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We compute the Landau gauge quark propagator from lattice QCD with two flavors of dynamical
OðaÞ-improved Wilson fermions. The calculation is carried out with lattice spacings ranging from 0.06 fm
to 0.08 fm, with quark masses corresponding to pion massesmπ ≈ 420, 290 and 150 MeV, and for volumes
of up to ð4.5 fmÞ4. Our ensembles allow us to evaluate lattice spacing, volume and quark mass effects.
We find that the quark wave function which is suppressed in the infrared, is further suppressed as the quark
mass is reduced, but the suppression is weakened as the volume is increased. The quark mass function
Mðp2Þ shows only a weak volume dependence. Hypercubic artefacts beyondOðaÞ are reduced by applying
both cylinder cuts and H4 extrapolations. The H4 extrapolation shifts the quark wave function
systematically upwards but does not perform well for the mass function.
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I. INTRODUCTION

The quark propagator is one of the fundamental objects of
QCD, and contains information regarding several of the core
nonperturbative features of the theory, namely dynamical
chiral symmetry breaking and the absence of quarks from the
physical spectrum (confinement). Specifically, a nonvanish-
ing mass function even in the limit of vanishing bare quark
mass is a direct sign of dynamical chiral symmetry breaking,
while the absence of asymptotic quark states can be trans-
lated to an absence of real poles in the propagator, or
equivalently, the lack of a positive spectral representation
(see, e.g., the discussions in [1–4]).
Lattice calculations provide us with an opportunity to

study these essentially nonperturbative aspects of the quark
propagator. Furthermore, first-principles lattice calculations
may be used to validate the assumptions used in other
nonperturbative approaches such as Dyson–Schwinger
equations (DSEs) and functional renormalization group
(FRG) calculations, like the recent studies in [5–8].
The quark propagator is a gauge dependent quantity,

and hence requires a choice of gauge condition. The most

commonly used gauge, both in lattice and DSE or FRG
calculations, is the Landau gauge, but other gauge con-
ditions, including Coulomb gauge, maximal Abelian gauge
and general covariant gauges have also been employed.
In the past, after some early studies using Wilson

fermions [9–13], most studies of the lattice Landau gauge
quark propagator have used staggered [14–17] or overlap
[18–22] fermions. There have also been calculations using
chirally improved fermions [23], as well as twisted mass
Wilson fermions [24,25]. In [26] there is even a lattice
study for adjoint fermions but for the gauge group SU(2).
Although calculations with the same quark content,

but different fermion discretizations, should agree in the
continuum limit, at finite lattice spacing the lattice artifacts
may differ widely, and a comparison between different
actions remains an important tool on the way to a controlled
continuum extrapolation. In this paper, we present a
calculation of the quark propagator using gauge configu-
rations with Nf ¼ 2 flavors of OðaÞ-improved Wilson
fermion for nearly physical quark masses. In our calcu-
lation the quark propagator is also OðaÞ-improved.
Preliminary results were reported in [27].
The paper is organized as follows. In Sec. II we give the

details of our lattice simulations, including the lattice
parameters, gauge fixing and extraction of form factors,
and outline our tree-level correction procedure. Section III
discusses our lattice results. In Sec. III B we discuss in
some detail the hypercubic artifacts beyond tree level,
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and how they may be brought under control. We end with a
brief summary in Sec. IV.

II. SIMULATION DETAILS

A. Gauge ensembles

For the computation of the quark propagator we take a
subset of the gauge ensembles generated by the Regensburg
QCD (RQCD) collaboration (see, e.g., [28–30]) using
Nf ¼ 2 nonperturbatively improved Sheikholeslami–
Wohlert (clover) fermions [31] and the Wilson action for
the gauge sector. In the present work we use three values
for the gauge coupling, corresponding to lattice spacings of
a ≈ 0.081 fm, a ≈ 0.071 fm and a ≈ 0.060 fm, and quark
masses corresponding to pion masses of mπ ≈ 420 MeV,
mπ ≈ 290 MeV, and mπ ≈ 150 MeV, which is almost at
the physical point [28,30]. Most of the calculations have
been carried out on a lattice volume of 323 × 64, but the
near-physical quark mass ensemble was generated on a
larger 644 lattice, corresponding to a physical volume of
ð4.5 fmÞ4. We have also used a 644 lattice to check finite
volume effects for one of the other parameter choices
(mπ ≈ 290 MeV). The parameters used are listed in Table I.
For the gauge fixing we used an overrelaxation algorithm

which iteratively maximizes the Landau-gauge functional

FU½g� ¼
1

4V

X
xμ

ReTrUg
xμ ð1Þ

with Ug
xμ ¼ gxUxμg

†
xþμ̂ and gx ∈ SUð3Þ. As stopping

criterion we used

max
x

ReTr½ð∇μAxμÞð∇μAxμÞ†� < 10−9 ð2Þ

where Axμ≡ 1
2iag0

ðUg
xμ−Ug†

xμÞjtraceless and ∇μAxμ≡P
μðAxμ−

Ax−μ̂;μÞ, as usual. This stopping criterion corresponds to
demanding an average value over the lattice of
ReTr½ð∇μAxμÞð∇μAxμÞ†�≲ 10−12. In this study, we do
not attempt to investigate the influence of Gribov copies
on the quark propagator.

