
Improving Authentication for Users via Better
Understanding Password Use and Abuse.

A dissertation submitted for the degree of
Doctor of Philosophy

By:

Hazel Murray

Under the supervision of:

Prof. David Malone

Department of Mathematics and Statistics
National University of Ireland Maynooth

Ollscoil na hÉireann, Má Nuad

January 2021

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Dissemination . 3
1.3 Ethics . 6
1.4 Conclusion . 10

2 Evaluating Password Advice 12
2.1 Introduction . 12
2.2 Related Work . 14
2.3 Collection of password advice . 17
2.4 Categorization of password advice 17
2.5 Discussion of advice collected . 22
2.6 Costs Model . 39
2.7 User study of costs . 43
2.8 Benefits Model . 55
2.9 Discussion . 63
2.10 Conclusion . 74

3 Convergence of Password Guessing to Optimal Success Rates 76
3.1 Introduction . 77
3.2 Related work . 78
3.3 Model . 80
3.4 Proof of Convergence of Password Guessing 82
3.5 Test on Real-World Leaked Password Datasets 87
3.6 Empirical Evidence of Convergence 91
3.7 Improvements to Models . 96
3.8 The Threat of Compromise from a Leaked Sample of Passwords . . 100
3.9 Discussion . 108
3.10 Conclusion . 109

i

Contents

4 Multi-armed bandit approach to password guessing 111
4.1 Introduction . 111
4.2 Related work . 113
4.3 The multi-armed bandit problem 117
4.4 Password guessing problem set up 118
4.5 Maximum likelihood estimation . 119
4.6 Variables in the multi-armed bandit model 124
4.7 Multi-armed bandit Validation . 126
4.8 Discussion of results for simulated password sets 132
4.9 Choosing variables in the multi-armed bandit model 133
4.10 Demographics . 142
4.11 Improving password guessing . 146
4.12 Discussion of Results . 153
4.13 Conclusion . 153

5 Quantifying the costs and benefits of authentication policies 155
5.1 Introduction . 156
5.2 Related work . 157
5.3 Cost and benefit categories . 162
5.4 Model . 162
5.5 NIST authentication policies . 170
5.6 Value of the NIST 2017 policy . 173
5.7 General analysis of security policies 182
5.8 Conclusion . 190

6 Conclusions 192
6.1 Summary . 192
6.2 Challenges and Future Work . 194

A Advice Statements 197

B Password Advice Costs 217

C Password Advice Benefits 237

D NIST Calculations 249

Bibliography 342

ii

List of Tables

2.1 Break down of advice sources. 17
2.2 Categories and the quantity of advice they contain. 19
2.3 Breakdown of advice into statements 21
2.4 Finalized cost categories. 43
2.5 Costs of implementing password advice 52
2.8 Attack types on authentication . 57
2.9 Benefits of implementing password advice 60
2.12 Advice where users and administrators gave differing approval rating . 68

3.1 Spread of loss results for 20 samples of each size n which are guessing
the Flirtlife dataset. 95

3.2 First 10 passwords in the John the Ripper wordlist. 101

5.1 Cost categories as defined in Chapter 2. 162
5.2 Categories of security benefits. 163
5.3 Quantifying functions and variables for policy costs. 169
5.4 Security benefits of the five NIST policies. These do not take into

account the costs of implementing the policies. 176
5.5 Costs of implementation for the five NIST policies for this fictional

company. 178
5.6 Costs to the organisation of implementing the five NIST policies for

this fictional company. 178
5.7 Security benefits of the five NIST policies. These do not take into

account the costs of implementing the policies. 179
5.8 Value of the five NIST policies. This compares the security benefits

and the implementation costs to determine Value. 180
5.9 Value of the five NIST policies. Compares the security benefits and the

implementation costs using composite z-scores 181

D.1 Details for fictional organization. 252
D.2 Attacks success probabilities: statistics needed 255
D.3 Cost probabilities: statistic needed and source 256

iii

Declaration

I hereby declare that I have produced this manuscript without the prohibited
assistance of any third parties and without making use of aids other than those
specified.

