
The Development of EyeMap 2.0

E M LY N H E G A RT Y- K E L LY

A thesis submitted for the degree of

Master of Computer Science

Department of Computer Science

Maynooth University

February 2020

Supervisors: Dr. Aidan Mooney & Dr. Susan Bergin

Head of Department: Dr. Joseph Timoney

C O N T E N T S

I introduction and background material 1

1 introduction & background 2

1.1 Introduction . 2

1.2 Motivation . 2

1.3 Goals . 3

1.4 Research Questions . 4

1.5 Contributions . 5

1.6 Thesis Overview . 5

2 related work 7

2.1 Introduction . 7

2.2 Eye-Tracking . 8

2.2.1 What is Eye-Tracking? 8

2.2.2 Eye-Tracking & Reading 11

2.3 Fonts & Font Metrics . 12

2.4 Software Development . 13

2.4.1 Stages of the Software Development Cycle 14

2.4.2 Software Development Models 17

2.4.3 Software development Process Used 24

2.5 User Participation . 25

2.6 Summary . 27

3 eyemap 29

3.1 Introduction . 29

3.2 What is EyeMap? . 29

3.3 EyeMap - Architecture . 30

3.4 EyeMap - Key Features . 32

i

3.4.1 Data Parser . 32

3.4.2 Data Loader . 35

3.4.3 Data Visualisations . 38

3.4.4 Data Editor . 39

3.4.5 Reading Variables . 40

3.4.6 Data Exporter . 40

3.5 The need to Redevelop EyeMap 40

3.6 Summary . 41

II software redevelopment 43

4 user participation & software requirements 44

4.1 End User Team . 44

4.2 Prototype . 46

4.3 Team Requirements Meeting 48

4.4 Requirements . 49

4.4.1 Requirement Features 50

4.4.2 requirement fixes . 54

4.5 EyeMap 2.0 Architecture . 55

4.5.1 Django . 56

4.6 Software Development Tools 56

4.6.1 Version Control . 57

4.6.2 Integrated Development Environment 58

4.6.3 Error Logging and Bug Tracking 59

4.7 Summary . 60

5 system redevelopment 61

5.1 Challenges to Overcome . 61

5.2 RAD Task List . 61

5.3 Constructing the core architecture of EyeMap 2.0 63

5.3.1 Languages used in the development of EyeMap 2.0. . 63

5.4 GitLab Repository . 64

5.5 Design and development of EyeMap 2.0’s layout 64

ii

5.6 Database creation . 65

5.6.1 Data Files Management 66

5.6.2 Database structure . 67

5.6.3 Generating the tables for the database 68

5.7 Set up Templates . 68

5.8 Web Page Creation . 69

5.9 Data Loader . 70

5.9.1 Processing the Trials File 72

5.9.2 Processing Data Files 73

5.10 Data Visualisation & Editor 74

5.10.1 Extracting the AOI Information 74

5.10.2 Display the Data . 75

5.11 Data Exporter . 76

5.12 Additional Work . 80

5.13 Summary . 81

III evaluation & future work 82

6 evaluation 83

6.1 System Testing . 83

6.2 Requirements checklist . 90

6.3 End User Evaluation . 93

6.4 Summary . 98

7 conclusions & future work 99

7.1 Conclusions . 99

7.2 Future Work . 102

Bibliography 104

Appendix 110

a eyemap 2 .0 web application 110

a.1 EyeMap 2.0 web application 110

b complete list of calculated variables 111

b.1 Complete list of calculated variables 111

iii

c further implementation details 115

c.1 Constructing the core architecture of EyeMap 2.0 115

c.2 Generating the tables for the database 115

c.3 Set up Templates . 118

c.4 Web Page Creation . 121

iv

L I S T O F F I G U R E S

Figure 2.1 An example of the eye-tracking camera view on an

eye [52]. 8

Figure 2.2 The EyeLink 1000 being used for an experiment with

chess. 9

Figure 2.3 The RED-m from SMI on a laptop computer. 9

Figure 2.4 Tobii pro glasses used in a driving experiment. . . . 10

Figure 2.5 Heat-Map from SR Research of fixations on an image. 10

Figure 2.6 Fixations and saccades during reading. Note: sac-

cades are drawn like this to show the hop or jerk

that is involved with a saccade between fixation points 11

Figure 2.7 Diagram showing the viewing angle of the fovea,

parafovea and periphery 12

Figure 2.8 Proportional font v monospace font [45]. 13

Figure 2.9 Font Metrics [15]. 14

Figure 2.10 The Software Development Process as shown and

discussed in the report from the NATO Software En-

gineering Conference 1968 [32]. 15

Figure 2.11 The Software Development Cycle stages [12]. 16

Figure 2.12 The Agile model development cycle. 18

Figure 2.13 The Scrum model development cycle [49]. 19

Figure 2.14 The Feature Driven Development cycle [42]. 20

Figure 2.15 The Extreme Programming Development cycle [48]. 22

Figure 2.16 Rapid Application Development (RAD) cycle [48]. . 24

Figure 3.1 EyeMap Architecture [47]. 30

Figure 3.2 Use Case Analysis of EyeMap [47]. 31

Figure 3.3 An example of XML data structure from EyeMap. [47] 33

v

Figure 3.4 An example of Nodes in memory [47]. 36

Figure 3.5 An example of the text HTML material. 37

Figure 3.6 An example showing various texts displayed in Eye-

Map [47]. 38

Figure 3.7 A zoomed fixation viewer from EyeMap [47] 39

Figure 4.1 prototype of EyeMap 2.0. 49

Figure 4.2 Example of Gitflow [16]. 58

Figure 4.3 Backlog issue creation screen. 59

Figure 5.1 EyeMap 2.0 System Design. 65

Figure 5.2 Full EyeMap 2.0 Database. 67

Figure 5.3 The upload Experiment process. 71

Figure 5.4 text.html for a Chinese language experiment. 72

Figure 5.5 Users Experiment list presented on the Home page. 74

Figure 5.6 The different tabs on the Visualise & Edit page. . . . 76

Figure 5.7 Display of Reading Variables and explanations. . . . 78

Figure 5.8 Options for reports to be exported. 78

Figure 5.9 Sample of word report exported to an excel file. . . 79

Figure 5.10 The different AOI’s that can be generated. 80

Figure 6.1 List of Backlog tickets. 85

Figure 6.2 Sample Backlog Bug ticket being created. 85

Figure 6.3 Ticket opened by Mr Hynes in relation to the database

design. 87

Figure 6.4 Misalignment of text ticket, with image, opened on

Backlog . 89

Figure 6.5 Individual results for the SUS for both survey groups.

97

Figure C.1 Django Core Architecture [9]. 116

Figure C.2 Python code to generate experiment table. 116

Figure C.3 UML class diagram of the experiment table. 117

Figure C.4 The base.html template for EyeMap 2.0. 119

vi

Figure C.5 Example of how the base.html page is extended to

other pages. 120

Figure C.6 Utilising Django urls. 121

Figure C.7 New experiment view from Django views. 122

L I S T O F TA B L E S

Table 2.1 Fundamental aspects of PD as found by Halskov &

Hansen [20] . 27

Table 6.1 Requirements and fixes completion level for Eye-

Map 2.0 . 92

Table 6.2 Results of SUS Survey. 96

vii

A B S T R A C T

EyeMap was developed for visualising and analysing eye-tracking data.

It was specifically designed to get the most information from eye move-

ments data in relation to reading research. EyeMap was developed with

more advanced features compared to other software systems for eye move-

ments data including the ability to automatically generate AOIs, and carry

out variable calculations for over 150 reading variables. However, given

the ever-advancing landscape with software systems, the EyeMap system

has developed several issues. It was developed in the flex programming

language and with each new update to Adobe AIR, it is becoming out-

dated and difficult to maintain. Several bugs have arisen in EyeMap that

is making it more and more difficult to use including not being able to

correctly segment the Chinese language.

While talking to expert users of EyeMap that rely heavily on the tool,

they presented ideas on how EyeMap could be improved by developing

EyeMap 2.0. This project had the goal of developing develop EyeMap 2.0

using user participation so that current expert users of EyeMap would be

able to provide input to the features in EyeMap 2.0 that would improve

the features of the original EyeMap. The project used an Agile software de-

velopment process, Rapid Application Development, to achieve this goal.

This allowed the expert EyeMap users to participate heavily in the devel-

opment and testing of the new system through the Backlog issue tracking

software system. The Backlog system allowed the user to easily report any

issues and follow the status of the issue ass it was being fixed and tested

further.

This thesis discusses the entire process of using the Rapid Application

Development model to develop EyeMap 2.0. It will present the tools,

viii

frameworks and libraries that were used to develop this software arte-

fact. The thesis will show that by using modern software development

techniques and systems such as GitLab, EyeMap 2.0 can be continuously

developed and improved upon, ensuring its future-proofing.

The first contribution of this thesis is to investigate agile software devel-

opment models and determine which model has greatest potential for a

small development team. This model would also have to allow the users

of the new software to easily contribute to the development process to

produce an easy to use and reliable software application. The second con-

tribution will be to show a variety of tools that can can be used during

development. The tools will benefit by maximising the contributions from

the users to the project while also assisting with good software develop-

ment practice for any development project. The final contribution will

show how having the intended users of an application advise in the de-

velopment of a project can only benefit the project. The users can clearly

explain how a feature should behave and look. They can also aid with the

testing of the created feature, ensuring the correct functionality before the

feature is added to the application.

ix

0

A C K N O W L E D G M E N T S

I wish to thank my amazing fiance, Ana Susac, who has been my rock and

support while I have completed my studies.

I would also like to thank my two supervisors Dr Aidan Mooney and

Dr Susan Bergin. They were nothing but patient, understanding and en-

couraging throughout my time in doing this masters research.

I would also like to to thank Prof Ronan Reilly, Dr Christian Vorstius,

Dr Ralph Radach, Xi Fan and Patrick Hynes who I worked with on this

development project.

Lastly I would like to thank Keith Nolan and Mark Noone and the other

Postgraduate students who I have worked with over the last few years.

x

D E C L A R AT I O N

I confirm that this is my own work and the use of all material from other

sources has been properly cited and fully acknowledged.

Emlyn Hegarty-Kelly

February 2020

xi

Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

M AT E R I A L

1
I N T R O D U C T I O N & B A C K G R O U N D

1.1 introduction

This thesis presents the development process of EyeMap 2.0, a software

tool that analyses eye-tracking data from reading experiments. It discusses

the entire process from requirements gathering to the delivery of a func-

tioning system. This chapter explores the motivation and the goals behind

the project and introduces and discusses the research questions associated

with the development of EyeMap 2.0. The chapter concludes by giving an

overview of the thesis structure and provides an introduction to each stage

of the development process.

1.2 motivation

The motivation for this project came while trying to see how experts and

novices understand and read programming language code [22]. A large

part of understanding programming language code is analysing how peo-

ple read this code. After discussions with experts in eye-tracking and

reading studies, EyeMap was presented by Professor Ronan Reilly, a lead-

ing expert on reading studies, as a solution to analyse eye-tracking data of

how people read.

EyeMap is a data analysis tool that was developed to deal specifically

with reading studies and the eye-tracking data that is generated from them.

It allows the automatic segmentation of text and the calculation of 150

variables in relation to reading [47]. After some initial trials with EyeMap

2

1.3 goals

and discussions with Prof Reilly, it was found that the software was not

being maintained, it was difficult to access the source code, as well as

having a number of other issues, described further in Chapter 3.

Taking into consideration the need for EyeMap to be redeveloped and

the expert user group who were using EyeMap, including Prof Reilly, were

eager to be involved in the development of a new version of the system.

The decision was made to focus on the development of EyeMap 2.0 and

enhance the features of the original EyeMap. The expert user group that

relied heavily on EyeMap for their data analysis would provide valuable

information and experience of EyeMap and how the software was used.

The goal of this project was to develop EyeMap 2.0 and improve on the

state of the art tool that was EyeMap.

1.3 goals

This project has one main objective, which was to redevelop EyeMap. How-

ever, there were a lot of considerations required to achieve that goal, in-

cluding asking the following questions:

• Why does EyeMap need to be redeveloped?

• Is it possible to use the same framework that was used to develop

the original EyeMap?

– If not, what would be a better framework?

• Are there any extra requirements for the new version of EyeMap?

In order to answer these questions the author consulted with the current

users of EyeMap and other researchers interested in using the software.

These people are active in the research area of using eye-tracking for read-

ing studies and have extensive experience with the original software. It

would be beneficial to see how they interact with the current version of

3

1.4 research questions

EyeMap, consult with them as to how the new system should operate and

discuss with them what the outputs of the new software should be. These

researchers and users of EyeMap would be crucial to the success of the

development of EyeMap 2.0.

With all of these questions and possibilities the goal of the project be-

came a lot clearer. The project aim was to create EyeMap 2.0 by redevel-

oping the original EyeMap and using user involvement to improve on the

original software. EyeMap 2.0 would be based on the work completed by

the original developer of EyeMap, Dr Siliang Tang, with added functional-

ity where possible, according to the needs and wants of the expert team of

users.

1.4 research questions

Once the goals of the project were clear, a number of research questions

were constructed. The first question relates to eye-tracking, and what it is

and how experiments in eye-tracking are conducted. The second research

question related to the tools and frameworks that could be used for this

development project. Before any development could take place it was

important to know and understand what EyeMap is and how the software

operates. The last question related to the improvements that could be

implemented to EyeMap.

The research questions are:

1. What is eye-tracking and why is it important?

2. What software models, tools, and languages are appropriate for a

project of this nature?

3. What is EyeMap and how can it be improved?

4

1.5 contributions

1.5 contributions

The main contributions of this thesis are:

• To show an appropriate software development model for a project

with a small development team in conjunction with a group of expert

users that rely on the software to complete their research.

• To show a variety of tools that enable good development practices

along with tools that maximise the contributions from the expert

users to the software.

• Why having intended users of an application to consult during the

development of software can only enhance any software application

that is made.

1.6 thesis overview

This section will provide a brief overview of what will be discussed in

each of the thesis chapters. Chapter 2 investigates eye-tracking and the

processes associated with it when carrying out experiments. It describes

the motivation behind the development of the original EyeMap. The chap-

ter reviews the software development process and explores which devel-

opment model would be best suited for the development of EyeMap 2.0.

The chapter then discusses the philosophy behind user participation, so as

this would be used to gain as much input from the expert group on the

project as possible.

Chapter 3 provides an in depth analysis of the original EyeMap system.

It explores the architecture and key features of this software and continues

to describe why the decision was taken to develop EyeMap 2.0 rather than

to try and extend EyeMap.

5

1.6 thesis overview

Chapter 4 introduces the users involved in the project. It describes their

experience levels working with EyeMap. It will also describe the process

of constructing the software requirements for EyeMap 2.0, from consulta-

tions with the users. This chapter also provides the Software Requirements

Specification for EyeMap 2.0. It outlines the programming languages and

frameworks to be used in developing EyeMap 2.0 and the reasons behind

each of the final decisions made for the software development process.

Chapter 5 describes the redevelopment process used in the development

of EyeMap 2.0. It outlines the task list that was created to develop EyeMap

2.0 and shows the workflow to complete this list and implement the fea-

tures require for EyeMap 2.0.

Chapter 6 presents the evaluation of the EyeMap 2.0 system. It shows

how the Backlog system was used to evaluate and test EyeMap 2.0. The

chapter then presents a requirements checklist to highlight what features

were completed on the RAD task list. The chapter finishes by presenting

the results of a usability survey conducted on EyeMap 2.0 by the end

user team and by individuals with no prior knowledge of eye-tracking or

EyeMap 2.0.

Chapter 7 will discuss the conclusions for the EyeMap 2.0 system. It

will show the results from the research questions and lessons learned dur-

ing the process and discuss how the process can be improved for further

development. The chapter will go on to discuss future work for EyeMap

2.0 and what can be done to contribute more to both EyeMap 2.0 and the

types of reading studies that can be completed.

6

2
R E L AT E D W O R K

2.1 introduction

As outlined in Chapter 1 this project is focusing on the redevelopment

of EyeMap. EyeMap is a piece of software that was written to analyse

eye-tracking data for reading research. To successfully redevelop EyeMap

it is important to firstly understand "What is eye-tracking and why it is

important?" This chapter will show the origins of eye-tracking technology,

what eye-tracking is and why it is important. The chapter will then begin

to answer "What software models, tools, and languages are appropriate

for a project of this nature?" by investigating the software development

cycle and the different processes that are involved in each stage. EyeMap

has a core base of expert users that are participating in the development

process. This chapter will look at what is User Participation to gain a

greater understanding of how to utilising the knowledge that these expert

users have and ultimately help to answer "What is EyeMap and how can

it be improved?". These three areas combined will ensure EyeMap 2.0 can

be developed to a high standard.