B. OðaÞ-improved Wilson quark propagator

For the Wilson-clover action, the OðaÞ-improved quark
propagator is given by [11,12,31,32]

Srotðx; yÞ ¼ ð1þ 2bqamÞhLðxÞM−1
SWðx; yÞRðyÞiU; ð3Þ

where M−1
SW is the inverse Wilson clover-fermion matrix

which is rotated from left and right by1

LðxÞ≡ ½1 − cqaD⃗ðxÞ�; ð5aÞ

RðyÞ≡ ½1þ cqaD⃖ðyÞ�: ð5bÞ

The improvement coefficients bq and cq should be non-
perturbatively determined to remove the OðaÞ errors in the
quark propagator completely. We expect however that
the deviations from tree level are small and therefore fix
them at their tree-level (tl) values, i.e., bq ¼ cq ¼ 1=4 [32].
On the lattice, the bare quark mass is

am ¼ 1

2

�
1

κ
−

1

κcðβÞ
�
⟶
β→∞ 1

2κ
− 4≡ am0; ð6Þ

where κcðβÞ is the critical hopping parameter. This tl-rotated
quark propagator is the one used throughout in this paper.
For its computation we use correspondingly rotated point
sources at four different source locations (except for the 644

lattices, where only two sources were used) and average the
data from the different sources.
Note that in [11,12], a different improved propagator

was also analyzed, but as it was found that this propagator
has more severe lattice artifacts beyond OðaÞ, we will not
consider it here.

C. Lattice tree-level corrections

In the continuum, the renormalized Euclidean-space
vacuum quark propagator can be written as Sabðp; μÞ ¼
δabSðp; μÞ with

Sðp; μÞ ¼ 1

ipAðp2; μÞ þ Bðp2; μÞ≡
Zðp2; μÞ

ipþMðp2Þ ; ð7Þ

where μ is the renormalization scale. The propagator is
completely determined by the two form factors Aðp2; μÞ

TABLE I. Lattice parameters used in this study. The lattice
spacings a and pion masses mπ are taken from [29], while
am ¼ 1=ð2κÞ − 1=ð2κcÞ is the subtracted bare quark mass ob-
tained using the critical hopping parameters κc from [29].

no. β κ V a [fm]
(mπ , m)
[MeV] Ncfg

I 5.20 0.13596 323 × 64 0.081 (280,6.2) 900
II 5.29 0.13620 323 × 64 0.071 (422,17.0) 900
III 5.29 0.13632 323 × 64 0.071 (295,8.0) 908
IV 5.29 0.13632 643 × 64 0.071 (290,8.0) 750
V 5.29 0.13640 643 × 64 0.071 (150,2.1) 400
VI 5.40 0.13647 323 × 64 0.060 (426,18.4) 900

1For the covariant derivative we use

D⃗ðxÞψðxÞ≡X
μ

γμ
2a

½Uxμψðxþ μÞ − U†
x−μ̂;μψðx − μÞ�; ð4aÞ

ψ̄ðxÞD⃖ðxÞ≡X
μ

½ψ̄ðxþ μ̂ÞU†
xμ − ψ̄ðx − μ̂ÞUx−μ̂;μ�

γμ
2a

: ð4bÞ
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and Bðp2; μÞ or alternatively Zðp2; μÞ and Mðp2Þ, the
quark wave and mass function, respectively. Due to
multiplicative renormalizability M is renormalization-
group invariant (see, e.g., [11,33]) and in momentum
subtraction (MOM) schemes is set equal to the running
quark mass Mðμ2Þ ¼ mRðμÞ at some ultraviolet renormal-
ization scale, while Zðμ2; μÞ ¼ 1.
On a finite lattice with periodic boundary conditions

in space and antiperiodic boundary conditions in time
for the fermions, the available momenta are discrete and
given by

pi ¼
2π

Nia

�
ni −

Ni

2

�
; ni ¼ 1; 2;…; Ni; ð8aÞ

pt ¼
2π

Nta

�
nt −

1

2
−
Nt

2

�
; nt ¼ 1; 2;…; Nt; ð8bÞ

where Ni, Nt are the number of lattice points in the spatial
and temporal directions, respectively. The lattice quark
propagator can still be parametrized by two form factors,
for instance ALðp; aÞ and BLðp; aÞ which in the asymp-
totic limit and after renormalization reduce to the corre-
sponding continuum functions, i.e.,

Aðp2; μÞ ¼ lim
a→0

Z2ðμ; aÞALðp; aÞ; ð9aÞ

Bðp2; μÞ ¼ lim
a→0

Z2ðμ; aÞBLðp; aÞ; ð9bÞ

with the quark wave renormalization constant Z2ðμ; aÞ.
Note that for any finite lattice spacing, ALðp; aÞ and
BLðp; aÞ are not functions of p2 alone, but also depend on
all the other invariants of the (hypercubic)Hð4Þ symmetry
group. We therefore keep p instead of p2 in the argument
of the lattice form factors. For larger p, especially if ap is
large, the lattice data will expose a different momentum
dependence, aka. “fish-bone structure” which survives the
renormalization. Only in the asymptotic limit, where the
lattice spacing is sufficiently small such that the lattice
structure is irrelevant, do these deviations disappear for
any fixed value of the momentum p. Improved lattice
operators and actions help to improve the convergence
towards the continuum.
For commonly used values of β these deviations due to

the lattice spacing are large when using an unimproved
(clover-) Wilson fermion propagator. We therefore use the
OðaÞ-improved (tl-rotated) lattice Wilson fermion pro-
pagator given in Eq. (3), which at tree level reads [11]

