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Abstract

The work in this thesis is split into two distinct parts. The first focuses on

the identification and construction of strong zero modes in non-abelian anyon

chains. We show a Tambara-Yamagami chain is equivalent to a Zn chiral

clock model. We then present numerical evidence for a strong zero mode in

an SU(2)4 anyon chain. By rewriting the chain as an XXZ spin chain, we

construct the zero mode explicitly in terms of spin operators. Finally, we

write the zero mode in the diagrammatic formalism of anyons.

In the second part, we construct a hopping model of non-abelian anyons

on a torus. We demonstrate that that the model possesses a translational

symmetry around each non-trivial torus loop. By calculating the level spacing

statistics of the model, we show that the model is non-integrable for Fibonacci

anyons, Ising anyons and abelian anyons. Lastly, we carry out the groundwork

for a future project. We add local interactions between the anyons to the

Hamiltonian. We then calculate the entanglement spectrum of a ground state

of the system after cutting the torus into two cylindrical pieces. The low lying

states of this spectrum have a linear dispersion relation for several systems we

examined, suggesting the entanglement spectrum is described by a conformal

field theory spectrum.
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Chapter 1

Introduction

In our three (spatial) dimensional world, we are familiar with two types of

particles, bosons and fermions. One way of distinguishing these particles is

by their exchange statistics. Exchanging the positions of two bosons leaves

their wavefunction unchanged whereas exchanging two fermions multiplies

their wavefunction by -1. These are the only exchange statistics permitted

in three dimensions. Things become a bit more interesting in two dimensions.

In 1977, Leinaas and Myrheim [1] showed that two dimensional systems may

harbour quasiparticles with arbitrary exchange statistics i.e. their wavefunc-

tion may pick up any phase, eiθ, under exchange. These quasiparticles were

later dubbed ”anyons” by Frank Wilczek [2] due to this fact.

The exchanges of N particles in two dimensions may be described math-

ematically by the N -strand braid group [3]. This is the infinite group whose

elements are all possible exchanges of N strings where the bottom ends of the

strings remain fixed. The generators of the group are local counter-clockwise

and clockwise exchanges of pairs of strings.

σi = σ−1
i =

i i+ 1 i i+ 1 (1.1)
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These generators satisfy the relations

σiσj = σjσi |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1

(1.2)

This group can be represented diagrammatically by representing group multiplication

by the stacking of braids. For example, for a 5-strand group

1 2 53 4

σ−1
1 σ1 = = 1

σ3σ1 = = = σ1σ3

σ1σ2σ1 =
= = σ2σ1σ2

(1.3)

Two elements of the group are equivalent if they can be continuously deformed

into one another without moving the endpoints of the strings.

We can think of the strings as the worldlines of particles which lie on a two

dimensional surface and so the unitary representations of the group describe

the counter-clockwise and clockwise exchanges of particles on the surface. The

one dimensional unitary representations of the braid group are given by

σj → eiθ θ ∈ [0, 2π) (1.4)

where θ = 0 describes a bosonic system while θ = π describes a fermionic one.

Particles with θ /∈ {0, π} are referred to as abelian anyons, since σiσj = σjσi for

all i and j when the system is described by a one dimensional representation
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of the braid group. The deployment of the phrase, ”abelian anyons”, alludes

to the fact that there are also non-abelian anyons. This refers to anyons whose

exchanges are described by higher (>1) dimensional unitary representations of

the braid group [4,5]. When braids are represented by unitary matrices instead

of phases then they do not commute in general, making them non-abelian. It

is these non-abelian anyons that will be the focus of this thesis.

In the short time since the discovery of particles with exotic exchange statis-

tics, anyon models have been described rigorously in terms of braided tensor

categories [6–10]. The topic graduated from a mathematical curiosity to a

widely pursued topic of research upon the discovery that certain fractional

quantum Hall (FQH) [11–14] states may harbour anyons. This popularity

was further bolstered by the potential applications of anyons to fault-tolerant

quantum computation [15–17]. While non-abelian anyons have not yet been

observed experimentally, there exists some recently published work which ex-

perimentally observes particles with fractional exchange statistics [18, 19].

In this thesis we will attempt to translate some well known physics concepts

to the language of anyons and gain some insight into systems of interacting

anyons in one and two dimensions. In particular, we will look at strong zero

modes (SZM) and tight binding in the diagrammatic formalism of anyon mod-

els written in [20].

1.1 Topological Order and Strong Zero Modes

Anyon theory is strongly linked to the idea of topological order [21–23]. For

instance, FQH states which are known to support anyonic excitations exhibit

topological order. Kitaev’s toric code [16], whose quasiparticle excitations are

anyons, is another system which has topological order. But what is topological

order? A system is said to have topological order if gapped ground states of the

system which lie in different phases may not be adiabatically transformed into

one another without closing the energy gap [24–26]. Oftentimes systems with

topological order possess a symmetry which protects the topological invariants
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of the system. These systems are known as symmetry protected topological

(SPT) phases. An indicator that a system is in an SPT phase is the existence

of gapless, zero energy edge modes, also known as zero modes. The Ising chain

possesses two such modes, one at each end of the chain [27]. The ground states

of the Ising chain in the topological phase may be used to form a qubit. The

presence of a symmetry in the system means this qubit is robust against local

perturbations which do not break the symmetry, making this type of system

ideal for use in a quantum computer if the symmetry is preserved in realistic

systems. The zero modes present in the Ising chain are known as strong zero

modes as they induce a two-fold degeneracy in the entire spectrum [28–30]. A

weak zero mode is one which only causes approximate degeneracy of low energy

states of the system. Due to their applications to quantum computing, much

work has been done to describe the SZMs of different 1D chains [28,29,31–35].

We will attempt to do the same for select 1D anyon chains as well as write a

SZM in diagrammatic notation.

1.2 Tight Binding

A rather older idea which we will turn our attention to is the concept of tight

binding [36–39]. A procedure for formulating a tight binding model was first

written in Slater and Koster’s 1954 paper [40]. Originally used to describe

electronic structure in molecules and solids, the tight binding model provides

the foundation for more complicated models. For example, the Hubbard model

[41], which is used to model interacting particles on a lattice, has a tight

binding or hopping component in its Hamiltonian. A tight binding or hopping

Hamiltonian can be written in the second quantisaton formalism as

H = ϵ
∑
j

c†jcj − t
∑
<i,j>

(c†jci + c†icj) (1.5)

where i and j label sites on a lattice, c†j and cj create and annihilate a particle

at site j respectively, < i, j > is the set of all nearest neighbour pairs of lattice
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sites and ϵ, t ∈ R. The second term, the hopping term, causes particles to hop

from one site to another and is the term we will initially focus on in this thesis

i.e. we focus on models with ϵ = 0 leaving

H = −t
∑
<i,j>

(c†jci + c†icj) (1.6)

Later, we will study an anyon hopping model with interactions between the

anyons. In this thesis we will construct a tight binding Hamiltonian for a 2D

system of non-abelian anyons. We will assume any particles in the systems we

study are ”hard-core”, so that no two particles may occupy the same lattice

site. This hard-core constraint is a key difference between the work presented

here and early work on an anyon Hubbard model [42, 43] and anyonic tight

binding [44]. We note that a hard-core constraint is possible in the anyon

Hubbard model as presented in [45] but so far, any work on this model has

focused on 1D systems only.

1.3 Overview

The structure of this thesis is as follows:

In Chapters 2 and 3 we introduce some concepts which are important for

understanding the work in this thesis. Chapter 2 focuses entirely on introduc-

ing basic anyon theory and the diagrammatic notation used throughout the

thesis. Chapter 3 provides an introduction to strong zero modes. A sample

construction of the SZMs in the Ising chain is presented here along with a brief

description of Zn chiral clock models.

Chapter 4 is based on a paper in preparation. We construct Hamiltonians

for anyon chain models and show numerical evidence for the presence of a SZM

in a chain of SU(2)4 anyons. We construct this zero mode in the diagrammatic

notation by comparing the SU(2)4 anyon chain to an XXZ spin chain.

In Chapter 5 we introduce anyon models on a torus. We then construct

a tight binding model on the surface of a torus and present the level spacing

5



statistics for several anyon models on the torus. We then add local interactions

between anyons to the model and calculate the entanglement spectrum of

a ground state of the system. The structure of the entanglement spectrum

suggests that it may be described by a conformal field theory spectrum of a

state at the edge of the system.
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Chapter 2

Anyon Theory

In this chapter we introduce the basic anyon theory that serves as the backbone

for the work in this thesis.

We begin by defining fusion models, the basic operations we can perform on

the objects in our fusion models and we introduce the powerful diagrammatic

notation for anyon models as presented in [20,46,47]. We close out the chapter

with a useful example of how to resolve a diagram that we will use later in the

thesis.

Before we begin in earnest, let us clarify the difference between fusion

and anyon models, as we will mention both over the course of this thesis. In

mathematical parlance fusion models are called unitary tensor categories while

anyon models are known as unitary braided tensor categories. For our purposes

it will suffice to say that an anyon model is a fusion model which also permits

braiding.

2.1 Fusion Models

A fusion model consists of a finite set, C, along with fusion rules, which for

a, b ∈ C, are given by

a× b =
∑
c∈C

N c
abc (2.1)

C is the set of all possible labels or charges for the quasi-particles in our model.

N c
ab are called the fusion multiplicities and are non-negative integers.They in-
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dicate the number of unique ways in which a and b may fuse to give c. Fusion

is associative and, for all models we will encounter, commutative. We require

that C contains an identity particle, I, such that

I× a = a ∀a ∈ C (2.2)

We also require that for each a ∈ C, there exists a conjugate particle ā ∈ C

such that

N I
aā = 1 (2.3)

ā is often referred to as the antiparticle of a.

2.2 Fusion Vector Space

For each fusion product we may define a vector space V c
ab whose dimension is

given by N c
ab and whose states describe the ways in which charges, a and b,

can fuse to c. The dual vector space, V ab
c , corresponds to the process whereby

a charge c splits into two charges, a and b. We label the orthonormal basis

vectors of V ab
c as | a, b; c, µ⟩ (and ⟨a, b; c, µ | for V c

ab) where µ ∈ {1, 2, 3, ..., N c
ab}.

All of the models encountered in this thesis have N c
ab ∈ {0, 1} for any possible

values of a, b and c so we will drop the label µ in all future definitions. These

models are called multiplicity-free. The vector spaces associated with the

fusion or splitting of more than two charges may be written as tensor products

of two charge fusion/splitting spaces. For example the vector space, V abc
d may

be written

V abc
d

∼=
⊕
e

V ab
e ⊗ V ec

d (2.4)

We could have also written

V abc
d

∼=
⊕
f

V af
d ⊗ V bc

f (2.5)
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The different decompositions correspond to splitting charges in a different or-

der. In the first case d splits to e and c before e splits to a and b. In the

second example d splits to a and f which further splits to b and c. In order

to enforce that fusion is associative we require isomorphisms between different

decompositions of the same fusion vector space. These isomorphisms are called

F-moves. They are written as

| a, b; e⟩ ⊗ | e, c; d⟩ =
∑
f

[F abc
d ]e,f | a, f ; d⟩ ⊗ | b, c; f⟩ (2.6)

For anyon models these F-moves are unitary. We may write the fusion/splitting

space of n charges by decomposing the fusion/splitting space into the tensor

product of many 2 charge fusion/splitting spaces:

V a1,a2,...,an
c

∼=
⊕

b1,b2,...,bn−2

V a1a2
b1

⊗ V b1a3
b2

⊗ ...⊗ V bn−2an
c (2.7)

We now define an important quantity. The quantum dimension, da, of a charge

a is defined as

da = dā = |[F aāa
a ]1,1|−1 (2.8)

It is worth noting here that many of the quantities defined in this thesis may

be defined in a broader mathematical context. For instance, the definition

given above for the quantum dimension is only applicable to unitary categories,

which are the only categories we deal with in the thesis. Some properties of

the quantum dimension are

dadb =
∑
c

N c
abdc

da ≥ 1

(2.9)

with equality if and only if a is abelian. A particle, a, is said to be abelian

if the fusion of a with any other particle in C has a unique result. A fusion

model is abelian if all charges in C are abelian.
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2.3 Diagrammatic Formalism

While perfectly usable, the bra/ket notation can be a bit unwieldy when ap-

plied to anyon models. Fortunately a more elegant solution exists in the form

of diagrammatic notation. To begin writing our models in this notation we sim-

ply associate each anyon label with an oriented line. Reversing the orientation

of the line is equivalent to conjugating the charge.

=a ā

(2.10)

We write fusion and splitting states as trivalent vertices

a b

c

= ⟨a, b; c |(dc/dadb)
1/4

a b

c

= | a, b; c⟩(dc/dadb)
1/4

(2.11)

(dc/dadb)
1
4 is a normalisation factor which ensures that diagrams are in the

isotopy invariant convention. A diagram is isotopy invariant if the state is not

changed by smooth deformations which leave open endpoints fixed and don’t

pass lines through each other or around open endpoints.To properly define

isotopy invariance we also need to be able to introduce and remove bends in a

line which we will do later. An open endpoint corresponds to some topological

obstruction through which we cannot pass a line such as the edge of the system.

In diagrammatic notation F-moves are written

a b c a b c

e

d d

f
=

∑
f

[F abc
d ]e,f

(2.12)

The F-matrices for a model are determined by a set of consistency equations
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a b

f

c

g

d

e

a b

h

c

i

d

e

a b

h

c

f

d

e

a b

j

c

g

d

e

a b

j

c

i

d

e

Figure 2.1: The Pentagon equations say that the upper path and the lower
path in the figure must give the same result.

called the Pentagon equations. These enforce the condition that any two se-

quences of F-moves which have the same initial and final states must be equal.

Ocneanu rigidity [48] guarantees finitely many gauge equivalence classes of so-

lutions to the Pentagon equations for a given set of fusion rules. This gauge

freedom is determined by a basis change, [uabc ], for the fusion spaces V ab
c . In

multiplicity-free models the fusion and splitting spaces are one dimensional so

the basis change amounts to multiplication by a complex number. Under a

gauge transformation, the F-symbols and R-symbols, which we will define very

soon, transform as

[F abc
d ]′ef =

uabd u
bc
f

uabe u
bc
d

[F abc
d ]ef

[Rab
c ]

′ =
ubac
uabc

[Rab
c ]

(2.13)

The Pentagon equations are written

[F abh
e ]fi[F

fcd
e ]gh =

∑
j

[F bcd
i ]jh[F

ajd
e ]gi[F

abc
g ]fj (2.14)

We can perform inner products on our states by stacking diagrams so that
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fusion/splitting lines connect

a b

c

c′

c

= δc,c′
√

dadb
dc

(2.15)

This diagrammatically encodes charge conservation and forbids tadpole dia-

grams such as

a b

c

, c ̸= I

(2.16)

An unknotted loop carrying a charge a evaluates to da

a = da

(2.17)

The identity operator on a pair of anyons with charges a and b is written

Iab =
∑
c

| a, b; c⟩⟨a, b; c | (2.18)

which in diagrammatic notation is

a b

a b

a b

c=
∑
c

√
dc
dadb

(2.19)

For isotopy invariance we need to be able to remove bends in a line. Hor-

izontal bends, which maintain the upward flow of a line, are trivial. However

we need to perform an F-move when bending a line vertically. This F-move is

12



b

b

a aā

I

I

I

I

a aā= [F aāa
a ]1,1 = da[F

aāa
a ]1,1 a

b

b

(2.20)

In general

[F aāa
a ]1,1 =

κ

da
(2.21)

where κa = κ∗a is a phase factor. For non self-dual charges κa can be fixed to 1

by a gauge choice but for self-dual charges κa = ±1. For self-dual charges this

value is gauge invariant and is known as the Frobenius-Schur indicator.

We now write an expression for a very useful F-move with two incoming

and two outgoing charges.

c d

a b
e

a b

c d

f=
∑
f

[F ab
cd ]e,f

(2.22)

To calculate [F ab
cd ] we first use 2.19 to say

c d

a b
e

c d

c d

f=
∑
f

√
df
dcdd

a b
e

(2.23)

We then perform an F-move to give

13



c d

c d

f =
∑
g

[F ceb
f ]−1

d,g

a b
e

a b

c e

g

f

c d (2.24)

We can now use 2.15 to remove the bubble so our final result is

[F ab
cd ]e,f =

√
dedf
dadd

[F ceb
f ]−1

d,a (2.25)

Similarly if we write

c d

a b
e

a b

c d

f=
∑
f

[F̃ ab
cd ]e,f

(2.26)

Then

[F̃ ab
cd ]e,f =

√
dedf
dbdc

[F aed
f ]−1

c,b (2.27)

This F-move allows us to write the effect of bending a line vertically around a

fusion/splitting vertex. For example

c b̄

a
b

c b̄

a=
√

dadb
dc

[F̃ abb̄
a ]c,1

b

b

I

(2.28)

2.4 Braiding

In addition to what we have already shown, we may also exchange the positions

of two charges in our model. Here we are talking specifically about anyon

models, because fusion models which are not anyon models do not permit

14



braiding. The operations to braid two anyons, called R-moves, are given by

Rab = R†
ab = R−1

ab =

b aa b

(2.29)

If we apply this to basis vectors of the splitting space we get

Rab| a, b; c⟩ = Rab
c | a, b; c⟩ (2.30)

a b

c c

ba
= Rab

c

(2.31)

In diagrammatic notation the braid operator is

b a

a b

cRab =
∑
c

√
dc
dadb

[Rab
c ]

(2.32)

The R-matrices are determined by a set of consistency equations similar to the

Pentagon equations. The Hexagon equations enforce that different sequences

of F and R moves with the same initial and final states must be equal as in

figure 2.2. The Hexagon and Pentagon equations together imply that the braid

operators form a representation of the braid group. The Hexagon equations

are written

[Rca
e ][F

abc
d ]e,g[R

cb
g ] =

∑
f

[F cab
d ]e,f [R

cf
d ][F abc

d ]f,g

[(Rac
e )

−1][F abc
d ]e,g[(R

bc
g )

−1] =
∑
f

[F cab
d ]e,f [(R

fc
d )−1][F abc

d ]f,g

(2.33)

The R-matrices satisfy the ribbon property
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a

a a

a

aa

b c

b b

b

bb

c c

c

cc

e
d

e
d d

g

g
d

d
ff

d

F

R R

R

F F

Figure 2.2: The Hexagon equations say that the upper paths and the lower
paths in the figures must give the same result. We get another set of equations
by reversing all of the braids shown in the figure. A fusion model which is
not an anyon model has solutions for the Pentagon equations but not for the
Hexagon equations.