This chapter will begin by discussing eye-tracking and what it is. It will

proceed to look at the software development cycle and investigate different

software development models that can be used in the redevelopment of

EyeMap 2.0. The chapter will conclude by investigating User Participation

and show how the users of the original EyeMap can be involved in the

development of EyeMap 2.0.

7

2.2 eye-tracking

2.2 eye-tracking

2.2.1 what is eye-tracking?

Eye-tracking is the measurement of eye movements and the position of the

eye relative to a persons head. The device used to measure this movement

is an eye-tracker. One of the earliest eye-tracking devices was built in 1908

by Edmund Huey. The device was built to observe the gaze direction by at-

taching pointers to contact lenses for reading studies [28]. It was not until

1937 that the first eye movements were recorded by Guy Thomas Buswell

in the University of Chicago. He achieved this by using light reflected from

the eye and recording this on film [6]. Modern eye-tracking uses the same

underlying principle. A camera is focused on the eye and then infra-red

light is shone into the eye. Using the angle between the centre of the pupil

and the reflection from the infra-red light the underlying algorithms can

track what position the subject is looking at on the screen [52]. Figure 2.1

shows an example of the camera view on an eye as infra-red light is shone

onto it. The orange cross is the centre of the pupil and the white cross is

the corneal reflection [52].

Figure 2.1: An example of the eye-tracking camera view on an eye [52].

Eye-trackers are used for research in several fields, including psychology,

psycho-linguistics, marketing, human-computer interaction, and product

design. Due to the widespread use of eye-trackers, there are many compa-

8

2.2 eye-tracking

nies that produce eye-tracking hardware and analysis software. Arguably,

the top three companies in the field are Tobii, SMI and EyeLink [51]. Each

of these companies work with both stationary and mobile eye-trackers.

A stationary eye-tracker is set in a fixed location where participants in

experiments are not required to move (see Figure 2.2, where mobile eye-

trackers are designed for use in experiments where the participant may be

required to move freely (see Figure 2.4) for example when conducting an

experiment that involves participants to be driving. Examples of stationary

eye-trackers include the EyeLink 1000 from SR Research [44] (Figure 2.2)

or the SMI RED-m [41] (Figure 2.3) and an example of a mobile eye-tracker

is the Tobii pro glasses [50] (Figure 2.4).

Figure 2.2: The EyeLink 1000 being used for an experiment with chess.

Figure 2.3: The RED-m from SMI on a laptop computer.

9

2.2 eye-tracking

Figure 2.4: Tobii pro glasses used in a driving experiment.

Each of these companies uses their own proprietary analysing software

to analyse the data from their eye-trackers. They produce heat-maps, met-

rics based on AOI’s and data export and segmentation. Heat-maps are a

graphical representation of fixation data of where most fixations were on

an image, see Figure 2.5 as an example. Although each company produce

extremely successful software packages. They are not suited for calculat-

ing the variables required for reading studies. These reading variables will

be discussed more in Section 3.4.5.

Figure 2.5: Heat-Map from SR Research of fixations on an image.

10

2.2 eye-tracking

2.2.2 eye-tracking & reading

The first recorded evidence of eye-tracking in reading is credited to Louis

Emile Javal for his work observing eye movements in 1879 by using mirrors

to watch the eye while reading. It was noted by Javal that the movement

of the eye was not smooth during reading but saccadic in nature [26]. A

saccadic movement of the eye is a simultaneous movement or quick jerk

of both eyes between fixations in the same direction [7]. That same year

Ewald Hering confirmed this saccadic movement of the eyes in reading by

listening to the eye, by placing a rubber tube on the eye and then listening

for a clapping sound and comparing the occurrences of the clapping sound

to afterimages, an image that continues to appear in the eyes after a period

of exposure to the original image, that were taken while reading [23]. A

fixation is a point generally between two saccades in which the eyes are

relatively stationary. Figure 2.6 shows fixations and saccades.

Figure 2.6: Fixations and saccades during reading. Note: saccades are

drawn like this to show the hop or jerk that is involved with

a saccade between fixation points

Fixations and saccades are important measures when conducting read-

ing studies. The mean fixation duration is said to be between 200 - 300 ms

depending on if it is silent or oral reading being completed, and the mean

saccade size is 1.5°(about 6 letters) to 2°(about 8 letters), again depending

11

2.3 fonts & font metrics

on silent or oral reading [38]. The visual resolution limits or acuity of vi-

sion is an important constraint when reading. The highest acuity occurs at

the fovea. Figure 2.7 provides an example of this where the centre of the

fixation is on the word fox, the fovea area is from the centre of the fixation

to 1°in any direction. The parafovea area is 1°- 5°away from the fixation

point, and the periphery area is more than 5°from the fixation centre [2]. A

saccade moves a fixation, or the fovea, to the word that is being processed

next [39]. Irwin [25] showed that the cognitive process continues during a

saccadic movement, while it was also shown by Martin [31] that no new

visual information is obtained.

Figure 2.7: Diagram showing the viewing angle of the fovea, parafovea

and periphery

2.3 fonts & font metrics

Fonts are an important part of what makes EyeMap work for AOI gen-

eration, so it is important to understand different aspects of fonts & font

metrics. There are two different types of font widths, namely proportional

fonts and monospace fonts. A proportional font is a font where different

characters have different widths, for example, the width of the character "i"

is narrower in width to the character "m". An example of this can be seen

on the bottom line of Figure 2.8. A monospace font has uniform character

12

2.4 software development

widths for all characters in the font. An example is presented on the top

line of Figure 2.8 where the characters "i" and "m" have the same width.

Figure 2.8: Proportional font v monospace font [45].

Figure 2.9 provides a detailed look at font metrics. The baseline is the

line that the text is located on. The advancement shown on the character

"j" is another term for the character width. For EyeMap the combined

character widths of a word would create the AOI width for that word. For

the AOI height, there are three measurements that need to be taken into

account. These are the ascent, descent and line gap or leading. These three

measurements are all presented in Figure 2.9. The ascent is from the base

line up to the top of the tallest character. The descent is from the base line

down to the lowest character and the leading is the from the bottom of the

descent to the top of the ascent on the line of text under the current line.

2.4 software development

In 1968 the NATO Science Committee organised a conference on Software

Engineering and this conference recognised the many problems with soft-

ware development including design, production and service [32]. The term

"Software Engineering" became more popular and widely used after this

conference and the report they produced formed the foundation of the in-

13

2.4 software development

Figure 2.9: Font Metrics [15].

dustry. Figure 2.10 shows the software development process as discussed

by Selig [32] at the NATO conference while Figure 2.11 shows the modern

interpretation of the same process. These two figures represent the differ-

ent stages that every development team goes through while developing

any software project.

2.4.1 stages of the software development cycle

Apart from the addition of a planning stage in Figure 2.11, it is apparent

from both Figures 2.10 & 2.11 that the stages of the software development

cycle have not changed much over the last 50 years. These core princi-

pals form the basis of the software development models that are widely

used today and shall be discussed further in Section 2.4.2. The stages of

the Software Development Cycle are: Planning, Analysis, Design, Imple-

mentation, Testing & Integration, and Maintenance. These stages can be

further described as follows:

1. Planning - The planning phase of a project is where the requirements

gathering takes place. This involves discussions with stakeholders,

customers and sales teams about market research, cost analysis and

14

2.4 software development

Figure 2.10: The Software Development Process as shown and discussed in

the report from the NATO Software Engineering Conference

1968 [32].

feasibility studies to see if the software can be created within budget

while deciding on the required functionality.

2. Analysis - During the analysis phase the development team will

create a software requirement specification document (SRS) for the

project (see Section 4.4). This document is created from the results of

the planning stage to clearly identify the scope of the project and re-

move any inconsistencies that may have arisen. The SRS is meant as

a guide for the developers to follow so that they may have minimal

interruptions, delays and add-ons in the implementation phase.

3. Design - In the design phase the development team study the SRS

to decide on the new system architecture and plan the correct tools

and methods to use to build the software. They will also look at

the screen layout, functionality and other business documents of the

software. With this information, they will also generate design docu-

15

2.4 software development

Figure 2.11: The Software Development Cycle stages [12].

ments to go with the SRS to further reduce any delays in the imple-

mentation phase.

4. Implementation - In the implementation phase, the software devel-

opment team will build the software based on the design documents

and SRS using the system architecture that was chosen. The number

of software tools that the team can use for development at this point

is vast, with each team having their own preferences depending on

the framework and the type of project. Along with their chosen tools

they use a software development model, which shall be discussed in

more detail in Section 2.4.2, to keep the team focused and on track

during this stage.

5. Testing & Integration - This phase checks if the software meets qual-

ity standards. The development team regularly check the system in

development to ensure that:

• The requirements are met for the project.

• There are no errors or bugs in the project that need to be fixed.

• The software is of a high quality to meet the stakeholders’ ex-

pectations.

6. Maintenance - Once the software has been released to the customer

there may be further issues that arise at a later stage. These issues

16

2.4 software development

need to be fixed so that the software remains at a high standard and

continues to meet customer expectations.

2.4.2 software development models

Since the NATO Science Committee Conference on Software Engineer-

ing, a large number of software development models have been proposed.

There are several software developmental models such as incremental mod-

els, v-models, iterative models and Agile models as Agile models are

known to incorporate user participation. And thus the development of

EyeMap 2.0 an Agile software development model was chosen.

The manifesto for Agile software development was created by a group

of 17 people from software development backgrounds in 2001 [4]. It fo-

cuses on iterative and incremental development. The requirements and

solutions evolve through collaboration between teams that consist of de-

velopers and users. As can be seen in Figure 2.12 this model works with

development cycles, whereby a feature is developed and given to the users

for approval. If the feature is approved it is deployed to the software and

if the feature is not approved the requested changes or fixes and required

adjustments that are recorded and it is added back to the start of the de-

velopment cycle where they are then processed by the developers again.

The agile model is an adaptive model that incorporates PD and can adapt

quickly to requested changes [24]. There are numerous different forms

of Agile methods but the following four models each have their own ad-

vantages and disadvantages and each could be potentially used for the

redevelopment of EyeMap 2.0. The four models are:

1. Scrum Development

2. Feature Driven Development

3. Extreme Programming

17

2.4 software development

4. Rapid Application Development

Figure 2.12: The Agile model development cycle.

1. Scrum Development

The Scrum model development cycle is presented in Figure 2.13. In this

process, the team appoints a scrum master who controls each sprint, or

development cycle that the teams carries out and ensures the vision of

the software remains the same throughout. The appointed scrum master

prepares the architecture and Sprint Backlog. Each sprint decided on by

the scrum master can change quickly based on feedback from users. As a

direct result of the nature of the sprints, the process is much better suited

to small teams. These teams should contain experienced members that

can adapt and change quickly to the ever-changing sprints, and with each

sprint cycle, the team incrementally delivers features of the software and

a valuable product [40]. As outlined by TatvaSoft [48], the advantages and

disadvantages of scrum development are described next.

18

2.4 software development

Figure 2.13: The Scrum model development cycle [49].

The main advantages of the scrum development model are:

• Due to the free forming of Scrum sprints it is good for projects where

requirements documentation is not vital for the success of the project.

• Development steps are clearly visible as a result of frequent updating

of the project progress.

• Daily meetings help measure individuals contributions to the project,

thus increasing the overall productivity of the team.

The main disadvantages of the scrum development model are:

• Development model suffers if time or cost estimation is inaccurate.

• It is not good for large development teams.

• Experienced team members are required for this process to work

well, inexperienced or novice members can slow down the develop-

ment.

2. Feature Driven Development

Figure 2.14 shows the development steps of feature driven development.

The first step is for the development team to develop a model of the whole

system. Next the team breaks the system into smaller, more manageable,

19

2.4 software development

features that are to be implemented. The third step is for the development

team to create a plan for development based on the feature list. The next

two steps are then handled by smaller dynamically formed feature teams,

with each small team being responsible for designing and ultimately de-

veloping or building the feature. Once the feature has been developed it is

presented to the end user for approval before the feature team moves onto

the next feature. At each stage, the feature teams are updating previous

features as they progress through the feature plan [14]. The main advan-

tages and disadvantages of feature driven development [48] are described

next.

Figure 2.14: The Feature Driven Development cycle [42].

The main advantages of the feature driven development model are:

• As a result of the development team structure, larger projects develop

quicker and with more success.

• Following the steps of the process allows the project to be completed

and in a short and timely manner.

• The process is built on standards for the development industry, so it

aids with development following best practices.

20

2.4 software development

The main disadvantages of the feature driven development model are:

• As a result of the smaller feature teams feature driven development

is not suited for smaller projects, and as such would not suit a lone

developer.

• The lead developer must act in multiple roles, meaning the rest of

the team has a high dependency on this person.

• No documentation is provided to clients, meaning that it is hard

for them to know exactly what features from the system is being

provided to them for testing.

3. Extreme Programming

Extreme Programming is a software process that relies heavily on user

involvement. It allows the development teams to build software around

vague or constantly changing requirements. It takes simple to the extreme,

by breaking down tasks to their most simple form and using this as a start-

ing point, which allows rapid feature development through unit testing

and customer input. The method allows developers to deal with problems

proactively [35]. The five stages of Extreme Programming, as presented in

Figure 2.15, are:

1. Requirements

2. Stories

3. Test Cases

4. Tasks

5. Completion

The requirements stage gathers the requirements for the system from

the end users. Once the requirements have been gathered the development

21

2.4 software development

team builds the user stories for the system. The stories contain different

user experiences and use case scenarios for the system. The test cases

are generated to ensure each use case does what it is supposed to do

and ensures the system does what it is required to do. The tasks stage

of the model is the development stage of the model. Once the test cases

are written in the test case stage, the team can then develop each feature

according to the test cases to ensure the correct functionality is completed

by the system. On completion of the stage of the task, the user carries

out final testing before the system is approved for completion. The main

advantages and disadvantages of extreme programming [48] are described

next.

Figure 2.15: The Extreme Programming Development cycle [48].

The main advantages of the extreme programming development model

are:

• There is a large emphasis on user involvement.

• The process commits developers to their schedule by creating plans

and schedules.

22

2.4 software development

• As it develops with modern development methods, quality software

is produced.

The main disadvantages of the extreme programming development model

are:

• The process is only as effective as the team members leaving little

room for inexperience or novices.

• Meetings are required frequently meaning there is a high cost on

clients.

• With a large number of items that may require development changes

it can be difficult for the development team to manage the changes.

4. Rapid Application Development

Rapid Application Development (RAD) was proposed by James Martin

in his 1991 book "Rapid Application Development" [30]. It takes a user-

centred approach to software development. This software process quickly

produces prototypes of the system to be developed. This is possible as

users are integral members of the team and are deeply involved with ev-

ery aspect of developing the system from requirements to testing [29]. Fig-

ure 2.16 shows the RAD cycle starting from the requirement stage that is

planned out using PD. The next stage is prototyping that cycles through

the design and construction of features. The user also participates in the

design of the feature so that once a feature is completed they are given

to the end user for testing. Finally, when the end user has approved the

feature it is integrated into the final system. The main advantages and

disadvantages of RAD [48] are described next.

The main advantages of RAD are:

• It reduces the risk and efforts on the developer as a result of working

with users.

23

2.4 software development

Figure 2.16: Rapid Application Development (RAD) cycle [48].

• Users and clients review the system quickly which can catch any

potential difficulties early on.

• User feedback and involvement is highly encouraged which improves

the overall software.

The main disadvantages of RAD are:

• There is a strong dependency on the team and individual to identify

and carry out the development of the system.

• As a result of the prototyping that involves the user, only systems

that can be modularised can be developed using this process.

• Highly skilled and knowledgeable developers and teams are required

to use this process.

2.4.3 software development process used

After reviewing and dissecting the four aforementioned agile methods it

was decided that the process that would best suit the redevelopment of

EyeMap 2.0 was RAD. The reasons for this decision can be summarised as

follows:

1. Scrum development would work but experienced developers are re-

quired to carry out the process effectively, and the experience levels

of some of the team are unknown.

24

2.5 user participation

2. Feature driven development is for large development projects and

does not suit a lone developer as is the case with the redevelopment

of EyeMap 2.0.

3. As with Scrum development experienced team members are required

with extreme programming for maximum efficiency, also regular

meetings with users or clients. As a result of the distance between

the developer and users regular meetings will not always be possible

for the redevelopment of EyeMap 2.0.

4. RAD involves the users in every aspect of the development process

from initial designs to testing. The heavy user involvement required

for RAD also means that any potential errors in the software are

caught early on. The original EyeMap can also be modularised as

will be seen in Chapter 3.

With RAD selected as the development model, the next section will show

what Participatory Design is and how it can improve the RAD cycle.

2.5 user participation

The users that were involved in the redevelopment of EyeMap have vast

expertise in the fields of eye-tracking, reading research and utilise EyeMap

regularly. To attempt to answer the research question "What is EyeMap

and how can it be improved?" engaging with these users is vital as they

are most suited to helping to answer this question and ensure that the

development of EyeMap 2.0 is completed correctly and to specification.

