(R¥). This problem was posed by I. Segal,
about 1949 [11, p. 311]. The purpose of this paper is to describe the
closure in the case when d =1 and the functions ¥/, ..., ¥, together separate
points. The description we give is local, involving the Taylor series of the
functions.
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ALGEBRAS OF SMOOTH FUNCTIONS 459

We denote the algebras of polynomials and of formal power series in r
ariables by R[xi,..x,] and R[[xy,.., x]], respectively. For each
€ R¢, the Taylor series map

Te: C®(R% RY) —» R[[x1, s Xa]1"

s continuous when R[[X;,..,X,]] is given the usual projective limit
opology, and is an algebra homomorphism when r= 1. For each keZ .,
he Taylor polynomial map

T*: C®(R? R") — R[ X1, oy X415,

vhere R[x,, ..., x;], denotes the space of polynomials of degree at most k,
s also continuous with respect to the usual topology on R[xy, ..., Xx;],. We
ibbreviate T4 to T, and we also use T* for the truncation map on power
Series:

RL[x1, o X211 = RLxy5 ooy Xalk

Y oaxte Y axl

li|=0 o<li|<k

T*:

By a classical theorem of Emile Borel, T2 is surjective, ie., each formal
power series is the Taylor series of some C* function.

If py,. p, €R[[Xy,.., xz]1] have p,(0)=0, for all i, and if geR
[[x;, .., X,]], then we may form the composition g (p;, .., p,). We denote
the set of power series so obtained, with py, ..., p, fixed and ¢ ranging over

all Of R[[xl,"" xr]]s by R[[pla-"’ pr]] ’
We observe that if fe C®(R? R™), ge C*(R™, R), and ae R, then

T3(gof)=(T a8 (TZf—fla)).

This could be described as the higher order version of the Chain Rule.
We can now state the main result.

THEOREM. Suppose ¥= (Y, .., ¥,)e CP(R, R") is injective. Let fe
C*(R, R). Then the following are equivalent:

(1) fe Closcﬂ(m RLY., o ¥, 15
(2) T*feT*R[T*¥W] whenever aeR and k e N;

(3) TXfeR[[TE¥—¥(a)]] VaeR,
(4) T feT*R[T%W)] whenever ¥'(a)=0 and ke N;
(5) TZfeR[[TZXY—¥Y(a)]] whenever ¥'(a)=0.
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To illustrate the result, we mention a few simple consequences. These
examples are all well-known and classical, and indeed more can be said
about them, as we shall explain below. Some more elaborate applications
are given in the Corollaries at the end of the paper.

ExaMpPLEs. 1. The closure of R[x?] is precisely the set of those
fe C®(R) such that £(0)=0 unless 3 divides i.
2. The closure of R[ x?, x?] is the same as the closure of R[cos x, x*],
and consists of all functions with f7(0) =0.

3. The closure of R[x% x°] is the set of f with f'(0)= f"(0)=
F(0) = £e9(0) =0.

4. The closure of R[x?+ x7, x°] is the set of f with f'(0)= f"(0) =
SE(0) = £(0)—(3) f"(0) =0.

Remarks. 1. In case ¥ has no critical points, the result is a special
case of Nachbin’s theorem [10], which characterises the maximal closed
subalgebras of C*(M), for arbitrary smooth manifolds M. The Whitney
spectral theorem [9, 13] provides a description of the closed ideals in
C*®(M), and hence of those closed algebras of the form R1 + I, where I is
a closed ideal. Apart from these results, both pre-1950, the main previous
result about closed subalgebras of C*(M) was Tougeron’s 1971 spectral
theorem [ 12]. When applied to M = R, Tougeron’s theorem yields the spe-
cial case of our theorem in which all the critical points of ¥ are isolated
and of finite order. Most of the work of the present paper involves the
detailed analysis of the set of accumulation points of the critical set of Y.