[Rab
c ][R

ba
c ] =

θc
θaθb

(2.34)

where θa is a root of unity known as the topological spin of a, defined by

θa = θā =
∑
c

dc
da

[Raa
c ] (2.35)

When applicable, this is related to sa, the spin or CFT conformal scaling

dimension of a by

θa = e2πisa (2.36)

We finish the chapter by defining one more important object [49]

(Sc)ab =
1

D
√
dc

a b

c

(2.37)
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where D is what is known as the total quantum dimension and is given by

D =

√∑
a

d2a (2.38)

If c = 1 then (Sc)ab is just written Sab and is called the topological S-matrix.

When we define a system of anyons living on the surface of a torus the S-matrix

will define an isomorphism between two bases corresponding to the two non-

trivial loops of the torus as described in [9, 47, 50]. It is useful to see such a

diagram resolved at least once and as this is such an important quantity, we

will resolve this diagram now. We use 2.19 and two braid operators to write

the above diagram as

a b

c

a b

d

∑
d

√
dd
dadb

Rab
d R

ba
d

(2.39)

We now perform the F-move defined in 2.25 to get

a
b

c

e

∑
d,e

√
dd
dadb

Rab
d R

ba
d [F

ab
ab ]

−1
d,e

a

a
b (2.40)
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Another pair of F-moves will allow us to form loops labelled by a and b and

enforces that e = c.

∑
d

√
dd
dadb

Rab
d R

ba
d [F

ab
ab ]

−1
d,c[F

cbb
1 ]b,c[F

caa
c ]a,1

a

1

c

bb

c

(2.41)

Resolving any closed loops and using 2.25, the final expression is

(Sc)ab =
1

D
√
dc

∑
d

dddcR
ab
d R

ba
d [F

acb
d ]a,b[F

cbb
1 ]b,c[F

caa
c ]a,1 (2.42)

Which simplifies to

Sab =
1

D
∑
d

ddR
ba
d R

ab
d (2.43)

when c = 1. This concludes our introduction to basic anyon theory. Having

described the tools at our disposal for manipulating anyonic systems we are

almost ready to construct some models explicitly. Before we do that though,

we present a brief introduction to the idea of strong zero modes and how they

might relate to the fusion models we are interested in.
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Chapter 3

Construction of Strong Zero

Modes

Here we present the definition of a strong zero mode. The quantum Ising

chain [51] is a simple example of a model with a pair of strong zero modes. We

explicitly construct the zero mode operators following [28]. We conclude the

chapter with a description of the Zn chiral clock model or Zn parafermionic

model [28, 29, 31, 32], another model with strong zero modes and one we will

meet in the context of fusion models.

3.1 Strong Zero Modes

A strong zero mode is an operator ψ which commutes with the Hamiltonian

up to terms which go to zero in the thermodynamic limit.

[H,ψ] = O(e−
L
ξ ) (3.1)

Where L is the length of the system and ξ > 0 is some constant length scale.

ψ does not commute with some operator Q which implements a discrete sym-

metry

[H,Q] = 0, [ψ,Q] ̸= 0 (3.2)
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Additionally, it is required that

ψN ∝ 1 (3.3)

for some integer, N > 0. These conditions enforce that ψ maps between states

in different symmetry sectors with the same energy. To see this, consider

ψQ = −Qψ (3.4)

as we will see is the case in the quantum Ising chain. Eigenstates of Q have

eigenvalues ±1. Say | q⟩ is an eigenstate of Q with eigenvalue 1 and is also an

eigenstate of H with eigenvalue Eq. Then

ψQ| q⟩ = ψ| q⟩

= −Q(ψ| q⟩)
(3.5)

so ψ| q⟩ is an eigenstate of Q with eigenvalue −1 and is also an eigenstate of

H with eigenvalue Eq since H and ψ commute. This tells us that ψ maps

between symmetry sectors with identical spectra. We also require that ψ is

normalisable in the thermodynamic limit.

ψ†ψ = 1 +O(e−
L
ξ ) (3.6)

We can now construct this operator explicitly for the quantum Ising chain.

3.2 Quantum Ising Chain

The Hamiltonian for the Ising chain with open boundary conditions is

H = −f
L∑
j=1

σxi − J

L−1∑
j=1

σzjσ
z
j+1 (3.7)

It acts on a Hilbert space made up of L sites with a spin-1
2
particle at each site.

The spin at each site may point up or down so the Hilbert space has dimension
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2L. The σαi are the Pauli operators which act non-trivially at site i while f

and J are non-negative and real. The Hamiltonian has a Z2 symmetry under

flipping all spins. The operator generating this symmetry is

(−1)F =
L∏
j=1

σxj (3.8)

Clearly [H, (−1)F ] = 0 and ((−1)F )2 = 1. The quantum Ising chain has two

phases separated by the critical point f = J . For f < J the system is in the

ordered phase while for f > J it is in the disordered phase. In the ordered

phase the system has a two-fold degenerate ground state. In the disordered

phase the system has a unique ground state. These properties are easily seen in

the limits f = 0 and J = 0. When f = 0 then clearly the energy is minimised

when all spins point in the same direction giving two ground states, one where

all spins point up and another where all spins point down. When J = 0 the

energy is minimised when all spins are in the eigenstate of σx with eigenvalue

1 and this ground state is unique.

By performing a Jordan-Wigner transformation the Ising chain may be

mapped onto a model of free fermions. At each site we introduce two Majorana

fermion operators

aj = (

j−1∏
k=1

σxk)σ
z
j

bj = iajσ
x
j = i(

j−1∏
k=1

σxk)σ
z
jσ

x
j

(3.9)

with Majorana referring to the fact that these operators are Hermitian. These

operators satisfy the anti-commutation relations

{aj, ak} = {bj, bk} = 2δjk, {aj, bk} = 0 (3.10)
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b b b

J J J

f f f f

Figure 3.1: The f = 0 and J = 0 limits of the Ising chain. Note that f = 0
leaves isolated Majorana operators a1 and bL at either end of the chain. These
operators drop out of the Hamiltonian and become exact edge zero modes.

The Hamiltonian may be rewritten in terms of aj and bj giving

H = if

L∑
j=1

ajbj + iJ

L−1∑
j=1

bjaj+1 (3.11)

It is also possible to define complex fermions

c†j = aj + ibj

cj = aj − ibj

(3.12)

which have the canonical fermion anti-commutation relations. The Hamilto-

nian written in terms of these variables includes so called ”Cooper pairing”

terms, cjcj+1 and c†jc
†
j+1. These terms do not preserve fermion number but

rather ”fermion parity” i.e. they preserve fermion number modulo 2. The

symmetry operator now measures fermion number modulo 2.

(−1)F =
L∑
j=1

(−iajbj) (3.13)

with F being the fermion number. This operator commutes with the product

of an even number of fermion operators and anti-commutes with the product

of an odd number of fermion operators, leading to (−1)F often being referred

to as the fermion parity operator. The Hamiltonian consists solely of fermion

bilinears which clearly commute with the parity operator so the spectrum will

be divided into even and odd sectors of the fermion parity operator.
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Visualizing the chain as in 3.1, we can see that when f = 0, a1 and bL drop

out of the Hamiltonian completely. Therefore 3.10 shows that they commute

with the fermion bilinears remaining in the Hamiltonian when f = 0. Since

a1 and bL are single fermion operators they anti-commute with (−1)F . The

operators, a1 and bL, satisfy our definition of a strong zero mode but commute

exactly with the Hamiltonian so are exact strong zero modes. On top of this

they are what are known as edge zero modes. As the name implies, an edge zero

mode is a zero mode which is localized to the edge of a system. In particular,

if ψ is an edge zero mode its dependence on operators away from the edge of

the system is exponentially small in their distance away from the edge.

We will now perform an iterative construction [28] to show that these zero

modes persist throughout the entire ordered phase. Operators, a1 and bL, are

used as a first guess for what the zero modes might be when f ̸= 0 and we find

[H, a1] = −2ifb1 (3.14)

We notice that

2b1 = [b1a2, a2] (3.15)

and so we can write an operator which commutes with the first two terms of

the Hamiltonian.

[ifa1b1 + iJb1a2, a1 +
f

J
a2] = 0 (3.16)

Notice that f
J
a2 will not commute with ifa2b2 but it is easy to show

[H, aj] = −2ifbj + 2iJbj−1

[H, bj] = 2ifaj − 2iJaj+1

(3.17)

where aL+1 and b0 are taken to be zero. Using these commutation relations we

iterate the process above to write our new zero mode operators

ψleft = a1 +
f

J
a2 +

(
f

J

)2

a3 + ... ψright = bL +
f

J
bL−1 +

(
f

J

)2

bL−2 + ...

(3.18)
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Taking the commutators of these operators with H we get

[H,ψleft] = f

(
f

J

)L−1

bL [H,ψright] = f

(
f

J

)L−1

a1 (3.19)

and clearly these values go to zero as L→ ∞ as long as f < J . These operators

are normalisable when f < J and have exponentially small dependence on

terms away from the edge of the chain. Both are sums of single fermion

operators so anti-commute with the fermion parity operator and so ψleft and

ψright are edge zero modes in the ordered phase of the Ising chain.

3.3 Zn Chiral Clock Model

In this section we introduce a generalised form of the quantum Ising chain.

Like the Ising chain, the Zn chiral clock models or chiral Potts models [52–54]

possess ordered and disordered phases with the ordered phase allowing for the

existence of strong zero modes while also exhibiting richer physics than the

Ising model [55–57]. Similar to how the Ising model could be rewritten in terms

of non-local fermionic operators via a Jordan-Wigner transformation, these

models can be written in terms of non-local parafermionic operators [58] via an

analogous transformation. Much work has been done to find the zero modes for

these chains and determine when they exist [28,29,31–35]. In particular, it has

been shown that when they exist, one may perform an iterative construction of

the strong zero modes similar to the example of the quantum Ising chain [28,33].

Here we will only give a brief description of the model. Later we will present

a fusion model which is equivalent to the chiral clock models.

The Zn chiral clock model on L sites has Hilbert space consisting of L

n-state ”spins”. The Hamiltonian is written

Hn = −f
L∑
j=1

n−1∑
m=1

αm(τj)
m − J

L−1∑
j=1

n−1∑
m=1

α̂m(σ
†
jσj+1)

m (3.20)
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where f, J ≥ 0 and

α∗
m = αn−m, α̂∗

m = α̂n−m (3.21)

τj and σj act non-trivially on site j and satisfy

σn = τn = 1, σ† = σn−1, τ † = τn−1, στ = ωτσ (3.22)

with ω = e
2πi
n an nth root of unity. σ and τ are generalisations of the Pauli

operators and in particular, if we choose a representation where σ is diagonal

we can write

σ =



1 0 0 ... 0

0 ω 0 ... 0

0 0 ω2 ... 0

... ... ... ... ...

0 0 0 ... ωn−1


, τ =



0 0 0 ... 1

1 0 0 ... 0

0 1 0 ... 0

... ... ... ... ...

0 0 ... 1 0


(3.23)

Notice that when n = 2 these matrices are the Pauli operators σz and σx. If

we think of each site of the chain as a ”clock” with n distinct values then σj

reads the value of the clock at site j while τj shifts the value by one ”tick”. As

one may have guessed the symmetry operator, (−1)F , generalises to

Qn =
L∏
j=1

τ †j (3.24)

which turns each clock back one tick. This generates a Zn symmetry in the

system as

[H,Qn] = 0

(Qn)
n = 1

(3.25)

In the same way we wrote the Ising chain in terms of fermionic operators, we
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may also write the Zn chiral clock model in terms of parafermionic operators.

χj = (

j−1∏
k=1

τk)σj

ψj = ω
n−1
2 χjτj

(3.26)

with commutation relations

χjχk = ωχkχj

ψjψk = ωψkψj

χjψk = ωψkχj for j < k

(3.27)

It is for this reason that these models are also referred to as Zn parafermionic

models. The Hamiltonian is rewritten in terms of these parafermionic opera-

tors in the references given at the start of this section but our description to

this point should be sufficient for the purpose of this thesis. We now move

on to investigating how we may find and write down zero modes in anyonic

systems.
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Chapter 4

Strong Zero Modes and Anyon

Chains

In this chapter we introduce the anyon/fusion chain models we have studied.

The Hamiltonians we write for these chains assign energy values based on

nearest neighbour interactions as in [59, 60]. We then investigate these chains

for the existence of strong zero modes.

4.1 The Models

We consider chains of L anyons of type j as in 4.1. We primarily consider two

bases for our models: the standard fusion basis and a dimerized basis.

Basis states are labelled |x1, x2, x3, ..., Q⟩ where xi, Q ∈ C. We will explic-

itly state which basis we are working in throughout this thesis. A basis for the

Hilbert space is labelled by the elements of the set of all possible combinations

b b b b b b

j1 j2 j3 j4 j5 jL

x1
x2
x3
x4

Q

x2

x4

Q

x1 x3

j1 j2 j3 j4 j5 jL

Figure 4.1: Fusion trees in the standard basis (left) and a dimerized basis
(right)
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ji ji+1xi−2

xi−1

xi

xi−2 ji ji+1

x′i−1

xi

xi−2 ji ji+1

x′′i−1

xi

=
∑
x′i−1

Ex′i−1
[F

xi−2jiji+1
xi ]xi−1,x′i−1

=
∑

x′i−1,x
′′
i−1

Ex′i−1
[F

xi−2jiji+1
xi ]xi−1,x′i−1

[F
xi−2jiji+1
xi ]†x′i−1,x

′′
i−1

hi

Figure 4.2: The action of hi

of labels allowed by the fusion rules. For example, in the standard basis, the

fusion rules enforce that

xi × ji+2 = xi+1 + ... ∀i (4.1)

For chains like this the Hamiltonian is a sum of local Hamiltonians;

H =
L−1∑
i=1

hi (4.2)

where hi depends on the nearest neighbour interaction between ji and ji+1.

Each hi acting on a state |x1, x2, ..., Q⟩ applies a basis change to a basis where

ji and ji+1 fuse directly, assigns an energy depending on the fusion outcome

and applies a basis change back to the original basis. From this we can see

that in the dimerized basis h2i will be diagonal. In the standard basis hi acts

as in 4.2.

With the process of constructing a Hamiltonian defined, let us now sink

our teeth into some concrete models.
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4.2 Tambara-Yamagami Fusion Model

The first model we consider is the Tambara-Yamagami (TY) fusion model [61].

This model has a choice of finite abelian group, G, associated with it. For

example, with G = Z2, we get the well known Ising anyon model [15]. This

model only allows for braiding when G is a 2-group [62], i.e. G contains only

elements of order 2, and so is not an anyon model in general. However it

has solutions for the Pentagon equations for any finite abelian G so we may

construct a Hamiltonian for this model for any such G.

C consists of a label for each group element gi ∈ G and one extra label σ.

The fusion rules for this model are

σ × σ =
∑
gi∈G

gi,

σ × gi = σ,

gi × gj = gigj gi, gj ∈ G

(4.3)

where gigj is the label corresponding to the element of G which is the result of

performing the group operation on gi and gj. The F-matrices for this model

are

F g1,g2,g3 = F g1,g2,σ = F σ,g1,g2 = 1

F g1,σ,g2 = F σ,g1,σ
g2

= χ(g1, g2)

F σ,σ,g1
g2

= F g1,σ,σ
g2

= 1

[F σ,σ,σ]g1,g2 = t−1χ(g1, g2)

t = ±
√

|G|

(4.4)

The lower label of F has been omitted where the three incoming labels have

a unique fusion outcome. The map, χ, is a symmetric, non-degenerate bichar-
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b b b

σ σ σ σ σ σ

x1
σ
x2
σ

Q

Figure 4.3: Generic basis state of the TY chain in the standard basis

acter which means for g1, g2, g3 ∈ G

χ(g1g2, g3) = χ(g1, g3)χ(g2, g3)

χ(g1, g2g3) = χ(g1, g2)χ(g1, g3)

χ(g1, g2) = χ(g2, g1)

(4.5)

where the last condition makes the bicharacter symmetric. For G = Zn

χ(1, 1) = e
2πik
n k ∈ {a ∈ {0, 1, ..., n− 1}|gcd(a, n) = 1}

χ(a, b) = χ(1, 1)ab = e
2πikab

n

(4.6)

with gcd(a, n) = 1 making the bicharacter non-degenerate. Here we will let

k = 1. We consider chains of L σ’s in the standard basis as in 4.3. We have

included coupling constants f, J ≥ 0 so the Hamiltonian will read

H = J

L
2∑
i=1

h2i−1 + f

L−2
2∑
i=1

h2i (4.7)

Due to fusion constraints, every second intermediate label is σ. In this thesis

we will only consider chains of even length. This gives a model with similar

couplings to the example of the quantum Ising chain earlier. Setting one of

the coupling constants to 0 causes the Hamiltonian to be independent of the

final label, creating a degeneracy between states which differ only by the final

labels.

We will now construct the local Hamiltonians for this chain. The local

Hamiltonians will take a different form depending on whether they act on an
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g

σ

g1 σ σ

σ

g2

Figure 4.4: Even and odd sites of the TY chain

even or odd site.