To assist the development process user participation will be used. user

participation has its roots in participatory design (PD) and understanding

this philosophy will demonstrate how the strengths of the users were used

in this approach.

25

2.5 user participation

"Participatory design is an approach to engineering technological sys-

tems that seeks to improve them by including future users in the design

process. It is motivated primarily by an interest in empowering users, but

also by a concern to build systems better suited to user needs" [34]. It

is a movement that started from workers unions in Scandinavia in the

1970s and 80’s [43]. The movement aimed to empower workers and bring

democracy to the workplace. This was achieved by allowing workers to

partake in the development of new technologies and practices in the work-

place by working with the developers. The movement gave the workers

more rights and allowed them to take more control of their workplace

[43]. In 1990 the Computer Professionals for Social Responsibility founded

the Participatory Design Conference, which has run bi-annually since [18].

The conference presents research from people in design, development and

implementation of information and communication technologies and ser-

vices [33].

Kim Halskov and Nicolai Brodersen Hansen [20] conducted a review

based on ten years of research papers presented at the conference between

2002 and 2012. In the review, they identified three general definitions of

"User Participation". These are:

1. Implicit - Users are part of the design/development process.

2. Users’ point of view - the users’ point of view takes into considera-

tion what the users deem important and suggests they make the best

decisions based on their knowledge.

3. Mutual learning - This is the transfer of knowledge between users

and designers/developers.

Halskov and Harisen also identified and discussed five fundamental

aspects of PD which can be seen, and defined, in Table 2.1.

When people spend every day using a system, they become experts in

that system and know what its strengths and failings are. If there is a

26

2.6 summary

Table 2.1: Fundamental aspects of PD as found by Halskov & Hansen [20]

.

Politics
People who are affected by a decision should have an

opportunity to influence it

People
People play critical roles in design by being experts in their

own lives

Context
The use situation is the fundamental starting point for the

design process

Methods
Methods are means for users to gain influence in design

processes

Product
The goal of participation is to design alternatives,

improving quality of life

change being made to the system the users are often in the best place to

make the decisions about any changes. The changes they effect would be

more substantial and the finished product would improve the workflow

quality for the users. This philosophy greatly benefited the development

of EyeMap 2.0 and will be evident throughout the RAD process.

2.6 summary

The chapter answered the question "What is eye tracking and why is it

important?" by looking at eye-tracking and showed how it began with

Huey’s original design for an eye-tracker in 1937 [28] and progressed to

the numerous modern companies that exist today including SR Research

SMI Vision and Tobii. An important use for eye-tracking is in reading

research and the different measures for eye movements were explored and

demonstrated to show EyeMap is a valuable piece of software.

27

2.6 summary

The chapter also began to answer two of the other research questions,

"What software models, tools, and languages are appropriate for a project

of this nature?" and "What is EyeMap and how can it be improved?". To

redevelop EyeMap it was shown that the RAD process would best suit the

size of the development team, the distance between members of the de-

velopment team and the philosophy behind PD would utilise the expert’s

knowledge to improve EyeMap in the development of EyeMap 2.0. Chap-

ter 4 will further discuss these two questions and provide further clarity.

28

3
E Y E M A P

3.1 introduction

This chapter begins to answer the research question "What is EyeMap and

how can it be improved?". It provides a more in-depth look at the archi-

tecture and key features of EyeMap. The chapter presents reviews the

workflow within EyeMap, from how users prepare data to displaying the

data on the screen and then exporting the reading variables for further

analysis. The chapter will also describe why the decision was taken to

develop EyeMap 2.0.

3.2 what is eyemap?

EyeMap was a first of its kind software developed for visualising and

analysing eye-tracking data [47]. It was first registered on SourceForge

as open source software in May 2010 by Dr Siliang Tang [13]. SourceForge

is a web-based service that offers a centralised online location to control

and manage open-source software projects. It was designed as a platform-

independent software tool that operates independently of the major com-

panies that produce eye-tracking hardware and analysis software. EyeMap

was designed specifically to get more information about how people read

from eye movement data for reading research. EyeMap provided software

with more advanced features for reading research beyond other software

systems for eye movements data like the Tobii Pro Studio. The features

that were built into EyeMap include text stimulus presentation, area of in-

29

3.3 eyemap - architecture

terest extraction, eye movement data visualisation, and experimental vari-

able calculation while supporting the analysis of binocular eye data and

proportional and non-proportional fonts. Given that different languages

use a wide variety of different textual representations, the allowance for

proportional and mono-spaced fonts means that EyeMap is well suited for

reading research in a wide number of languages.

3.3 eyemap - architecture

EyeMap was developed using Adobe AIR. Adobe AIR is a framework that

allows developers to build applications with HTML, JavaScript, and Action

Script; it also allows developed systems to be deployed across different op-

erating systems easily. Figure 3.1 presents an overview of the architecture

of EyeMap. It can be seen that there are two main components within the

architecture: the "Function Module" in blue and the "Data Files" in yellow.

Each component consists of smaller modules. The Key modules in these

components will be discussed in Section 3.4. The use case analysis of Eye-

Map, that is shown in Figure 3.2 shows the complete use case scenario of

initially preparing and loading data to the exportation of the processed

data.

Figure 3.1: EyeMap Architecture [47].

30

3.3 eyemap - architecture

Figure 3.2: Use Case Analysis of EyeMap [47].

Analysing Figure 3.2 it can be seen that the raw binary data contains

the experimental data, this is the data that is outputted by the eye-tracker

hardware in a format that can be interpreted by EyeMap. Combined with

the raw binary data and the configuration for the experiment in XML for-

mat the Data Parser (see more in Section 3.4.1) generates the formatted

eye movement data in XML format. This XML file is then loaded by the

Data Loader (see more in Section 3.4.2), which is also responsible for load-

ing the optional eye voice XML data, this is eye-tracking data that also

has connected voice recordings, and the text HTML material. The Data

Loader can then either send the loaded XML data to the Data Editor (see

more in Section 3.4.4) to be edited or to the Data Visualisation (see more

in Section 3.4.3) for viewing. When the Data Loader passes the data to the

Data Visualisation it also generates a memory structure for the calculation

of Reading Variables (see more in Section 3.4.5). The calculated variables

are also available to the Data Visualisation module so that the user can see

the variables as they work with the data. Finally, the data and calculated

variables are available for selection in the Data Exporter (see more in Sec-

31

3.4 eyemap - key features

tion 3.4.6) where they can be exported in either the word or fixation report

in CSV format for further analysis.

3.4 eyemap - key features

As discussed in Section 3.3 there are several important modules contained

within EyeMap. These are:

1. Data Parser

2. Data Loader

3. Data Editor

4. Data Visualisation

5. Reading Variables

6. Data Exporter

Each of these 6 Key modules shall now be discussed in more detail.

3.4.1 data parser

Eye-tracker manufacturers output the eye-tracking data in their own way,

meaning the lack of standardisation could be a problem when data is

shared between researchers for analysis purposes. Most eye-tracking hard-

ware tools provide application programming interfaces (API) to convert

the data into an ASCII file. This is ideal for data sharing but not ideal for

data processing, due to the processing of the ASCII files. Based on the

work of Halverson and Hornof [21] and the EU funded project COGAIN

[3] EyeMap developed a novel device-independent data format specifically

for reading experiments. This XML format takes into account the related

32

3.4 eyemap - key features

events that occur during a reading experiment. An example is represented

in Figure 3.3.

Figure 3.3: An example of XML data structure from EyeMap. [47]

It can be seen that there is one root node for each experiment and the

trial nodes for the experiment are contained within that. A trial node con-

tains all the information for a single trial in an experiment. In this example

the trial has an id of 0. There are two main types of data contained within

the trial that are represented by their own nodes, namely fixations and sac-

cades, and each one respectively contains all the data for that fixation or

saccade. As can be seen in Figure 3.3 each fixation and saccade has their

own attributes. A break down of the data contained in the fixation and

saccade nodes is:

33

3.4 eyemap - key features

Fixation

<fix>

<eye> - This represents the eye the fixation is associated

with - L for Left and R for Right.

<st> - This represents the start time of the fixation in

milliseconds.

<et> - This represents the end time of the fixation in

milliseconds.

<dur> - This represents the duration of the fixation in

milliseconds.

<x> - This represents the average x coordinate of the

fixation.

<y> - This represents the average y coordinate of the

fixation.

<pupil> - This represents the average pupil diameter for the

current fixation.

<raw> - This represents the shifted pixels of the start (sx/

sy) and end (ex/ey) x, y coordinates to the average x, y

coordinates of the current fixation.

<id> - This represents the unique id of the current fixation.

</fix>

Saccade

<sacc>

<eye> - This represents the eye the saccade is associated

with, L for Left and R for Right.

<st> - This represents the start time of the saccade in

milliseconds.

<et> - This represents the end time of the saccade in

milliseconds.

34

3.4 eyemap - key features

<dur> - This represents the duration of the saccade in

milliseconds.

<x> - This represents the x coordinate of the starting

position of the saccade.

<y> - This represents the y coordinate of the starting

position of the saccade.

<tx> - This represents the x coordinate of the end position

of the saccade.

<ty> - This represents the y coordinate of the end position

of the saccade.

<ampl> - This represents the visual angle traversed by the

saccade.

<pv> - This represents the peak values of gaze velocity in

visual degrees per second.

<id> - This represents the unique id of the current saccade.

</sacc>

Each fixation or saccade has their own unique id represented by an <id>

tag where even numbers are used for the right eye and odd for the left eye.

As a result of this coding scheme to represent which eye a particular fixa-

tion or saccade is associated with, the Data Editor and Data Visualisation

can integrate and synchronise for binocular eye data easier.

Once that data is prepared in this XML format it can then be passed to

the Data Loader for editing and visualisations.

3.4.2 data loader

The Data Loader prepares the formatted eye movement XML data from

the Data Parser as a tree structure containing six levels from the root to

the leaves. The levels are the experiment level, the trial level, the word

level, the gaze level, the fixation level and the saccade level. This tree is

35

3.4 eyemap - key features

an abstract node class that is made up of a set which contains an id, a

reference to its parent node, a reference to its predecessor and successor

and a set of attributes and a tuple that records all child nodes. These

Nodes are also used for the calculation of the reading variables that will

be exported later in the system.

A visual example of a snapshot of these nodes in memory can be seen in

Figure 3.4. It can be seen that the trial level contains word child nodes. Fo-

cusing further on the text in the centre of the image on word 5 ("stinking")

and its corresponding word node it contains two gaze nodes. The first

of these gaze nodes contains two fixation nodes and they, in turn, have a

saccade node each.

Figure 3.4: An example of Nodes in memory [47].

The data in the tree is updated each time a new trial is selected or an

edit to an existing trial is made. This allows for quicker loading times

compared to loading all data for all trials at once even though a certain

trial is required, which in turn ensures there are not large amounts of data

stored in memory at any one stage.

The Data Loader also loads the text stimulus for the experimental trials

in HTML format. This is important as the HTML file contains all details

36

3.4 eyemap - key features

about the experiment, this is shown in Figure 3.5. This is a standard HTML

structure where the <head> contains the experiment details and the <body>

contains the text used in each of the trials of the experiment. The <head>

tag uses 2 methods for the experiment details. The first is inline CSS

through the <style> tag, which can be seen on lines 3-11 of Figure 3.5. This

contains information about text formatting in the experiment, the font that

used, the font size and the leading was between lines. The second method

is to use custom HTML tags that can be seen on lines 12 & 13 of Figure

3.5. This information provides the starting x & y coordinates of the top

left most character of a trial, for all trials of the experiment. The body

then contains the individuals’ trials for the experiment, with each <p> tag

containing the text for each trial. The number of trials is represented by

the number of <p> tags. The example presented in Figure 3.5 contains

two trials and these can be seen in lines 17-20 & 21-24. The text contained

between each <p> tag represents the text presented to the participant of

the experiment, it also maintains the same number of lines that were used

in the experiment.

Once the Data Loader has loaded the tree and the HTML file it can be

passed to the Data Visualisations and Data Editor.

Figure 3.5: An example of the text HTML material.

37

3.4 eyemap - key features

3.4.3 data visualisations

EyeMap uses an API in Flex to segment paragraphs into lines, words and

characters to create the AOIs for each trial text. This is done based on font

metric; it does this rather than analysing an image to get the word bound-

aries. It provides the users of EyeMap more freedom to create segmenta-

tion to aid in the creation of AOIs by incorporating a specific separator in

the uploaded HTML text. This is important as there are languages like

Chinese that have no word separation, so adding a separator allows the

creation of AOIs for each word in the trial. As a result of the flexibility

and strength of this EyeMap has been able to analyse texts in numerous

languages with proportional and monospaced fonts.

Figure 3.6 shows an example of AOI’s in EyeMap with varying lan-

guages, fonts and texts. In this sample, three language samples are pre-

sented. 1. A partial view of a Multi-line English text with a propor-

tional font. 2. A partial view of a single-line spaced Korean text with

a monospaced font. 3. A partial view of a single-line un-spaced English

text with a monospaced font. These three examples show the versatility of

EyeMap in handling different style fonts and languages.

Figure 3.6: An example showing various texts displayed in EyeMap [47].

The next step, after the AOI’s have been created, for EyeMap is to display

the trial text on the screen with the fixation information for a participant.

Each trial can be displayed on the screen in the viewer. It is also possible

to change between trials for the participant. The fixations are displayed

38

3.4 eyemap - key features

along with the text for the trial and resulting AOIs, an example of this is

presented in Figure 3.7. The viewer also displaying the word properties

as mentioned in the Data Loader at Section 3.4.2. The fixations could be

displayed with a proportional radius depending on the duration of the

fixation or at a fixed radius. The other possibility is for a scan-path of

fixations showing the direction and path taken by the experiment partici-

pant when completing this trial. Lastly, they could also be shown using a

heat-map of regions where most fixations occurred.

Figure 3.7: A zoomed fixation viewer from EyeMap [47]

3.4.4 data editor

The Data Visualisations in EyeMap also allows the user to edit data. The

person carrying out the analysis may need to correct fixations after drift.

This is where a participant may have shifted in their seat causing their

head height or angle of the head to change causing fixations to be above

or below the correct positions. Fixations can be edited individually or in

groups according to the needs of the user. Once edited the data would be

updated in the corresponding nodes of the data tree structure.

39

3.5 the need to redevelop eyemap

3.4.5 reading variables

The reading variables are a key aspect of EyeMap. 150 variables are cal-

culated by the Data Loader. They are calculated using the node structure

described in Section 3.4.2. The variables are calculated using the node

structure when the participant XML files are uploaded.

3.4.6 data exporter

For the reading variables, the Data Exporter is key in EyeMap. It brings

the other features together to generate a data matrix, which is the whole

function of the EyeMap system. A range of variables can be selected for

export through the viewer in the Data Visualisations (Section 3.4.3) and

may output these calculated variables to a CSV file. This file contains the

calculations along with the headers for each of the variables. The report

is available in two formats, the first is a word level report focusing the

variables around the areas of Interest and the second is the fixation report

that focuses the variables around fixations.

3.5 the need to redevelop eyemap

EyeMap was created to allow the user access to the wealth of data that

is available from modern eye-tracking hardware. Being the first tool of

its kind in the field, EyeMap has proven to be an excellent tool. However,

after an in-depth discussion with active users of EyeMap, it was found that

there are some issues within maintaining the system, while some users

would like to add extra functionality.

While investigating EyeMap it was clear there would be a number of

challenges to overcome. The first challenge was that it was difficult to

access the code base for the system. The second was that it is also no

40

3.6 summary

longer supported by the principal developer. These two challenges have

a knock-on effect, as Flex uses Adobe Air to build the code, and as new

updates are issued for Adobe Air the code base for EyeMap has developed

bugs from deprecated code and dependency issues with libraries used to

construct the system. With support no longer available for EyeMap this

means that the required fixes to bugs in EyeMap are not being handled. It

should also be noted that Flex has moved from an Adobe system to the

Apache Open Source Community and this has further knock-on effects

for EyeMap and its users. As the code base was not accessible the main

challenge is to recreate all of the EyeMap 1.0 functionality from scratch.

Although EyeMap was developed as a Desktop application it later began

to move to a web application. This was started by Dr Tang. He took the

desktop version and used Adobe Flash to make it into a web application.

The long term goal of this move was for researchers to share methodolo-

gies and data through a web interface. This further added to the draw

of EyeMap and took the first steps in its long term goal. However, the

system was never connected to a database so the functionality was never

expanded. This also presented a further challenge as to how the data

would be stored for use by EyeMap 2.0 users.