Sð0Þrot ðp; a;mÞ ¼ Zð0Þ
rot ðp; a;mÞ

i=̄pþMð0Þ
rot ðp; a;mÞ

; ð10aÞ

with

Zð0Þ
rot ðp; a;mÞ ¼

�
1þ am

2

�
p̄2I2A þ I2B
IADW

; ð10bÞ

Mð0Þ
rot ðp; a;mÞ ¼ IB

IA
ð10cÞ

and

DW ≡ p̄2 þ ½mþMW �2; ð11aÞ

IA ≡ 1þ am
2

þ 3a2p̄2

16
þ a4ðp̂2 − p̄2Þ

4
; ð11bÞ

IB ≡m

�
1 −

a2p̄2

16

�
−
a3

32
p̄2p̂2 þ a3ðp̂2 − p̄2Þ

2
: ð11cÞ

The Wilson mass term MW ¼ ap̂2=2 and the lattice
momentum functions are

p̄μ ≡ 1

a
sinðapμÞ; ð12Þ

p̂μ ≡ 2

a
sinðapμ=2Þ: ð13Þ

Knowledge of the lattice tree-level propagator is of great
advantage when one extracts the nonperturbative quark
form factors from the lattice data. With appropriate pro-
jections one obtains form factors which are exact at tree
level. We will see this reduces a large fraction of the lattice
artifacts mentioned above.
Following this, we define the (renormalized) nonpertur-

bative quark wave and mass functions as

Zðp; μ; mÞ ¼ Z−1
2 ðμ; aÞ · ZLðp; a;mÞ ð14Þ

ZLðp; a;mÞ ¼ Zrotðp; a;mÞ=Zð0Þ
rot ðp; a;mÞ ð15Þ

and

MLðp; a;mÞ ¼ ðMrotðpÞ −Mð−Þ
rot ðpÞÞ=ZðþÞ

m ðpÞ ð16Þ

whereMð0Þ
rot has been split into strictly positive and negative

terms [12]:

Mð0Þ
rot ðpÞ≡mZðþÞ

m ðpÞ|fflfflfflffl{zfflfflfflffl}
≥1

þMð−Þ
rot ðpÞ|fflfflfflffl{zfflfflfflffl}
≤0

: ð17Þ

ZL and ML have the correct form at tree level if Zrot ¼
1=Arot and Mrot ¼ Brot=Arot are obtained from the usual
traces of the lattice data for Srot [Eq. (3)]:
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Arotðp; a;mÞ ¼ 1

12p̄2
Tr½=̄pS−1rotðp; a;mÞ�; ð18aÞ

Brotðp; a;mÞ ¼ 1

12
Tr½S−1rotðp; a;mÞ�: ð18bÞ

with p̄ defined in Eq. (12). In the continuum, the mass
function is renormalization-group invariant. Hence
Mðp2; mÞ ¼ lima→0MLðp; a;mÞ. We find only a very weak
dependence on the lattice spacing in our data, and hence
conclude that for our lattice spacings we are close to the
limit. To simplify notation, we therefore drop the subscript
L, when showing lattice data for the mass function.
Here a note on our lattice tree-level corrections of the

mass function is in order: Naively one would correct it by
subtracting the p-dependent part of the lattice tree-level
expression, i.e.,

MsubðpÞ ¼ MrotðpÞ −Mð0Þ
rot ðp;mÞ þm; ð19Þ

analogously as one would subtract MW in case of the
unimproved Wilson quark propagator. Alternatively, one
could apply a multiplicative correction, i.e., define the
nonperturbative mass function as

MmulðpÞ ¼ MrotðpÞ=Zð0Þ
m ðpÞ ð20Þ

with Mð0Þ
rot ðpÞ≡m · Zð0Þ

m ðpÞ. However, this approach suf-

fers from cancellation effects when eitherMrot orM
ð0Þ
rot take

values around zero (cf. Fig. 1). It was found in [12] that the
“hybrid” tree-level correction in Eqs. (16) and (17) com-
bines the advantages of the additive and multiplicative
correction. Hence we use it for the results for M shown
below. A comparison with MmulðpÞ is shown in the
Appendix.

For illustrative purposes, we show in Fig. 1 the momen-

tum dependence of Zð0Þ
rot , aΔM

ð0Þ
rot ≡ aMð0Þ

rot − am and the
Wilson mass term aMW , both for diagonal and on-axes
momenta ap. Filled symbols are for am ¼ 0.1, open

symbols for am ¼ 0. We see that aΔMð0Þ
rot changes sign

depending on ap and am, while Zrot is almost unaffected
by the quark mass. Also note that theOðaÞ improvement is

already evident at tree-level: aΔMð0Þ
rot increases much less

with ap than aMW which dominates the lattice artifacts of
the unimproved Wilson (clover-) fermion propagator.
On-axes momenta cause larger effects, than momenta along

diagonal lattice directions, for which aMð0Þ
rot ≃ am even up

to ap ≈ 2. Changing the quark mass changes aΔMð0Þ
rot much

less than the momentum orientation. Note that for our β
values, am ¼ 0.1 corresponds to larger quark masses than
we use for our study. Our values for am range from am ¼
0.00075 (ensemble V) to am ¼ 0.006135 (ensemble II).
The value of am is hence negligible for the tree-level
corrections; only the momentum orientation matters.
In Fig. 2 we show, as an example, bare uncorrected

lattice data for aMrot for our lightest-quark ensemble V
(aka. fishbone plot). The points scatter depending on the
size and type of momentum; on-axes momenta show the
largest and diagonal momenta the smallest discretization
effects. Comparing Fig. 1 and 2 we see the dominant part of
these effects is already contained in the tree-level propa-
gator. This explains the effectiveness of applying lattice
tree-level corrections, though we also see that the linear
a2p2 dependence sets in at much lower a2p2 than it does
for the tree-level curves.