First we show hi for i even. This will act on a state labelled by |x1σx2...σgσ...σQ⟩

which we shorten to |σgσ⟩.

hi|σgσ⟩ =
∑
x′ix

′′
i

(F σσσ)†x′i,x′′i
Ex′i(F

σσσ)g,x′i|σx
′′
i σ⟩

= t−2
∑
x′ix

′′
i

Ex′iχg,x′iχ
†
x′i,x

′′
i
|σx′′i σ⟩

=
1

n

∑
x′ix

′′
i

Ex′iχg,x′iχ
†
x′i,x

′′
i
|σx′′i σ⟩

(4.8)

where Ex′i ∈ R is the energy assigned to the fusion of ji and ji+1, the incoming

σ’s in positions i and i+ 1. We can now write the Hamiltonian which acts on

the even sites of the chain as

HE = f

L−1
2∑
i=1

α2i (4.9)

where

αkj =
1

n

∑
x′k

Ex′kχk,x′kχ
†
x′k,j

=
1

n

∑
x′k

Ex′kω
x′k(k−j)

(4.10)

where ω = e
2πi
n . Note that k here is merely an index and not the k we previously

set to 1. We see each α has the property that if (i − j)modn = (k − l)modn,

then αij = αkl. Matrices with this property are generated by the matrix τ

defined by

τij = δ(i−j)modn,1 (4.11)
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In our case

α =
n−1∑
i=0

τ i(
n−1∑
j=0

ωijEj)

=
n−1∑
i=0

νiτ
i

(4.12)

We now shift our focus to the odd sites of the chain. hi acts on a site labelled

by |x1σx2...g1σg2...σQ⟩ which again we shorten to | g1σg2⟩.

hi| g1σg2⟩ =
∑
x′i,x

′′
i

(F g1σσ
g2

)†x′i,x′′i
Ex′i(F

g1σσ
g2

)σ,x′i | g1x
′′
i g2⟩ (4.13)

Clearly x′′i = σ and if we look at the basis where ji and ji+1 fuse

σ σg1

g2

x′i

(4.14)

then it is clear that x′i = g2 − g1. By this we mean that

g1x
′
i = g2 (4.15)

under the group operation. This gives a unique result for x′i since G is abelian.

We are left with

hi| g1σg2⟩ = Eg2−g1| g1σg2⟩ (4.16)

We write the Hamiltonian acting on odd sites of the chain as

HO = J

L
2∑
i=1

β2i−1 (4.17)
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where

β =
n−1∑
m=0

1

n
νm(σ ⊗ σ†)m

σij = δijω
i−1

(4.18)

Note that ν∗m = νn−m. The full Hamiltonian is now written

H = f

L−2∑
i=2,4,6,...

n−1∑
m=0

νm(τi)
m + J

L−1∑
i=1,3,5,...

n−1∑
m=0

νm(σiσ
†
i+1) (4.19)

which is the Hamiltonian for a Zn chiral clock model! Calculating α and β

explicitly for G = Z3 we get

αi =
1

3
[(E0 + E1 + E2)I+ (E0 + ωE1 + ω2E2)τ + (E0 + ω2E1 + ωE2)τ

2]

βi =
1

3
[(E0 + E1 + E2)I+ (E0 + ω2E1 + ωE2)(σ

† ⊗ σ) + (E0 + ωE1 + ω2E2)(σ ⊗ σ†)]

(4.20)

We can rescale and shift E0, E1 and E2 such that E0 + ωE1 + ω2E2 = 3eiϕ for

ϕ ∈ [0, 2π) and so the Hamiltonian can be written in the form

H =
∑
i

[f(
1

3
(E0 + E1 + E2)I + e−iϕτi + eiϕτ †i )

+ J(
1

3
(E0 + E1 + E2)I ⊗ I + σ†

iσi+1e
−iϕ + σiσ

†
i+1e

iϕ)]

(4.21)

The Hamiltonian for the Z3 chiral clock model is usually written

H = −f
L∑
j=1

(τ †j e
−iϕ + τje

iϕ)− J

L−1∑
j=1

(σ†
jσj+1e

−iψ + σjσ
†
j+1e

iψ) (4.22)

which is the same as our result up to a constant term if ψ = ϕ. So this fusion

model really is a chiral clock model in disguise. We note that we can remove

the condition that ψ = ϕ if we allow our choices of Ei to vary across odd and

even sites.

E
O/E
0 + ωE

O/E
1 + ω2E

O/E
2 = 3eiϕ/ψ (4.23)
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Being equivalent to the Zn chiral clock model means this fusion model also has

all the same zero modes. While a bit underwhelming in terms of finding new

zero modes, this is a good starting point in our investigation into the types

of zero modes found in anyonic systems. The existence of strong zero modes

in non-abelian fusion models is an indicator that the search for strong zero

modes in non-abelian anyon models will bear fruit. In the following sections,

j j j j j j

x1

x2

x3

x4
Q

J Jf f f

Figure 4.5: Anyon chain of 6 anyons of type j including coupling constants f
and J at odd and even sites respectively.

the anyon chains we study will take the form shown in Figure 4.5. The chains

will be of even length with

H = f
∑
i odd

hi + J
∑
i even

hi (4.24)

This gives a construction similar to that of the quantum Ising chain. With

f = 0, it is clear that the Hamiltonian will not depend on the final label, Q. In

this case, were a zero mode to be present, we might expect it to change Q while

leaving the labels, xi, unchanged for odd i. Such a zero mode would clearly be

exact for f = 0. A potential symmetry would then involve a measurement of

the final label.

4.3 Fibonacci Anyon Chain

A natural starting point for our study of non abelian anyon chains is the Fi-

bonacci anyon model. This is one of the simplest models which exhibits non

abelian statistics [46, 63, 64]. Despite the simplicity of the model, Fibonacci
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anyons have been shown to be universal for quantum computation under braid-

ing [63–65]. Due to this, there is great interest in realising Fibonacci models

experimentally. In recent years research has suggested that a phase support-

ing Fibonacci anyons emerges from Z3 parafermion systems [66–70]. Projec-

tive Hamiltonians as we have described here have already been constructed for

chains of interacting Fibonacci anyons, or the ”golden chain”, as it is often

referred to as [59, 60].

The model consists of just two labels, C = {1, τ}, with fusion rules

1× τ = τ

τ × τ = 1 + τ

(4.25)

and the only non trivial F-matrix, acting on the local Hilbert space {| τ1τ⟩, | τττ⟩},

is given by

(F τττ
τ ) =

ϕ−1 ϕ− 1
2

ϕ− 1
2 −ϕ−1

 (4.26)

where ϕ = 1+
√
5

2
is the golden ratio. The dimension of the Hilbert space for a

chain of L Fibonacci anyons grows like the Fibonacci sequence. The dimension

for this chain is given by the sum of the dimensions of the chains of length

L− 1 and L− 2.

dim(L) = dim(L− 1) + dim(L− 2) (4.27)

A model with only two types of anyons is appealing as it circumvents a known

issue with the zero modes in the chiral clock models. This is the issue of res-

onance [32]. In extremely brief terms, resonance points occur at the crossings

of different energy bands in the unperturbed system. The unperturbed system

is the system with f = 0. In the chiral clock models the energy of a state in

the unperturbed system depends only on the number of each type of so called

domain wall in the state. We mentioned previously that a state of the chiral

clock model was labelled by L sites with n possible states. If a state is labelled
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Figure 4.6: Fibonacci chain in the dimerized basis. We write this state as
|x1x2x3...xL−3xL−2Q⟩ where L is the number of incoming anyons.

by

| c1, c2, ..., cL⟩ ci ∈ Zn (4.28)

then there are L−1 domain walls which are the differences between the values

at successive sites modulo n and so are written.

(c1 − c2, c2 − c3, ..., cL−1 − cL) mod n (4.29)

Two states are in the same energy band if they have the same number of domain

walls of each type. At the points in parameter space where these energy bands

cross in the unperturbed system we have different sets of domain walls with the

same energy. These can be locally changed into each other by a perturbation,

hybridising the bands. This destroys the zero mode at these resonance points.

We will consider chains of L incoming τ anyons in the dimerized basis as

in figure 4.6. Setting f = 0 then the total energy of this system is
∑
i odd

Exi . In

other words the energy bands in this case are given by the number of τ and 1

anyons among the xi for i odd. For energy bands to cross in the unperturbed

system we need ∑
i

niEi =
∑
i

miEi (4.30)

where i ∈ {1, τ} and ni and mi are the numbers of anyons of type i which

contribute to the energy. Clearly this does not hold when we only have two

anyon types unless ni = mi or E1 = Eτ . In the dimerized basis, the anyons at

xi for i odd correspond to the domain wall types mentioned above. It would

appear the Fibonacci chain does not allow for resonances then and we might
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naively hope to see a strong zero mode in this chain. However, these hopes

are dashed if we notice that if a potential zero mode operator were to map

between states with different values of Q, we may not expect such a strong

zero mode operator to exist in this chain. This is due to the fact that Q = 1

necessitates that xL−2 = τ but Q = τ allows xL−2 to be 1 or τ .

When looking at this system we notice that when f = 0 the Hamiltonian

does not depend on the final label Q. This gives a doubly degenerate ground

state | 1τ1τ1τ...1τ1τQ⟩, one for each possible label of Q. To check if these

states are topologically degenerate we introduce f > 0 as a perturbation and

check if the energies of these states split. If the ground states remain degenerate

up to corrections which go to zero exponentially with increasing system size

then we say the ground states are topologically degenerate and we have at

least a weak zero mode.

We examine the perturbed Hamiltonian analytically up to second order.

The only term in the Hamiltonian which depends on Q is hL−1 so the terms

which split the degeneracy of the ground states will contain hL−1. Figure 4.7

shows how hL−1 acts on a state | ...cbaQ⟩

hL−1| ...cbaQ⟩ =
∑

a′,b′,a′′,b′′

Eb′ [F
cbτ
Q ]a,a′ [F

τττ
a′ ]b,b′ [F

τττ
a′ ]†b′,b′′ [F

cb′′τ
Q ]†a′,a′′ | cb

′′a′′Q⟩

(4.31)

The first order correction to H acting on | ...cbaQ⟩ and containing hL−1 is

⟨...cbaQ |hL−1| ...cbaQ⟩ =
∑
a′,b′

Eb′ [F
cbj
Q ]2a,a′ [F

jjj
a′ ]2b,b′ (4.32)

for a model with incoming anyons of type j. Of course here we have j = τ .

Calculating this correction for a ground state (|GS⟩) we see b = 1 and so

[F cbτ
Q ]2a,a′ = [F c1τ

Q ]2a,a′ = 1 ∀Q (4.33)

showing the first order correction is independent of Q. The terms in the second
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cb′′τ
Q ]†a′,a′′

=
∑
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Figure 4.7: hL−1 acting at the end of the chain

order correction which may depend on Q are

∑
i

⟨GS |hL−1|mi⟩⟨mi |hL−1|GS⟩

|mi⟩ = | 1τ1τ....ττ iQ⟩
(4.34)

Evaluating the sum over i we get

([F τττ
Q ]21,τ + [F τττ

Q ]2τ,τ )[
∑
b′,d′

Eb′Ed′ [F
τττ
τ ]1,b′ [F

τττ
τ ]τ,d′ [F

τττ
τ ]†b′,τ [F

τττ
τ ]†d′,1] (4.35)

Any Q dependence of this is contained in the first bracket which we can write

simply as ∑
y

[F τττ
Q ]2y,τ = 1 (4.36)

where we sum over all possible labels y. We know this identity holds for any

Q since all F-matrices are unitary. So there are no Q dependent terms in the

perturbative expansion of H up to second order. Numerical checks show that

the splitting of the ground states grows proportionally to fp where p ∝ L.

This indicates that the order at which terms which split the degeneracy of the

ground states appear depends on the length of the chain. We know then that

the ground states are degenerate, implying the existence of at least a weak

zero mode.
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Figure 4.8: Splitting of the two ground states, ∆E, grows proportionally to
fp where p ∝ L. The plots for L = 12 and L = 14 are distorted at small f as
e−35 is close to machine precision.

If this model has a strong zero mode then it should be possible to find a

similar result for the excited states. Let us first look at Q dependent terms in

the first order correction of H acting on a simple excited state.

|ϕQ⟩ = | 1τ1τ...τττQ⟩ (4.37)

|ϕQ⟩ is the state which is identical to the ground state except xL−3 = τ . The

first order correction for H acting on this state is

⟨ϕQ |hL−1|ϕQ⟩ =
∑
a,b

Eb[F
τττ
Q ]2τa[F

τττ
a ]2τb (4.38)

We calculate the correction explicitly for Q = 1 and Q = τ and find

⟨ϕ1 |hL−1|ϕ1⟩ = ϕ−1E1 + ϕ−2Eτ

⟨ϕτ |hL−1|ϕτ ⟩ = ϕ−3E1 + (ϕ−4 + ϕ−1)Eτ

(4.39)

The degeneracy is split at first order! This system has no strong zero mode.

Before we move on let us take a closer look at the first order correction we just

calculated to see why this might be. There is in fact a third state which has a
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single τ excitation at xL−3. We see that the state |m1⟩ from 4.34 is the third

state and

⟨m1 |hL−1|m1⟩ = ϕ−2E1 + ϕ−1Eτ (4.40)

The degeneracy between all three states is broken at first order. The extra

degeneracy on the second last label in this case or the labels x2i, which are

the labels along the spine of the chain, in general causes the degeneracy of the

excited states to split at first order. We did not have this issue for the ground

states as in that case the labels x2i were fixed to be τ by the fusion rules.

In circumventing the issue of resonance that exists in the chiral clock model

we have bumped up against an ’anyonic resonance’. This is independent of our

choices of energy but instead is a consequence of degeneracies created by the

fusion rules. We make the comparison to resonance by thinking about the TY

chain in the dimerized basis. In this basis, there is a direct correspondence

between the domain wall types in the chiral clock model and the differences

between the labels, xi and xi+2 for i odd. However, each label on the spine of

the tree in this basis is forced to be σ so there are no possible band crossings

at f = 0 other than those already discussed. This is not the case for general

anyon models as seen above for Fibonacci anyons. If we instead choose to

label bands by every label of the tree, then we have degenerate bands and

thus resonance from trees with the same odd labels but different labels on the

spine.

In the Fibonacci chain Q = 1 only when xL−2 = τ while Q may be τ

regardless of the value of xL−2. The Hilbert space with Q = 1 is smaller than

that with Q = τ (although the degeneracy is still split at first order were we

to restrict ourselves to states with xL−2 = τ). Perhaps this ’resonance’ may be

avoided if we look at models with anyons that behave identically when fusing

with our choice of incoming anyon i.e. models with a set of labels

ai i ∈ {1, 2, ..., N} (4.41)
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Figure 4.9: SU(2)4 chain in the dimerized basis.

for some N > 1 such that

ai × j = ak × j i ̸= k (4.42)

Fortunately such a model exists, is well known and has only three types of

anyons which we will need to deal with.

4.4 SU(2)4 Anyon Chain

Fibonacci anyons are part of a larger class of SU(2)k anyons. The SU(2)k

models are ’q-deformed’ versions of SU(2) [7]. These models have anyonic

charges C = {0, 1
2
, ..., k

2
} and have fusion rules

j1 × j2 =

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

j (4.43)

As k → ∞ these fusion rules become the usual tensor product rules for SU(2).

The general form of the F-matrices are given in [71]. For k = 3 one can identify

the τ of the Fibonacci model with the j = 1 anyon in the SU(2)3 model.

The model we are particularly interested in is a chain of SU(2)4 anyons.

We consider a chain of incoming anyons of type 1 set up identically to the

Fibonacci chain we looked at in the previous section. Since the anyons we are

fusing are all of type 1 we need only consider the integer labels of SU(2)4. We
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are effectively working with a model with C = {0, 1, 2} and fusion rules

1× 1 = 0 + 1 + 2

1× 2 = 1

2× 2 = 0

(4.44)

0 is the identity particle here so fusion with it is trivial. The only F-matrix

with dimension greater than 1 is

[F 1,1,1
1 ] =


1
2

−1√
2

1
2

−1√
2

0 1√
2

1
2

1√
2

1
2

 (4.45)

which acts on the local Hilbert space, {| 101⟩, | 111⟩, | 121⟩}. We notice a few

things from the fusion rules and F-matrices. Firstly, fusing 0 or 2 with 1

gives the same result. Secondly, chains with Q = 0 and Q = 2 both have

the requirement that xL−2 = 1. This tells us that for each state with Q = 0

there is a corresponding state with all the same labels except Q = 2. The

Hilbert space is the same size in both sectors, providing at least two potential

symmetry sectors for a zero mode to map between. We also notice

[F 111
1 ]0,0 = [F 111

1 ]0,2 = [F 111
1 ]2,0 = [F 111

1 ]2,2 =
1

2
(4.46)

which makes it likely that terms in the perturbative expansion of H which

depend on Q will be the same for Q = 0 and Q = 2. There is a potential issue

which could be caused by the fact that

[F 111
1 ]0,1 = [F 111

1 ]1,0 = −[F 111
1 ]2,1 = −[F 111

1 ]1,2 = − 1√
2

(4.47)

and some other 1 dimensional F-matrices have their sign changed when swap-
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ping a 0 for a 2 such as

[F 121
1 ]1,1 = −[F 101

1 ]1,1 = −1 (4.48)

so the sign of Q dependent terms in the expansion of hL−1 could change depend-

ing on whether Q = 0 or Q = 2. However in the Fibonacci chain F-symbols

appeared in terms like

[F τττ
τ ]1,b[F

τττ
τ ]†b,τ (4.49)

or as square terms so the minus signs in the F-symbols may be squared wher-

ever they appear.