3.6 summary

This chapter has described the features and functionalities of EyeMap in

detail and shown how it is an invaluable piece of software for reading

research data analysis. The chapter also began to answer the research

question "What is EyeMap and how can it be improved?". The main group

of users for EyeMap are based at the Bergische Universität Wuppertal, Ger-

many. These users have ideas of how to improve the functionality of Eye-

Map while maintaining the core system. The proposed improvements and

extra functionality will be discussed in more detail in Chapter 4 with the

41

3.6 summary

requirements for EyeMap 2.0 presented along with ideas for enhancements

in going from EyeMap to EyeMap 2.0 from current users of EyeMap.

42

Part II

S O F T WA R E R E D E V E L O P M E N T

4
U S E R PA RT I C I PAT I O N & S O F T WA R E R E Q U I R E M E N T S

This chapter will further focus on the two research questions; "What is

EyeMap and how can it be improved?" and "What software models, tools,

and languages are appropriate for a project of this nature?". The chapter

begins by introducing the end user team and describing how the project

uses user participation and a prototype of EyeMap2.0 to build a software

requirements or RAD task list for EyeMap 2.0. The RAD task list was

construed based on the success of EyeMap and its features to try and create

an improved software system in EyeMap 2.0. The chapter will continue to

suggest tools and programming languages that would be appropriate for

the development of EyeMap 2.0.

4.1 end user team

The three main users involved in the design and specifications of EyeMap

2.0 were also involved in the original design of EyeMap. They have a lot of

expertise in reading research and study different areas of reading research

using eye-tracking technologies. These users are:

• Professor Ronan Reilly from Maynooth University, Ireland. His re-

search interests are primarily in cognitive science and he is inter-

ested in language understanding and reading. His background in

psychology and computer science allows him to use computational

modelling to develop theory.

• Professor Ralph Raddach from Bergische Universität Wuppertal, Ger-

many. Prof. Raddach is a professor of psychology in the department

44

4.1 end user team

of General and Biological Psychology at the university and is a lead-

ing international expert in the use of eye-movement analysis to study

information processing in reading.

• Doctor Christian Vorstius from Bergische Universität Wuppertal, Ger-

many. Dr Vorstius is a lecturer of psychology in the department of

General and Biological Psychology at the university. His research in-

terests include the differences in reading behaviour and the cognitive

factors of reading development.

Additionally for this redevelopment, Xi Fan, from Maynooth University,

utilised EyeMap 2.0 for a Chinese reading language study. Xi Fan is new

to the area of reading research and has not used the original EyeMap. She

had over 100 participants in her experiment and she will be contributing

to the project in the testing phases as EyeMap 2.0 is developed. The final

member of the end user team is Patrick Hynes. Patrick is an Amazon

Cloud Services engineer and was conducting an Irish language study and

planned on using EyeMap 2.0 to analyse the data from his study.

It should be noted that Dr Vorstius and Prof. Radach are based in Wup-

pertal Germany, Mr Hynes is based in Munich Germany and Prof. Reilly,

while based in Maynooth conducts a large portion of research outside

of Ireland. Therefore regular meetings were difficult to hold unless they

were carried out using online video conferencing. Before the first meeting

could occur between all members of the team, a review of the original Eye-

Map system was performed to understand the different modules within

EyeMap, including, all of its features and functionalities, as described in

Chapter 3. Following this review, it was then possible to understand the

different modules for development as is required for the RAD process. The

different modules, discussed in Section 3.4, are: (i) Data Parser, (ii) Data

Loader (iii) Data Editor, (iv) Data Visualisation, (v) Reading Variables and

(vi) Data Exporter.

45

4.2 prototype

The original guidelines for the development of EyeMap 2.0 were to recre-

ate EyeMap in a way that was easy to maintain and possibly expand upon

in the future. For this purpose, an initial basic prototype was created and

subsequently presented to users at the first official meeting, in January

2017, of the developer and end users.

4.2 prototype

The prototype of EyeMap 2.0 was developed try and overcome the chal-

lenge of not having access to the EyeMap 1.0 source code and to test the

functionality of different libraries for the different modules of the new

software. The first consideration was the programming language that the

software would be built in. There were several options including Java,

C/C++, Flex (like the original EyeMap) and Python. To properly consider

this issue, there were some considerations to be made that affect each of

the modules of EyeMap 2.0. The considerations for each module are:

• Data Parser - The data would be converted to an XML format so the

language must be able to read and process XML files.

• Data Loader - Participant XML files are approximately 400 KB in size

and given a large number of participants in an experiment this can

grow to be quite large. The language must be able to parse the files

and organise the data appropriately.

• Data Editor and Visualisation - The graphical capabilities of the lan-

guage must be considered here. The language must be able to display

and manipulate the data as required.

• Reading Variables - The language must be able to carry out large

numerical processing to correctly and efficiently create each of the

variables for EyeMap 2.0.

46

4.2 prototype

• Data Exporter - The language must be able to export the data for anal-

ysis use later, in a universal format that can be used on any operating

system.

Flex was ruled out due to the issues that crept into the code base, when

it was not maintained, by updates to the Adobe Software. Java and C++

are both appealing languages and have been shown to have rich libraries

especially for GUI implementation [11]. In a study investigating the pros

and cons of Java for scientific computing, Gudenberg concluded that he

would not recommend Java for this purpose due to expensive and ineffi-

cient workarounds that are required [19]. In a comparative study of pro-

gramming languages, Prechelt suggests for certain tasks that Java has a

large memory overhead compared to C/C++ but its efficiency is accept-

able. He also suggests that a scripting language such as Python performs

very well with tasks that have large data and computation while offering

advantages in terms of programmer productivity [36]. Given the develop-

ers’ knowledge of Python and the conclusions by Prechlt, it was decided to

use Python to develop EyeMap 2.0. It would also allow EyeMap 2.0 to be

made open source at a later stage as Python is widely known and would

allow other developers, and researchers, to contribute to the project as they

see fit, to coincide with the expanding technology in the eye movements

area.

To create the EyeMap 2.0 prototype PySide was utilised. PySide is the

Python version of the QT framework, software originally written in C++,

for rapid GUI development [37]. PySide focuses on making desktop ap-

plications that will run on any operating system. The prototype was a

desktop version and quite basic; it was designed to test the QT framework.

It allowed for the upload of a single participant XML file and then dis-

played the data from that file to the screen. It should be noted that there

were issues around the editing of the data at this point. However, it pro-

47

4.3 team requirements meeting

vided the basic idea of what EyeMap 2.0 could look like and showed some

basic processes of the Data Loader and Data Visualisation modules.

4.3 team requirements meeting

The first team meeting for EyeMap 2.0 was held in the Department of Psy-

chology at the Bergische Universität Wuppertal over two days in January

2017. In attendance at the meeting was Prof. Ralph Radach, Dr Christian

Vorstius, Prof. Ronan Reilly and the author. This was a significant meet-

ing for the project as it represented the first opportunity for requirements

gathering from experts in eye-tracking and users of the original EyeMap

that the users required in EyeMap 2.0. The meeting began by discussing

the important features and functionalities of the original EyeMap. The

topics discussed will be presented in Section 4.4. Each requirement was

also given a need and priority level to show how important that feature

was. The need levels used were Required, Want and Nice and the priority

levels are Low, Medium and High. Required is an essential feature of

EyeMap and must be included in EyeMap 2.0. A Want is a redesigned

feature or some new feature that should be included in EyeMap 2.0, and

Nice is not an essential feature but would add to the features of EyeMap

2.0. For the priority levels Low is not a feature that is required urgently

while High relates to a feature that should be developed quickly.

After the initial discussion Dr Vorstius completed a walk through of

how he uses the original EyeMap. This process was invaluable as it pro-

vided an opportunity to highlight what worked well in the functionality

and what didn’t as well as possible features that could be added to the sys-

tem. The walk through stepped through each module of EyeMap from the

Data Parser to the Data Exporter, and he discussed what feature would be

Required, a Want or Nice as well as their associated priority level. These

requirements will be discussed in more detail in Section 4.4.

48

4.4 requirements

The prototype that was developed was also presented at the meeting.

The prototype was well received and it was agreed that it was a good proof

of concept. Figure 4.1 presents a screenshot of the EyeMap 2.0 prototype

which shows the fixation screen with the fixation dots in red for the right

eye and in blue for left eye on a trial for an experiment with AOI’s.

Figure 4.1: prototype of EyeMap 2.0.

However, given the new requirements, for a web based application, that

was received during the walk through, it was no longer fit for purpose

as a desktop application. This, unfortunately, meant that PySide was also

surplus to requirements and a new framework was required.

4.4 requirements

The main requirement for the project was to develop EyeMap 2.0 and the

team requirements meeting provided further software requirements in ad-

dition to the features of EyeMap that would be implemented. These re-

quirements are presented in relation to each of the modules presented in

Section 3.4. The features for EyeMap 2.0 & associated module will now be

presented along with the need and priority level of the feature along with

a description.

49

4.4 requirements

4.4.1 requirement features

• Loading Multiple Participants

– Module : Data Loader

– Need Level: Want

– Priority Level: Medium

– Description : An important first step with EyeMap 2.0 is the

pre-processing and subsequent uploading of the data files that

cover not only the trials for a single participant but all trials

for all participants. The requirement here is to process an en-

tire folder in one go and not have the time consuming process

of loading each file individually. When this pre-processing is

completed, the folder is then uploaded to the system where the

researcher can view all participants with their files without hav-

ing to upload an XML data file for each participant.

• Data Storage

– Module : Data Loader

– Need Level: Required

– Priority Level: High

– Description : The participant data XML files need to be up-

loaded and stored to EyeMap 2.0. The files need to be easily

accessible from anywhere. This requirement suggests that Eye-

Map 2.0 should be made into a web application. This would

require the files to be stored in a secure database that can be

easily accessed by the end user on any computer with an inter-

net connection. Storing the files in this manner would overcome

the challenge of users accessing their data and would also assist

50

4.4 requirements

with collaboration between researchers, which will be discussed

in this section later on.

• Login Functionality

– Module : Data Loader

– Need Level: Required

– Priority Level: High

– Description : As EyeMap 2.0 would be a web application the

system would require secure login functionality to allow users

easy access to their experiments and data files.

• Database

– Module : Data Loader

– Need Level: Required

– Priority Level: High

– Description : As data files are going to be accessible from a

web application they need to be stored in a database. This then

raised the question of how to store the data files. Should these

be loaded from the file as required or is there a better way to

load the required files?

• Languages and Fonts

– Module : Data Loader

– Need Level: Required

– Priority Level: High

– Description : The original EyeMap has a number of quality fea-

tures that exist around the languages that it can display and in-

teract with while also using proportional and non-proportional

fonts for creating AOIs. Different languages have different fonts

associated with them and the system would require different

51

4.4 requirements

fonts to be available in EyeMap 2.0 to maintain the functional-

ity provided by EyeMap of being able to handle different lan-

guages.

• Visualisations

– Module : Data Visualisation

– Need Level: Want

– Priority Level: Medium

– Description : There are a number of visualisations that exist

within EyeMap. They relate to Fixations, Saccades, Scan Paths

and Playback. The visualisations are extremely useful in Eye-

Map and needed to be maintained in EyeMap 2.0. Having the

capability to be able to interact and export each visualisation

would be extremely beneficial for EyeMap 2.0.

• Variables

– Module : Reading Variables

– Need Level: Want

– Priority Level: High

– Description : The experimental variables in EyeMap are a key

quality feature in the system. They need to be re-implemented

in the new system to the same high accuracy and standards.

The requirement here is to allow customisation and the possi-

bility to create new variables that can be shared with different

researchers.

• Collaboration

– Module : EyeMap 2.0 System

– Need Level: Nice

– Priority Level: Low

52

4.4 requirements

– Description : With any ongoing experiment there can be a num-

ber of researchers working on a project, so it is important that

they are able to share their data easily with each other. Addi-

tionally, as research progresses it is becoming more important

for researchers to share their data with collaborators set to ver-

ify results. With EyeMap 2.0 it should be easy for the end user

to share the data as required both in terms of granting access

on-line and providing hard copies that can be exported from

the system.

• Batch Export

– Module : Data Exporter

– Need Level: Want

– Priority Level: Low

– Description : The original EyeMap exports the variables for a

single participant of a single experiment for additional analysis.

The ideal solution would be to allow the calculated results of

multiple participants to be exported at once, potentially in the

same output file. This would involve and investigation into how

the data is stored and ultimately processed.

• New Variable Calculations

– Module : Reading Variables

– Need Level: Want

– Priority Level: Medium

– Description : Since the creation of EyeMap there have been new

variables proposed that have proven to be useful for reading

analysis. The requirement would be to add these variables to

EyeMap 2.0.

53

4.4 requirements

4.4.2 requirement fixes

The following is a list of fixes for features of the original EyeMap for Eye-

Map 2.0. Each fix has the module from EyeMap that it relates to, the need

and priority levels of the fix and a description.

1. Edited fixations changing the fixation order in the viewer

• Module : Data Editor

• Need Level: Required

• Priority Level: High

• Description : When editing is carried out on fixations in the

data editor some of the fixations change the order in the view

panel on the left of the visualisation screen. This is a display

error and is required to be fixed for the editing to be carried out

successfully and completely.

2. Segmentation of Chinese words

• Module : Data Loader

• Need Level: Required

• Priority Level: High

• Description : It is important that EyeMap 2.0 works with multi-

ple languages. With English or German it is easy to distinguish

between words because they are separated by a space. How-

ever, with Chinese there is no obvious separator of words and it

is important to allow some indicator to show the separation of

words.

3. File naming conventions

• Module : Data Loader

• Need Level: Want

54

4.5 eyemap 2 .0 architecture

• Priority Level: Low

• Description : In EyeMap the file that contains the text material

for the experiment must be called text.html for each experiment

that is loaded into the system and this can be quite difficult

when there are two or three variations of an experiment that

each have multiple participants. Therefore, a way to differenti-

ate between the text upload would save large amounts of time

and energy.

4. Decimal numbers separator

• Module : EyeMap 2.0 System

• Need Level: Nice

• Priority Level: Low

• Description : In Ireland decimal numbers are written with the

"." separator, for example "2.5". However, in Germany the "," is

used instead; our same example would be written in Germany

as "2,5". Is it possible to fix this for the data that is exported

from EyeMap 2.0?

4.5 eyemap 2 .0 architecture

As discussed in Section 4.2 Python was the programming language of

choice for the development of EyeMap 2.0. In relation to the choice of

Python, there was a decision around two different frameworks, Django or

Flask. Django is a complete framework with the Model-View-Controller

(MVC) that is database driven with its own built-in user model which han-

dles API authorisation and authentication, while Flask is more lightweight

and requires the setup of different libraries or tools for different function-

ality. Given the system requirements, as described in Section 4.4 require

55

4.6 software development tools

a web application with secure login features and is also database driven

Django was chosen as the architecture for EyeMap 2.0

4.5.1 django

Django was publicly released in 2005 and it is currently run and main-

tained by the Django Software Foundation as a non-profit organisation

[10]. Django is built on python and uses HTML, CSS and JavaScript for

the development of a web application. It was designed to be fast and

reliable and developed in a way that would allow developers to quickly

and easily take a project from the design stage through to implementation.

It has many features which include, a standalone server for development

and testing, an easy to use expandable template system to allow for code

re-usability and changeability, and a form serialisation and validation sys-

tem which translates between HTML forms and values suitable for storage

in the database. Security is also provided by Django as it prevents against

a number of attacks such as cross site scripting, where users are allowed to

inject client side scripts into the browsers of other users, or SQL injection,

an attack where a user can execute arbitrary SQL code on a database.

4.6 software development tools

As the project would be designed and developed between Ireland and

Germany with several users, it was important that the code base used a

version control system. This prevents any issues with different versions of

the code getting confused between the two countries. The version control

system that was used in this development process was GitLab.

56

4.6 software development tools

4.6.1 version control

Version control is a system that records changes to a file or a set of files

over time so that you can recall specific versions later if required. It allows

multiple users to work on a project without having to keep track of who

has the latest version of the project or worrying about getting versions

of the project confused, and delaying work due to simple errors in not

using the latest version. The project uses GitLab as its version control tool,

which is built on git. Git is the underlying structure for GitLab. It takes a

snapshot of the files on a project and labels them so they can be accessed at

a later time. Git also marks who has the latest version and reduces errors

with multiple people working on a project. You can roll back changes if

they were made incorrectly and keep changes in a separate snapshot or

"branch" if they are not ready to go into the project. Using git means that

a central repository is created for the project.

Every repository has a master branch, a branch is just a pointer to a

snapshot of the code base. The master branch is where the fully work-

ing code is kept. This branch should have no bugs or errors and contains

the complete working code for the project. To aid with the RAD process,

a technique or workflow for development called Gitflow was used. Git-

flow is a process during the development of a project that creates several

branches to enhance and improve the workflow. It begins with a master

branch and then for each new feature a new feature branch is created.

This means the code currently being developed is kept clear of the fully

working code on the master branch. Once the feature has been completed

the feature branch is then merged back into the master branch. Gitflow

also has branches for preparing, maintaining, and recording releases of

the project.