D. Beyond lattice tree-level corrections

Using the tl-rotated quark propagator and the tree-level
correction helps to drastically reduce the discretization
effects. The figures below will clearly evidence this.
However, the discretization artifacts are not removed
completely. To reduce the remaining hypercubic artifacts,
we consider two strategies:
(1) Data cuts: We have employed the cylinder cut first

described in [34] to select momenta close to the

FIG. 1. Zð0Þ
rot ðpÞ, aMWðpÞ and aΔMð0Þ

rot ðpÞ≡ aMð0Þ
rot ðpÞ − am

versus a2p2 for diagonal and on-axes momenta ap. Open
symbols are for am ¼ 0, full symbols for am ¼ 0.1.

FIG. 2. Bare uncorrected lattice data for aMrotðpÞ versus a2p2

for ensemble V (see Table I). Circles are for (near) diagonal
momenta and triangles for (near) on-axis momenta.
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diagonal in 4-momentum space, which have the
smallest hypercubic artifacts. We have also con-
sidered an alternative cut based on the value of x≡
p½4�=p½2� (see below), selecting only momenta for
which x < xmax. The results of this cut are similar to
those of the cylinder cut, but the cylinder cut gives a
more even distribution of points across the entire
momentum range and is hence preferred.

(2) H4 extrapolation [35,36]: This will be described in
more detail in Sec. III B below.

III. RESULTS

A. Tree-level corrected data

We start our discussion of data with the four ensembles at
β ¼ 5.29 and focus first on volume and quark mass effects.
The tree-level corrected results for Zðp; aÞ and MðpÞ are
shown in Fig. 3 as a function of p. The quark wave function
is left unrenormalized (Z2 ≡ 1), because the data points are
for a single β. As expected, for large momenta the quark
mass dependence of Z is negligible; the points for Z almost
collapse onto a single curve. For p < 3 GeV, however,
deviations grow as p decreases. Between p ¼ 1 and 2 GeV,
both a larger spatial volume and a smaller quark mass value
cause points to move up. Interestingly, around p ¼ 1 GeV
points for the different sets almost coincide, although no
renormalization was applied. For p < 1 GeV deviations
grow again towards the infrared, depending on quark mass
and volume: at fixed p, a larger volume causes Z to move
up [compare triangles and circles in Fig. 3 (left)], while a
smaller quark mass causes the opposite effect (compare
circles to crosses, or squares to triangles). Within our
parameter ranges, the quark mass suppression is similar in
size to the enhancement with volume.
For the mass function MðpÞ at β ¼ 5.29 (Fig. 3, right)

we see a clear quark mass dependence. Varying m not only
changes the offset at large p, but also the functional form of
Mðp2Þ. A simple rescaling of Mðp2Þ or a subtraction of a
finite offset will not collapse the data points onto a single
curve.2 The volume effect for MðpÞ is small in comparison
and actually only resolvable for p < 0.6 GeV. A larger
volume causes points to move slightly up (compare circles
to triangles for p < 0.6 GeV).
Next we look at discretization effects for which we

compare our 323 × 64 data for β ¼ 5.20, 5.29 and 5.40
(ensembles I, II, III and VI). We have to apply a renorm-
alization factor Z2, separately for each β [see Eq. (14)].
For a better comparison with Fig. 3 we again set Z2 ≡ 1 for
β ¼ 5.29 and renormalize the other two sets (I and IV)
relative to that. As renormalization point we chose μ ¼
1 GeV for which we found the smallest volume and quark

mass effects at small p. For the same reason we could
chose any other point above 3 GeV as well, but for large p
we actually expect (and find) discretization effects.
Renormalizing there would artificially shift these effects
to smaller momenta where they would overlap with volume
and quark mass effects. Choosing μ ¼ 1 GeV is thus
optimal for our purposes.
M was not renormalized, because it is renormalization

group invariant if lattice discretization effects are removed.
We will now analyze these effects.
Our results for Zðp; μÞ and MðpÞ are shown in Fig. 4

and we clearly see discretization effects for larger p.
In particular, the nonmonotonic behavior of Zðp; μÞ, reach-
ing a maximum at p ∼ 3 GeV and bending down toward
larger p, is an effect seen in previous studies with Wilson–
clover fermions which is absent in studies using other
discretizations. By looking at the bare uncorrected data (not
shown) we find that the tree-level correction, in combina-
tion with the momentum selection (cylinder cut), indeed
removes most of the discretization effects. This removal is
not complete, as expected, and what remains is seen in
Fig. 4. If the removal was complete, the points for Z above
1 GeV would collapse onto a single curve and only at small
momentum would deviations due to volume or quark mass
effects be seen.
Similarly, forMðpÞ the renormalization group invariance

is broken by lattice artifacts. In Fig. 4 (right) we see that the
data for M with approximately the same m overlap within
errors for p < 1 GeV, while for p > 1 GeV a similar but
slightly different p-dependence is seen. For the reader’s
convenience we have used open and full symbols in Fig. 4
to indicate the respective m. Overall, lattice spacing effects
for M are smaller than for Z.
It is indeed reassuring to see that the bending down of

Zðp; μÞ sets in at higher p the finer the lattice (compare the
points for ensemble I and VI in Fig. 4). Also, the mass
functionMðpÞ falls off for large p such that one can assume
that it will approach the perturbative running of the quark
mass in the ultraviolet limit if all discretization effects
are subtracted. In the infrared momentum limit we see the
dynamically generated “constituent” quark mass of about
300–400 MeV, which one would expect. It has been
suggested [37,38] that MðpÞ should reach a plateau at
small p. With our data we can neither confirm nor refute
this. We see a slight change of slope at small p for the
ensembles III and IV, but data points for much lower p are
needed to address this.