For this model we take E0 < E1 < E2. In this regime the ground states of

the unperturbed system are

|GS⟩ = | 010101...01Q⟩ Q ∈ {0, 1, 2} (4.50)

This time we have a threefold degenerate ground state. In the ground state

each intermediate charge on the spine of the tree, x2i, is fixed to be 1. After

what we saw in the Fibonacci case we would expect the ground states to remain

topologically degenerate in the perturbed system. As before we expand hL−1

and test for Q dependence. The first order correction to hL−1 acting on a

ground state is

⟨GS |hL−1|GS⟩ =
∑
b′

Eb′ [F
101
Q ]21,1[F

111
1 ]0,b′ (4.51)

but

[F 101
Q ]21,1 = 1 ∀Q (4.52)

so as expected the first order correction is independent of Q. The second order
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Figure 4.10: Splitting of the SU(2)4 ground state, ∆E, grows proportionally
to fp where p ∝ L. Here we set E0 = 0, E1 =

1√
2
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correction is

2∑
i=0

⟨GS |hL−1|mi⟩⟨mi |hL−1|GS⟩

mi = | 010101...11iQ⟩

(4.53)

As in the Fibonacci chain the Q dependence of this term will come from

∑
y

[F 111
Q ]2y1 = 1 (4.54)

which again is true by unitarity of the F-matrices. The second order correction

is therefore independent of Q. Performing the same numerical calculations that

we did for the Fibonacci chain we see that the ground states are topologically

degenerate in the perturbed system and so the system should have at least a

weak zero mode. We wish to see if the system has a strong zero mode so we

now check the splitting of the excited states. Let us consider the excited states

of the unperturbed chain

|ϕQ1⟩ = | 010101...111Q⟩

|ϕQ2⟩ = | 010101...121Q⟩
(4.55)
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L = 14, p = 7
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Figure 4.11: Plots of the log of the maximum splitting of eigenstates with
Q = 0 and Q = 2. Each line in the plot corresponds to a different value of E1.
In each plot E0 = 0, E2 = 1 and E1 is varied from 0 to 1. At the top of each
plot, length of the chain and the slope of the lines in the plot are given. We
see as L grows the log of the splitting of each eigenstate grows proportionally
to log(f), showing that Q = 0 and Q = 2 eigenstates remain topologically
degenerate throughout the spectrum. p = 1 lines in each plot show resonance
points exist at E1 = E0 and E1 = E2 but, remarkably, no others.

The first order corrections of hL−1 acting on these states is given by

⟨ϕQ1 |HL−1|ϕQ1⟩ =
∑
a,b

Eb[F
111
Q ]21a[F

111
a ]21b

⟨ϕQ2 |HL−1|ϕQ2⟩ =
∑
b

Eb[F
121
Q ]211[F

111
1 ]21b

(4.56)

[F 121
Q ]21,1 = 1 for any Q so ⟨ϕQ2 |hL−1|ϕQ2⟩ is independent of Q. However

evaluating the other correction explicitly we get

⟨ϕ01 |HL−1|ϕ01⟩ =
E0

2
+
E2

2

⟨ϕ21 |HL−1|ϕ21⟩ =
E0

2
+
E2

2

⟨ϕ11 |HL−1|ϕ11⟩ = E1

(4.57)

Similar to before, extra degeneracy on the spine of the chain arises due to the

presence of a 1 excitation. We don’t see this for a 2 excitation since x2i+1 = 2

always fixes the label x2i+2. However all is not lost. While this extra degeneracy
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Figure 4.12: Log of the splitting of all Q = 0 and Q = 2 eigenstates of an
L = 12 chain with E1 = 1

3
plotted against log(f). The splitting grows as f 6

as expected.

splits the degeneracy of Q = 0/2 states with Q = 1 states at first order, the

first order correction does not split the Q = 0 and Q = 2 sectors. We collected

numerical data on the splitting of states with Q = 0 with the corresponding

identical states with Q = 2. We allowed E1 to vary from 0 to 1 and we set

E0 = 0 and E2 = 1. We plotted the maximum splitting of Q = 0 and Q = 2

states for each value of E1 in Figure 4.11. The logic behind this is that if

the maximum splitting scales exponentially to zero with increasing system size

then all splittings must also scale exponentially to zero at the slowest. We also

plotted the splitting of all 683 eigenstates in the Q = 0/2 sectors on a chain

of length 12 and E1 =
1
3
in Figure 4.12.

Our numerics suggest that states in the 0 and 2 sectors remain topologically

degenerate throughout the entire spectrum, hinting at the existence of a strong

zero mode in this chain. We would very much like to be able to construct this

zero mode using an iterative process similar to what has been shown for the

Ising chain.

To do this we will make use of the fact that an SU(2)4 anyon chain can

be written as a D3 symmetric XXZ spin chain [71,72]. This is encouraging as
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XYZ spin chains have already been shown to possess strong zero modes [73].

So without further ado let us plough ahead and try to explicitly construct this

anyonic zero mode.

4.5 Constructing the Zero Mode

In this section we will construct the strong zero mode suggested to exist by the

numerical work in the previous section. Following the work detailed in [71] we

map the Hamiltonian of the SU(2)4 chain to that of a staggered XXZ chain.

Staggered or dimerized XXZ chains, as they are sometimes referred to in the

literature, are known to possess edge zero modes as described in [74]. We then

use the methods outlined in [33] to construct the zero mode in terms of spin

operators. These operators can then be mapped back to the anyon formalism,

giving us the form of the anyonic strong zero mode. We also perform this

procedure for a system more similar to that described in [73] which possesses

strong zero modes which we can easily write the general nth order term for,

allowing us to say exactly when the zero mode is normalisable.

We start with a brief summary of how to map between the SU(2)4 anyon

chain and the XXZ spin chain. This is done in more detail in [71]. The

two models are equivalent up to the size of the Hilbert space, as shown below,

because of the underlyingD3 symmetry in both. The groupD3 is the symmetry

group of a triangle whose generators are

D3 = {σ, τ |σ3 = τ 2 = στστ = 1} (4.58)

where σ is a rotation and τ a flip. These generators can be represented

graphically as

1

1 3

23 1

13

2

2

2

3
σ

τ =

=

(4.59)
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This group has three irreducible representations, say Π+, Π− and Π2. Two of

the representations are one dimensional and are given by

Π±(σ) = 1 Π±(τ) = ±1 (4.60)

The remaining representation is two dimensional

Π2(σ) =

e
2πi
3 0

0 e
−2πi

3

 Π2(τ) =

0 1

1 0

 (4.61)

We associate a vector space, Va, with each Πa. These spaces have the same

fusion rules as the integer spins of the SU(2)4 anyon model

V− ⊗ V− ∼= V+

V− ⊗ V2 ∼= V2

V2 ⊗ V2 ∼= V+ ⊕ V− ⊕ V2

(4.62)

and fusion with V+ is trivial. To construct the anyon model V+, V− and V2 are

identified with the 0, 2 and 1 anyons respectively. This leads to the discrepancy

in the size of the Hilbert spaces of the two models. Every state in the anyonic

Hilbert space which ends in a 1 anyon is identified with a 2 dimensional vector

space. So for each such state in the anyon model there are 2 corresponding

states in the spin model.

The Hilbert space for the spin model consists of L spin-1
2
particles coupled

to a C4 space which acts as a particle reservoir

[V2 ⊕ V+ ⊕ V−]⊗ V L
2 (4.63)

A state in this Hilbert space is labelled by the total D3 charge of the spins

and an extra label indicating the internal state in the global D3 representation

acting on all the particles. This gives an identical structure to the anyon fusion

tree. The C4 space is not needed to see the strong zero mode so we project
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onto the V+ component of the space, so the dimension of the Hilbert space

is 2L. The Hilbert space for the anyon model is as described in the previous

section.

To express an operator in both models it must also possess an underlyingD3

symmetry. For an operator written in the anyon formalism this means both the

first and final labels of the chain must be unchanged after we apply the operator

whereas in the spin formalism the operator must commute with the group

action of D3, meaning the overall D3 label is conserved. The Hamiltonian

does not change these labels and so can be expressed in the spin formalism.

This turns out to be straightforward as the Hamiltonian is a sum of projection

operators. Recall that the Hamiltonian is a sum of local Hamiltonians

H =
∑
i

hi (4.64)

where hi changes to a basis where the ith and (i + 1)th anyons fuse, assigns

energy Ej to a fusion to the j anyon and changes back to the original basis.

Taking the staggering we used in the last section into account we can write

the SU(2)4 Hamiltonian as

H = f
∑

i=1,3,5...

(E1P
1
i + P 2

i ) + J
∑

i=2,4,6...

(E1P
1
i + P 2

i ) (4.65)

where P j
i projects onto the j fusion channel for the ith and (i+ 1)th incoming

anyons, recalling that we set E0 = 0 and E2 = 1. These projectors can be
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written in the standard basis as

P 0
i = n0

i−2n
0
i + n2

i−2n
2
i +

1

4
n1
i−2n

1
i


1 −

√
2 1

−
√
2 2 −

√
2

1 −
√
2 1



P 1
i = n0

i−2n
1
i + n1

i−2n
0
i + n2

i−2n
1
i + n1

i−2n
2
i +

1

2
n1
i−2n

1
i


1 0 −1

0 0 0

−1 0 1



P 2
i = n0

i−2n
2
i + n2

i−2n
0
i +

1

4
n1
i−2n

1
i


1

√
2 1

√
2 2

√
2

1
√
2 1



(4.66)

where nji = δxi,j. The 3×3matrices act on the subspace |xi−2, xi−1, xi⟩ ∈ {| 101⟩, | 111⟩, | 121⟩}.

We can directly map these projectors to two site projectors in the spin model.

P 0 ↔ P̃+

P 1 ↔ P̃ 2

P 2 ↔ P̃−

(4.67)

where P̃ a is the projector onto the space Va for the fusion of two V2 spaces.

These can be written

P̃+ =
1

2
(| ↑↓⟩+ | ↑↓⟩)(⟨↑↓ |+ ⟨↑↓ |)

P̃− =
1

2
(| ↑↓⟩ − | ↑↓⟩)(⟨↑↓ | − ⟨↑↓ |)

P̃ 2 = | ↑↑⟩⟨↑↑ |+ | ↓↓⟩⟨↓↓ |

(4.68)
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Written in the spin formalism the local Hamiltonian is now

E1P
1 + P 2 = E1P̃

2 + P̃− =



E1 0 0 0

0 1
2

−1
2

0

0 −1
2

1
2

0

0 0 0 E1


(4.69)

which can be written in terms of Pauli operators as

−1

4
(σx ⊗ σx + σy ⊗ σy) + (

E1

2
− 1

4
)σz ⊗ σz + (

E1

2
+

1

4
)I4×4 (4.70)

showing that the staggered anyon chain is indeed equivalent to a staggered

XXZ chain.

This makes it possible to construct a strong zero mode using the methods

in [33]. We write the Hamiltonian as

H = H0 + fV (4.71)

and as in [28] we start with an operator, ψ(0) such that

[H0, ψ
(0)] = 0 (4.72)

then try to iteratively construct a strong zero mode for the full Hamiltonian.

If we have an operator

ψ = ψ(0) + fψ(1) + ...+ fLψ(L) (4.73)

such that

[H0, ψ
(i+1)] = −[V, ψ(i)] (4.74)

then

[H,ψ] = O(fL+1) (4.75)
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which is the commutation relation of a strong zero mode with the Hamiltonian.

The XXZ Hamiltonian we wrote above has a Z2 symmetry under flipping the

spin at every site

S =
∏
i

σxi (4.76)

For the Hamiltonian above we can brute force calculate the first few terms of a

zero mode operator which satisfies 4.75. The method to do this, fully described

in [33], involves using super-operators [75] or operators which act on operators

to rewrite 4.74 as a degenerate perturbation theory problem. The Hamiltonian

is rewritten in terms of super-operators, H0 = [H0, ·] and V = [V, ·]. These

commutators act on a Hilbert space which is isomorphic to a tensor product

of two copies of the original Hilbert space. For example, for the chiral clock

model, the super-operators act on states

| i1, i2, ..., iL⟩| j1, j2, ..., jL⟩ := | i1, i2, ..., iL⟩⟨j1, j2, ..., jL | (4.77)

where the im and jm label the clock value at each site of the chain as usual. In

this basis, given an operator O, we have

[O, ·] = O ⊗ 1− 1⊗OT (4.78)

where OT is the transpose of O. Using these super-operators 4.74 can be

rewritten as

P0Vψ(k)
p = −P0Vψ(k)

q

H0ψ
(k+1)
q = −Q0V(ψ(k)

q + ψ(k)
p )

(4.79)

where ψ(k)
p = P0ψ

(k), ψ(k)
q = Q0ψ

(k), P0 is the projector onto the null space of

H0, null(H0) and Q0 = 1−P0. Solving this for the first two terms of the zero
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mode we get

ψ(0) = z1

ψ(1) = (
E

1− E2
)(x1x2 + y1y2)z3 + (

1

1− E2
)(x1x3 + y1y3)z2

(4.80)

where E = 1 − 2E1 and we have switched notation for the Pauli matrices to

ai = σai for convenience. The second order term already contains many terms

and several correction terms like those mentioned in [73]. These terms arise in

the following scenario. Say we have

[H,ψ(0) + fψ(1) + ...+ f i−1ψ(i−1)] = −[V, ψ̃(i)] (4.81)

where we call ψ̃(i) a putative ith order correction. Problems arise when [H,ψ(i)] = A

for some operator, A, but any potential (i+ 1)th order correction, ψ(i+1), such

that [V, ψ(i+1)] contains A, [V, ψ(i+1)] also contains another operator, B, which,

crucially, does not appear in [H, ψ̃(i)]. To get around this, we add a term, C,

that commutes with V such that there exists a ψ(i+1) such that

[H,ψ(i) = ψ̃(i) + C] = −[V, ψ(i+1)] (4.82)

Since C commutes with V , we can add such a function to the zero mode at any

order and its effects will not be seen until the next order so these corrections

ensure the zero mode commutes with the Hamiltonian up to the correct order.

Even without writing the general nth order term in the zero mode , the form

of ψ(0) has an implication for the zero mode in the anyon chain. A single σz

operator cannot be written in terms of a finite number of two site projectors,

meaning the zero mode can only be mapped exactly to the anyon chain if

the chain is half-infinite i.e. we can see one end of the chain but there are an

infinite number of sites. If we have a half-infinite chain then σzi acting on the
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spin chain has an equivalent operator in the anyon formalism given by

zi =
∞∏
i=1

(zi ⊗ zi+1)

=
∞∏
i=1

P 1
i − (P 0

i + P 2
i )

(4.83)

The other terms that appear in the early terms of the zero mode are of the

form x ⊗ x + y ⊗ y which can be mapped directly to the anyon formalism as

it is expressible in terms of the 2 site projectors.

(x⊗ x) + (y ⊗ y) = P̃+ − P̃− (4.84)

Interestingly, there is no equivalent operator for the symmetry operator, S,

in the anyon formalism. It can be shown that S does not commute with the

group action. Since S flips the spin at every site then it acts as σx ⊗ σx on

each pair of sites which in matrix form is



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


(4.85)

Clearly this cannot be written in terms of the projectors in 4.68 as none of

those can send | ↑↑⟩ to | ↓↓⟩ and vice versa. This makes sense as this alternates

between the internal states of the two dimensional representation which we do

not see in the anyon formalism. However the matrix



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


(4.86)
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can be expressed as P̃+ − P̃−. So the symmetry operator acting on this sub-

space can be written
L
2∏
i=1

P 0
i − P 2

i (4.87)

This operator only acts non-trivially in the anyon chain written in the standard

basis when xi ∈ {0, 2} for every odd value of i. For these states it is an identity

when the last label is 0 and the state is multiplied by −1 when the last label is

2. Recall that in the last section we saw topological degeneracy between states

ending in 0 or 2 and only differing by the last label. It seems logical to extend

S so that every state with xL−1 = 0, 2 is an eigenstate of S with eigenvalue

±1.

Let us take another look at 4.83 for i = 1 to see how the zero mode behaves

in the anyon chain. When f = 0 this operator should be an exact zero mode

so we should see that

[H, σz1] = 0

{S, σz1} = 0

(4.88)

For a finite chain of length L we cannot write σz1 exactly but instead write

Z =
L−1∏
i=1

P 1
i − (P 0

i + P 2
i ) (4.89)

which is actually equivalent to a σz acting at each end of the chain but seeing

how this operator acts should give us some insight into the half infinite case.

Using 4.66 we see that this operator acting on a state |x1x2...xL−1⟩ in the

standard basis has the effect of flipping all labels xi = 0 to xi = 2 and vice

versa up to a sign change. In the dimerized basis it has the same effect except

the flip only occurs at labels xi for even values of i. This operator commutes

with the Hamiltonian for f = 0 but also commutes with S. The zero mode

should anti-commute with S but Z is only equivalent to the zero mode for the

half infinite chain. However we observe something interesting if we examine

what Z does in the half-infinite chain. Before we do that it is prudent to
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introduce the topological symmetry operator [47,76]. This operator is usually

written about in the context of closed anyon chains like those in [59]. They

can be depicted as
j j j

x0 x0x1 x2
(4.90)

The topological symmetry operator creates a charge, l, inside the spine of the

fusion tree. An F-move is then applied to fuse l into the spine of the chain.

Further F-moves move l around the chain, past each fusion vertex before a

final F-move removes l from the chain. This operator is usually denoted Yl

and its matrix elements are given by

⟨x′0, x′1, ..., x′L−1 |Yl|x0, x1, ..., xL−1⟩ =
L−1∏
i=0

(F jxil
x′i+1

)xi+1,x′i
(4.91)

This operator commutes with local projection operators. We can perform a

similar construction for the open anyon chains we have been working with up

to now. As an example we take a chain of length 6 and an anyon of type l as

shown below.
j j j j j j

x1 x3

x2

x4

Q
l

(4.92)

We can use 2.19 to fuse l into the spine of the chain before and after each
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fusion vertex which gives

j j j j j j

j
c

l

l

Q

Q

x4

x2

x2

x4

x1 x3

l

l

l

d

e

f

∑
c,d,e,f

√
dcdddedf

d4l djdx2dx4dQ

(4.93)

We then remove all the bubbles using F-moves. For example, we can change

the above diagram to

j j j j

j
c

l

l

Q

Q

x4

x2

x4

x3

l

l

l

e

f

∑
c,d,e,f

(F ljx1
d )x′2,x2

√
dcdddedf

d4l djdx2dx4dQ

j j

x1

x′2
d

(4.94)
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which can be simplified further using 2.15 to get

j j j j

c

l

l

Q

Q

x4

x2

x4

x3

l

l

e

f

∑
c,d,e,f

(F ljx1
d )x′2,x2

√
dddedf

d3l dx2dx4dQ

j j

x1

d

(4.95)

We remove the other bubbles in the same way and are left with

∑
c,d,e,f

√
df
dldQ

(F ljx1
d )c,x2(F

lx2x3
e )d,x4(F

lx4j
f )e,Q

j
j j j j j

l

Q

x1 x3

l

c

d

e

f

(4.96)

For a chain of length L the matrix elements of this operator, which we will

refer to as Y O
l , are

⟨x′0, x1, x′2, x3, ..., xL−3, x
′
L−2, Q

′ |Y O
l |x0, ..., Q⟩ =

L−2∏
i=0,2,4,...