The workflow of Gitflow, as described in an Atlassian BitBucket tutorial

[17], can be seen in Figure 4.2. The workflow can be described as:

57

4.6 software development tools

Figure 4.2: Example of Gitflow [16].

1. A develop branch is created from the master branch

2. A release branch is created from the develop branch

3. Feature branches are created from the develop branch

4. When a feature is complete it is merged into the develop branch

5. When the release branch is done it is merged into develop and master

6. If an issue in master is detected a hotfix branch is created from master

7. Once the hotfix is complete it is merged to both develop and master

The next tool that is required is an Integrated Development Environment

(IDE) for development that works with git.

4.6.2 integrated development environment

For the development, PyCharm from JetBrains [27], was used as the IDE.

PyCharm provides support for Django web applications as well as provid-

ing access to GitLab for version control, it also manages requirements of

libraries and dependencies that would be used in the course of the project.

58

4.6 software development tools

4.6.3 error logging and bug tracking

An important part of the RAD development process is the continued inte-

gration and testing of new modules as they are introduced to the project.

This was another consideration for the team and the ability to report is-

sues and track their progress without long email chains. To manage this

problem a web tool called Backlog was employed. Backlog [1] is an issue

tracking management tool that allows users to report bugs and issues in a

system. Figure 4.3 shows a blank version of a ticket form from Backlog to

track issues. It can be seen that everything can be captured and reported

about an issue or problem, the issue can be assigned to a user or developer

as well as allowing screenshots of the issues to be posted.

Figure 4.3: Backlog issue creation screen.

With all of these tools and frameworks in place the development of Eye-

Map 2.0 could begin.

59

4.7 summary

4.7 summary

The initial meeting for the development of EyeMap 2.0 could be considered

a success. It allowed the end user team and developer to build a clear soft-

ware requirements list that could improve on the original functionality of

EyeMap. It was clear that EyeMap 2.0 would need to be a web application,

as this would provide the extra functionality in terms of users accessing

their data anywhere and on any operating system. The end user team pro-

vided extremely valuable information about the features of EyeMap that

could be improved. They set clear goals for the architecture of EyeMap 2.0

and what was required of it, which provided the list of requirements and

fixes as presented in Section 4.4. In Sections 4.2, 4.5 and 4.6 it was demon-

strated that Python would be the programming language of choice for the

development of EyeMap 2.0. This decision then provided PyCharm as the

IDE for the project with Django discussed as the new architecture. A Git-

Lab repository combined with Gitflow would also enhance the tools and

frameworks for the development of EyeMap 2.0 to be successful. Chapter

5 will provide more detail on how these frameworks, tools and structures

were used to redevelop EyeMap 2.0.

60

5
S Y S T E M R E D E V E L O P M E N T

As discussed in Section 2.4 the RAD software development process was

used for the redevelopment of EyeMap 2.0. This means that the project was

broken down into different modules for RAD were each module represents

a different task for the project. This chapter presents the modules from the

RAD task list and discusses how each of them was developed.

5.1 challenges to overcome

Section 3.5 showed that there were some challenges to overcome in the

redevelopment of EyeMap 2.0. These needed to be considered at every

stage during the redevelopment. These challenges were:

• It was difficult to access the source code for EyeMap 1.0, which

would mean that each function of EyeMap 2.0 would have to be re-

created from scratch, with the users and working version of EyeMap

1.0 providing guidance on correct functionality.

• As EyeMap 2.0 was being developed as a web application the data

for experiments would need to be stored in a secure and safe manner

that was easily accessible for users.

5.2 rad task list

The modules for the development of EyeMap 2.0 were derived from the

modules that existed in EyeMap as described in Section 3.4. The task list

61

5.2 rad task list

for the RAD process followed these modules. A task was also made for

setting up the core Django framework and initialising the GitLab reposi-

tory. The following is a list of modules or tasks that were created for the

RAD process:

1. Set up Core Architecture

2. Initialise GitLab Repository

3. Design and plan the layout of EyeMap 2.0

4. Create the Database for EyeMap 2.0

5. Set up Templates

6. Create Web Pages

7. Data Loader

8. Data Visualisation & Editor

9. Data Exporter

Note: The Data Parser from the original EyeMap is a standalone tool

that is written in a combination of Java and Bash scripting, for pre-processing

of participant XML data files before they are uploaded to EyeMap. It is

fully functional and does not require an update.

As described previously the development of EyeMap 2.0 followed the

RAD process. Therefore each task had 3 smaller sections to it (as described

in Section 2.4.2.4 Figure 2.16). These sections are:

1. Design

2. Construction

3. Testing

62

5.3 constructing the core architecture of eyemap 2 .0

Note: The testing for each section consisted of the system, at that point

in time, being sent to the development team and feedback received being

incorporated into the next iteration of EyeMap 2.0. The testing will be

discussed in more detail in Chapter 6. The following sections will focus

on the design and construction of EyeMap 2.0.

5.3 constructing the core architecture of eyemap 2 .0

Setting up the core architecture was the first task in the RAD task list.

Django creates the basic file structure when starting a project. This in-

cludes all of the initial settings files and required files for running your

Django project. An example of this can be seen in Appendix C.1.

5.3.1 languages used in the development of eyemap 2 .0 .

As EyeMap 2.0 is a web application other programming languages and

libraries were included in the development process. These languages

are HTML, CSS and JavaScript. To incorporate these languages into the

project a static folder was created in the project that would load CSS and

JavaScript script files. They could then be called from any page within Eye-

Map 2.0. Django uses a template system for HTML that will be discussed

in more detail in Section 5.7.

The CSS framework that was used in the development process was Boot-

strap 3 [5]. Bootstrap 3 is an open-source set of tools that allow developers

to create responsive and functional website designs. Bootstrap 3 consists

of HTML and CSS templates that create various types of components for

websites, or user interfaces, such as buttons, forms and navigation com-

ponents. It also includes some JavaScript extensions. The main benefit of

Bootstrap is the responsive design that it employs. The responsive element

means that while creating the interface for a project, the interface would

63

5.4 gitlab repository

render correctly on any number of devices, such as smartphones, tablets,

and PC or laptop screens. Bootstrap is also compatible with all modern

browsers such as Chrome, Firefox, Safari and Opera.

5.4 gitlab repository

To use Gitflow in the development of the project a git repository was set up

on GitLab. All the files generated from the project startup were included

in the repository. The initial branches created for development were:

• Master - Used to keep the working project files; the Live branch mir-

rors this.

• Live - This is the code base that is hosted on the live web application.

• Dev - This is the main development branch. As a new feature was

required a new branch was created from Dev for the feature devel-

opment. As the feature was completed, the branch associated with

it was merged back into the Dev branch and then onto the Master

branch for testing and release.

5.5 design and development of eyemap 2 .0’s layout

Figure 5.1 presents the initial design of EyeMap 2.0. As functionality was

added this figure was the main source of reference for where new features

were added.

In Figure 5.1 each structure within the EyeMap 2.0 system is a separate

web page within EyeMap 2.0. It was envisaged that the end user would

open the EyeMap 2.0 website and register as a user. They would then have

the ability to login to the system. Once they successfully had created an

account, they would be returned to the Home Page where they could then

create a new experiment or select an existing experiment to work with.

64

5.6 database creation

Figure 5.1: EyeMap 2.0 System Design.

If they chose to create a new experiment they would be guided through

uploading all the relevant files using the Data Loader (see Section 5.9).

At this point, the user would then be able to view visualisations of the

different trials for different participants in their experiment using the Data

Visualisation Tools (see Section 5.10). They could also skip straight to

calculating the reading variables (see Section 5.11) on the export page or

navigate to this page after they have made edits to the trials for a partic-

ipant if required. Once they are satisfied with the experiment they can

then export the data to a file for further use (see Section 5.11) with the

Data Exporter.

5.6 database creation

A large challenge in the redevelopment and requirement for EyeMap 2.0

was the secure storing and maintenance of the different data files for ex-

65

5.6 database creation

periments that were loaded into the system. The files need to be quickly

processed and displayed, be it for visualisations, editing or reading vari-

able calculations. This section will analyse the creation of the database

using the inbuilt Django SQLite3 database.

5.6.1 data files management

The first constraint in designing the database was the number and size of

files in any given experiment. Each experiment has XML data files, an

XML configuration file and a text stimulus HTML file. The experiment

can have any number of participants, and have any number of trials per

experiment. As an example, for one participant in an experiment with five

trials the XML data file size for this participant was 432.1 KB. Having more

participants with more trials in an experiment means the file size is going

to grow exponentially, which will use more valuable memory space in the

database. The solution to this problem was to change how the files are

stored within EyeMap 2.0. The solution involved storing the file broken

up as a JSON String. JSON is a human-readable text written in JavaScript

object notation so that it can be easily passed between applications and

services.

Each participant file can be broken into fixation data, saccade data and

drift data and a JSON string is constructed for each of these. The size of

the JSON strings combined, for the same experiment and participant with

the same trials used previously, is 376.4 KB. While this is not significantly

smaller than the file size itself it does mean that the system does not need

to create a file structure for any uploaded files and then store the location

of the file in the database. The other deciding factor for storing the data

as JSON strings were that JSON is easily passed by requests going from

the server side to the browser. This means the data can be prepared using

python code on the server side and then passed to the JavaScript code

66

5.6 database creation

on the front-end for display purposes. This also helped in overcoming

the challenge for storing safely and accessing data required for a users

experiment.

5.6.2 database structure

Figure 5.2: Full EyeMap 2.0 Database.

67

5.7 set up templates

With the decision made to use JSON strings for storing data, the database

was then designed to be focused on the experiment at the centre. The ini-

tial database size was small but as the complexity of EyeMap 2.0 grew the

database was changed and extended to match the complexity and other

requests received from the end users. Figure 5.2 shows this complete

database structure of EyeMap 2.0. The final database was designed so that

when a user creates an experiment, which then is associated to the user,

the details for the experiment are extracted from the experiment files as

they are uploaded to EyeMap 2.0 (for further information see Section 5.9.).

When the participant XML files are loaded into the system they are stored

into the participant table in the database, with each participant belonging

to a given experiment.

Each experiment also has a related font file. The font files are pre-loaded

in the system. The ability to add more fonts on request exists, this was

done as a security feature. End users are not permitted to upload binary

files as these may damage the system.

5.6.3 generating the tables for the database

Each of the tables shown in Figure 5.2 are generated by Django with the

code for doing this written in Python. To see an example implementation

of this please see Appendix C.2. Once the database was created, the Web

application needed each web page from the design in Figure 5.1 to be

created and prepared.

5.7 set up templates

As discussed in Section 4.5.1 Django has a template system that easily

allows web pages to be generated dynamically with the Django template

language (DTL). This means that web pages can be modularised so that a

68

5.8 web page creation

section that is required across multiple pages can be separated and called

by Django when required. Appendix C.3 hows a detailed example of how

the template system is implemented and extended. Once the template

system was set up it was then possible to set up the other web pages for

EyeMap 2.0.

5.8 web page creation

The next step in the development process was to create each of the web

pages shown in Figure 5.1. These are:

• Home Page

• Login Page

• Registration Page

• Create Experiment

• Visualisations & Editing

• Export

Django has specific configurations for creating a web page, this can be

seen in more detail in Appendix C.4. Each web page layout was devel-

oped using the DTL with HTML for the structure, CSS for the look and

JavaScript for the functionality. The main web pages of Create Experiment,

Visualisations & Editing and Export will be discussed in Sections 5.9, 5.10

and 5.11 respectively. All of the different web pages were presented to the

end user team as they were developed. The users would then present their

feedback through the backlog bug and issue tracker system by opening

a ticket. These tickets were investigated, fixed, sent back to the user for

further testing and when verified, incorporated into EyeMap 2.0.

69

5.9 data loader

5.9 data loader

The Create Experiment page of EyeMap 2.0 allows a User to create a new

experiment. There are several different data files that are required for each

experiment. These are:

• Trials File, text.html - This does not have to be called text.html, as de-

fined in the user requirements, but for the purposes of the document

it shall be referred to as text.html. This file contains the trials for the

experiment.

• Configuration File, config.xml - This must be named config.XML. This

is the configuration settings to go along with an experiment.

• Participant Files 00smp001.xml (sample file name) - The number of

the participant files can vary depending on how many participants

exist in the experiment.

The Create Experiment web page was originally laid out on one page with

multiple HTML form sections to take in each of the files. However, during

a review with the end user team, this proved to be confusing because of

all of the different files types. There was confusion around whether the

files had loaded correctly and in the right order. During the next round

of development, it was decided to turn the Create Experiment web page

into a Wizard to upload the files. In technical terms, a wizard is a step

by step guide to completing a certain task. The completed wizard for the

upload process can be seen in Figure 5.3, and has five steps which can be

described as:

1. Figure 5.3a: Step 1 of the wizard asks the users for the experiment

name and description.

2. Figure 5.3b: Step 2 of the wizard requires the user to upload the Trials

file containing the trials of the experiment. How this is completed

70

5.9 data loader

(a) Step 1 (b) Step 2

(c) Step 3

(d) Step 4

(e) Step 5

Figure 5.3: The upload Experiment process.

will be discussed more in Section 5.9.1. It also checks if the required

font is already stored in the system for the experiment. If it is not

present the user is asked to contact the system administrator.

3. Figure 5.3c: Step 3 of the wizard is provided for the user to upload

the experiment configuration file, config.XML.

4. Figure 5.3d: Step 4 of the wizard allows the user to upload multiple

participant files by dragging and dropping them on the indicated

area. Section 5.9.2 will discuss further how the participant and config

files are processed.

5. Figure 5.3e: Step 5 of the wizard sends all of the gathered data to the

server side to be stored in the database and proceeds to provide the

user with confirmation that the experiment was uploaded correctly

to the system. Once the user clicks the Finish button, they are re-

71

5.9 data loader

turned to the home page where their experiment will be displayed

along with all other experiments belonging to the user.

5.9.1 processing the trials file

On upload, in the wizard, the text.html is processed before the user can

proceed to the next step. The first step in this process is to convert the file

into a JSON String. It is then passed, by request, to the server side where

the font is checked to ensure it exists in the system. If it does not exist

the user is advised to contact the system administrator to get the font file

added to EyeMap 2.0, and they are returned to the Home page. If the font

does exist in the system the system will continue to process the text.html.

Figure 5.4: text.html for a Chinese language experiment.

Figure 5.4 shows a sample text.html file for a Chinese language experi-

ment. The code first extracts the experiment information, which is shown

on lines 3-13 of the sample file. This information is the form of font, font

72

5.9 data loader

sizes, leading for the trials and the starting X and Y location on the screen.

Another requirement provided by the users was the need for a separator

for the Chinese language or other languages that do not use spaces be-

tween words. Line 14 shows a custom made <sep> tag for this purpose.

Within the <p> tags are the text stimulus for each trial. For this experi-

ment, there are fifteen trials. On closer inspection of any of the <p> tags

the Chinese words are separated by the separator provided on Line 14 of

the file. The data for each trial is next to be extracted from the <p> tags.

The system processes each trial into a list of words based on the separator

or a space if the <sep> tag is not present and then makes a list of all the

trials. Once all of the processing is complete the system allows the user to

continue to the next step of the wizard.

5.9.2 processing data files

During the next two steps of the wizard, the XML data files are processed.

As the text.html is converted to a JSON string and sent to the server in a

request object, the same process happens with both types of XML files. The

data from config.XML is processed into a JSON String. For the participant

XML files there are three lists of python dictionaries created, the first is for

Drift data, the second is for Fixation data and the third is for Saccade data.

Each trial is contained in its own list within the larger list.

Once all of the data has been processed and the user reaches step 5 of the

wizard the data is all then stored in the database in the relevant locations.

The experiment is then added to the list of users experiments on the Home

page for selection. This can be seen in Figure 5.5. When the user selects an

experiment and a participant within that experiment the data is retrieved

from the database and is then ready for the user on the next web page that

they navigate to.

73

5.10 data visualisation & editor

Figure 5.5: Users Experiment list presented on the Home page.

5.10 data visualisation & editor

Once the user selects the experiment and participant that they wish to

work with, they can navigate to the Visualisation & Editing page. The

data for the participant is retrieved from the database and loaded into a

response object and sent to the browser through the view for the page

where it is then extracted and ready for processing. There are two stages

to the data processing on this page. The first is to get the AOI Information

and the second is to prepare the data for visualising and editing. These

will be discussed in the following sections.

5.10.1 extracting the aoi information

The first step in the data preparation process is to get the AOI Information.

All of the trials are contained in a list, and each trial is a list on its own, that

contains all words for the trial. The information about the experiment is

also contained within a list and has the font, font size, leading for the trials

and the starting X and Y location. This information is important for the

74

5.10 data visualisation & editor

experiment as it helps to get the font metrics for each AOI and ultimately

decides where the AOI is located on the screen.