B. Correction of hypercubic artifacts

Using the tl-rotated quark propagator and the tree-level
correction described above, we obtained quark dressing
functions for cylinder-cut momenta which show much
smaller lattice spacing effects than unimproved and
uncorrected data for the clover quark propagator would
show. However, the discretization effects are not removed

2A simple rescaling yields curves for MðpÞ which are sup-
pressed at low p, the more the larger m is. On the other hand,
when subtracting a finite offset, the curves coincide at p ≃ 5 GeV
and approximately also at small p but not in between.
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completely. We will now attempt to reduce the remaining
hypercubic discretization effects using the (so-called)
H4 method [35,36]. Note that our implementation differs
slightly from the original proposal.
On the lattice the orthogonal group Oð4Þ of Euclidean

space-time is reduced to the hypercubic groupHð4Þ ⊂ Oð4Þ.
Consequently, for any lattice spacing, the traces AL and BL
[Eq. (18)] are symmetric under Hð4Þ transformations and
hence functions of the hypercubic invariants p2; p½4�; p½6�;
p½8�;… with

p½2i� ≔
X
μ

p2i
μ ∀ i ¼ 2; 3; 4;…: ð21Þ

In four dimensions the first four invariants are sufficient.
All remaining invariants, and any combination thereof, are
functions of those four.3 In the continuum limit, the renor-
malized traces Aðμ2; p2Þ and Bðμ2; p2Þ are functions of p2

alone. Therefore, we can assume that to leading order in the
lattice spacing a the lattice quark propagator traces FL ¼
fAL; BLg are of the form [36]

FIG. 4. The renormalized tree-level corrected wave function Zðp; μÞ (left) and the hybrid tree-level corrected mass function MðpÞ
(right) as a function of p, for our four ensembles on a 323 × 64 lattice (I, II, III and VI). They have been renormalized at μ ¼ 1 GeV,
relative to the β ¼ 5.29 points (a ¼ 0.07 fm). Open symbols refer to data for m ≃ 17–18 MeV; full symbols for m ≃ 6–8 MeV.

FIG. 3. The unrenormalized tree-level corrected wave function ZLðp; aÞ (left) and the hybrid tree-level corrected mass functionMLðpÞ
(right) as a function of p. The data are for a fixed lattice spacing (β ¼ 5.29), but different spatial extent Ls and quark masses m to
demonstrate volume and quark mass effects. The corresponding gauge field ensembles are II, III, IV and V. Momenta are cylinder cut
with a radius of 1 lattice momentum unit. The top right legend applies to both plots.

3For instance

p½10� ¼ 5p2

4
p½8� −

5p4

6
p½6� þ 5p½4�

�
p½6�

6
þ p6

12
−
p2p½4�

8

�
−
p10

24
:
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FLða; pÞ≡ FLða2; p2; p½4�; p½6�; p½8�Þ ≃ Fða2; p2Þ
þ a4p½4�f4ða2; p2Þ þ a6p½6�f6ða2; p2Þ
þ a8p½8�f8ða2; p2Þ þ…: ð22Þ

Fða2; p2Þ contains all Oð4Þ-symmetric terms, i.e., terms
which are functions of a2p2 and a2 only. The “hypercubic”
terms describe the leading deviation from Oð4Þ symmetry.
Such an expression (up to the second term) is for

example obtained from an Oða2Þ expansion of the 1-loop
Wilson quark propagator (see Eq. (4.1) in [39]). There,
Fða2; p2Þ is the sum of the usual constants, the logða2p2Þ
term as well as the scaling violations proportional to
a2p2. The leading hypercubic correction to AL reads
a4p½4�f4ða2; p2Þ with

f1l4 ða2; p2Þ ¼ c0ðg2Þ þ c1ðg2Þ logða2p2Þ
a2p2

ð23Þ

where the ciðg2Þ’s are functions of the coupling. The log-
term in Fða2; p2Þ is multiplicatively removed by the
respective renormalization constant, while the a2p2 and
a2p½4�=p2 terms vanish in the continuum limit. For any
finite a both terms add to the scaling violations, but those
due to the hypercubic terms also depend on the momentum
direction: they are largest for on-axis momenta and smallest
(but nonzero) for cylinder-cut momenta (see again Fig. 2).
The H4 method attempts to remove exactly those contri-
butions to the scaling violations.
Our implementation of the H4 method is a modified

version of the local H4 method described in [36]. There,
f4 ¼ c0 þ c1=p2 þ c2p2 and the constants ci are obtained
from fits to the data for a range of p2. Our fits are performed
for individual p2, but we allow coefficients to depend on
p2. That is, we do not fix the form of f4 and instead write

f4ða2; p2Þ ¼ cða2; p2Þ
a2p2

: ð24Þ

Given that our lattice propagator agrees with the continuum
expression to order OðaÞ, we restrict the expansion to
Oða2Þ.4 We do check, however, whether the fits improve if
higher hypercubic terms are included. We will also analyze
the functional form of cða2; p2Þ.
The H4 method cannot completely remove the lattice