2. Tougeron’s theorem is sufficiently general to give a full and
satisfactory description of the closure of the algebra generated by any finite
collection of real-analytic functions on R?, for any natural number d. In the
particular case of real-analytic ¥, a good deal more is known. Consider the
following four function spaces associated to a ¥: R — R":

A={g-¥:geC (R},

B=clos R[ ¥1],

C=clos A4,

D={feC®R): TPfeR[[T®¥Y—¥(a)]], VaeR}.
By (the classical) Lemma 8 below, 4 = B, so

AcB=CcD.

In the present paper, we are focussed only on the approximation question:
When is B=D (or, equivalently, C = D)? Evidently, a sufficient condition



ALGEBRAS OF SMOOTH FUNCTIONS 461

would be that 4 = D. This condition is not necessary, as was noted already
by Glaeser [6] (see the first example after Corollary 9 below). Th.e
problem of deciding when 4 = D has received a great deal of study. ThlS
began with the paper of Whitney [15] on characterizing the even functions
as those of the form f(x?), involved significant progress by Glaeser [6] and
Tougeron [14], and culminated in the penetrating result (?f Bierstone and
Milman [3] which relates 4 = D to semi-coherence of thg 1mage.of S”..The
result applies to proper real-analytic ¥, and extends to hlgher. d1meqsxons.
See also [2, 4], and forthcoming work of Bierstone and Milman in the
Annals of Mathematics. These results show, for example, that A = D holds
in examples 1 to 4 given above. As far as the problem of deciding when
B = C is concerned, these results do not advance on Tougeron’s.

The problem of deciding whether 4=D for a givgn geperal (not
necessarily analytic) smooth, injective, proper ¥ has received little atten-
tion. The referee of this paper remarks that 4 = D is probably true for
those ¥: R — R” that are proper, injective, and have only critical points of
finite order. This is a reasonable conjecture, and could probably be
approached by using the methods that work for analytic functions.

3. A result similar to our theorem holds (with essentially the same
proof) for finitely generated subalgebras of C* functions on the other
l-dimensional manifold, the circle. The C* analogue also works
(1<k < o), and is somewhat easier.

2. NOTATION AND DEFINITIONS

We use N for the set of natural numbers and Z, for the set of non-
negative integers, N U {0}.

For a propositional function P(x), we say that P(x) holds for x near A
if {x: P(x)} is a neighbourhood of A.

E? denotes the set of accumulation points, or derived set, of E.

Let f € C*(R, R). Then spt f denotes the support of £, i.e., R ~ int.f“l(O).
We say that f is flar at a point aeR if all derivatives (d’f/dx")(a)=0
(i=1). Note that it does not entail f(a)=0. We say that f is locally-cons-
tant near a set E < R if Va € E 3r > 0 such that fis constant on (@a—r,a+r).

If p(x)=3 % 2, x'e R[[x]] is a power series, then ord p, the order of
p, isinf{i: }, #0).

3. TOOLS

We gather here the lemmata we shall use to prove the theorem. The first
is easy to prove, and well-known.
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LEMMA 1. If S is a semigroup of non-negative integers under addition,
g=gc.d.(S) and g>0, then ANeN such that kgeS whenever ke N and
kg>N. |

LEMMA 2. Letp,, .., p, e R[ [x1] and p;(0) =0, Vi. Then the subalgebra

A= R[[pls e pr]]
is closed in R[[x]].

(This lemma holds in the more general situation where the p, are power
series in many variables, and it may be proved by a short inductive
argument, or by appealing to [5, Section II, Lemma 7]. We include the
following argument for the one-dimensional case because it has a construc-
tive character, and the method is useful in working examples.)

Proof. We may assume that P has minimal order, say g, among the p,.
If g= + o0, then 4 has only constants and the result is trivial, so we may
assume g # + oo.

Let S={ordz:7€4}. Then S'is a sub-semigroup of (Z,, +). Let d=
gc.d.(S), and let w=g/d By Lemma 1, there exists TeS such that
T+ kde S, Yk e N. Choose Uy, .., 4, € R[[xy, ..., x,]] such that

Ui °(pys - p,) =xT+9 L higher terms.