√
dQ′

dldQ
(F

lxixi+1

x′i+2
)x′i,xi+2

(4.97)

where x0 = j and we refer to the final incoming anyon as xL−1 and Q still

labels the final fusion result of the chain. Now let us consider this operator for

the SU(2)4 chain with l = 2. The matrix elements of Y O
2 are given by

⟨x′0, x1, x′2, x3, ..., xL−3, x
′
L−2, Q

′ |Y O
2 |x0, ..., Q⟩ =

L−2∏
i=0,2,4,...

(F
2xixi+1

x′i+2
)x′i,xi+2

(4.98)
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and x′i = xi × 2. Applying this operator will flip every 0 label on the spine of

the fusion tree, including Q, to a 2 and vice versa. Additionally, each F-symbol

which appears in the matrix elements of Y O
2 is either 1 or -1. The only negative

F-symbol which can appear here is

(F 211
1 )11 = −1 (4.99)

so the state will be multiplied by -1 for each label xi = 1 where i is odd and

xi−1 = xi+1 = 1. An additional factor of -1 is picked up if xL−2 = Q = 1. The

effect of the operator is almost the same in the standard basis. In that basis,

each label xi ∈ {0, 2} is flipped and the state is multiplied by -1 for each pair

of consecutive 1 labels i.e. each pair xi = xi+1 = 1 including if xL−2 = Q = 1.

Interestingly, this is exactly how Z acts on the half-infinite chain. We will

illustrate this with an example. Consider the first 13 sites of a chain in the

dimerized basis as shown below.

1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 2 1 0

1

1

1

1

0

0
b

b

b

| 011111211000...⟩ =

(4.100)

and we act on this state with Z. To do this we first need to know how

Pi = P 1
i − P 0

i − P 2
i acts at each site. Clearly Pi is diagonal for i even. The

first projector, P1, only depends on the labels, x1 and x2. It acts on these
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labels as

| 01⟩ → −| 21⟩

| 10⟩ → | 10⟩

| 11⟩ → −| 11⟩

| 12⟩ → | 12⟩

| 21⟩ → −| 01⟩

(4.101)

For i ̸= 1 and odd, Pi acts on 5 labels

1 1 1 1

xi−2 xixi−3

xi−1

xi+1 (4.102)

Acting on these labels, Pi does the following:

• If xi−2, xi−1 or xi are 0 or 2, then they are flipped.

• If xi−3 = 1 and xi+1 ∈ {0, 2} or vice versa and xi−1 = 1 the state is

multiplied by 1. Otherwise the state is multiplied by -1.

Acting on our sample state with Z will give

1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 2 1 2

1

1

1

1

2

0
b

b

b

Z| 011111211000⟩ =

(4.103)

If we extended the chain, the final 0 label would be flipped and the final

incoming 2 label would be flipped back to 0. It can be seen from this that in
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the half-infinite chain, only labels on the spine will be flipped. So Z and Y O
2

flip the same labels in the half-infinite chain and only differ in their effect on

the final label in the finite chain. Remember that Y O
2 applies a minus sign

for each sequence of labels xi−1 = xi = xi+1 = 1 where i is odd. In our sample

state there are 2 such sequences and the result after acting with Z is positive.

We can change the overall sign by changing the number of these sequences.

For example, consider the states

| 011111211101...⟩

| 011110221101...⟩

| 011011211000...⟩

(4.104)

These have 3, 1 and 0 such sequences respectively. After acting with Z, the first

two will pick up a minus sign while the third will be positive. The operators,

Z and Y O
l , act on the half-infinite chain in the same way. So we might expect

that Y O
l is an exact zero mode with f = 0. We see that this is indeed the case

as in the dimerized basis, Y O
l does not change labels xi for i odd so commutes

with the Hamiltonian when f = 0. This operator clearly anti-commutes with

S and so is an exact zero mode when f = 0. With this in mind we can now

re-write 4.80 in terms of anyonic operators.

ψ(0) = Y O
2

ψ(1) = (
E

1− E2
)(P 0

1 − P 2
1 )Y

O
2,2 + (

1

1− E2
)(P 0

1,3 − P 2
1,3)Y

O
2,1

(4.105)

We introduced some new notation here. The projector, P i
j,k, indicates we are

projecting onto the i fusion channel for the incoming anyons in positions j and

k which may not be nearest neighbours. To do this we braid one of the anyons,

say the one in position k, to position j + 1, then apply the usual projector,

P i
j and then perform the inverse braid operators to return the anyon to its

original position. The operator, Y O
2,i, is the same as Y O

2 except we initially fuse

the additional 2 label with the label xi rather than with the first incoming

label as shown below. It is clear that if Y O
2 is equivalent to σz1 then Y O

2,i is
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equivalent to σzi+1. The matrix elements in the standard basis are given by

⟨x′0, x′1, x′2, x′3, ..., x′L−3, x
′
L−2, Q

′ |Y O
2,i|x0, ..., Q⟩ =

L−2∏
j=i

(F
lxj1

x′j+1
)x′j ,xj+1

(4.106)

So rather than states |x⟩0 = |x1, x2, ..., 0⟩ and |x1, x2, ..., 2⟩ being topolog-

ically degenerate as we initially suspected, |x⟩0 and Y O
2 |x⟩0 are topologically

degenerate.

4.6 Strong Zero Mode in Modified XXZ Chain

In this subsection we alter the Hamiltonian from above and instead consider

H = H0 + fV with

H0 = −
L∑
i=1

z2i−1z2i + z2iz2i+1

V =
L∑
i=1

x2i−1x2i + y2i−1y2i

(4.107)

This is similar to the Hamiltonian for the XXZ chain given in [73] with the

exception that here, increasing the perturbing parameter only introduces σx

and σy terms at alternating sites rather than at every site. In the anyon

formalism, this Hamiltonian is written

H =
L−1∑
i=1

−P 1
2i−1 + P 0

2i−1(1 + f) + P 2
2i−1(1− f) + (−P 1 + P 0 + P 2)2i (4.108)

On even sites this assigns energy -1 to a fusion to a 1 and assigns 1 to a fusion

to 0 or 2. The Hamiltonian acts similarly on odd sites except fusion to 0 and

2 are now assigned values of 1 + f and 1− f respectively.

In [33] it was shown that for a large class of models the only possible

starting point for the zero mode expansion such that

Qψ(0) = −ψ(0)Q (4.109)
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is given by

ψ(0) = z1 (4.110)

For example, this is the case in the Ising chain and gives a zero mode localised

at each edge and no more. For this Hamiltonian, however, there exist multiple

possible starting points such that 4.109 is true. These starting points are given

by

ψ(0) = (z1)
i1(z2)

i1+1Ai22 A
i3
3 · · ·AiL−1

L−1A
iL
L (4.111)

where ik = 0, 1 and

Ak = z2k−1z2k or z2k−1 + z2k (4.112)

For example, some possible starting points are

z1 z2 z2(z5 + z6)z11z12 (4.113)

A different zero mode expansion can be found for each of these starting points

but let us consider

ψ(0) = z1 (4.114)

From this starting point we can write a general kth order term for the zero

mode expansion.

ψ(k) =
k∏
j=1

(x2j−1x2j + y2j−1y2j)z2k+1 (4.115)

which in the anyon formalism is

k∏
j=1

(P 0 − P 2)2j−1Y
O
2,2k+2 (4.116)
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We can see that this expansion satisfies 4.74 as

[V, ψ(k−1)] = −[H0, ψ
(k)] = 2i

k−1∏
j=1

(x2j−1x2j + y2j−1y2j)(x2k−1y2k − y2k−1x2k)

(4.117)

The full expansion of the zero mode can be written for any of the starting

points. To do this, we note that

[H0, Ak] = [V,Ak] = 0 ∀k (4.118)

regardless of which of the two possible forms Ak takes. This means that for

ψ(0) = (z1)
i1(z2)

i1+1Ai22 A
i3
3 · · ·AiL−1

L−1A
iL
L (4.119)

we can write the general kth order term as

ψ(k) = (−1)i1+1

k∏
j=1

(x2j−1x2j + y2j−1 + y2j)z2k+1A
i2
2 A

i3
3 · · ·AiL−1

L−1A
iL
L (4.120)

The factor of (−1)i1+1 comes from the fact that

[V, z2] = −[V, z1] (4.121)

If at least one of the Ak in the expression for the starting point are given by

z2k−1 + z2k then we can construct an exact strong zero mode. If we assume k

is the lowest number for which

Ak = z2k−1 + z2k (4.122)

then ψ(k−1) is the highest order non-zero term in the expansion of the zero
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mode. To see this we write

ψ(k−1) = (−1)i1+1

k−1∏
j=1

(x2j−1x2j + y2j−1 + y2j)z2k−1A
i2
2 A

i3
3 · · ·Ak · · ·AiL−1

L−1A
iL
L

= (−1)i1+1

k−1∏
j=1

(x2j−1x2j + y2j−1 + y2j)A
i2
2 A

i3
3 · · · z2k−1(z2k−1 + z2k) · · ·AiL−1

L−1A
iL
L

= (−1)i1+1

k−1∏
j=1

(x2j−1x2j + y2j−1 + y2j)A
i2
2 A

i3
3 · · · (1 + z2k−1z2k) · · ·AiL−1

L−1A
iL
L

(4.123)

However, this gives

[V, ψ(k−1)] = 0 (4.124)

and so the expansion of the zero mode terminates here, making this an exact

zero mode. Interestingly these exact zero modes correspond to when each

term in the zero mode has an underlying D3 symmetry so the zero mode can

be mapped exactly to the anyon formalism even for a finite chain.

While we have been using the term ”zero mode” throughout this section

we should really be more careful as we should confirm that these expansions

converge before we can call these operators zero modes. Let us consider the

normalisation of the zero mode with ψ(0) = z1. Each ψ(k) in this expansion is

self-adjoint so

ψ†ψ = ψ2 =
2L∑
k=0

fk
k∑
j=0

ψ(k−j)ψ(j) (4.125)

It can be seen from 4.115 that

{ψ(k), ψ(j)} = 0 k ̸= j (4.126)

which gives

ψ2 =
L∑
j=0

f 2j(ψ(j))2 (4.127)

Squaring the general term in 4.115 we see

(ψ(k))2 = 2k
k∏
j=1

(1− z2j−1z2j) = 2k
k∏
j=1

2P̃+
2j−1,2j + 2P̃−

2j−2,2j (4.128)
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This means there will be terms 22k on the diagonal. This means ψ2 should

converge in the L→ ∞ limit if and only if the series

∞∑
j=0

(2f)2j (4.129)

converges which it does if and only if f < 1
2
. This gives the range of parameters

for which the system is in a topological regime. In the limit L→ ∞ we have

ψ2 = 1 +
∞∑
k=1

(2f)2k
k∏
j=1

(P̃+ + P̃−)2j−1,2j (4.130)

This is in contrast to the XYZ strong zero mode written in [73] and the strong

zero modes in the quantum Ising chain as in both of those cases ψ2 ∝ 1 but

in this case, while ψ2 is diagonal, the values on the diagonal can vary. In

particular, in the standard basis, ψ2 = 1 when acting on the subset of states

where xi = 1 for any odd i. When acting on the subset of states where

xi ∈ {0, 2} for all odd i, we have ψ2 = 1 +
∞∑
k=1

(2f)2k. To see this, we consider

how the product in 4.130 acts on a state in the standard basis as in figure 4.1.

Every product in 4.130 begins with (P 0 + P 2)1. In the standard basis this is

simply

(P 0 + P 2)1 = δx1,0 + δx1,2 (4.131)

The operator, (P 0 + P 2)3 is not diagonal but it is when acting only on the

space where x1 ∈ {0, 2}. We have

(P 0 + P 2)3(P
0 + P 2)1 = δx1,0δx3,0 + δx1,0δx3,2 + δx1,2δx3,0 + δx1,2δx3,2 (4.132)

Similarly

k∏
j=1

(P 0 + P 2)2j−1|x1, x2, ..., Q⟩ = |x1, x2, ..., Q⟩ if x1, x3, ..., x2k−1 ∈ {0, 2}

= 0 otherwise

(4.133)
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4.7 Conclusion

In this chapter we calculated a nearest neighbour interaction Hamiltonian for

a Tambara-Yamagami chain. By introducing a staggering of the interaction

strengths we realised that this chain is identical to a Zn chiral clock model.

This led to an interest in investigating anyon chains for strong zero modes.

We found that a Fibonacci anyon chain did not possess strong zero modes

due to a resonance from the degeneracy in the fusion tree but we found nu-

merical evidence for a strong zero mode in an SU(2)4 chain. We were able to

construct this zero mode using the methods in [33] after using a transformation

between SU(2)4 chains and XXZ spin chains. We also constructed a modified

chain with many strong zero modes which could be constructed exactly. We

finished by constructing the SU(2)4 strong zero mode in the diagrammatic no-

tation. This was made possible by the realisation that σz applied to the first

site of the spin chain is equivalent to fusing an extra 2 label into each label on

the spine of the fusion tree.

We now move away from the topic of strong zero modes and venture forth

into the world of tight binding anyon models.
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Chapter 5

Anyonic Tight Binding

In this chapter we construct a tight binding model of non-abelian anyons on a

torus. To do this we review a construction of abelian anyons on a torus, as well

as a construction of fusion trees on a torus. We then construct a rectangular

lattice model for anyons on the torus. While we construct our model on a

torus, we note that the same principles apply to constructing these models on

other surfaces, for example, on a cylinder [77].

For comparison to the results we obtain from the anyonic system, let us first

review a solution of a spinless fermion hopping model with periodic boundary

conditions.

5.1 Tight Binding Model of Spinless Fermions

We consider a 2D, Lx × Ly rectangular lattice occupied by spinless fermions.

We impose periodic boundary conditions. The Hamiltonian in the second

quantisation formalism is

H = −t
∑
<i,j>

(c†jci + c†icj) (5.1)

where c†j, cj are the usual fermionic creation and annihilation operators. The

Hamiltonian is currently written in position space but is actually diagonal in

momentum space. We can write the creation and annihilation operators in
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momentum space

c†j =
1

LxLy

∑
k

e−ik·rjc†k

cj =
1

LxLy

∑
k

eik·rjck

(5.2)

where rj is the vector detailing the lattice position labeled by j and k are the

momentum vectors. We can write the Hamiltonian in momentum space using

the above relations. First we rewrite the Hamiltonian as

H = − t

2

∑
j

∑
δ

(c†jcj+δ + c†j+δcj) (5.3)

where δ are the vectors which indicate the lattice spacing in the x and y

directions. The operator, c†j+δ, creates a fermion at the lattice site, rj + δ. In

momentum space the Hamiltonian is written

H = − t

2LxLy

∑
j

∑
δ,k,k′

(e−ik·rjeik
′·(rj+δ)c†kck′ + eik

′·rje−ik·(rj+δ)c†kck′)

= − t

2

∑
δ,k

(eik·δ + eik·δ)c†kck

= −t
∑
δ,k

cos(k · δ)c†kck

(5.4)

where we have used that

∑
r

ei(k−k′)·r =
∑
j

ei(k−k′)·rj = LxLyδk,k′ (5.5)

For a 2D rectangular lattice

δ ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)} (5.6)

so the Hamiltonian is

−2t
∑
k

[cos(kx) + cos(ky)]c†kck (5.7)
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where

kx =
2πn

Lx
, ky =

2πm

Ly
n,m ∈ Z (5.8)

This gives all of the single particle energies and eigenstates of the system. The

multi-particle energies are all possible sums of the single particle energies while

eigenstates are anti-symmetrized tensor products of single particle eigenstates

with the condition that no two particles have the same single particle eigenstate.

This is due to the Pauli exclusion principle. So we see that the system is easily

solvable due to a single particle translation symmetry in each direction. We

will now go on to construct the equivalent anyon tight binding model where

this is not the case.

5.2 Anyons on a Torus

In this section we provide a mathematical description of a system of anyons

on a torus. The description of abelian anyons on a torus is based on the

material in [77–80] while the equivalent description of non-abelian anyons is

based on [50].

5.2.1 Abelian Anyons

We consider a system of N indistinguishable hard-core particles on a torus T .

The configuration space of this system is given by

Q = (TN −∆)/SN (5.9)

where ∆, known as the diagonal, is the set of all vectors in TN where the

positions of two or more particles coincide. We remove this as we stated

that the particles are hard-core. Taking a quotient by SN , the permutation

group of N particles, makes states which only differ by a permutation of the

particles equivalent, enforcing that the particles are indistinguishable. Moving

a particle along a closed loop in Q must transform the wave-function of the
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Figure 5.1: The effect of braid group generators on particles on a torus.
(a)+(b) Generators {τi} and {ρi} take the ith particle around one of the non-
contractible torus loops. (c) A local exchange of the ith and i + 1th particles
due to σi.

system according to a unitary representation of π1(Q), the fundamental group

of Q. The fundamental group of a space is the group of all equivalence classes

of all loops in the space. Two loops are in the same equivalence class if they

can be smoothly deformed into each other. The fundamental group of Q is

the fundamental group of the torus with N punctures. This is known to be

the N -string braid group of T , BN(T ). The generators of this group can be

written

{τi, ρi, σk; i = 1, 2, ..., N ; k = 1, 2, ..., N − 1} (5.10)

The generators {τi} and {ρi} take the particle i around one of the non-contractible

loops of the torus without encircling any other particles as shown in Figure 5.1.

The generators {σk} perform a local exchange of the particles k and k+1. The

torus braid group is discussed in greater detail in [81]. Here we only mention

the properties of the torus braid group which are necessary to understand the

research in this thesis.