artifacts, in particular not the scaling violations in
Fða2; p2Þ. However, our H4 extrapolation is performed
on the data after removing the tree-level artifacts as
described above. This tree-level correction already drasti-
cally reduces the scaling violations in Fða2; p2Þ and the

hypercubic terms. A subsequent application of the H4
method further reduces the hypercubic part. The bending of
the quark dressing at large a2p2 should flatten for instance.
For the (tree-level corrected) form factors, A and B, and

the quark wave function Z ¼ 1=A, we expect similar
hypercubic expansions to hold. If this is the case then
the leading hypercubic corrections for the mass function
M ¼ B=A should be comparably smaller, in particular if
those of A and B are of similar size. We thus expect that
higher hypercubic terms dominate the behavior at large
p½2i�. In the continuum limit M is renormalization-group
invariant and so it is also plausible that it may have smaller
discretization effects.
In the next subsection we discuss the results of the H4

method applied to the quark wave function Z and the quark
mass function M. For the fits we group the lattice data DF

for F ¼ fZ;Mg with respect to the value of p2. The
number of data points for each p2

i varies, hence the
statistical error of each fit will vary, too. Our fit parameters
are Fða2; p2Þ and cða2; p2Þ. If higher terms are included in
the fit, there is an additional parameter ciða2; p2Þ for each
of the terms p½6�, p½8� and p½4�p½4�. The quality of a fit is
monitored by the χ2-function:

χ2ðp2
i Þ ¼

X
j

½FLða2; p2
i ; p

½4�
j ;…Þ −DFða2; p2

i ; p
½4�
j ;…Þ�2

σ2Fðp2
i ; p

½4�
j …Þ

;

ð25Þ
where DF denotes the tree-level corrected data for F ¼ Z

and M, and FLða2; p2
i ; p

½4�
j ;…Þ denotes the H4 expansion

in Eq. (22) with f4ða2; p2Þ in Eq. (24). The minimization of
χ2 is translated into finding the solution of a linear system
of equations for cða2; p2Þ, which is solved by Gauss-Jordan
elimination. Statistical errors are estimated with the boot-
strap method with a 67.5% confidence level. The number of
bootstrap samples is ten times the number of configura-
tions. Fits with χ2=d:o:f: ≥ 2 are disregarded.
In the following, for the numerical procedure to measure

Zðp2Þ and Mðp2Þ we will always assume an exact H4
hypercubic symmetry group, which holds only for L4

lattices. The results reported here will also include the
asymmetric lattice 323 × 64, but given the volume and
lattice spacing used in the simulation, we expect the
corrections due to the asymmetry to be small—see the
analysis and the discussion in Ref. [24].
In Fig. 5 we plot the quark wave function and running

mass for various a2p2 values as a function of a4p½4� for
the simulations performed with β ¼ 5.29 on the 324 × 64
lattice with κ ¼ 0.13632, corresponding tomπ ¼ 295 MeV
(upper panels) and on the 644 lattice with κ ¼ 0.13640,
corresponding tomπ ¼ 150 MeV (lower panels). The lattice
data show a smooth behavior as a function of a4p½4�, with the
data for Zðp2Þ suggesting an essentially linear function

4Note that small OðaÞ corrections could still be present,
because we use the tl-values for the correction coefficients bq
and cq.
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of a4p½4�, while the data for aMðp2Þ show clear deviations
from a linear behavior ina4p½4�. From the point of view of the
H4 method, the observed smooth behavior in the various
plots is quite encouraging, suggesting that it is possible to
achieve a reliable extrapolation to the O(4) symmetric limit.

C. Tree-level and H4-corrected data

The top panels of Fig. 6 compare the H4-extrapolated
data (open symbols) for the quark wave function with the
tree-level corrected data (full triangle) of Fig. 3. We focus
again on the ensembles III and V, but the comparison looks
similar for the other ensembles. The H4-extrapolated points
result from three types of extrapolation: The p½4� points are
from extrapolations where the hypercubic corrections
are described by f4ða2; p2Þ in Eq. (24) alone. Open circles
are from extrapolations where a p½6�-correction term was
included as well. The open triangles are from fits where
also terms proportional to p½8� and p½4�p½4� were included.
All three extrapolations agree within errors up to p ≃
4 GeV (pa ≃ 1.5), but the errors drastically increase when
more hypercubic correction terms are included. Note again

that points from extrapolations with χ2=d:o:f: ≥ 2 have
been discarded and hence do not appear in Fig. 6.
The bottom panels of Fig. 6 show the same comparison

as the top but there the points are weighted averages of data
from nearby momenta, with weights given by the inverse
statistical error. The data binning reduces the statistical
fluctuations drastically. We have tried different bin sizes by
varying the momentum resolution

ϵ ¼ jp0 − pj
p

ð26Þ

and find that ϵ ¼ 0.05 is a reasonable compromise
between acceptable uncertainties, a smooth curve and a
sufficient number of data points. From the binned data we
see that the three types of H4 extrapolations give slightly
different results for p > 4 GeV (pa > 1.5). We also find
that the p½6� term tends to destabilize the fit, yielding an
erratic behavior at high momenta. The 644 ensemble (V)
has smaller statistics as seen in the top panels, but since
there is a larger number of p2 invariant momentum
combinations within each momentum bin, after binning
we obtain comparable results.