For each keZ _, let 4, = 1% te A}. Then A, is a linear subspace of
the finite-dimensional vector space R[x], of all polynomials of degree at
most k. It is therefore closed with respect to the usual topology on R[x],.
Note also that if power series t, >t in R[[x]], then the truncations
T*t, > T*t in R[x],.

Suppose {g,} 7> =R[[xi, .., x,]] and 4n°(P1s s p,) > p as nt + oo,
for some pe R[[x]]. We have to show that AfeR[[x, ..., x,]] such that
2=f°(p1, - P,).

For each keZ,, we have T*q,-(p,, .., P,)) = T*p, hence T*pe A,.
Thus 3f, eR[[xy, .., x,]] such that T%p = T*(fx 2 (P1, s p,)). Typically,
Ji 1s highly non-unique. Fix K= 7+ &, and pick some fy, as above. Then

P=fx°(p1s.sp,)+ Bx+1x*+! + higher-order terms.

We proceed inductively to Pick fx i 15 fxs2s s in a specific way.
Suppose f; has been chosen for some k = K, with

P=fro(p1s . D)+ Br . x*¥+! & hicher-order terms
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There are two possibilities.
Case 1°. B;.,=0. In this case, we take f;, ;= fx.

Case 2°. fr., #0. In this case, k+1 belongs to the semigroup S,
because there exists some f},; € R[[x, ..., x,]] such that

T** ' p=T**Y fis1°(P1; s P)));
hence
(fes1 =S o (P15 s PY) = Bresr X H1 4 -
Thus we may choose #e N such that
k+1—hg=T+id
for some i€ {1, .., w}. We then choose
Serr= fet BerrXiu,
Then
Jew12(P1s s )= fio(Prs oos Do) + Breia (X84 - ) (xTH9 4 .0
= fio(P1s s D)+ B X+ -,

SO

Tk+l(fk+l D(pla seey pr)) = Tk+l s

as required.
The key feature of this construction is that in either case fy,, is
produced from f; by adding terms of order at least 4, and

SRy
>k+1 g
g

h T + o0,

as k1 + co. Thus, given je N there exists J=J(j) such that
T’f,. = T’f, Vk = J.

Consequently, {fi} 3, converges in R[[x,, .., x,]] to a limit £, and for
each ke N

T fo(prs - Pr))=T*(T* ) (p1, s P)))
= Tk((kaJ(k)) (P15 e p))= T* s
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hence
fo(ply"wpr):p' I

COROLLARY 3. Letp,,.., p,eR[ [x]] and p,(0)=0Vi. Let f e RL[x]].
Then the following are equivalent:

(i) feR[[py; . p,11;
(11) kae TkR[pl""’ pr]’ VkE N;
(i) T* e T*R[ T*p,, .., T*p,], Vk e N.

LEMMA 4. Suppose that f e C*(R,R), 0<n<d, ace R, fis flat at a,

dist(x, /' ~1(0)) <y, Vxe(a, a+9),

keN, and

M=max{|f(k+”(x)|;a<x<a+5}.
Then for each x e [a,a+d], we have

kK< My* o

16 = fla) <=2,

and

k+1‘iM’7k+l~i

(%) k
R

(for 1 <i<k).

Proof. I.f 0 < kn, then we apply Taylor’s theorem with Lagrange’s form
of the remainder. Since fis flat at a, we get (for xe[a, a+ 6] and suitable ¢&,):

A . f(k+1)(§0)(x_a)k+l M§k+1
IO e e e L
and, for 1 <i<k,
oy [ L5 HE —af ] mgreis
()| —
7N (k+1—3)! ’\(k+1—i)!’
)
Mk*y¥s

1£(x) = fla)| < ol
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nd

If(i)(x)| <Mkk+1—i}1k+l—i.
S (k+1-i0)