The local braid generators, {σk}, are the same as those on the plane and
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so they satisfy the relations

σiσj = σjσi (i ̸= j ± 1)

σi+1σiσi+1 = σiσi+1σi

(5.11)

The generators, {τi} and {ρi} satisfy

τi+1 = σ−1
i τiσ

−1
i

ρi+1 = σiρiσi

(5.12)

σ2
i = τ−1

i+1ρiτi+1ρ
−1
i (5.13)

To describe abelian anyons on a plane one usually uses a 1D representation of

the braid group such that

σk = eiθ ∀k (5.14)

where θ is the statistical angle of the anyons. For θ = 0/π we get the usual

Bose/Fermi exchange statistics. For a 1D representation of BN(T ), equation

5.13 gives

e2iθ = 1 (5.15)

which only allows for Bose and Fermi statistics. To allow for the more ex-

otic exchange statistics that exist in planar systems, we instead use an M

dimensional representation of BN(T ) and say

σk = eiθ1M×M (5.16)

with 1M×M the M ×M identity matrix. This gives an M component wave-

function

|ψ⟩ =
∑

s,x1,x2,...,xN

ψ(s, x1, ..., xN)| s, x1, ..., xN⟩ (5.17)

where xi are the position vectors of each particle and s ∈ {1, 2, 3, ...,M} is the

”sheet index” which labels the M components of the wave-function. To derive

restrictions on the allowed exchange statistics for this system we first derive,

72



using the equations above, that

τiρj = e2iθρjτi i ̸= j

τiρi = e−2iθ(N−1)ρiτi

(5.18)

Taking a determinant of 5.18 yields

e2iθM = 1 (5.19)

while 5.12 and 5.18 can be used together to show

e2iθN = 1 (5.20)

The statistics of abelian anyons on a torus are restricted both by the dimension

of the representation of BN(T ) being used as well as by the number of anyons

on the torus. To ensure that we use an irreducible representation of BN(T ) we

set M to be the lowest integer such that 5.19 is true. In general we will have

θ = p
q
π for p, q mutually prime integers and M = q. The possible statistical

angles for abelian anyons on a torus are then

θ =
nπ

G
0 ≤ n ≤ 2G− 1 (5.21)

where G is the greatest common divisor of M and N . This is equivalent to

saying that abelian anyons on a torus must fuse to the vacuum. Now we

still need to write a representation for τi and ρi. The relations 5.12 give

expressions for τi+1 and ρi+1 in terms of τi and ρi so to fix the representation

of the braid group we need only define representations of τ1 and ρ1. A choice
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of representation which satisfies all of the above relations is

τ1 =



0 1 0 0 ... 0

0 0 1 0 ... 0

0 0 0 1 ... 0

... ... ... ... ... ...

0 0 0 0 ... 1

1 0 0 0 ... 0



, ρ1 =



c 0 0 0 ... 0

0 c2 0 0 ... 0

0 0 c3 0 ... 0

... ... ... ... ... ...

0 0 0 ... cM−1 0

0 0 0 ... 0 cM


(5.22)

where c = e2iθ. With a representation of BN(T ) fixed, we have all we need to

construct a tight binding Hamiltonian for abelian anyons on a torus. Before

we do this, we will first present a similar theory for N non-abelian anyons on

a torus.

5.2.2 Non-Abelian Anyons

In order to discuss non-abelian anyons on a torus, it is beneficial to return to

the diagrammatic notation introduced earlier. We may construct a system of

N anyons by starting from a system of N anyons on the sphere as in Figure

5.2. The sphere is punctured at the north and south poles and anyonic charges,

an and as, are associated with the north and south poles respectively. These
an

as

Figure 5.2: Constructing a fusion tree for N anyons on a torus in an outside
basis starting from a fusion tree on a sphere.
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punctures are sutured to construct the torus. We only have a consistent theory

after suturing if an × as = 1 + ... i.e. if an and as are each other’s dual.

Figure 5.2 shows a system constructed in an ”outside” basis, so called as

the fusion tree extends outward from the surface of the original sphere and

the punctures at the poles are sutured so that the loop carrying charges an

and as wraps around the outside of the torus. An ”inside” basis is constructed

by instead having the fusion tree descend into the interior of the sphere and

suturing the punctures as in Figure 5.3.

b

b

b

b

b

b

b b

b

b

Figure 5.3: Constructing a fusion tree for N anyons on a torus in an inside
basis.

There are two fusion trees which will prove useful for constructing the

system on a torus.

a1 a2 a3 a4 aN−1 aN

x1
x2

xN−2
xN−1

xN

a1 a2 a3 aN−2aN−1 aN

x1
x2

xN−2
xN−1xN

*

*
(B1)

(B2)
(5.23)

These trees may both be constructed in inside or outside bases. The * label
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indicates that the loop encloses a non-trivial loop of the torus and so does not

result in a tadpole diagram.

In 2.42 we evaluated the quantity

(Sc)ab =
1

D
√
dc

a b

c

(5.24)

These matrices relate fusion trees constructed inside the torus to those con-

structed outside. If we consider a torus with no anyons on the surface then

a fusion tree for this system consists solely of a charge encircling one of the

non-trivial loops. The Hilbert space for this system has one state for each

type of anyon in the theory we are studying provided the theory is modular.

For example, if we consider Fibonacci anyons then the Hilbert space of a torus

with no anyons on the surface is two dimensional with the states corresponding

to a torus with no charge and a torus with a τ charge encircling one of the

non-trivial loops. The inside and outside bases of a system with no anyons are

related by the topological S-matrix

=
∑
b

Sab

a

b

(5.25)

For a system with N anyons this generalises to

=
∑
b

(Sc)ab

a
b

c c

(5.26)

where the left tree corresponds to an inside basis and the right to an outside
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basis. Next we will construct the braid operators acting on the torus fusion

trees. The local braid operators, {σk}, which exchange the kth and k + 1th

anyons counter-clockwise are given by 2.32. As was the case for abelian anyons,

the generators {τi} and {ρi} send the ith particle around one of the non-trivial

torus loops. To construct a representation of these generators, let us consider

a fusion tree in basis B1 constructed inside the torus.

b

b
b

b

b
b

b
ai

b

(5.27)

Say ρi acts on the system as

b

b
b

b

b
b

b

b

ai (5.28)

which we can write as

ai

xi−1 xi

ai

xi−1 xi= [R
aixi−1
xi ][R

xi−1ai
xi ]

(5.29)

The anyon which performed a non-trivial loop has performed a double exchange

with the charge inside the torus. Now we investigate the effect of applying τi
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to a similar state. This looks like

b

b

b

b

b

b

b

b

ai
(5.30)

This can not be written in terms of simple braid operations in the current basis.

However we may use a sequence of F-moves to change to basis B2. After this

we use (Sc)ab to change to an outside basis. Performing the inverse to the

F-moves we just performed leaves us with a state written in basis B1 in an

outside basis. Applying τi to this state now has the ith anyon perform a double

exchange with the charge outside the torus.

ai
b

b
b

(5.31)

We then apply the inverse of all the basis changes we performed to return to

the original basis. This concludes the construction of the braid group gen-

erators for this system. We will construct one more operator which will aid

in constructing a tight binding anyon model on a torus. This is the periodic

translation operator, T̃ , which translates each anyon around the torus by one

site. Let us consider a fusion tree in basis B1 constructed inside the torus.

Then *

T̃ =

*

(5.32)

This operator cannot be written in terms of local braid operations. Instead,
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we consider an operator, T̃ ′, which cyclically permutes all of the labels, ai and

xi. *

T̃ ′ =

*

(5.33)

We can redraw this operator as

*

T̃ ′ =

*

*

= [R
aN āN
1 ]−1T̃

aN aN

aN

(5.34)

So the operator T̃ just cyclically permutes all of the indices of the fusion tree

and the wave-function is multiplied by a phase Raā
1 . The phase is derived by

undoing the twist in aN in the previous diagram.

a a

ā

a

= = R1
aā

(5.35)

where R1
aā = [Raā

1 ]−1. We now possess all the tools required to construct a 2D

tight binding anyon model on a torus.
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5.3 The Model

In this section, we present a prescription for constructing a 2D hopping model

of anyons on a torus. The rules for constructing this model for abelian anyons

were derived by Hatsugai et al. [77, 79, 80]. Their work improved upon a

previous prescription derived by Wen et al. [82], who constructed a similar

model. We present our construction of the model for non-abelian anyons. A

similar lattice construction following the diagrammatic calculus of Pfeifer et al.

is seen in [83], however, in their construction, anyons are allowed to occupy the

same lattice space and only fuse with other anyons on the same site. Here we

have constructed a model where the anyons may not occupy the same lattice

site and all anyons on the lattice fuse into a single fusion tree at all times. The

model consists of an Lx×Ly lattice on the surface of a torus with N anyons on

the lattice. For abelian anyons the Hilbert space consists of the tensor product

of an
(
Lx×Ly

N

)
dimensional lattice space, one state for each choice of the anyons’

positions, and an M dimensional topological space. For non-abelian anyons

the Hilbert space is the tensor product of the lattice space and the space of

all possible fusion trees in our chosen basis which can be formed from the N

anyons. We apply periodic boundary conditions in both the horizontal and

vertical directions since the lattice sits on a torus. The Hamiltonian is

H = −t
∑
<i,j>

Θij(c
†
icj + c†jci) (5.36)

where the sum is over all nearest neighbour pairs, i, j and c†icj annihilates an

anyon at site j and creates an anyon of the same type at site i. The operator,

Θij, applies all of the effects of anyons exchanging or traversing non-trivial

torus loops. To fix a convention for these effects we pick an ordering for the

anyons as in [83, 84].
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1

2

3

4

5

6

25

24

(5.37)
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Any move which changes the order of the anyons will cause anyons to braid.

To visualise this, we insert a vertical branch cut, extending from each anyon.

b

b

b

b (5.38)

If an anyon passes through one of these cuts from left to right then we say

that the anyons have braided clockwise. An anyon traversing one of these cuts

from right to left induces a counter-clockwise braid. When an anyon moves its

corresponding branch cut moves with it. Anyons which are swept by a moving

branch cut are braided with the moving anyon as though they had traversed

the branch cut. For example, consider the state

b

b

b

b b

b

a1

a2

a3

a4

a5

a6
a7

b

(5.39)

and we say a1 hops one space to the right. We see that the first branch cut

it encounters is the one associated with a2 so those anyons are exchanged

clockwise. The anyons, a3 and a4 are swept by the branch cut associated with

a1 so a1 braids counter-clockwise with a3 and then with a4. We also need to

account for the effect of an anyon moving over a boundary and around a non-

trivial torus loop. To do this, we first recall the construction of Hatsugai et al

for abelian anyons before presenting our own construction for general anyon

models. Appendix A shows that our construction is equivalent to the one

of Hatsugai et al when we put Zn anyons on the lattice. Their construction

involves joining all of the branch cuts to a base point, O, as in Figure 5.4.

The nθ labels indicate that the horizontal lines act as branch cuts which have
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b b

b

b

b

b

b

b

A

O
2θ 4θ 6θ 8θ 10θ 12θ

B

Figure 5.4: A lattice of abelian anyons with branch cuts connected to a base
point, O. Each vertical branch cut multiplies the wave-function by e±iθ when
crossed. Horizontal lines cause a phase shift of e±2ilθ when crossed where l is
the number of anyons to the left of the section of the cut which is crossed.

braiding statistics eniθ instead of the eiθ carried by each vertical cut. If an

anyon traverses a line labelled nθ downward then the wave-function picks up

a phase e−niθ. This is called Rule C in [79]. To demonstrate how the wave-

function changes when an anyon hops vertically across a boundary, we consider

the case where the anyon at A in Figure 5.4 hops downward to site B. First

we move the anyon to a virtual site off the lattice

b

b

6θ 8θ

B

(5.40)

The anyon is then moved across the 8θ line and the wave-function picks up a

phase of e−8iθ and the lattice space now looks like

b

6θ 8θ

b

B
(5.41)
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The anyon must now be moved onto lattice site B.

b

b

B

6θ 8θ

(5.42)

This induces a phase shift of e2iθ since the anyon must cross two branch cuts.

The total phase shift due to this hop is e−6iθ. In general, the mth anyon

in the ordering hopping downward across the boundary causes a phase shift

of eiθ(k−2m+2) where k is the number of anyons that lie in the same column

as the hopping anyon. This construction gives a representation of the {ρi}

generators. We now present a rule for anyons hopping horizontally over the

boundary to give a representation of the {τi} generators. Since Rule C gives

a diagonal representation of {ρi}, the representation of {τi} we derive should

not be diagonal. To encode this we remember that the wave-function of this

system includes a sheet index, s, as in 5.17. We say that an anyon hopping

horizontally to the right across the boundary decreases this sheet index by

one. To calculate the phase shift, if any, applied to the wave-function we

consider the case where the anyon in position A in Figure 5.4 hops to the right

repeatedly until it arrives back in its original position. During its journey, the

anyon braids with each of the others counter-clockwise, resulting in an extra

phase of eiθ(N−1). To account for this extra phase factor, when an anyon moves

across the boundary from left to right, the sheet index is reduced by one and

the wave-function gains an extra phase of e−iθ(N−1). This rule is called Rule

B in [79]. Rule B and Rule C are consistent in that each give identical results

applied to systems with periodic boundary conditions in one direction only i.e.

on an annulus/cylinder.

The construction is similar for non-abelian anyons. As before, we consider

a lattice with N anyons with periodic boundary conditions and an ordering

imposed on the anyons. Each anyon has a vertical branch cut associated

with it as before. Our choice of branch cuts is merely a gauge choice. We

83



b b

b

b

b

b b

b

x8 x1 x2 x3 x4 x5 x6 x7 x8

a1 a2
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a5
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Figure 5.5: Non-Abelian anyons in basis B1 in an inside basis.

present a brief argument for this in Appendix B. Local braids are applied in

the same way as the abelian case. When an anyon passes through a branch

cut a local braid operator, σi or σ†
i , is applied to the fusion space for counter-

clockwise/clockwise braids respectively. The difference between abelian and

non-abelian systems is that for non-abelian systems, the local braid operators

do not commute with each other in general so care must be taken to apply

braids in the correct order. To show the effects of an anyon hopping across

a boundary, we consider a system in basis B1 inside the torus as in Figure

5.5. The process of constructing the {ρi} generators is completely identical

to Rule C. For example, if a5 hops downward, it first crosses the line labelled

x4, then braids with a4 and a3 in that order. When a5 crosses x4 we say it

has performed a double exchange with the loop inside the torus and so the

wave-function is multiplied by ([Ra5x4
x5

][Rx4a5
x5

])−1. The minus sign in the power

indicates the anyon performs a double clockwise braid with the inside loop.

This direction of braiding is fixed by our choice of branch cut and ensures a

translational symmetry in the model. We then apply the operator σ3σ4 to the

fusion space. In general, an anyon an hopping downward across the boundary

causes the fusion space to be acted on by

([Ranxn−1
xn ][Rxn−1an

xn ])−1(σn−kσn−k+1...σn−1) (5.43)
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where {an−k, an−k+1, ..., an−1} is the set of all anyons in the same column as an.

To calculate the effect of an anyon hopping to the right across the boundary

we consider a7 in 5.5 moving to the right across the boundary. First, a7 braids

clockwise with a8 and is then translated around the torus to a virtual site to

the left of the lattice. This is done by applying the translation operator, T̃ ,

leaving the lattice in a state

b b

b

b

b

b

b

x1 x2 x3 x4 x5 x6

a1 a2

a3

a4

a5

a6

a8

b

x′7x′7 x8

a7

(5.44)

To move a7 to the appropriate lattice site its branch cut sweeps a1 counter-

clockwise so a7 braids counter-clockwise with a1. In general, an anyon, an,

hopping to the right across the boundary causes the fusion space to be acted

on by

σkσk−1...σ1T̃ σ
†
N−1σ

†
N−2...σ

†
n (5.45)

where {a1, a2, ..., ak} is the set of all anyons in the leftmost column of the

lattice which are earlier in the ordering than the site which an hops to. The

above construction results in a translation symmetry in each direction as will

be discussed in the next section. The above braiding and boundary effects are

all included in Θij in the Hamiltonian.
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Figure 5.6: Action of Tx and Ty

5.4 Translation Symmetry

In his section we demonstrate the translation symmetry of this system. These

symmetries are generated by the centre of mass momentum operators in each

direction, Tx and Ty, which translate each anyon in the system one lattice

space to the right and one lattice space downward respectively. This is in

contrast to a tight binding model of bosons or fermions where there is trans-

lation symmetry in each direction for each individual particle which gives a

simple solution for the model. In the anyonic case, this symmetry allows us to

divide the spectrum into Lx × Ly non-degenerate spectra with Lx and Ly the

lattice width and height respectively. We now show that Tx and Ty commute

with each other and the Hamiltonian, allowing all three to be diagonalised

simultaneously.

5.4.1 [Tx, Ty] = 0

Clearly TxTy and TyTx have the same effect on the lattice space as both oper-

ators shift every anyon one space to the right and one space downward. To

show how these operators act on the fusion space we consider a state

a1 a2 a3 aN−2 aN−1 aN

xN x1 x2 xN−2 xN−1 xN

|ψ⟩ = = |x1, ..., xN⟩

(5.46)
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For any models we consider we take ai = j for all i where j is some anyon type.

Say {ai1 , ..., aik} is the set of anyons on the bottom row of the lattice. These

are the anyons which will perform a loop of the torus upon application of Ty.

Similarly we say {al, al+1, ..., aN} is the set of anyons on the rightmost column

of the lattice. These anyons perform a loop of the torus upon application of

Tx. The lattice space looks like

b

b
b

b

b b b

b

b
b

b

b
b

b

b b

b

aN = aik

al

al+1
al+2

ai2 ai3 ai4

b
b
ai1 (5.47)

We now act on this state with Tx and Ty.

Tx|ψ⟩ = (Rjj̄
1 )

N−l+1CN−l+1|ψ⟩

= (Rjj̄
1 )

N−l+1|xl, xl+1, ..., xN , x1, ..., xl−1⟩
(5.48)

since each anyon that crosses the boundary causes the labels of the fusion tree

to be shifted one place and the wavefunction picks up a phase of Rjj̄
1 . The

operator, C, cyclically permutes the fusion labels by one place. This operator

has the relation with the local braid operators

σnC
m = Cmσ(n−m)modN (5.49)

Acting with Ty on |ψ⟩ gives

Ty|ψ⟩ = [
k∏
s=1

([Raisxis−1
xis

][Rxis−1ais
xis

])−1]σ|ψ⟩ (5.50)
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where σ implements any braids that occur when an anyon crosses the boundary.