FIG. 5. ZLðp2; p½4�Þ (left panels) and aMLðp2; p½4�Þ (right panels) as a function of a4p½4� at four values of a2p2. The top panels show
data for β ¼ 5.29, κ ¼ 0.13632 and a 323 × 64 lattice, the bottom panels for β ¼ 5.29, κ ¼ 0.13640 and a 644 lattice.
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The H4 extrapolation works well for the quark wave
function. For the running quark mass, however, the
extrapolations perform much worse—see Fig. 7, where

the H4-extrapolated MðpÞ is shown for the same ensem-
bles as for ZðpÞ above. In fact, the number of fits with
χ2=d:o:f: ≤ 2 is significantly smaller for MðpÞ, than it is

FIG. 6. H4-extrapolated quark wave function for β ¼ 5.29, κ ¼ 0.13632, V ¼ 323 × 64 (left panels) and for β ¼ 5.29, κ ¼ 0.13640,
V ¼ 644 (right panels). The top panels show the raw data before smoothing, while the bottom panels show the results after averaging
with a momentum resolution ϵ ¼ 0.05 (see text for details). In the legend we list the hypercubic terms included for the fit.

FIG. 7. H4-extrapolated running mass function Mðp2Þ after binning with a momentum resolution ϵ ¼ 0.05 (see text for details), for
β ¼ 5.29, κ ¼ 0.13632, V ¼ 323 × 64 (left) and β ¼ 5.29, κ ¼ 0.13640, V ¼ 644 (right) As in Fig. 6 we list the hypercubic terms
included for the fit.
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for Zðp2Þ. Only by including all hypercubic terms up to
the p½8� and p½4�p½4� terms can reasonable extrapolations
be found.
In Fig. 7 we compare the H4-extrapolated with the tree-

level corrected data forMðp2Þ, again by showing weighted
averages of data from nearby momenta (ϵ ¼ 0.05). For
large p, our H4-extrapolation changes the momentum
behavior of the tree-level corrected MðpÞ only slightly,
while for smaller p the extrapolated values differ more
significantly, in particular between p ¼ 1.3 GeV and
3 GeV. From the nature of hypercubic artifacts we would
expect the opposite trend. Furthermore, the points from the
three types of extrapolations do not coincide at small p,
while they tend to converge onto a single curve with the
tree-level corrected (cylinder-cut) data for high p. We
conclude that our H4-extrapolation fails forM and consider
the tree-level corrected data in Fig. 3 and 4 as our final data
for M.
Our results for Z after tree-level correction and H4

extrapolation (ϵ ¼ 0.05) are shown in Fig. 8 (full symbols).
If the linear H4 extrapolation in a2p½4�=p2 was not
successful (i.e. χ2=d:o:f: ≥ 2), the tree-level corrected data
are shown instead (open symbols). They are the same as in
Fig. 3 and 4. To guide the eye and to demonstrate the shift
due the H4 extrapolation we have added dashed lines
connecting the tree-level corrected points. These points are
not shown above p2 ≃ 3 GeV2 in Fig. 8 to improve the
visibility of the shift. The points in the two upper panels of
Fig. 8 have been renormalized relative to the a ¼ 0.07 fm
data at μ ¼ 1 GeV. This allows for a better comparison
with the bottom panel showing unrenormalized data at
fixed lattice spacing (a ¼ 0.07 fm) but different volumes
and quark masses.
In Fig. 8 we see that the H4 extrapolation causes an

upward shift of all data points above p2 ≃ 2 GeV2. For the
heavier quark mass sets (top panel) the H4 extrapolation
causes also a slight reduction of the vertical difference for
3 GeV2 < p2 < 10 GeV2. For the lighter quark mass this
difference is already negligible after tree-level correction.
For the single-a data in the bottom panel of Fig. 8 we
observe that the points above p2 ¼ 1 GeV2 tend to overlap
less after H4 extrapolation. This might be due to the
different volume sizes which influences the quality of
the H4 extrapolation there.

D. Looking at the H4 expansion

We close the section with a discussion on cða2; p2Þ [see
Eq. (24)]. Remember that in our H4 extrapolation the
functional form of cða2; p2Þ is not fixed, but left as a free,
momentum dependent parameter. Hence our fit results may
be useful for future studies, e.g., when applying global H4
extrapolations. In Fig. 9 we show cða2; p2Þ for ZðpÞ from
ensemble IV (gray circles), together with different regres-
sion curves:

FIG. 8. Quark wave functionversusp2 after tree-level correction
(open) and H4 extrapolation (full symbols). Top and middle panel
show data for different lattice spacings, a, but approximately same
quarkmass,m ¼ 6…8 MeVandm ¼ 17…18 MeV, respectively.
The bottom panel shows data for a≡ 0.07 fm but varying m and
volume.
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cð1Þða2; p2Þ ¼ c0 þ c1 logða2p2Þ; ð27aÞ

cð2Þða2; p2Þ ¼ c0 þ c1a2p2 þ c2a4p½4�; ð27bÞ

cð3Þða2; p2Þ ¼ c0 þ c1 logða2p2Þ þ c2a4p4: ð27cÞ

cð1Þ resembles the prefactor of the a2p½4�=p2 correction
term to the Wilson quark wave function in 1-loop lattice
perturbation theory atOða2Þ [[39] Eq. (4.1)]. The ansatz for
cð2Þ is from [36] and cð3Þ equals cð1Þ at small a2p2 but
includes an additional a4p4 term to describe the bending
for a2p2 > 4. We see in Fig. 9 that cð3Þ gives a good
description of our fit results for cða2; p2Þ, while the other
two curves give a poor description if fitted to the whole
a2p2 range. If the fit range for cð1Þ is restricted to a2p2 < 4,
cð1Þ coincides with cð3Þ up to a2p2 ¼ 3.5. Applying the
same constraint for cð2Þ, we find that cð2Þ and cð3Þ overlap
for 1 < a2p2 < 4.
In short, our analysis of the fitted H4 expansion seems to

favor the functional form cð3Þða2; p2Þ which we adapted
from 1-loop lattice perturbation theory. It better reproduces
the observed behavior for large a2p2 and hence could
improve global H4 fits, e.g., as performed in [36].