"hese easily yield the desired estimates, in this case. ' :
So suppose k# <d. Then we may choose k distinct points &, ..., &, in

he interval
I=(x—kn, x+kn)n(a, a+9),
1t each of which /' = 0. By Newton’s interpolation formula,

f,(x) =('x—él) aid: (x_ik) f’[éb ooy ék9 x]

_(x=&) - (x—&s) a4
= k! :

(cf. [7, p- 47]) so

kn)* M
ool <

By applying Rolle’s theorem, we see that for 2<i<k, f¥ has k+1—i
zeros in I, and the same argument shows that
: (kﬂ)k+ 1—i M
() P i L I T ity
S Py
Finally,

19— ftl = [ 7w

k*Mn*o
< a

Thus we have the desired estimates in this case also, and the proof is
complete. [l

The next lemma is well-known. For instance, functions of the requirgd
type may be obtained by integrating the bump-functions @, that appear in
r13. Chapter IV, Lemme 3.3, p. 77].
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LEMMA 5. There are universal constants ¢, >0 with the following
property. Given 6>0 there exists ¢ € C*(R, R) such that 0<¢<1, §=0
near (—0,0], ¢ =1 near [J, + o), and

)

dx*

Ck
<=
5k

Vk>1.

LEMMA 6. Let EcR be closed and f e C*(R, R). Suppose each point of
E is a critical point of f. Let F be the set of points of E at which f is flat.
Then f belongs to the closure in C® of the set of functions g€ C® such that

g is locally constant near F, (D)

and
for each ac E, we have that g is flat at a, or T g=TZ f. (2)

Proof. Observe that f'is flat on E? so E‘cF.
Fix keN and R>0. We will show that given &> 0 there exists ge C*®
having properties (1) and (2) and such that

max sup |gV(x)—f(x)|<e.

0<i<k —R<x<R

This will suffice.

Since modifications to f off [ —R, R] are of no consequence, we may
alter it so that it is locally-constant near each point of E~[ —R, R].
In fact, if fis flat at — R, we may assume f(x)= f(—R) for all x < —R,
whereas if fis not flat at — R, then Ja> 0 such that En(—R—a, —R) =,
and we may modify f'to have f(x) = f(— R —«) for all x < — R —a. Similar
modifications may be made on [ R, + o).

Let Fr=Fn[—R, R]. Let

M= max sup | O(x).

0<i<k+l —R—1<x<R+1

Fix 6 (0, 1).

Each connected component of Fy is a singleton or a closed interval of
positive length. For each such component C=[a, b] consider the open
interval I=(a— /2, b+ J/2). Select a finite number Iy, ..., I,, of these inter-
vals, corresponding to components Cjy, ..., C, of Fg, covering Fr. We may
suppose that no I; is contained in the union of the rest, and that they are
ordered so that, with I,=(c;, d;), we have ¢;<c; .



ALGEBRAS OF SMOOTH FUNCTIONS 467

We now carry out a process to “disjointify” the I;

Suppose ¢; .1 <d; for some j.

If (¢je1, d ;) ¢ E, pick points d;<c;,; belonging to the same connected
component of (¢jy1,d;) ~E, and replace I; by (c;,d;) and I, by
( j+1> 1+1)

If ¢j1<d;and (c ]+1, d;)  E, then there is a connected component 4 of
E? containing [ ¢, ,, d,], and we must have 4 # C; (since d, ¢ C,). Since d,
is no more than distance 6/2 from C;, we see that (a’ 0/2,d;) ~ E is non-
empty. Pick d;< ¢}, belonging to the same component of (d;,— /2, d;) ~ E,
and replaceI by(l, d;) and I; | by (¢ 1, d; 1)

If ¢;, 1 =d, then it belongs to [—R, R] and either it is not a point of
E, or it is an isolated point of E, since the I’s together cover
E?N [ —R, R]. In either case we may pick points ¢}, <din a single com-
ponent of (d;,—d/2, d;) ~ E and proceed as in the previous case.