Acting with the products of the translation operators we get

TxTy|ψ⟩ = (Rjj̄
1 )

N−l+1[
k∏
s=1

([Raisxis−1
xis

][Rxis−1ais
xis

])−1]CN−l+1σ|ψ⟩

TyTx|ψ⟩ = (Rjj̄
1 )

N−l+1[
k∏
s=1

([Raisxis−1
xis

][Rxis−1ais
xis

])−1]σ′CN−l+1|ψ⟩

(5.51)

where σ′ is the same sequence of braids as σ but each σi in the sequence is

replaced by σi+N−l+1. Using 5.49 we see that Tx and Ty commute.

5.4.2 [H,Tx] = [H,Ty] = 0

Say Ham is the Hamiltonian component which acts on the anyon, am. In

particular we say this is the Hamiltonian component which hops am to the

right and downward. If the translation operators commute with Ham it follows

that they commute with H. Clearly [Ham , Tx] = [Ham , Ty] = 0 if am is not

on the bottom row or rightmost column of the lattice. We now consider the

state ψ from the last section with the condition that aN is in the bottom right

corner of the lattice and {a1, ..., ap} is the set of anyons in the leftmost column

of the lattice.

b

b
b

b

b b b

b

b
b

b

b
b

b

b b

b

aN = aik

al

al+1
al+2

ai2 ai3 ai4

a1
a2

a3

b
b

ap

ai1 (5.52)

We show that [HaN , Tx] = [HaN , Ty] = 0 and it follows that the Hamiltonian

commutes with both translation operators. The operator, HaN , acts on the

fusion space as

HaN |ψ⟩ = (Rjj̄
1 )

p∏
i=1

σp−i+1C|ψ⟩+ ([RjxN−1
xN

]RxN−1j
xN

])−1

N−1∏
i=l

σi|ψ⟩ (5.53)
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We now look at the product of Tx and HaN

TxHaN |ψ⟩ = (Rjj̄
1 )

N−l+1CN−l[

p∏
i=1

σp−i+1]C|ψ⟩

+ (Rjj̄
1 )

N−l+1([RjxN−1
xN

]RxN−1j
xN

])−1CN−l+1

N−1∏
i=l

σi|ψ⟩

HaNTx|ψ⟩ = (Rjj̄
1 )

N−l+1[

p∏
i=1

σN−l+p−i+1]C
N−l+1|ψ⟩

+ (Rjj̄
1 )

N−l+1([RjxN−1
xN

]RxN−1j
xN

])−1[
N−l∏
i=1

σi]C
N−l+1|ψ⟩

(5.54)

Using 5.49 we see that [HaN , Tx] = 0. To show [HaN , Ty] = 0 it is useful to

write these operators using the torus braid group notation as in 5.12. Similar

to 5.49 we have

τnC
m = Cmτ(n−m)modN (5.55)

since we can also view C as a shift of labels, ai → ai+1. We rewrite Ty and

HaN as

Ty|ψ⟩ = σ[
k∏
s=1

τis ]|ψ⟩

HaN |ψ⟩ = (Rjj̄
1 )[

p∏
i=1

σp−i+1]C|ψ⟩+ [
N−1∏
i=l

σi]τN |ψ⟩

(5.56)

Taking the product of these operators we get

TyHaN |ψ⟩ = (Rjj̄
1 )[

p∏
i=1

σi]τp+1σ
′′[
k−1∏
s=1

τis+1][

p∏
i=1

σp−i+1]C|ψ⟩+ Ty|ψ⟩

= (Rjj̄
1 )τ1σ

′′[
k−1∏
s=1

τis+1]C|ψ⟩+ Ty|ψ⟩

HaNTy|ψ⟩ = (Rjj̄
1 )CτNσ

′′′[
k−1∏
s=1

τis ]|ψ⟩+ Ty|ψ⟩

(5.57)

where σ′′′ is the same sequence of braids as σ with the braids corresponding

to τN removed. The sequence of braids, σ′′, is the same as σ′′′ with each σi in
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the sequence replaced with σi+1. The expressions above are equal by 5.55 and

so [HaN , Ty] = 0. We can now simultaneously diagonalise H, Tx and Ty. Next

we will explicitly write the eigenvalues of the translation operators.

5.4.3 Eigenvalues of Tx and Ty

To find the eigenvalues of the translation operators we will first prove that

TLx
x = (Rjj̄

1 )
N × 1

TLy
y = (Rjj̄

1 )
−N × 1

(5.58)

with 1 the identity matrix acting on the full Hilbert space. We first note that

the operators above clearly return all anyons to their original positions, with

each anyon traversing a non-trivial torus loop, so they act like the identity on

the lattice space, meaning we need only investigate how they act on the fusion

space. Acting on a fusion tree, |x1, .., xN⟩ with TLx
x we get

TLx
x |x1, .., xN⟩ = (Rjj̄

1 )
NCN |x1, ..., xN⟩

= (Rjj̄
1 )

N |x1, ..., xN⟩
(5.59)

Applying TLy
y is slightly more complicated. Let us first consider the case where

no two anyons share a column of the lattice. In this case, applying Ty does not

cause any local braids and we can say

TLy
y |x1, ..., xN⟩ = [

N∏
i=1

([Rjxi−1
xi

][Rxi−1j
xi

])−1]|x1, ..., xN⟩ (5.60)

where we say x0 = xN . Using the ribbon property, 2.34, this can be written in

the form

[
N∏
i=1

θxi
θjθxi−1

]−1|x1, ..., xN⟩

= (
1

θj
)−N |x1, ..., xN⟩

= (Rjj̄
1 )

−N |x1, ..., xN⟩

(5.61)
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Now we consider the case where multiple anyons may occupy the same column.

Once again, for the sake of convenience, we revert to the notation from 5.12.

In this notation, TLy
y acting on the state where no two anyons share a column

is given by

TLy
y |x1, ..., xN⟩ =

N∏
i=1

τi|x1, ..., xN⟩ (5.62)

Without loss of generality, let us now consider a state where the first k anyons

occupy the same column. Then we can write

TLy
y |x1, ..., xN⟩ = ([

k−1∏
i=1

σi]τk)
k[

N∏
i=k+1

]τi|x1, ..., xN⟩ (5.63)

The result, 5.58, holds if

([
k−1∏
i=1

σi]τk)
k =

k∏
i=1

τi k ≥ 2 (5.64)

This can be proven by induction. Consider k = 2

(σ1τ2)
2 = σ1τ2σ1τ2 = τ1τ2 (5.65)

using 5.12. Assume the statement is true for k = n. Letting k = n+1 we have

(σ1...σnτn+1)
n+1 = (σ1...σn−1τnσ

†
n)
n+1

= (σ1...σn−1τn)(σ1...σn−2τn−1σ
†
nσ

†
n−1σ

†
n)(σ1...σn−1τnσ

†
n)
n−1

= (σ1...σn−1τn)(σ1...σn−1τnσ
†
nσ

†
n−1)(σ1...σn−1τnσ

†
n)
n−1

= (σ1...σn−1τn)
n(σ†

nσ
†
n−1...σ

†
1σ1...σn−1τnσ

†
n)

= [
n+1∏
i=1

τi]

(5.66)

where we used the fact that σi and τj commute if neither of the anyons ex-

changed by σi are acted on by τj. Thus the result, 5.58 holds. This allows us
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to write the eigenvalues of Tx and Ty as

Px(A) = exp
(2πiA
Lx

+
iarg((Rjj̄

1 )
N)

Lx

)
A = 1, 2, 3, ..., Lx

Py(B) = exp
(2πiB
Ly

− iarg((Rjj̄
1 )

N)

Ly

)
B = 1, 2, 3, ..., Ly

(5.67)

where arg(z) gives the argument of a complex number, z. This allows us to

diagonalise the Hamiltonian in Lx×Ly momentum sectors with centre of mass

momentum K = (2πA
Lx

+
arg((Rjj̄

1 )N )

Lx
, 2πiB
Ly

− arg((Rjj̄
1 )N )

Ly
).

In the following section we will use the translation symmetry to solve the

system with a single anyon on the lattice before examining the multi-particle

system’s level spacing statistics, (LSS). We will calculate LSS for systems of

abelian anyons, systems of Fibonacci anyons and systems of Ising anyons.

5.5 Single Particle Solution and Level Statis-

tics

First let us consider an Lx×Ly lattice on a torus containing a single anyon of

type j. The fusion space of this model is simply the space of all diagrams

j

a
(5.68)

There is one such diagram for each anyon type, a, such that a × j = a + ....

The condition that fusion trees must satisfy the fusion rules of the model in

question is analogous to the condition 5.21 for abelian anyons. In the previous

section we wrote the Hamiltonian for this system as

H = −t
∑
<i,j>

Θij(c
†
icj + c†jci) (5.69)
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where Θ implemented braiding and boundary effects. However, since we don’t

need to consider braiding with only one anyon and crossing the boundary in

either direction just adds a phase, we can write the single particle Hamiltonian

in momentum space just as we did for spinless fermions. This gives

c†j =
1

LxLy

∑
k

e−ik·rjc†k

cj =
1

LxLy

∑
k

eik·rjck

H = −t
∑
δ,k

cos(k · δ)c†kck

(5.70)

For our 2D rectangular lattice we have

H = −2t
∑
k

[cos(kx) + cos(ky)]c†kck (5.71)

For a fermionic system we had

kx =
2πn

Lx
, ky =

2πm

Ly
n,m ∈ Z (5.72)

This is because the translation operators for fermions are such that

TLx
x = 1

TLy
y = 1

(5.73)

However, for our system with a single anyon, 5.58 tells us

TLx
x = (Rjj̄

1 )× 1

TLy
y = (Rjj̄

1 )
−1 × 1

(5.74)

meaning the momentum is now quantised as

kx =
2πn+ arg(Rjj̄

1 )

Lx
, ky =

2πm− arg(Rjj̄
1 )

Ly
n,m ∈ Z (5.75)
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Figure 5.7: Surface plot of the lowest energy states in each momentum sector
of a system of 2 Fibonacci anyons on a 7×7 lattice. The lowest eigenvalue here
is -7.6530, which is in the ( 8π

175
,− 8π

175
) momentum sector. If we take the lowest

eigenvalue of a system with a single anyon on the same lattice and double it,
we get approximately -7.4899, showing that two particle energies cannot be
sums of single particle energies. The lowest energy eigenvalue of the single
particle system lies in the (4π

35
,−4π

35
) momentum sector. Clearly, two anyons

with this momentum cannot have their momenta added to give a centre of
mass momentum ( 8π

175
,− 8π

175
).

This gives single particle energies which are slightly shifted from the single

fermion energies.

Things become much more complicated with multiple anyons. The eigen-

values of a multi-anyon Hamiltonian cannot be written as sums of single anyon

eigenvalues. This is demonstrated in Figure 5.7. This leads us to investigating

the level spacing statistics (LSS) of systems of multiple anyons. The LSS of a

Hamiltonian are used to determine the integrability of a system. In general,

an integrable system will display Poissonian statistics while a non-integrable

system will have Wigner-Dyson statistics [85–88]. GOE (Gaussian Orthogonal

Ensemble) statistics are usually present in a system with some non-unitary

symmetry, such as time reversal symmetry, while GUE (Gaussian Unitary En-
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semble) statistics indicate a lack of any such symmetry [89]. Many 1D anyon

chain models studied so far have been shown to be integrable [59,90–95] while

some recent work has shown a 1D tight-binding model of parafermions has

GOE statistics [44].

We calculate the LSS using the ratio of consecutive level spacings [96, 97].

These ratios, rn, are calculated using

rn =
min(sn, sn−1)

max(sn, sn−1)
(5.76)

where sn = En+1 −En is the level spacing between the n+ 1th and nth energy

eigenvalues. For Poisson statistics the probability distribution of rn is

P (r) =
2

(1 + r)2
(5.77)

while the distributions for GOE and GUE statistics are given by

P (r) ∝ (r + r2)

(1 + r + r2)5/2
(GOE)

P (r) ∝ (r + r2)2

(1 + r + r2)4
(GUE)

(5.78)

up to normalisation. The statistics are only accurate if we first sort the spec-

trum into symmetry sectors and so we sort the spectrum into momentum

sectors. We then calculate the LSS in each momentum sector separately and

use all the statistics to find the final probability distribution.

We calculated the LSS for abelian anyons, Fibonacci anyons and Ising

anyons on a torus as shown in figure 5.8. We found that a system of abelian

anyons with statistical angle, θ = π
3
, displays GOE statistics, suggesting that

this system is non-integrable but possesses some anti-unitary symmetry. We

found this anti-unitary symmetry numerically for this system. The symmetry

operator is given by T = UK. K is the complex conjugate operator where

K|ψ⟩ = |ψ⟩∗ (5.79)
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Figure 5.8: Level spacing statistics of three different systems. These systems
are non-integrable, with abelian anyons with θ = π

3
displaying GOE statistics.

Fibonacci and Ising systems give GUE statistics.

U is the unitary operator which flips the positions of the anyons in a state

about the axis

(5.80)

Additionally, if |ψ⟩ is a state with sheet index, 0, U|ψ⟩ has sheet index 2 and

vice versa. Finally, if the anyons of a state are nearest neighbours and all in the

same column, the state acquires no phase when acted on by U . If no two anyons

share a column, the state is multiplied by −1. Otherwise the state picks up a

phase of e 2πi
3 . If |ψ⟩ is a state with energy, E, and momentum, (kx, ky), then
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T |ψ⟩ has energy, E, and momentum, (−kx,−ky). The system sizes checked for

Fibonacci and Ising anyons in Figure 5.8 displayed GUE statistics, suggesting

those systems are also non-integrable but possess no anti-unitary symmetry.

We can see a similar symmetry to T does not exist in general for non-abelian

anyons since the quantisation of momentum in non-abelian systems means

(kx, ky) and (−kx,−ky) are rarely both good momentum sectors whereas they

are always both good momentum sectors for abelian systems. For systems of

5n Fibonacci anyons, with n an integer, these momentum sectors exist but we

found numerically that the spectra in these sectors are different, leading to

GUE statistics in 5 anyon systems. Calculations were performed with small

system sizes as we used exact diagonalisation to obtain full energy spectra. For

example, a system of 3 Fibonacci anyons on a 5× 5 lattice has a Hilbert space

dimension of 9200. Nevertheless these small system sizes produced remarkably

smooth statistics given the limitations.

5.6 Interactions and Entanglement

In this section we add local interactions between anyons to the hopping Hamil-

tonian. We subsequently cut the system into two cylindrical pieces, trace

out one of them and calculate the reduced density matrix corresponding to

a ground state of the system. We present some entanglement spectra for 4

Fibonacci anyons on a 5 × 4 lattice. We expect to see that these spectra are

described by the conformal field theory spectrum of states on the edge of the

cut [98]. In this case we naively expect to see the CFT spectrum related to a

ring of Fibonacci anyons as detailed in [59].

To include anyon interactions to the model, we write the Hamiltonian as

H = −t
∑
<i,j>

Θij(c
†
icj + c†jci) + J

N∑
i=1

hi (5.81)

where hi gives the interaction between the ith anyon in the ordering and the

anyons one space below it and one space to the right of it. We allow anyons to

97



b
b

b

b

b
b

b

b

b

a1 a2
a3

a4

a5

a6

a7

a8

a9

Figure 5.9: Anyons interact if they are nearest neighbours on the lattice. Here
a3 will interact with a2 and a6 while a7 interacts with a8 around one of the
non-trivial torus loops.

interact if they are nearest neighbours on the lattice as in Figure 5.9. Anyons

may also interact across the boundary. If two anyons are adjacent in the

ordering, then their interaction is calculated as in Figure 4.2. If two anyons

are not adjacent in the ordering but are nearest neighbours on the lattice,

then we hop one of the anyons to a virtual site adjacent to the other, then the

usual local interaction is applied and the anyon which hopped is returned to

its original position. For example, say the lattice space of a state is given by

b
b b

b

b

b

a1
a2

a3

a4

a5
a6 (5.82)

For a4 to interact with a2, we hop it to the right, braiding clockwise with a5

and a6. It then traverses the torus loop, braids counter-clockwise with a1 and

then we can apply a local interaction term to have it interact with a2. It must

then return to its original position. This process acts on the fusion space as

σ4σ5C
†σ†

1h̃2σ1Cσ
†
5σ

†
4 (5.83)

where h̃2 is the local interaction term between the second and third anyons in

the ordering. This interaction Hamiltonian has the same translational symme-

try as the hopping Hamiltonian.
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We now wish to cut our lattice into two cylindrical parts, trace one out and

calculate the reduced density matrix for the remaining part. We will make our

cuts so that each cylinder contains half of the lattice sites, giving

b b

b

b

b

b

b

x1 x2 x3 x4 x5 x6 x7x7

Cut 1 Cut 2Cut 2 (5.84)

This give two cuts by convention. One passes through the final label, xN , while

the other passes through xi for some i ≤ N . This label is x5 in the example

given above. We then perform a partial trace on the lattice space as in [99] and

an anyonic partial trace on the fusion space as in [100]. Let us now calculate

the reduced density matrix for a state, |ψ⟩, of an Lx×Ly lattice with N anyons.

Say k anyons are in the half of the lattice to be traced out.

x1 x2 xN−1

xN

|ψ⟩ =
∑

lA,lB,x

ψlA,lB,x| lA, lB⟩⊗

j j j j j

(5.85)

where A is the space to be traced and B is the space we will be left with

after the partial trace, lA and lB are the positions of the anyons in A and B

respectively and x = {x1, x2, ..., xN−1, xN}. The density matrix for this state
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is given by

x1 x2 xN−1

xN

ρ = |ψ⟩⟨ψ | =
∑

lA,lB,x,
l′A,l

′
B

ψlA,lB,xψ
∗
l′A,l

′
B,x

′ | lA, lB⟩⟨l′A, l′B,x′ |⊗

j j j j j

j j j j j

x′1 x
′
2

x′N

(5.86)

We now cut our system as above, giving

ρcut =
∑

lA,lB,x,
l′A,l

′
B,x

′

ψlA,lB,xψ
∗
l′
A

,l′
B

,x′√
dxk−1

dx′
k−1

dxN dx′N

| lA, lB⟩⟨l′A, l′B |⊗
j j j x̄k−1

x̄′k−1jjj

xN
x′N

j j j

j j j

xN
x′N

xk−1

x′k−1

(5.87)

We now trace over A to get the reduced density matrix, ρB.