The font metrics are calculated using a JavaScript library called open-

type.js [8]. This is a TrueType and OpenType font parser and writer. The

opentype.js library allows EyeMap 2.0 to satisfy the requirement for mul-

tiple languages and fonts. It uses the font file for the font used in the

experiment to parse the words of the trial to decide on the height and

width of the AOI surrounding a given word or character. Once all words

have been parsed and the font metrics are received for each word they are

then ready to be displayed on the screen. An example of this can be seen

in Figure 5.6a. In this Figure, the words from the trial can be seen with

their AOI. The black border on this page represents the screen that the

participant used during the running of the experiment.

5.10.2 display the data

After the AOIs have been calculated all of the data must be displayed

on the screen. The first design for this involved using HTML5 canvas.

While the canvas drew the objects on screen very well it proved difficult

to use when it came to clicking, selecting and hiding objects on the canvas.

During the second stage of the design stage another JavaScript library,

called Konva.js [53], was tested as it utilised the HTML5 canvas. Konva is

a JavaScript library that allows grouping of objects and clicking, selecting

and hiding objects on the HTML5 canvas.

Konva allowed the different elements of the data to be grouped together

and the groups to be layered differently within the canvas, which further

allows the different elements to be selected. This grouping allows all the

AOI data to be created and layered together. For this the words and bound-

ing boxes that make the AOI’s were grouped separately. Options were

then added to show and hide each of the elements and when an AOI is

75

5.11 data exporter

selected a separate panel displays the AOI information. The AOI Tab of

the visualisation & editing page can be seen in Figure 5.6a.

(a) AOI tab. (b) Fixation Tab.

Figure 5.6: The different tabs on the Visualise & Edit page.

Figure 5.6b shows the Fixation Tab on the same visualisation & editing

page. The fixations were separated into left and right eye layers for the

canvas. This provided functionality to show and hide the left and right eye

fixations. Each fixation can also be selected and, like the AOI’s, displays

individual fixation information in a separate information panel.

Rather than navigating to a separate web page an option to turn on and

off editing functionality was added to the page. This allows users to move

fixations in the Y direction only. Fixations can be selected in groups or

individually and when the editing option is enabled they can be moved

on-screen. It is only when the user saves the edits that the data file is

updated and a new entry is created in the database for the participant.

This is marked as version 2 so that the original is maintained at all times.

Once all editing has been completed the user can navigate to the export

or analysis web page for the reading variables to be calculated for the

participant.

5.11 data exporter

The analysis of the data takes place within the data exporter web page.

With the reading variables for export being of core importance to the orig-

inal EyeMap, this module had the most involvement from the end user

76

5.11 data exporter

team. There are currently over 150 reading variables within EyeMap. As

described in Section 3.4.5 there are six levels of variables available, which

are:

1. Experiment level

2. Trial level

3. Word level

4. Gaze level

5. Fixation level

6. Saccade level

Each level has its own set of variables associated with it. They are all

available on the analysis page of EyeMap 2.0 (full list provided in Ap-

pendix B.1). Figure 5.7 shows a sample of the variables and a description

from the analysis page.

To ensure the correct calculation for each of the variables, a "golden data

set" of reading variables was exported from the original EyeMap for a com-

pleted experiment. That experiment was then made available for testing

purposes in EyeMap 2.0. Due to the large number of variables required,

Dr Vorstius provided a large volume of guidance with understanding the

variables; this shall be discussed more in Chapter 6. The data required

to calculate each of the variables are already stored in the database. This

data was retrieved from the database and then processed using the python

programming language on the server side.

There are two different reports that can be generated from EyeMap 2.0.

These are a word report and a fixation report. The word report focuses

on the words and the order they appear while the fixation report focuses

on the fixations and the order they are in. There are a number of options

available to the user when generating reports, and these options are shown

in Figure 5.8.

77

5.11 data exporter

(a) Experiment level
(b) Trial level

(c) Word level (d) Gaze level

(e) Fixation level (f) Saccade level

Figure 5.7: Display of Reading Variables and explanations.

Figure 5.8: Options for reports to be exported.

The six different options are:

1. Max Gaze Count - This allows the user to select how many participant

gazes they want to include in the report.

78

5.11 data exporter

2. Max Fixation Count - This allows the user to select how many fixations

on a word during a gaze is required for analysis.

3. Select Participant - This allows the user to select if they want the cur-

rently selected participant or all participants to be included in this

analysis.

4. Select Eye - This allows the user to select if they want the right eye

the left eye or the calculations for both eyes.

5. Select AOI Type - This allows the user the ability to chose word level

AOI’s or character level AOI’s.

6. Select Report Type - This allows the user to choose between the word

report or the fixation report.

Once the options have been selected and the user generates the selected

report they receive a single Excel file with all of the calculated variables

included. A sample of a section of a word report is shown in Figure 5.9,

that shows a selection of calculated variables for some of the words in a

trial of an experiment. These reports are then utilised by the users carrying

out the experiment for further analysis.

Figure 5.9: Sample of word report exported to an excel file.

79

5.12 additional work

5.12 additional work

During the course of redevelopment additional members were added to

the development team, and they were Jeremy Yon and Niall Brennan. Both

developers contributed different sections to EyeMap 2.0.

Jeremy’s main contribution was relating to the experiment list that shows

all of a users experiments, and then displays all of the participants within

that experiment. This can be seen in Figure 5.5. He also enabled the user

to delete archived experiments.

EyeMap 2.0 was developed exclusively for reading experiments, of plain

text. Niall worked on allowing experiments of different styles of text to be

imported into EyeMap 2.0 meaning, that a user was not restricted to read-

ing experiments. His main contribution in the current version of EyeMap

2.0 is related to the character level AOIs and allowing the user to change

between the character word level AOIs. Figure 5.10a shows the word level

AOI’s on an experiment and Figure 5.10b shows the character level AOI

on an experiment.

(a) Word level AOI’s. (b) Character level AOI’s.

Figure 5.10: The different AOI’s that can be generated.

Having the GitLab repository set up allowed both Niall and Jeremy to

contribute easily to EyeMap 2.0. They were able to use the Gitflow process

and create their own feature branches for development. Changes were

then easily integrated into the main system.

80

5.13 summary

5.13 summary

In this chapter, the development of EyeMap 2.0 was discussed in detail and

showed how the challenge of recreating each function of EyeMap 1.0 was

overcome. The chapter went through the RAD task list from implement-

ing the Django architecture to discussing how EyeMap 2.0 was designed

and how each of the features was developed. The chapter concluded by

showing how the architecture of EyeMap 2.o could easily have additional

features added by utilising Gitflow and a repository on GitLab allowing

other developer access to the code base. Chapter 6 will discuss details of

how testing was conducted during the RAD process.

81

Part III

E VA L U AT I O N & F U T U R E W O R K

6
E VA L U AT I O N

This chapter will present the evaluation of the EyeMap 2.0 system. During

the RAD process, the end user team members were exposed to the differ-

ent modules of EyeMap 2.0. They used the Backlog system discussed in

Section 4.6.3 to report errors and bugs within each of the modules. Sec-

tion 6.1 will look at how Backlog was used to streamline the testing and

evaluation of EyeMap 2.0 in more detail. This chapter will then revisit the

software requirements provided in Section 4.4 to demonstrate the work

completed in developing EyeMap 2.0. A usability survey was completed

on EyeMap 2.0 by the end user team and by individuals not familiar with

eye-tracking or EyeMap 2.0. The results of these surveys are presented in

Section 6.3.

6.1 system testing

Throughout the development of EyeMap 2.0 Backlog was utilised as an

error logging and bug tracking software tool to report issues to the de-

veloper and track their progress for testing and evaluation without long

email chains between the developer and end users. Backlog allowed users

to open an issue/ticket concerning an issue with EyeMap 2.0 and a daily

report of tickets was sent to each team member so they could be tracked.

Tickets were created with a type, a subject, a priority, a status and assigned

to someone on the team. Backlog would also assign a unique Key to each

ticket that was created so that issues could be tracked between users. The

83

6.1 system testing

tickets could be set to one of five types by the user that opened the ticket.

The types and what they represent are:

1. Critical - A critical ticket related to a major issue with the system and

needed to be fixed immediately.

2. Task - A task was a minor issue and needed to be fixed.

3. Bug - A bug was an error in the system where the code base was not

completing a task as expected.

4. Request - A request was a feature requested by the user that would

enhance the system.

5. Other - The Other ticket was used to catch any other types of issues

that may happen. Issues generally were captured by the first four

types of issue and this was added as a type of a precautionary mea-

sure to capture any other issues for the system.

Each submitted ticket had a subject where the person who opened the

ticket could provide more information about the issue, and also include

screenshots if available. The ticket could then be given a priority of low,

normal or high. A low priority ticket was not urgent and was used mostly

with a Request or Other type ticket. Normal priority was used to report

an issue or bug that was not Critical and was not required to be fixed

immediately. It was mostly used with Task or Bug type tickets and high

priority was used for Critical type tickets. However, any priority level

could be used with any of the ticket types. To manage tickets they were

also assigned a status; with the following possible levels:

1. Open - To show that a ticket was opened on the system.

2. In Progress - To show that a ticket was being investigated.

3. Resolved - To show that the issue had been fixed or completed and

remained open for testing.

84

6.1 system testing

4. Closed - To show that the issue had been fixed and re-tested and was

acceptably Resolved.

Figure 6.1 presents an example of three tickets that were opened in Back-

log. Each ticket has a type, a key, a subject, a priority level, the team

member that opened the ticket, the team member the ticket is currently

assigned to and the status. During the RAD process, the end user team

and developer were able to open tickets to easily communicate any issues

or ideas that arose for the development of EyeMap 2.0.

Figure 6.1: List of Backlog tickets.

Figure 6.2 presents a sample Bug ticket submitted to Backlog, with an

associated image, being assigned to the developer within Backlog to track

issues. The assignee on a ticket could be changed as the ticket was being

worked on. This allowed the developer and end user team to keep track

of tickets they were working on.

Figure 6.2: Sample Backlog Bug ticket being created.

85

6.1 system testing

Throughout the RAD process, the end user team conducted communica-

tions through the Backlog ticketing system. As the developer for EyeMap

2.0 progressed through the RAD task list the end user team became more

involved. As a module or feature of EyeMap 2.0 was developed the de-

veloper carried out some basic testing to ensure the module worked as

required. The end user team would then step in and further stress test

the system with more data to verify the correct functionality of the mod-

ule. When the user found an issue during testing they would open a new

ticket to be resolved. In total there were forty-two tickets opened on Back-

log for different issues within different modules. These can be broken

down to twenty Critical tickets, eleven Task tickets, five Bug tickets, four

Request tickets and two Other tickets. The task list as previously described

in Section 5.2 was:

• Set up Core Architecture

• Initialise GitLab Repository

• Design and plan the layout of EyeMap 2.0

• Create the Database for EyeMap 2.0

• Set up Templates

• Create Web Pages

• Data Loader

• Data Visualisation & Editor

• Data Exporter

The tasks to Setup Core Architecture and Initialise GitLab Repository to

generate the project code base and did not require the end user team to

be involved as they were completed by the developer. The Design and plan

the layout of EyeMap 2.0 task was discussed at the requirements meeting

86

6.1 system testing

held in Wuppertal, Germany. The end user team did not have any issues

with the initial layout of the architecture of EyeMap 2.0. The consensus

was that they were happy to allow the developer to work on this task and

layout of the new system as required for a web application. As the project

progressed the team had more input about the design through the Backlog

ticketing system.

The team was also satisfied for the developer to Create the Database for

EyeMap 2.0 as this was designed to satisfy the different requirements of

the system. Mr Hynes created a ticket that helped to improve the database

design. Figure 6.3 shows the ticket that Mr Hynes opened. It is a Task

type ticket and in it Mr Hynes suggests the redefining of the experiment

model so that the experiment is a table in the database on its own and

the subject should be a relation to the experiment, i.e. a one-to-many rela-

tionship between the experiments and participants table. This Task greatly

improved the database structure and shaped the database that EyeMap 2.0

now utilises.

Figure 6.3: Ticket opened by Mr Hynes in relation to the database design.

The tasks to Setup Templates and Create Web Pages solely affected the

developer as this implemented the layout and structure of EyeMap 2.0

that was previously approved by the end user team. The end user team

had most input into the modules that were created for the Data Loader,

Data Visualisation & Editor and Data Exporter. The tickets that were opened

87

6.1 system testing

by the end user team will be discussed with the module it was opened

against.

As discussed in Section 5.9 the Data Loader is responsible for the upload-

ing of all data files for experiments. For this module, Mr Hynes suggested

to simplify the upload wizard and handle any abbreviations or other data

that could be handled in the background that the user would find dis-

tracting. This feedback greatly simplified the upload wizard. Ms Fan had

conducted a large experiment with over 100 participants in multiple ex-

periments. She thoroughly tested the upload wizard. Some of the data

files that were presented to EyeMap 2.0 had elements in different locations

within the file compared to what was expected. The fix for this issue al-

lowed the upload wizard to be more flexible in how it processes the data.

The Data Visualisation & Editor was extensively tested by Dr Vorstius, Ms

Fan and Mr Hynes. The first major issue was with the word location on

the visualisation page of EyeMap 2.0. To test this Dr Vorstius got a visu-

alisation from the original EyeMap and then loaded the same experiment

into EyeMap 2.0. He found that the location of the words was misaligned

on the first word and this misalignment increased the further across the

line of text the user went. Figure 6.4 presents the description and attached

image of the ticket that Dr Vorstius opened. In the image the yellow lines

represent where the text was located in the original EyeMap and the red

lines represent where they were located in EyeMap 2.0. This issue was Crit-

ical as this misalignment would then create wrong variable calculations in

the Data Exporter. The issue was caused by a rounding error in the AOI

calculation with opentype.js and was easily rectified. As shown in the top-

right of 6.4a the ticket was closed once the Dr Vorstius had verified that

the issue was resolved.

Ms Fan opened a ticket relating to a bug in the system where some of the

fixations were missing from the visualisations. Upon further investigation,

it was confirmed to only happen with participant data that had only left

88

6.1 system testing

(a) Description provided in the ticket about the misalignment of text

(b) Image provided in the ticket to show the misalignment of text

Figure 6.4: Misalignment of text ticket, with image, opened on Backlog

or right eye data associated with it. This issue was caused during the

data upload process from the way the data was being extracted from the

participant XML file. This was a Critical issue and required a refactor of

the code involved in the data upload module. The ticket was closed once

Ms Fan had verified the issue was resolved.

Mr Hynes opened a ticket relating to how the fixation data was being

saved after editing. If multiple edits were made with multiple saves the

database would have a new participant with the edited fixation data, but

when the user left the visualisation page and returned the data would

show the first "new participants" data and any saves after that were not

displaying. This bug was created when the user pressed the save button

on the visualisations page. The solution to this required some refactoring

for the save edits function. After the fix was in place and this was verified

by Mr Hynes the ticket was closed.

The modules to calculate the reading variables and export the data in

the Data Exporter were considered vital for EyeMap 2.0. For these modules,

Dr Vorstius travelled to Maynooth University for two days in March 2018.

89

6.2 requirements checklist

Dr Vorstius is an expert in these variables as he uses them regularly within

his own research and able to advise the author on the reading variables.

During this visit, a large amount of the code to perform the variable calcu-

lations was completed. As described in Section 5.11 Dr Vorstius generated

a "Golden Data Set" from an experiment that was previously analysed us-

ing the original EyeMap. To test the variable calculations in EyeMap 2.0

the same experiment was loaded into the system and the variables were

calculated and exported. Dr Vorstius then compared the results of each

data set by hand so that each variable was verified as calculating correctly.

When the module to generate the word and fixation reports for EyeMap

2.0 were completed the end users tested the system. The issues that were

raised here were related to variables being calculated incorrectly. Ms Fan

also scrutinised the variables on a number of her experiments to ensure

that they were correct.

Throughout the development process, if any tickets were opened through

Backlog, the developer would investigate the issue in the ticket and as it

was resolved it would be sent back to the team member that created it

for further testing before the ticket was closed. As testing on the mod-

ule was completed and then approved by the end user team the module

was merged into the master branch on GitLab for release on the live web

application.

6.2 requirements checklist

There were a number of requirements and fixes from the original EyeMap

for EyeMap 2.0; listed in Section 4.4. This section will review the require-

ments, to analyse what was completed and what has yet to be completed.

Table 6.1 presents a break down of the completion level of requirements

and fixes for EyeMap 2.0.

90

6.2 requirements checklist

Table 6.1 shows a large number of requirements were met for the Eye-

Map 2.0 system. These requirements are improvements on the original

EyeMap. The first requirement is the ability to upload multiple partici-

pants data for an experiment to the system at once. When the data is

upload and stored in the database it is then available to the end user once

they log in to the EyeMap 2.0 system. This provides end users with easy ac-

cess to their experiments and participant data files. When the experiment

trial data is uploaded the system can manage a wide range of proportional

and monospaced spaced fonts. The ability to add a unique separator to

the text.html file provides the ability to easily segment any language as

required.