The effect of this modification is to produce a covering {I,} of Fg such
that the sets clos /; are pairwise disjoint, /; contains a component C; of Fg,
and no point of /; is more than ¢ away from C;. Also, c; ¢ E for j>1 and
d, ¢ E for j<n.

Let

o, =inf Fr N1, 7= flay),
ﬁj.:supFRij, 6j=f(ﬁj)'

In what follows, I, and I, may need special treatment, so assume for the
moment that j# 1, j#n. Then

;<0< f;<d,.

We consider in turn the sets (c;, ;) ~ E, («;, §;) ~ E, and (f,, d;) ~ E.

The open set (c;, a;) ~ E is nonempty, so the supremum of the lengths of
its component intervals is positive. Denote this supremum by #;”, and
select an interval (r;7, s;7) = (c¢;, o)) ~ Ewith s, —r;7 =5, . Letd; =a,—c;.
Applying Lemma 4 we see that

KEM(n; )< o)

) =l s ——L—L, 3)

kk+1—iM(nj— )k+1—i
(k+1—=i)

|fO(x)] < (1<i<k), (4)

whenever x € (c;, a;).
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Similarly, in the nonempty open set (f;, d;) ~ E, we select an open inter-

val (r/*, s*) whose length is the supremum #;* of the lengths of such inter-
vals, and we let J;" =d;— ;. Then we have

kK*M(n+)k o+

[fGe)=d)| s —————
k!
kk+1—~iM(’7.+)k+l—i
B(x)| < o <i<
|f (X)l (k-i-l—l)' s (l\l\k),

whenever x € (f;, d)).

Now it may happen that «; and g, belong to the same component of Fp.
This occurs precisely when C;=[a;, §;] and I; has no points of Fg other
than the points of C;. We call this the “two-interval case,” and otherwise
we say we have the “three-interval case.”

In the three-interval case, («;, f;) ~ E is a nonempty open set. Let 1y be
the supremum of the lengths of its components, and select (rj‘.’, sj‘.’) c
(o, B;) ~ E with s) —r) =) Let 6) = p,— ;. Then

“M(n})* o7
) =yl S —— 17—
KM(n7)* 57
[fx) =l s ——F—
] kk+1—iM(’7(:l)k+l—i
|fO(x)] < (k+1_’i)! . (1<i<k),

whenever x € («;, f)).
By Lemma 5 we may select ¢;~ € C* such that

0<¢; <1,
¢, =0near(—oo,r; ],

¢, =1 near[s;, +00),

(4,1 <

C:
— Vi=0.
(n;7)

Similarly, we select functions ¢, ¢° which go from 0 to 1 across (rf,s/)
and ( s.) and have bounds

¢ (69 <—

()" : THE

(4,791 <
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Now consider j= 1. It is possible that (¢, 2y) = E. This occurs precisely
vhen ¢; < —R and [¢,, —R] = E. If this is the case, then construct ¢;" and
if necessary) ¢ exactly as before, but take ¢; = 1. If, on the other hand,
¢,, a;) ~ E# &, then no special treatment is needed: just choose ¢ and
if necessary) ¢J in the usual way.

Finally consider j=n. If (B,, dn) ¢ E, then proceed as usual. Otherwise,
hoose ¢, and (if necessary) ¢° as usual, but take ¢F =1.

In the two-interval case, let

hy=¢;(1=¢)(f =)
[n the three interval case, let
hy=¢; (1 =9 f =) +6;(1 =4 )(f —9))-
Let

g8s=f— Z hj'
j=1
Then g5 € C*. Each point a e Fg belongs to some [a;, B;]. Now h,=0 on
I, Vr#j. If the two-interval case obtains, then h;= f —y; near [a;, B,1, and
hence g5 =7y, is constant near a. In the three-interval case, h;= f — 7, near
[, 791, hy=f—0J; near [s9, ;1. and ae[w;, B;] ~(r},s7), so near a we
have either gs=7, or gs=09;. Thus g, is locally constant near Fpg.