ρB =
∑

lA,lB,x,
l′A,l

′
B,x

′

ψlA,lB,xψ
∗
l′
A

,l′
B

,x′√
dxk−1

dx′
k−1

dxN dx′N

⟨lA || l′A⟩| lB⟩⟨l′B |⊗

j j j

j j j

xN
x′N

xk−1

x′k−1

(5.88)

which can be simplified to

ρB =
∑

lA,lB,x,
l′B,x

′

ψlA,lB,xψ
∗
lA,l′

B
,x′d

k
2
j√

dxk−1
dxN

| lB⟩⟨l′B |δx1,x′1δx2,x′2 ...δxk−1,x
′
k−1
δxN ,x′N⊗

j j j

j j j

xN
x′N

xk−1

x′k−1

(5.89)

Having calculated ρB, we can now calculate the entanglement spectrum,

which is just the set of eigenvalues, λi, of ρB. This spectrum is related to the
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energy levels, ϵi, of an ’entanglement Hamiltonian’ [98], HE, at the edge of B

where

ρB = e−HE , λi = e−ϵi (5.90)

We calculated the entanglement spectrum of the ground state of a 5×4 lattice

with 4 Fibonacci anyons, two of which are traced out, for various interaction

strengths as in Figure 5.10. In these calculations, we apply energy -1 to a fusion

of two anyons to the identity and energy 0 to fusion to a τ anyon. With this

convention, J > 0 energetically favours fusion to the identity and we say the

interactions are anti-ferromagnetic (AFM). Similarly, J < 0 favours fusion to

a τ anyon and we say the interactions are ferromagnetic (FM). The spectra are
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Figure 5.10: Spectra of entanglement Hamiltonians with various interaction
strengths. We get linear dispersion relations, particularly for J = −2 and
J = 3. We believe that for larger systems we may be able to identify these
spectra as the c = 7/10 or c = 4/5 CFT spectra. In each case we got the
entanglement spectrum of a ground state of a system consisting of a 5 × 4
lattice with 4 anyons and t = 1. Half of the lattice sites and 2 anyons traced
out.
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sorted by momentum as the remaining cylinder states still have translational

symmetry around the non-trivial loop of the cylinder. The eagle-eyed reader

will notice that we have 15 towers in Figure 5.10 when we might expect 5, one

for each row in the lattice. This is due to different quantisation of momentum

depending on the labels, xk−1 and xN . If xk−1 = xN then the remaining

cylinder state would also make a good torus state and the quantisation of

momentum is the same as for the same state on the torus. If xk−1 ̸= xN then

we can have a different quantisation for each pair, {xk−1, xN}. For the systems

plotted we have

TLy
y = [Rττ

τ ]−2 × 1 (xk−1, xN) = (1, τ)

TLy
y = ([Rττ

τ ][Rττ
1 ])−2 × 1 (xk−1, xN) = (τ, 1)

(5.91)

We see that with interactions turned on, the low-lying states of the entangle-

ment Hamiltonian have a linear dispersion relation, suggesting they may be

described by a CFT spectrum and that the system is in a gapped phase for

each value of J in Figure 5.10. In Figure 5.11 we calculate the energy gap

of several systems, along with the entanglement spectrum of a system with 4

Fibonacci anons on a 5 × 4 lattice with t = 1, J = 10 and 2 anyons traced

out. This figure suggests that a phase transition may occur around J = 7 for

the system size considered in Figure 5.10 when t is fixed at 1 for this system

but system sizes much closer to the thermodynamic limit will be needed to

say anything definitive about the phases of the system. The next step in this

experiment will be to perform this calculation for larger systems and attempt

to verify whether this spectrum can be identified with either of the CFT spec-

tra described in [59] or with some other CFT spectrum. In that paper, the

authors show that the spectrum of a ring of interacting Fibonacci anyons is

given by the c = 7
10

CFT spectrum for AFM interactions and the c = 4
5
CFT

for FM interactions.
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Figure 5.11: Energy gap for 3 systems with J ranging from 0 to 7 and t = 1.
Energy gap appears to close around J = 7 for the 4 anyon systems and later
for the 3 anyon system, indicating a possible phase transition. Obviously much
larger system sizes are needed to draw any solid conclusions. Entanglement
spectrum of a system with 4 anyons on a 5 × 4 lattice with 2 traced out and
J = 10 is shown on the right. The previous structure of the spectrum has been
lost, also indicating a phase transition has occurred.

5.7 Conclusion

In this chapter we constructed a hopping model of non-abelian anyons on

a torus. We showed that this model has a translational symmetry around

each non-trivial torus loop. We calculated the level spacing statistics of this

model with Fibonacci anyons, Ising anyons and θ = π
3
abelian anyons. These

statistics show that each of these systems is non-integrable. We then added

interactions to the Hamiltonian and calculated the entanglement spectrum of

a ground state after cutting the torus into two cylinders. With interactions

turned on, the low lying states of this spectrum display a linear dispersion

relation, suggesting it is possible that the entanglement spectrum is described

by a conformal field theory spectrum.

103



Chapter 6

Conclusions and Outlook

We gave a brief introduction to abelian and non-abelian anyons. We mentioned

the relationship between anyons and topological order before introducing sym-

metry protected topological phases and strong zero modes. From there, we

shifted to a description of the tight-binding model for hardcore particles.

In Chapter 2 we gave a more detailed introduction to anyon models. In

particular, we discussed the fusion vector space of multiple anyons and the

operations we may perform on this space, such as F-moves, inner products

and braiding. We introduced the diagrammatic formalism of anyon models as

described in [20]. The chapter ended with an example of how to resolve the

diagram associated with the ’spectacles diagram’, (Sc)ab.

Chapter 3 was focused on the definition and construction of strong zero

modes. After presenting the definition of a strong zero mode, we described

the quantum Ising chain and performed the iterative construction of its strong

zero modes. This construction is described in full in [28]. We then gave a

description of the Zn chiral clock model. This model is a generalisation of

the quantum Ising chain and its zero modes have been studied in detail, for

example in [28, 31–33].

We made the jump from strong zero modes in spin chains to strong zero

modes in anyon chains in Chapter 4. We constructed Hamiltonians which

model local anyon interactions as in [59]. We went on to impose a staggering

on these Hamiltonians, modelling our system on the quantum Ising chain. This
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approach bore fruit when we constructed such a Hamiltonian for a Tambara-

Yamagami chain. This model is partially defined by the choice of an abelian

group, G. For G = Zn, the Hamiltonian we constructed for this model was

exactly the one defined for the Zn chiral clock model in [28]. This provided

evidence that the staggered Hamiltonian could indeed describe anyon models

with strong zero modes as we had hoped. Emboldened by this, we applied

the construction to more anyon models, namely Fibonacci anyons and SU(2)4

anyons. We showed that a Fibonacci chain constructed this way allowed for

no strong zero modes. Degeneracy along the spine of the fusion tree caused

the degeneracy between states which could be related by a potential strong

zero mode to split at first order. This issue is analogous to the issue of quan-

tum resonance described in [32, 33]. To circumvent this issue, we turned our

attention to the SU(2)4 model. Here, the existence of a non-trivial anyon

with quantum dimension 1 minimised the degeneracy along the spine of the

fusion tree which would, theoretically, protect the degeneracy of states which

were exactly degenerate with f = 0. This proved to be the case as we showed

numerically that the splitting of degenerate states was proportional to f L
2 .

Having produced numerical evidence for the existence of a strong zero mode,

we attempted to construct it. We were able to write the chain Hamiltonian as

the Hamiltonian of a D3-symmetric XXZ spin chain as in [71]. This allowed

us to use the methods developed in [33] to construct the zero mode in terms of

spin operators. To write this zero mode in the diagrammatic formalism, there

remained an issue writing operators that that did not possess a D3 symmetry

in both the spin chain formalism and the anyon chain formalism. This was a

problem as each term in the zero mode contained an operator, σzi , for some

integer, i, which does not possess a D3 symmetry. The solution to this issue

came in the form of an operator constructed identically to the topological

symmetry operator in anyon rings [47,76]. This operator takes an extra anyon

line, running parallel to the spine of the fusion tree, and fuses it with each label

along the spine. This operator, with the 2 anyon in SU(2)4 being used as the
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extra label, is the starting point in the iterative construction of the zero mode.

This operator has the same action in the anyon chain as σz1 in the spin chain.

A similar operator was constructed for each σzi where i > 1. We would expect

a similar construction to be possible for any anyon model with a non-trivial

anyon, say a, with da = 1 and another anyon, j, such that j × j = j + a + ....

This construction could be identical to the one for the zero mode in the SU(2)4

chain if an = a for some n where an = a×a×...×a. Another interesting avenue

to explore would be to investigate if this construction only works with an anyon

of quantum dimension 1 or if there exists a model where this construction with

an anyon of quantum dimension greater than 1 describes a strong zero mode.

In Chapter 5, we switched our focus to tight-binding. We presented a so-

lution for a tight-binding model of spinless fermions. We went on to describe

systems of anyons on a torus using the material in [50, 78, 80]. We then pre-

sented the description of a tight-binding model of abelian anyons on a torus

given in [80]. This laid the foundation for a similar construction for non-

abelian anyons, which we showed in Appendix A is identical to the abelian

construction if we use Zn anyons in our construction. This model possesses

a translational symmetry around each non-trivial torus loop. We defined the

operators which generate this symmetry and verified that they commute with

the Hamiltonian and each other. Using this symmetry, we wrote the solu-

tion of the single anyon system and calculated the level spacing statistics of

multi-anyon systems containing abelian anyons, Fibonacci anyons and Ising

anyons. These statistics showed that a hopping model of ’free’ anyons on a

torus is not solvable in general, in contrast to the same model for bosons and

fermions. The anyons are not totally free as their braiding acts similarly to

the inclusion of an interaction term in a tight-binding model of fermions. On

the topic of interactions, we were able to add a term to the Hamiltonian which

models local interactions between the anyons, similar to the Hubbard model,

although not to be confused with the anyon Hubbard model described in [42].

We performed a basic entanglement experiment on this interacting Hamilto-
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nian. This involved cutting the torus into two cylinders and tracing one of

them out. Calculating the entanglement spectrum of a ground state of the

system with these cuts, one might expect to see that it is described by the con-

formal field theory spectrum of a state living on the edge of the cuts, an anyon

ring in this case [98,101,102]. The spectrum of the interaction Hamiltonian of

a Fibonacci anyon ring was shown to match the spectrum of the c = 7
10

CFT

for anti-ferromagnetic (AFM) interactions or the c = 4
5
CFT for ferromagnetic

(FM) interactions in [59]. We would naively expect our entanglement spec-

trum to be described by one of these spectra, depending on the phase of the

model [91]. Our preliminary results look promising in this regard. Sorting the

entanglement spectra of systems with various interaction strengths by momen-

tum in the direction which was not cut, we find that the low lying states have

a linear dispersion relation. Unfortunately, the system sizes studied are too

small to identify primary fields of the CFT, we can only speculate which states

are descendants of others. Current results were obtained from systems of just 4

anyons. This leaves the obvious future direction of research of either obtaining

time on a supercomputer or optimising our code to the extent that we may

identify the CFT which describes the entanglement spectrum. As well as this,

the development of anyonic tensor network tools [103, 104] in the future may

allow for more possibilities such as producing phase diagrams for this model

with a chemical potential term also included in the Hamiltonian, giving more

insight into the behaviour of non-abelian anyons on a 2D surface.
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Appendix A

ZN Anyon Torus Construction

We demonstrate that our construction of a non-abelian anyon hopping model

on a torus is equivalent to the construction in [79] when the lattice is populated

with ZN anyons. The full list of properties of ZN anyons is listed in [20] but

we list the important properties for our construction here.

Anyon types in this theory are labeled by [a]N where a ∈ Z and [a]N is the

least residue of a modN . In this appendix, we will just say an anyon has type

a when we refer to the anyon of type [a]N . The fusion rules for this model are

[a]N × [b]N = [a+ b]N (A.1)

and so these are abelian anyons. The exchange statistics of this model are

Rab
a+b = exp(2πn

N
iab) n ∈ {0, 1, ..., N − 1} (A.2)

Each of the constructions in this thesis featured lattices with anyons of only

one type. Here we say that all anyons on the lattice are of type a and

Raa
2a = exp(2πn

N
ia2) = eiθ (A.3)

making this a lattice of abelian anyons with exchange angle θ. For this model,

(Sc)ab is only defined when c is the identity. This condition enforces that

the anyons on the lattice must fuse to the vacuum. This is equivalent to
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the condition 5.20 and gives an N component wave-function where the N

components are labeled by the N anyon types of the model. A value of b for

this component is represented by a loop with charge b in basis B2.

2a
3a
4a
5a

1b

(A.4)

This state in basis B1 is given by

a+ b 2a+ b 3a+ b 4a+ b 5a+ b

b (A.5)

and we can perform the lattice construction as

b b

b

b

b

b

a+ b 2a+ b 3a+ b 4a+ b 5a+ bb b

(A.6)

Clearly, exchanging two anyons in the bulk is equivalent to the exchange in the

abelian construction. In the construction of Hatsugai and colleagues, a phase

correction of ei2lθ was applied when the l + 1th anyon in the ordering crossed

the lattice boundary downward. Using the non-abelian anyon construction,
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this correction is

[R
a(la+b)
(l+1)a+b]

−2 = e−i2lθe−i2θ
b
a (A.7)

which is the opposite of the phase applied in the abelian construction. The

direction of this phase is just a choice of convention and the models are equiva-

lent if the phase correction due to a loop in the x direction in our construction

is also the opposite of the phase correction in the abelian construction. The

label b just indicates the sheet index of the wavefunction. Let us now consider

a particle traversing the other non-trivial loop. In the abelian construction this

lowers the sheet index by 1 and applies a phase correction e−iθ(Na−1) where Na

is the number of anyons on the lattice. In our non-abelian construction, we

cyclically permute the labels by one space and apply a phase correction

Raā
1 = e−iθ (A.8)

Using 5.20, this phase correction can be written as eiθ(Na−1), which is the

opposite of the phase given in the abelian construction. Therefore the two

constructions are equivalent.
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Appendix B

Gauge Choice for Hopping

Model of Non-Abelian Anyons

Here, we present a brief argument to show our choice of branch cuts in the

anyon hopping model on a torus is merely a gauge choice and so any hopping

model which satisfies the torus braid group relations, 5.11, 5.12 and 5.13, will

give an equivalent model.

Let us consider a lattice with two anyons, a and b. We say a is at the

lattice point, | i+ y, j − x⟩ and b is at | i, j⟩ where x, y ∈ Z. This is illustrated

in Figure B.1. We consider the scenario where a is earlier than b in our linear

ordering. This gives x > 0 or x = 0, y < 0. For a generic nearest-neighbour

b

b

a

b

Figure B.1: Lattice with anyon b at | i, j⟩ and a at | i+ 2, j − 2⟩. The red line
indicates a possible counter-clockwise loop of a encircling b.

hopping model, the Hamiltonian terms acting which hop a to the right and
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downward along with their Hermitian conjugates are

Ha =U
†
v,y,x| i+ y + 1, j − x⟩⟨i+ y, j − x |+ U †

h,y,x| i+ y, j − (x− 1)⟩⟨i+ y, j − x |

+ Uv,y,x| i+ y, j − x⟩⟨i+ y + 1, j − x |+ Uh,y,x| i+ y, j − x⟩⟨i+ y, j − (x− 1) |

(B.1)

where Uv,y,x and Uh,y,x are unitary transformations applied to the fusion space

which depend on the relative position of a and b. To satisfy the torus braid

group relations, a combination of hopping terms which have a traverse a loop

which encircles b must act on the fusion space with σ2 or σ−2 depending on the

direction of the loop. As in 5.11, σ is the braid group generator which braids a

and b counter-clockwise. We also require that a combination of hopping terms

which have a traverse the loop

b

b

a

b

(B.2)

or any topologically equivalent loop, acts on the fusion space as ρ1. Similarly,

if a traverses a loop topologically equivalent to

b

b

a

b

(B.3)

the fusion space is acted on by τ1. The braid group generators, ρi and τi, are

the same as those given in Figure 5.1. The construction given in Chapter 5

satisfies the torus braid group relations. To arrive at that construction, we
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perform a gauge transformation on Ha and get

H̃a =Vy+1,xV
†
y,xU

†
v,y,x| i+ y + 1, j − x⟩⟨i+ y, j − x |

+ Vy,x−1V
†
y,xU

†
h,y,x| i+ y, j − (x− 1)⟩⟨i+ y, j − x |+ h.c

(B.4)

In Chapter 5, we chose this gauge transformation such that

Vy+1,xV
†
y,xU

†
v,y,x = 1 i+ y ̸= Ly

Vy+1,xV
†
y,xU

†
v,y,x = ρ−1

1 i+ y = Ly

Vy,x−1V
†
y,xU

†
h,y,x = σ y > 0, x = 1

Vy,x−1V
†
y,xU

†
h,y,x = σ−1 y < 0, x = 0, j ̸= Lx

Vy,x−1V
†
y,xU

†
h,y,x = τσ−1 y < 0, x = 0, j = Lx

Vy,x−1V
†
y,xU

†
h,y,x = 1 otherwise

(B.5)

where τ acts similarly to T̃ from 5.32. We can write similar equations so that

the non-trivial loops traversed by b also satisfy the torus braid group relations

and this construction can be extended to give the construction in Chapter 5.

Changing the sites where Vy+1,xV
†
y,xUv,y,x and Vy,x−1V

†
y,xU

†
h,y,x act non-trivially

will give different branch cuts where non-trivial braids are applied.
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