EyeMap 2.0 has provided functionality to batch export variable calcu-

lations for participants in an experiment. This is a big improvement on

the original EyeMap. For the original system users were required to up-

load a single participants data and then export the variable calculations for

that participant and then repeat this for each participant in the experiment.

With EyeMap 2.0 the user can upload all participants for an experiment at

once and then complete the variable calculations for all participants in one

report for the variable calculations.

As presented in Table 6.1 three requirements were partially complete.

These three requirements are Visualisations, Collaboration and Decimal num-

bers separator. The Visualisations are marked as partially complete as in

the original EyeMap there were visualisations for fixations, saccades and

scan paths while in EyeMap 2.0 only visualisations for fixations was fully

completed. The structure was created in the code base with Konva.js to

implement all of the visualisations but due to the development and test-

ing required for Variables and Batch Data Export the time to complete the

requirement was not available. Additionally, the Variables and Batch Data

Export requirements were deemed to have a higher need and priority level

from the end user team, as given in the requirements. For the Collaboration

91

6.2 requirements checklist

requirement, the database has been set up to implement the collaboration

feature for experiments but as the need level was Nice and the priority

level was Low this feature was not fully implemented. The Decimal num-

bers separator was also not implemented as it had received a Low priority

level and due to time constraints, other requirements were considered by

the end users to be more valuable to the system. These features can be

implemented in the future in the EyeMap 2.0 system.

Table 6.1: Requirements and fixes completion level for EyeMap 2.0

No. Requirement Complete Incomplete Partial

1 Loading Multiple Participants X

2 Data Storage X

3 Login Functionality X

4 Database X

5 Languages and Fonts X

6 Visualisations X

7 Variables X

8 Collaboration X

9 Batch Export X

10 New Variable Calculations X

11

Edited fixations changing the

fixation order in the viewer
X

12 Segmentation of Chinese words X

13 File naming conventions X

14 Decimal numbers separator X

Ms Fan has conducted a large study using EyeMap 2.0. To complete this

she has worked with all modules within the EyeMap 2.0 system. Ms Fan

92

6.3 end user evaluation

used EyeMap 2.0 to analyse all of her participants in all of the experiments

with both character and word level AOIs for both the fixation and word

reports and currently has a conference paper under review.

6.3 end user evaluation

To further verify EyeMap 2.0 a usability Survey from usability.gov called a

System Usability Scale (SUS) was conducted. SUS was created by John

Brooke in 1986 as a reliable tool for measuring the usability of every-

thing from hardware to software applications [46]. It consists of a ten-

question survey, where respondents are given five possible responses from

"Strongly agree" to "Strongly disagree" for each question. The ten ques-

tions as provided by usability.gov are:

• I think that I would like to use this system frequently.

• I found the system unnecessarily complex.

• I thought the system was easy to use.

• I think that I would need the support of a technical person to be able

to use this system.

• I found the various functions in this system were well integrated.

• I thought there was too much inconsistency in this system.

• I would imagine that most people would learn to use this system

very quickly.

• I found the system very cumbersome to use.

• I felt very confident using the system.

• I needed to learn a lot of things before I could get going with this

system.

93

6.3 end user evaluation

SUS provides the tester with five scores based on the survey. The scores

and what they represent are:

1. SUS score - This score represents how usable and learnable the ap-

plication is. The SUS score is given in the range 0 - 100 and it is a

percentile, not a percentage. The average SUS score is 68. A score of

75 is better than about 73% of SUS scores. Meanwhile, a score of 52

is worse than around 85% of the scores.

2. Learnability - This score represents whether a user would need a

technical person’s support to be capable of using the application. The

score also represents whether a user would need to learn a large

amount of information before starting to use the application.

3. Usability - This score refers to how easy it is for a user to make use

of the application and how efficiently can users use it to accomplish

their specific objectives?

4. Standard deviation - The standard deviation shows how much varia-

tion there is in your score from the average SUS score. If the standard

deviation figure is low, this means that the data are close to the aver-

age. Meanwhile, if your standard deviation is high, this means that

the values are instead spread out over a much wider range.

5. Cronbach’s alpha - This score is a measure of internal consistency

or how closely related a set of items are as a group. A reliability

coefficient of .70 or higher is considered "acceptable" in social science

research situations.

For EyeMap 2.0 there were two separate SUS surveys conducted. The

first was provided to the end user team who worked directly in the de-

sign and development of EyeMap 2.0 there were 5 participants in this

study. The second SUS survey was given to participants who were not

94

6.3 end user evaluation

familiar with eye-tracking, eye-tracking data analysis or the original Eye-

Map. These participants are from various backgrounds and would have

varying levels of technological skills. The second group were provided

with a sample data set of an eye-tracking study and a set of instructions

that requested they do various tasks on EyeMap 2.0 before completing the

survey. The instructions they were provided are:

• Register for EyeMap 2.0

• Create a new Experiment

1. Step 1: You can provide any name and any description, these

are just identifiers

2. Step 2: For the Experiment Text File, please use -> text.html

3. Step 3: For the Experiment Config File, please use -> config.xml

4. Step 4: You can upload a single participant or multiple partici-

pants, The participant files are: [00smp001.xml, 01smp001.xml,

02smp001.xml, 03smp001.xml, 04smp001.xml]

• Select an experiment

• Select a participant

• Try the different functionalities on the participant visualise page

• Open the Fixations tab

1. Step 1: Edit fixations (red and blue dots) in the vertical direction

using your keypad arrows

2. Step 2: Save your edits

• Using EyeMap 2.0 Save an image to your desktop

1. View the image that was downloaded to ensure that an image

was provided

• On the Analysis page generate some reports following these steps

95

6.3 end user evaluation

1. Step 1: Generate a Word report with a Max Gaze Count of 2 and

a Max Fixation Count of 4 for the current participant with word

AOI type

2. Step 2: View the report that was downloaded to ensure that it

opens correctly

3. Step 3: Generate a Fixation report with a Max Gaze Count of 3

and a Max Fixation Count of 5 for all participants for the Right

eye only

4. Step 4: View the report that was downloaded to ensure that it

opens correctly

Table 6.2: Results of SUS Survey.

Measure Survey Group One Survey Group Two

SUS score 71.3 70.3

Learnability 75 65.8

Usability 72.5 71.4

Standard Deviation 25 14.5

Cronbach’s alplha 0.99 0.833

Participant Numbers 5 19

Table 6.2 shows the results of both surveys. Survey group one relates

to the end user team that are experts in eye-tracking and reading research

and assisted in the development of EyeMap 2.0 and consisted of 5 partic-

ipants. The individual scores for participants for this survey group are

presented in 6.5a. Survey group two consisted of 19 participants who had

little to no prior knowledge of eye-tracking and their scores are presented

in 6.5b. The Cronbach’s alpha score for both surveys was above 0.7 so the re-

sults were "acceptable" for both surveys. The Standard Deviation for survey

group one was higher than for survey group two; this could be a result of

96

6.3 end user evaluation

(a) Individual results from survey group one

(b) Individual results from survey group two

Figure 6.5: Individual results for the SUS for both survey groups.

the smaller numbers that participated in the survey. Both surveys scored

above average in the SUS score, meaning EyeMap 2.0 is considered usable

and learnable by all who reviewed the system. It was expected that the

Lernability score would be higher for survey group one as these are the

users with prior knowledge in the field that EyeMap 2.0 was created for

and this was observed with a large variation existing. Both surveys also

returned similar Usability scores meaning that both sets of users felt they

could easily complete required tasks with EyeMap 2.0.

97

6.4 summary

6.4 summary

Using the RAD process in conjunction with Backlog allowed the end user

team to actively participate in the software development process, by pro-

viding the end users with the opportunity to test and report back on each

of the features that were being developed. This allowed the developer to

harness the end users experience to test each feature as it was developed.

This experience was beneficial as the end user team were able to test sce-

narios and issues that were not considered by the developer. It also meant

that only features that had been fully tested and verified were able to be

added to the live EyeMap 2.0 system.

To verify the usability of EyeMap 2.0 a survey was conducted on two

groups. The first group consisted of members of the end user team and

the second group consisted of members who had no prior knowledge of

eye-tracking data analysis. As expected the learnability of EyeMap 2.0 was

higher for the experts. However, both survey groups scored the usability

aspect above the SUS score average. The results of this survey showed that

EyeMap 2.0 is considered user-friendly and opens up eye-tracking data

analysis to a wider user base.

98

7
C O N C L U S I O N S & F U T U R E W O R K

This chapter will present the conclusions and future work components of

this project. It will examine the research questions and discuss these in

detail before suggesting possible future work that could be carried out

with the project to further enhance EyeMap 2.0.

7.1 conclusions

The project had a clear goal when it began. This was to develop EyeMap

2.0 and improve on the original EyeMap. There were three research ques-

tions that the project hoped to answer while carrying out its goal. They

were:

1. What is eye-tracking and why is it important?

2. What software models, tools, and languages are appropriate for a

project of this nature?

3. What is EyeMap and how can it be improved?

To complete EyeMap 2.0 to a satisfactory level it was fundamental to

understand eye-tracking and how it works so that as it is a specialist field

with specific terminology. Eye-tracking was introduced in Section 2.2, and

in this section, the origins of eye-tracking technology was shown to be

from 1937 when Buswell recorded eye movements from light reflected off

the eye and many eye-tracking companies still use this method today to

record eye movements. It was also shown that fixation and saccades are

99

7.1 conclusions

two extremely important values when it comes to the analysis of eye move-

ments data. Understanding these two aspects of eye movements greatly

assisted with many aspects of EyeMap 2.0 from processing the data from

the Data Loader to exporting the variable calculations in the Data Exporter.

To answer research question two required the understanding of the soft-

ware development cycle and the different stages, from planning to test-

ing & integration. To complete the software development cycle there are

many models of development. After comparing four different Agile de-

velopment models, it was decided that the RAD process best suited the

development of EyeMap 2.0. It is suited to small teams and the task list

is generated by breaking down items into modules that could provide a

clear development path for EyeMap 2.0.

To develop EyeMap 2.0, it was important to first understand the origi-

nal EyeMap through using a working version and insights from the users

working with the development team. EyeMap has several important mod-

ules that make up its architecture and would prove challenging to recreate

from scratch. These are (i) Data Parser, (ii) Data Loader (iii) Data Editor,

(iv) Data Visualisation, (v) Reading Variables and (vi) Data Exporter. The

data for EyeMap was prepared in the Data Parser and passed through

each of the modules until it was exported in the Data Exporter for further

analysis. Developing all of these modules from EyeMap greatly benefited

EyeMap 2.0. The main improvement EyeMap 2.0 made on the original Eye-

Map is the batch processing of files, this was also a big challenge to solve

as EyeMap 2.0 moved to a web application. The batch processing of files

means the user does not have to go through the process of loading single

participants for single experiments. They upload the experiment and all

participant data files at once to EyeMap 2.0. The data for each participant

is easily accessible to the user. This also enhances the Data Exporter, as all

the data for each participant is stored in the database a batch word or fixa-

100

7.1 conclusions

tion report is enabled in EyeMap 2.0 so the user does not have to generate

a report for every participant in the experiment.

Two tools in particular proved to be invaluable contributions to the

project. The first was the creation of a git repository for version control

that utilised Gitflow. This combined with the RAD process easily allowed

the separation of tasks under development and allowed for easy testing

and quick bug fixes. The second tool that was a major contributing factor

was Backlog. These tools combined proved to be invaluable and allowed

for better communication and understanding between the users and devel-

oper of EyeMap 2.0, with the RAD process.

The RAD process worked for this project. This is a valuable contribu-

tion of this thesis, as it can be difficult for a small development team to

know which of the many agile models should be used or how effective

they can be. The end user team also provided invaluable information for

the requirements and having a team meant any queries about features or

functionality were answered promptly. Having the end user team test the

features of EyeMap 2.0 as they were developed solved many issues that

may have been otherwise missed. The downside to the team was that dif-

ferent team members wanted different functionality at the same time. It

was then difficult on the single developer to manage expectations. Given

the downside the project was enhanced as a result of the user participa-

tion and it can be clearly seen that they would be a major contribution

factor to any development team for any project. The only recommenda-

tion for a small project like this in the future would be to clearly identify

the RAD task list at the beginning of the project and clearly set milestones

for deliverables.

101

7.2 future work

7.2 future work

When EyeMap 2.0 was developed it was done so with a future proofing

approach. The GitLab repository has made the code base easily accessible

and portable. As demonstrated in Section 5.12 the repository allows ad-

ditional developers to join and contribute. EyeMap 2.0 has endeavoured

to continue the legacy of the original EyeMap, however, there is still work

that could be completed to improve the system even further. As seen in

Section 6.2 EyeMap 2.0 did not complete all features of the original Eye-

Map.

EyeMap 2.0 had partial work completed for the visualisations of the

original EyeMap and these are presented here as part of the future work

and collaboration features. The code base had allowed for the completion

of both of these features. For the visualisations, the fixations have already

been visualised and are interactive. The next step would be to implement

the visualisations for the saccades, scan paths and heat maps. For the

collaboration the database has been designed to implement this feature,

allowing users to collaborate their work without having to download and

re-upload the data.

The AOI’s are automatically generated in EyeMap 2.0. However, there

are times when a user might wish to define their own AOI’s or combine

AOI’s. The researcher might not be interested in word or character level

and would instead prefer to do line level AOI’s. German nouns always

have gender associated with them. Instead of the experiment analysing the

data for "die" and "sonne" separately the researcher may wish to combine

these into one AOI for "die sonne". This would then provide users of

EyeMap 2.0 with more flexibility in the types of analysis they run using

the software.

Currently, researchers use the calculated variables in the reports gener-

ated by the Data Exporter by conducting statistical analysis on them in R,

102

7.2 future work

a statistical programming language. There are a number of statistical li-

braries for Python, such as Pandas, Numpy, Scipy and mathplotlib. These

libraries can carry out the same statistical analysis as R and as the core ar-

chitecture is written in Python the analysis could be carried out within Eye-

Map 2.0 thus saving the researcher going elsewhere to complete the data

analysis and also reduce the chances of human error being introduced.

103

B I B L I O G R A P H Y

[1] BackLog from Nulab. Accessed: 2019-10-20. url: https://backlog.

com.

[2] David A Balota and Keith Rayner. “Word recognition processes in

foveal and parafoveal vision: The range of influence of lexical vari-

ables”. In: Basic processes in reading: Visual word recognition (1991),

pp. 198–232.

[3] Richard Bates, Howell Istance, and Oleg Spakov. Requirements for

the common format of eye movement data. Tech. rep. Technical report,

Communication by Gaze Interaction (COGAIN): Deliverable 2 . . .,

2005.

[4] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn,

Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,

Andrew Hunt, Ron Jeffries, et al. “Manifesto for agile software de-

velopment”. In: (2001).

[5] Bootstrap 3. Accessed: 2017-11-13. url: https://getbootstrap.com/

docs/3.3/.

[6] Guy T Buswell. “How adults read.(Supplementary Educational Mono-

graphs)”. In: Chicago: University of Chicago (1937).

[7] Barbara Cassin, Sheila Solomon, and Melvin L Rubin. Dictionary of

eye terminology. Triad Pub. Co., 1984.

[8] Frederik De Bleser. opentype.js. Accessed: 2018-1-17. url: https://

opentype.js.org.

104

https://backlog.com
https://backlog.com
https://getbootstrap.com/docs/3.3/
https://getbootstrap.com/docs/3.3/
https://opentype.js.org
https://opentype.js.org

Bibliography

[9] Django File Structure. Accessed: 2020-2-2. url: https://smartlazycoding.

com/django- tutorial/add- important- files- and- folders- to-

initial-django-project-structure.

[10] Django. Accessed: 2018-04-20. url: https : / / www . djangoproject .

com/foundation/.

[11] Venkatreddy Dwarampudi, Shahbaz Singh Dhillon, Jivitesh Shah,

Nikhil Joseph Sebastian, and Nitin Kanigicharla. “Comparative study

of the Pros and Cons of Programming languages Java, Scala, C++,

Haskell, VB. NET, AspectJ, Perl, Ruby, PHP & Scheme-a Team 11

COMP6411-S10 Term Report”. In: arXiv preprint arXiv:1008.3431 (2010).

[12] Essentials: Software Development Life Cycle. Accessed: 2019-01-17. url:

https : / / www . intellectsoft . net / blog / essentials - software -

development-life-cycle/.

[13] EyeMap - Eye Movement Data Analyzer. Accessed: 2019-02-17. url:

https://sourceforge.net/projects/openeyemap/.

[14] Adila Firdaus, Imran Ghani, and Nor Izzaty Mohd Yasin. “Develop-

ing secure websites using feature driven development (FDD): a case

study”. In: Journal of Clean Energy Technologies 1.4 (2013), pp. 322–326.