IV. SUMMARY

We have studied the quark propagator in Landau gauge on
Nf ¼ 2 gauge field configurations using OðaÞ-improved
Wilson fermions for both large and almost physical quark
masses.
In agreement with previous studies, we find that the

quark wave function, Zðp2Þ, is infrared suppressed and the
quark mass function, Mðp2Þ, shows the same qualitative
features as in previous studies with other discretizations,

with a dynamically quark mass developing for momenta
below 1–2 GeV, tending to a valueMð0Þ ≈ 300 MeV in the
chiral limit. Compared to results using staggered and
overlap fermions,Mðp2Þ drops more quickly when increas-
ing p from 200 MeV to p ¼ 1 GeV. We also do not see a
clear sign of a plateau at small momenta. Lattice data below
p ¼ 200 MeV are needed to determine whether such a
plateau exists.
Our final lattice data for MðpÞ are shown in the right

panels of Figs. 3 and 4. These data were obtained applying
the hybrid tree-level correction described above and
restricting to cylinder-cut momenta. We tried to reduce
the remaining hypercubic artifacts using the H4 method,
but found that a linear extrapolation in a2p½4�=p2 at fixed p2

fails for MðpÞ. Higher hypercubic corrections terms are
needed to reach at reasonable χ2=d:o:f values. However,
this introduces rather large uncertainties in the extrapola-
tion, in particular a systematic error: at lower ap
(ap ¼ 3…8) the corrections come out to be significantly
larger than at higher momenta (ap > 16), where they are
almost negligible. For ap < 3 the H4 extrapolations gives
no reasonable χ2=d:o:f: values.
Our final results for Zðp2Þ are shown in Fig. 8. There we

show the results for cylinder-cut momenta after hybrid
tree-level correction and our linear H4 extrapolation.
This extrapolation has been successful for momenta above
p ≃ 1 GeV and shifted the point where Z starts to bend
down to a larger p2. Lattice spacing effects could not
completely be eliminated but much reduced by applying
those techniques. For large momenta, the wave function
is essentially independent of quark mass and volume, while
the infrared suppression at small momentum becomes
stronger for smaller quark mass. We also find competing
finite volume and lattice spacing effects at small p: the
suppression becomes weaker with larger volumes, but
stronger towards smaller lattice spacings.
Our study is the first to use fully dynamical OðaÞ-

improved Wilson fermions to access the quark wave and
mass function. Lattice calculations of for example the
nonperturbative RI’(S)MOM renormalization constants
for hadron physics (see, e.g., [40]), typically did not use
those. We were able to reduce lattice spacing artifacts to
percent level and at the same time studied a range of quark
masses down to an almost physical value.
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APPENDIX: ON THE TREE-LEVEL CORRECTED
RUNNING QUARK MASS

For the tree-level correction of the running quark mass
data we used the hybrid prescription described in Sec. II C
and [12]. We chose this because we found that it generally
provides a smoother momentum dependence for M than,
for example, the multiplicative tree-level correction (see
Sec. II C for a definition). To demonstrate the advantage of
the hybrid correction we compare in Fig. 10 tree-level
corrected data for the two prescriptions.We chose the lightest
quark mass ensemble V for this.We see that both corrections
give comparable results (within one standard deviation) at
low momenta (ap < 0.3), but the multiplicatively corrected
points deviate strongly from the hybrid corrected points in
the mid-momentum regime (0.3 < ap < 2). At large ap the
two curves seem to approach each other again, but still at
p ¼ 8.6 GeV, the highest momenta accessible in our
study, the two M’s differ by many standard deviations: for
the multiplicatively corrected quark mass function we
have Mð8.6 GeVÞ ¼ 3.1176� 0.0019 MeV, while for the
hybrid corrected mass function we have Mð8.6 GeVÞ ¼
2.602� 0.0094 MeV.
A more detailed investigation of the multiplicatively

corrected mass function in the mid-momentum regime
shows that it is the lattice momenta along the diagonal

which deviate most strongly from the general trend in the
data. This somewhat surprising result can be understood
looking again at Fig. 1: For diagonal momenta, the mass
function aMð0Þ

rot ðpÞ ¼ amþ aΔMð0Þ
rot ðpÞ is very close to am

but stays below am within 0 ≤ a2p2 ≤ 4. For on-axis

momenta, on the other hand aMð0Þ
rot ðpÞ rises fast with

a2p2. The smallness of aMð0Þ
rot ðpÞ for diagonal momenta 0 ≤

a2p2 ≤ 4 results in small values for Zm ¼ aMð0Þ
rot ðpÞ=am.

Applying Zm artificially enhances the multiplicatively
corrected M ¼ ML=Zm, which may even become negative
for very small am. The hybrid correction does not have
this feature, and provides a smooth curve for M for all
momenta.
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