The thesis work was conducted from October 2016 to October 2020 under the
supervision of David Malone in the Hamilton Institute and the Department of
Mathematics and Statistics, National University of Ireland Maynooth. This
work was supported by an Irish Research Council 2017 Government of Ireland
Postgraduate Scholarship and a John and Pat Hume doctoral studentship.
The research was supported in part by a research grant from Science Founda-
tion Ireland (SFI) and is co-funded under the European Regional Development
Fund under Grant Number 13/RC/2077.

Maynooth, Ireland,

31st October 2020

Acknowledgement

Thank you to my supervisor, Prof. David Malone, for guiding me through this
process for the last 4 years and being the most supportive advisor anyone could ask
for. Your depth of knowledge, enthusiasm and constant willingness to answer my
endless questions made my research experience enjoyable and rewarding. Thank
you for your constant support of all my endeavours. This made for a truly fulfilling
four years.

A special thank you to everyone in the Hamilton Institute for your friendships. To
Prof. Ken Duffy for letting me cover the Institute in Christmas decorations and
Halloween pumpkins, and to everyone who joined in.

Thank you to Prof. Blase Ur (and Dr. Maximilian Golla) for inviting me as a
visiting researcher to the University of Chicago and adjusting plans to allow me
to be able to work with SUPER Group remotely after COVID-19 struck.

Thank you to Cormac Herley, Principal Researcher at Microsoft Research, and
Dr. Oliver Mason, Associate Professor at Maynooth University, for examining this
thesis.

To my friends, thank you for being there for me. Aoife, Peter, Calum and Kyra
playing tennis kept me going through lockdowns; Emily your postcards are always
a joy to receive; Sinéad, where would I be without you catching my stats mistakes;
Ciara, I loved our refreshing Thursday night sea swims; Kyra, thanks for humour-
ing me with my art project; Anna for dropping baked goods at my door as I wrote
my thesis during lockdown. To all my scouting friends here and abroad, scouts
has been a joy and has provided so many rewarding experiences and skills.

Thank you to my Mam, Eileen, for being a role model and inspiration, and to
Pat for supporting and encouraging me in everything I do. Also to my two sisters
Shona and Ciara.

Finally, thank you to Andy for your continuous support, willingness to proofread
my papers, constant encouragement and generally always being there for me.

v

Abstract

Passwords are our primary form of authentication. Yet passwords are a major
vulnerability for computer systems due to their predictable nature, in fact Florên-
cio et al., conclude that human limitations makes what is often considered to be
“proper password use” impossible [52]. It is vital we improve authentication with
respect to both security and usability. The aim of this research is to investigate
password use and abuse in order to improve authentication for users.

We investigate circulated password advice that claims to help in this security fight.
We find that it is contradictory, often at odds with best practice and research
findings, and can be ambiguous and taxing on users. We complete a user study
investigating user and administrator perceptions of the password advice collected.
We leverage knowledge of security benefits, usability and organisation costs to
investigate the trade-offs that exist when security advice is enforced.

To improve password systems, effective and accurate information is needed re-
garding the prevalence of security vulnerabilities. We develop a guessability metric
which produces guessing success results that are independent of the underlying dis-
tribution of the data. We use this to prove that small password breaches can lead
to major vulnerabilities to entire cohorts of other users. We also demonstrate that
a tailored learning algorithm can actively learn characteristics of the passwords
it is guessing, and that it can leverage this information to improve its guessing.
We demonstrate that characteristics such as nationality can be derived from data
and used to improve guessing, this reduces security in an online environment and
potentially leaks private information about cohorts of users.

Finally, we design models to quantify the effectiveness of security policies. We
demonstrate the value of the NIST 2017 guidelines. We find that if an organisation
is willing to bear costs on themselves, they can significantly improve usability for
their end-users, and simultaneously increase their security.

vi

CHAPTER 1
Introduction

In this chapter, we discuss the motivations behind the work of this thesis and
provide an overview of the material presented in the following chapters. We list the
publications emanating from this work and also the ethical considerations that were
examined. We begin with an overview of the topics completed in this research, the
motivation for their study and the key outcomes of the research.