Now consider a point ae E ~ Fg. Carefully examining all the possible
cases, we note that each function ¢;, ¢ o ¢;’ is identically 0 or identically
1 on a neighbourhood N of @, and hence, on N, h; equals one of 0, f —7,
or f—&,. Moreover, the h; have pairwise-disjoint supports, so g; equals
one of £, 91, 81, «s Vns O, identically on N. Thus T2 gs= gs(a) or T f.

It remains to estimate |f®— g@|, for 0<i<k. Fix xe[ —R, R]. We
have

|fO(x) — g(x)| = max |K(x)| = max {44}, 4]}
1<j<n 1<j<n

where

= ' _ )

A; —(s_up_ Ed” (f=w)|s
s
d' d'

0 _ % f—, O f— 6,
Aj—(r?’l,lg}’) priiit %) +\dx' flime
+ d’ +
A = sup |—=5¢; (/)
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The three estimates are similar, so we discuss only the first. As is well-
known, sup | f| and sup |f®| together control the intermediate sup |/®|,
so we need only consider i=0 and i =k. The estimate (3) trivially yields

|¢;(f —y,)| <conmst-9,
since J;” <J. By Leibnitz’ formula

k

d* g | |
S -n=x () U-noue

i=0

By (3), we have, where xe(r;", s;7)

(f(x) = 7)(¢,)® (x)] < const -4,
and for 1 <i<k,
|fO(x)(¢;)*? (x)| <const-#;” <const-d.
Thus
|4;” | <const-d.
We conclude that

max sup |f9(x)—gP(x)| <const-d
0<i<k —R<x<R

where the constant depends on R and k, but not on . Thus we obtain the
desired estimate by taking ¢ sufficiently small. ||

Lemma 7 (Factorisation Lemma). Let ¥: R?— R be C* and injective.
Suppose fe C*(R?% R) is locally-constant near the critical set of V. Let
K = R? be compact. Then there exists ¢ € C*(R’, R) such that f =¢o ¥ on K.

Proof. Let U be an open ball in R? containing K. The map ¥ is a
homeomorphism of U onto V= ¥(U). Let E be the critical set of ¥. Then
¥ is a difffomorphism of U~ E onto the smooth imbedded d-dimensional
submanifold ¥ ~ ¥(E)cR". For ye ¥(U), let xe U have ¥(x)=y and
define ¢(y) = f(x). Then ¢ is a C* function on V'~ ¥(E) and is locally-
constant on a relative neighbourhood of ¥(En U) in V. The existence of
a C* extension of ¢ to R” is a local question, so it is clear that ¢ has such
an extension (since smooth functions extend from submanifolds, and con-
stants are easy to extend). This is enough. |
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The last lemma is a well-known consequence of d_e la Vallée Poussin’i
«tension of Weierstrass’ polynomial approximation theorem to C

pproximation.

LEMMA 8.‘ Let W=y, .. ¥,)€CZ(R,R) andd¢e C*®(R", R). Then
o ¥ belongs to the closure of R[Y1, . ¥, ] in CZ(RY, R).

4. PROOF OF THEOREM

Let =y, - ¥,): Ro>R’ be injective. Fix f'€ C*(R, R).

(1)=(2): Thisis immediate from the continuity of the map fTEf
ind the fact that TFR[ T* %] is closed in R[x].
(2)=(3) and (4) = (5) follow from Corollary 3.

(2) = (4) and (3) = (5) are obvious.

It remains to prove that (5)= (1). (See Fig. 1.)
Suppose f has

TE feR[[TSY—¥(@)]]

whenever ¥'(a) =0. o . .
Let E denote the set {aeR: ¥'(a)= 0} of critical points of ¥ Then f'is

flat on E% By Lemma 6, we may approximate fin C% by functions g that
are locally-constant near E? and still have T’ g€ R[[Tr 'I’—"P(a)]],
Vae E. So it suffices to show that we can approximate such a function g by

elements of R[Y/, .., ¥,1]. Fix such a g. .
Fix R>0. Since g is locally-constant near E“, we may pick #>0 such

that g is constant on (a—7, a+n) for each acE*Nn[—R, R]. Let

N= U (a—n,a+mn).