[15] Font Metrics. Accessed: 2018-04-20. url: https://developer.apple.

com / library / archive / documentation / TextFonts / Conceptual /

CocoaTextArchitecture/FontHandling/FontHandling.html.

[16] Git Book, git flow. Accessed: 2020-2-2. url: https://gitbook.tw/

chapters/gitflow/why-need-git-flow.html.

[17] Gitflow Tutorial. Accessed: 2020-2-2. url: https://www.atlassian.

com/git/tutorials/comparing-workflows/gitflow-workflow.

[18] Judith Gregory. “Scandinavian approaches to participatory design”.

In: International Journal of Engineering Education 19.1 (2003), pp. 62–

74.

105

https://smartlazycoding.com/django-tutorial/add-important-files-and-folders-to-initial-django-project-structure
https://smartlazycoding.com/django-tutorial/add-important-files-and-folders-to-initial-django-project-structure
https://smartlazycoding.com/django-tutorial/add-important-files-and-folders-to-initial-django-project-structure
https://www.djangoproject.com/foundation/
https://www.djangoproject.com/foundation/
https://www.intellectsoft.net/blog/essentials-software-development-life-cycle/
https://www.intellectsoft.net/blog/essentials-software-development-life-cycle/
https://sourceforge.net/projects/openeyemap/
https://developer.apple.com/library/archive/documentation/TextFonts/Conceptual/CocoaTextArchitecture/FontHandling/FontHandling.html
https://developer.apple.com/library/archive/documentation/TextFonts/Conceptual/CocoaTextArchitecture/FontHandling/FontHandling.html
https://developer.apple.com/library/archive/documentation/TextFonts/Conceptual/CocoaTextArchitecture/FontHandling/FontHandling.html
https://gitbook.tw/chapters/gitflow/why-need-git-flow.html
https://gitbook.tw/chapters/gitflow/why-need-git-flow.html
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Bibliography

[19] Juergen Wolff von Gudenberg. “Java for scientific computing, pros

and cons”. In: Journal of Universal Computer Science 4.1 (1998), pp. 11–

15.

[20] Kim Halskov and Nicolai Brodersen Hansen. “The diversity of par-

ticipatory design research practice at PDC 2002–2012”. In: Interna-

tional Journal of Human-Computer Studies 74 (2015), pp. 81–92.

[21] T Halverson and A Hornof. “VizFix software requirements speci-

fication”. In: Eugene: University of Oregon, Computer and Information

Science. Retrieved August 3 (2002), p. 2011.

[22] Emlyn Hegarty-Kelly, Susan Bergin, and Aidan Mooney. “Using fo-

cused attention to improve programming comprehension for novice

programmers.” In: Third International Workshop on Eye Movements in

Programming. 2015, pp. 8–9.

[23] E Hering. “Über Muskelgeräusche des Auges. Sitzungsber. d”. In:

Wien. Akad. d. Wiss 79.3 (1879), pp. 137–154.

[24] Jim Highsmith and Alistair Cockburn. “Agile software development:

The business of innovation”. In: Computer 34.9 (2001), pp. 120–127.

[25] David E Irwin. “Lexical processing during saccadic eye movements”.

In: Cognitive Psychology 36.1 (1998), pp. 1–27.

[26] Emile Javal. “Essai sur la physiologie de la lecture”. In: Annales

d’Ocilistique 80 (1878), pp. 61–73.

[27] JetBrains. Accessed: 2019-09-20. url: https://www.jetbrains.com/

pycharm/.

[28] Robert Gabriel Lupu and Florina Ungureanu. “A survey of eye track-

ing methods and applications”. In: Buletinul Institutului Politehnic din

Iasi, Automatic Control and Computer Science Section 3 (2013), pp. 72–

86.

106

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

Bibliography

[29] Hugh Mackay, Chris Carne, Paul Beynon-Davies, and Doug Tudhope.

“Reconfiguring the user: using rapid application development”. In:

Social studies of science 30.5 (2000), pp. 737–757.

[30] James Martin. Rapid application development. Macmillan Publishing

Co., Inc., 1991.

[31] Ethel Matin. “Saccadic suppression: a review and an analysis.” In:

Psychological bulletin 81.12 (1974), p. 899.

[32] Peter Naur. “Software Engineering-Report on a Conference Spon-

sored by the NATO Science Committee Garimisch, Germany”. In:

http://homepages. cs. ncl. ac. uk/brian. randell/NATO/nato1968. PDF (1968).

[33] Participatory Design Conference. Accessed: 2018-04-20. url: https://

pdc2018.org.

[34] Participatory Design. Accessed: 2019-08-24. url: https://www.encyclopedia.

com/science/encyclopedias- almanacs- transcripts- and- maps/

participatory-design.

[35] Mark C Paulk. “Extreme programming from a CMM perspective”.

In: IEEE software 18.6 (2001), pp. 19–26.

[36] Lutz Prechelt. “An empirical comparison of seven programming lan-

guages”. In: Computer 33.10 (2000), pp. 23–29.

[37] Qt Framework. Accessed: 2020-01-17. url: https://www.qt.io/.

[38] Keith Rayner. “Eye movements in reading and information process-

ing: 20 years of research.” In: Psychological bulletin 124.3 (1998), p. 372.

[39] Keith Rayner, Elizabeth R Schotter, Michael EJ Masson, Mary C Pot-

ter, and Rebecca Treiman. “So much to read, so little time: How do

we read, and can speed reading help?” In: Psychological Science in the

Public Interest 17.1 (2016), pp. 4–34.

107

https://pdc2018.org
https://pdc2018.org
https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/participatory-design
https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/participatory-design
https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/participatory-design
https://www.qt.io/

Bibliography

[40] Linda Rising and Norman S Janoff. “The Scrum software develop-

ment process for small teams”. In: IEEE software 17.4 (2000), pp. 26–

32.

[41] SMI Vision Website. Accessed: 2019-02-17. url: http://www.smivision.

com.

[42] Software Development Methodology – Feature Driven Development (FDD).

Accessed: 2019-08-22. url: https://www.tuannguyen.tech/2019/

07 / 22 / software - development - methodology - feature - driven -

development-fdd/.

[43] Clay Spinuzzi. “The methodology of participatory design”. In: Tech-

nical communication 52.2 (2005), pp. 163–174.

[44] Sr Research Website. Accessed: 2019-02-17. url: https://www.sr-

research.com.

[45] Ilene Strizver. Single or Double Spaces Between Sentences? Accessed:

2018-02-17. url: https://creativepro.com/single- or- double-

spaces-between-sentences/.

[46] System Usability Scale. Accessed: 2020-1-20. url: https://www.usability.

gov/how-to-and-tools/methods/system-usability-scale.html.

[47] Siliang Tang, Ronan G Reilly, and Christian Vorstius. “EyeMap: a

software system for visualizing and analyzing eye movement data

in reading”. In: Behavior research methods 44.2 (2012), pp. 420–438.

[48] TatvaSoft. Top 12 Software Development Methodologies & its Advantages

/ Disadvantages. Accessed: 2018-03-20. url: https://www.tatvasoft.

com/blog/top-12-software-development-methodologies-and-its-

advantages-disadvantages/.

[49] intelegain Technologies. Scrum Development Model. Accessed: 2019-

08-22. url: https://www.intelegain.com/scrum/.

[50] Tobii Website. Accessed: 2019-02-17. url: https : / / www . tobiipro .

com/.

108

http://www.smivision.com
http://www.smivision.com
https://www.tuannguyen.tech/2019/07/22/software-development-methodology-feature-driven-development-fdd/
https://www.tuannguyen.tech/2019/07/22/software-development-methodology-feature-driven-development-fdd/
https://www.tuannguyen.tech/2019/07/22/software-development-methodology-feature-driven-development-fdd/
https://www.sr-research.com
https://www.sr-research.com
https://creativepro.com/single-or-double-spaces-between-sentences/
https://creativepro.com/single-or-double-spaces-between-sentences/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.tatvasoft.com/blog/top-12-software-development-methodologies-and-its-advantages-disadvantages/
https://www.tatvasoft.com/blog/top-12-software-development-methodologies-and-its-advantages-disadvantages/
https://www.tatvasoft.com/blog/top-12-software-development-methodologies-and-its-advantages-disadvantages/
https://www.intelegain.com/scrum/
https://www.tobiipro.com/
https://www.tobiipro.com/

Bibliography

[51] Top 12 Eye Tracking Hardware Companies (Ranked). Accessed: 2019-02-

17. url: https://imotions.com/blog/top-eye-tracking-hardware-

companies/.

[52] iMotions. Eye tracking - The complete pocket guide. https://imotions.com/,

2012.

[53] konva.js. Accessed: 2018-4-20. url: https://konvajs.org.

109

https://imotions.com/blog/top-eye-tracking-hardware-companies/
https://imotions.com/blog/top-eye-tracking-hardware-companies/
https://konvajs.org

A
E Y E M A P 2 . 0 W E B A P P L I C AT I O N

a.1 eyemap 2 .0 web application

EyeMap 2.0 can be viewed at: https://eyemap2.cs.nuim.ie/EyeMap2/

110

B
C O M P L E T E L I S T O F C A L C U L AT E D VA R I A B L E S

b.1 complete list of calculated variables

This Appendix contains a full list of variables discussed in Section 5.11

111

B.1 complete list of calculated variables

112

B.1 complete list of calculated variables

113

B.1 complete list of calculated variables

114

C
F U RT H E R I M P L E M E N TAT I O N D E TA I L S

This appendix contains further implementation details that are not closely

related to the main contributions of this thesis.

c.1 constructing the core architecture of eyemap 2 .0

The Django core architecture can be seen in Figure C.1. Starting at the top

of the figure the first folder to be created is the virtual_environment_name,

which is a virtual environment that holds and contains each of the Python

libraries that are installed and required by that project. Next is the project_name

folder, which contains all the files that the project will require to make a

web application. The important files here are models.py which is used to

create the database, urls.py which creates the URLs for each web page in

the application and views.py, which controls how the data for each web

page is sent/extracted from the web page. The file is the db.sqllite3 which

is a simple Django SQL Lite database. The manage.py controls the system

and the commands to run and operate the Django project are generated

from this file. Finally, the requirements.txt file is used for controlling depen-

dencies in the Django project.

c.2 generating the tables for the database

This section will be used as an example to show how the experiments table

was constructed, as can be seen in Figure 5.2. The other tables were also

generated using the same process.

115

C.2 generating the tables for the database

Figure C.1: Django Core Architecture [9].

Figure C.2: Python code to generate experiment table.

116

C.2 generating the tables for the database

Figure C.3: UML class diagram of the experiment table.

Figure C.2 shows the code used to generate the experiment table pre-

sented in Figure C.3. Some of the important code lines will now be dis-

cussed from Figure C.2:

Line 43: Sets the class up as Django Model for the Database

called Experiment.

Line 44-45: This sets the primary key of the User who created the

experiment as a foreign key for the experiment. ie. it makes the

user the owner of the experiment.

Line 46: Take in an experiment name as text.

Line 47: Take in a description of the experiment as text.

Line 48: This captures any additional configuration data about

the experiment.

Line 49: This captures the number of trials in the experiment.

Line 50: This captures the number of participants in the experi-

ment.

117

C.3 set up templates

Line 51: This was created to allow additional Users to contribute

to the experiment.

Line 52: This stores when the experiment was last accessed.

Line 53-55: If the name is entered with spaces this replaces any

spaces with an underscore.

Line 56-61: These two methods decide how the admin interface

will display information about the experiment.

When this code, shown in Figure C.2, has been migrated to the database

it creates the experiment table. This process was the same for the other

tables in Figure 5.2.

c.3 set up templates

This section shows how Django manages the templates and how they can

be set up and extended.

To implement the templates a base.html file was created. This is the basis

for the structure of all web pages in EyeMap 2.0. Figure C.4 shows the

code for base.html. This is, in general, a standard HTML web page, and

there are a number of lines, that will be discussed next, that show how the

template system works.

118

C.3 set up templates

Figure C.4: The base.html template for EyeMap 2.0.

Line 2: Makes the static folder of the project available to the web

page and any web page that uses the base template.

Line 11: Creates a space for each web page to add its own title.

Line 16: Different pages have space to incorporate their own cus-

tom CSS.

Line 34: The navigation page changes depending on whether

a user is logged in or not. This nav_block allows different nav

blocks to be introduced.

119

C.3 set up templates

Line 37: Each web page has its own body of HTML that incorpo-

rates it to the base web page.

Line 49: This allows web pages to incorporate their own custom

JavaScript.

Figure C.5 presents a sample of how the base.html page can be extended

and customised for each of the other pages. The code presented in this

figure can be described as

Figure C.5: Example of how the base.html page is extended to other pages.

Line 1: This line makes the base.html page act as the template

for the current web page.

Line 3: Makes the static folder of the project available to the web

page and any web page that uses the base template.

Line 5: Sets the Title of the current web page to "EyeMap".

120

C.4 web page creation

Line 7-13: Introduces custom CSS for the current web page.

Line 15-20: Allows the custom navigation block to be introduced

to the current web page.

Line 16: Checks if the user is logged in.

Lines 17&18: This calls other modules of HTML code to be in-

cluded on the web page.

Line 22-end: This starts the body of the HTML code being intro-

duced for this web page.

c.4 web page creation

This Section shows the Django configurations for creating a web page.

The first step is shown in Figure C.6, which creates a URL for the web

page that is required. Django gets the urlpatterns list that contains the

URLs for the different web pages. Using line 11, of Figure C.6 as an ex-

ample, Django first pattern matches to find the URL that is required, eg.

^newt_experiment/$ requires the pattern "new_experiment" to be at the end

of the URL. It then passes a request object to views.new_experiment which is

a method, shown in Figure C.7, of the views.py Django files. This method

is then responsible for processing the JSON data sent through a request ob-

ject. The method interacts with the database and either redirects the user

back to the Home page or renders the newExperiment.html template on the

users’ web browser.

Figure C.6: Utilising Django urls.

121

C.4 web page creation

Figure C.7: New experiment view from Django views.

122

	Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Declaration
	Introduction and Background Material
	1 Introduction & Background
	1.1 Introduction
	1.2 Motivation
	1.3 Goals
	1.4 Research Questions
	1.5 Contributions
	1.6 Thesis Overview

	2 Related Work
	2.1 Introduction
	2.2 Eye-Tracking
	2.2.1 What is Eye-Tracking?
	2.2.2 Eye-Tracking & Reading

	2.3 Fonts & Font Metrics
	2.4 Software Development
	2.4.1 Stages of the Software Development Cycle
	2.4.2 Software Development Models
	2.4.3 Software development Process Used

	2.5 User Participation
	2.6 Summary

	3 EyeMap
	3.1 Introduction
	3.2 What is EyeMap?
	3.3 EyeMap - Architecture
	3.4 EyeMap - Key Features
	3.4.1 Data Parser
	3.4.2 Data Loader
	3.4.3 Data Visualisations
	3.4.4 Data Editor
	3.4.5 Reading Variables
	3.4.6 Data Exporter

	3.5 The need to Redevelop EyeMap
	3.6 Summary

	Software Redevelopment
	4 User Participation & Software Requirements
	4.1 End User Team
	4.2 Prototype
	4.3 Team Requirements Meeting
	4.4 Requirements
	4.4.1 Requirement Features
	4.4.2 requirement fixes

	4.5 EyeMap 2.0 Architecture
	4.5.1 Django

	4.6 Software Development Tools
	4.6.1 Version Control
	4.6.2 Integrated Development Environment
	4.6.3 Error Logging and Bug Tracking

	4.7 Summary

	5 System Redevelopment
	5.1 Challenges to Overcome
	5.2 RAD Task List
	5.3 Constructing the core architecture of EyeMap 2.0
	5.3.1 Languages used in the development of EyeMap 2.0.

	5.4 GitLab Repository
	5.5 Design and development of EyeMap 2.0's layout
	5.6 Database creation
	5.6.1 Data Files Management
	5.6.2 Database structure
	5.6.3 Generating the tables for the database

	5.7 Set up Templates
	5.8 Web Page Creation
	5.9 Data Loader
	5.9.1 Processing the Trials File
	5.9.2 Processing Data Files

	5.10 Data Visualisation & Editor
	5.10.1 Extracting the AOI Information
	5.10.2 Display the Data

	5.11 Data Exporter
	5.12 Additional Work
	5.13 Summary

	Evaluation & Future Work
	6 Evaluation
	6.1 System Testing
	6.2 Requirements checklist
	6.3 End User Evaluation
	6.4 Summary

	7 Conclusions & Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Appendix
	A EyeMap 2.0 web application
	A.1 EyeMap 2.0 web application

	B Complete list of calculated variables
	B.1 Complete list of calculated variables

	C Further Implementation Details
	C.1 Constructing the core architecture of EyeMap 2.0
	C.2 Generating the tables for the database
	C.3 Set up Templates
	C.4 Web Page Creation