1.1 Overview
When it comes to passwords, conflicting advice can be found everywhere. Dif-
ferent sources give different types of advice related to authentication. In Chap-
ter 2 such advice is studied. First, using a sample collection of authentication
advice, we observe that different organizations’ advice is often contradictory
and at odds with current research. We highlight the difficulties organizations
and users have when determining which advice is worth following. Conse-
quently, we develop a structure for identifying usability costs of advice. Using
this model we collected information from users about the inconveniences they
experience as a result of each of the security recommendations we collected
from organizations’ websites. Similarly, we model the security benefits brought
by such advice. We then apply these models to our taxonomy of advice to
indicate the potential effectiveness of the security recommendations.

Password guessing is one of the most common methods an attacker will use for

1

1.1. Overview

compromising end users. We often hear that passwords belonging to website
users have been leaked and revealed to the public. These leaks compromise
the users involved but also feed the wealth of knowledge attackers have about
users’ passwords. In Chapter 3, we demonstrate using proofs of convergence
and real-world password data that the vulnerability of all users of a website
increases as a result of a leak of any of the users’ passwords from that website.
We show that a leak that reveals the passwords of just 1% of the users pro-
vides an attacker with enough information to potentially have a success rate
of over 84% when trying to compromise other users of the same website. For
researchers, it is often difficult to quantify the effectiveness of guessing strate-
gies, particularly when guessing different datasets. We construct a model of
password guessing that can be used to offer visual comparisons and formulate
theorems corresponding to guessing success.

We have lists of leaked password sets, dictionaries of words, and demographic
information about the users, but we don’t know which dictionary will reap
the best rewards when guessing a password set. The multi-armed bandit is a
mathematical interpretation of the problem a gambler faces when confronted
with a number of different options which each output a reward with a certain,
previously undisclosed, probability. The gambler wants to explore different
machines to discover which machine offers the best rewards, but simultane-
ously wants to exploit the most profitable machine. A password guesser is
faced with a similar dilemma. In Chapter 4, we provide a framework for us-
ing the multi-armed bandit problem in the context of the password guesser
and use some examples to show that it can be effective. This demonstrates
that an adaptive learning strategy is possible in real-time in password guess-
ing systems. We also show that this method can identify the nationality of
users in a password set as it guesses, and that leveraging this information will
improve guessing over a generic ranked passwordset. Even when language is
not a factor.

Authentication is integral to our online world. Millions are spent worldwide by
organizations to achieve secure authentication. Yet we regularly see attacks
which expose weak security practices. In Chapter 2, we showed that security
advice relating to authentication given by one organization, can directly con-
tradict advice given by another. There is currently no general framework an
organization can use to determine what authentication practices are good for

2

1.2. Dissemination

them or which are bad. In Chapter 5, we introduce methods for quantifying
the trade-off that exists between the security benefits and usability costs for
authentication practices. We show how these models can be compared to pro-
vide an organization with information on the best authentication policies to
implement, taking into account their own budget and priorities. We leverage
this model to compare the NIST 2003 Electronic Authentication Guidelines
with the NIST 2017 Digital Identity Guidelines. We demonstrate that a one-
size fits all approach is unreasonable for usable security and that business size
and priorities play a crucial role in determining effective security practices.

The appendices to this thesis include supplementary information related to
aspects of Chapter 2 and Chapter 5. Appendix A, lists each piece of advice
that was collected for Chapter 2. The advice is sorted into categories which
are listed alphabetically. Appendix B, contains impressions, characteristics
and notable respondent comments related to the costs that were identified
by users and administrators as part of our user study. Appendix C, provides
the rationale for which security benefits apply to each advice statement we
collected. Finally, in Appendix D we describe in detail the methods and statis-
tics used for assigning benefits and costs to the five NIST policies evaluated
in Chapter 5.

1.2 Dissemination
In this section, we will describe the outputs and dissemination of the work
described in this thesis.

1.2.1 Publications
The following publications have resulted from this work:

1. Murray, H. and Malone, D., 2017, June. Evaluating password advice.
In 2017 28th Irish Signals and Systems Conference (ISSC) (pp. 1-6).
IEEE.

2. Murray, H. and Malone, D., 2018, August. Exploring the impact of pass-
word dataset distribution on guessing. In 2018 16th Annual Conference
on Privacy, Security and Trust (PST) (pp. 1-8). IEEE.