0
N
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Then N is a finite union of open intervals, on each of which g is constant,
and En[ —R, R] ~ N is discrete, and hence finite. Let the open intervals
be Jy, ..., J,.. If any endpoint of a J; belongs to E, then we may shrink J;
by at most #/2 to avoid this. In this way we obtain

En[—R,R]={a;,..a,} U(NNE)

where C=clos N is a compact set that contains the #/2 neighbourhood of
E?N[—R, R], g is locally-constant on N, and Enbdy N = (.
For each i, pick p; e R[[x;, .., x,]] such that

T2 g=p;o(T3¥—¥a)).

By Borel’s theorem, we may choose ¢; e C*(R’, R) such that T, ,¢,= p;.

The points ¥(a;), ..., ¥(a,) are distinct, and lie outside the compact set
¥(C), so we may choose y; € C*(R’, R) such that y,=1 near ¥(q,) and
2:=0 near Y(C)u {¥(a,): j#i}. Replacing ¢ by y;4,, if need be, we may
assume that

spt §; Nspt ¢, = &, whenever i # j,

and
spt ¢, N W(EY) =, Vi.

Now let h=g—3%_, ¢, ?. Then he C®(R), h is locally-constant on N,
and A4 is zero and flat at each point of (En[ —R, R])~N. Applying
Lemma 6 with E replaced by En[ — R, R], we see that 4 may be approxi-
mated in C® by a sequence 4, of functions that are locally-constant near
En[—R, R]. By the Factorisation Lemma, h,=p,¥ near [ —R, R],
where p, € C*(R” R). By Lemma 8, p, - ¥ may be approximated in C*
by polynomials in (Y, .., V¥,), hence & can be so approximated on
[ =R, R]. Another application of Lemma 8 to ¢,o¥ then yields the
result. ||

The following corollary is worth noting.

COROLLARY 9. If ¥= (Y, .., ¥,) € C®(R, R") is injective and is flat on
the critical set E of P, then R[ Y, ..., Y,] is dense in the set {f€ C*(R): f
is flat on E}.

For instance, taking

—1
sgn(x) exp <7>, x #0,
05 X = 0,

Y(x)=
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we observe that \/lT//_I belongs to the closure in C*® of R[y]. This shows
that, even in the point separating case, the set {¢o(Yy, .., ¥,):
¢e C*(R", R)} may be a .proper subset of closce R[Vy, ..., ¥,]. A very
similar example (not injective) was already noted by Glaeser [6].

To give an example having a substantial critical set, we could take any
injective C* function ¥: R — R that is flat precisely on the classical Cantor
set, C. Such a function may be obtained, for instance, by taking any func-
tion ¢: R — [0, +o0), smooth off C and vanishing on C, and satisfying a
Holder condition with some positive exponent, and then letting

exp(—¢(x)), x¢C,
p(x)= {O xeC,

Ve = pnar

The corollary then says that each function flat on C belongs to the closure

in C* of R[y].
Finally, we record a regularity result for these algebras.

COROLLARY 10. Suppose ¥ = (Y1, ..., ¥,) € C*(R, R") is injective. Let A
and B be disjoint closed subsets of R. Then 3f € closco R[ Y1, ..., ¥, ] such
that f =0 on A and f =1 on B.

(This result is trivial to prove if we add the hypothesis that ¥ be proper.)

Proof. Let E be the critical set of ¥. Then FE is closed and nowhere
dense. It is not difficult to construct a function f € C*(R, R) such that f =0
on 4, f=1 on B, and for each a € E there exists » >0 such that =0 on
(a—r,a+r) or f=1 on (a—r,a+r). By Corollary 9, f belongs to the
closure of R[y/y, ..., ¥,] in C*. |
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