3

1.2. Dissemination

3. Murray, H. and Malone, D., 2020. Convergence of Password Guessing
to Optimal Success Rates. Entropy, 22(4), p.378.

4. Murray, H., Horgan, J., Santos, J.F., Malone, D. and Siljak, H., 2020.
Implementing a Quantum Coin Scheme. In 2020 31st Irish Signals and
Systems Conference (ISSC) (pp. 1-7). IEEE. (Completed during PhD,
work not included in this thesis).

5. Murray, H. and Malone, D., 2020. Multi-armed bandit approach to
password guessing. In Who Are You?! Adventures in Authentication
Workshop

6. Murray, H. and Malone, D., 2020. Characteristics and compromises:
password guessing using a multi-armed bandit. ACM Transactions on
Information Forensics and Security, In Review.

7. Murray, H. and Malone, D., 2020. Costs and benefits of authentica-
tion advice. ACM Transactions on Privacy and Security (TOPS), In
Review.

1.2.2 Conferences and talks
The research in this thesis has been presented to the following audiences:

Thesis in 3 National Final, Dublin. 7th November 2016. Three minute
presentation of my research. Prize for best online submission.

SIAM: Society for Industrial and Applied Mathematics, National Uni-
versity of Ireland, Galway. 26th May 2017. Poster presentation.

Data Summit, Department of the Taoiseach, The Convention Centre, Dublin.
15th June 2017. Poster Presentation.

ISSC: Irish Signals and Systems Conference, Killarney, Co. Kerry,
Ireland. 20th–21st June 2017. Presentation of research paper “Evaluating
Password Advice”. Winner of Best Student Paper.

USENIX Security Symposium, Vancouver, Canada. 16th–18th August
2017. Poster presentation.

Connect 2017, Maynooth University Commercialisation Event, Carton House
Hotel. Three minute thesis. 23rd October 2017. Overall winner.

4

1.2. Dissemination

16th Annual Conference on Privacy, Security and Trust, Belfast,
Northern Ireland. 28th–30th August 2018. Presentation of research paper
“Exploring the Impact of Password Dataset Distribution on Guessing”.

SecHuman Summer School, Ruhr University, Bochum, Germany. 2nd–6th
September 2018. Presented a lightning talk “Password Advice: Cost Benefit
Modeling”.

HEAnet Conference, Galway, Ireland. 7th–9th November 2018. Speaker.
“Password policies: Recent developments and possible appraise.”

PasswordsCon, Stockholm, Sweden. 19th–20th November 2018. Speaker.
“Advice is like Mushrooms, the wrong kind can prove fatal”.

Irish Mathematical Society meeting, NUI Galway. 5th–6th September
2019. Invited Speaker. “Convergence of password guessing to optimal success
rates”.

Hamilton student seminar series, Hamilton Institute, Maynooth Univer-
sity. 15th October 2019. Speaker. “Penny-wise and pound-foolish: quantify-
ing the effectiveness of password advice policies”.

ISSC: Irish Signals and Systems Conference, Virtual, Letterkenny Insti-
tute of Technology, Co. Donegal, Ireland. 11th–12th June 2020. Presentation
of research paper “Implementing a Quantum Coin Scheme”. Runner up Best
Student Paper.

Who Are You?! Adventures in Authentication Workshop (WAY),
Virtual. 7th August 2020. Presentation of research paper “Multi-armed ban-
dit approach to password guessing”.

PasswordsCon, Virtual, Stockholm, Sweden. 23rd–24th November 2020.
Speaker. “Password guessing using the Multi-armed bandit”.

1.2.3 Additional outputs
The following are the list of additional outputs that have resulted from this
PhD research:

• Taxonomy of 272 pieces of password advice grouped into categories
such as: composition, storage, encryption, and expiry. Available on

5

1.3. Ethics

Github [111] for use by future researchers.

• Collection of anonymous responses from users and administrators re-
garding the costs of following advice and their approval of this advice.
Archived and publicly available on Gihub for future analysis [112, 113].

• Creation of 5 Masters level MOOC courses covering Public Key Cryp-
tography and Security Protocols for Dublin City University.

• Member of Poster Jury for the 16th Symposium on Usable Privacy and
Security (SOUPS) 2020. 10th–11th August 2020. Boston, MA, USA.
Co-located with the annual USENIX Security conference.

• Program Committee for 2020 WAY Who Are You!? Adventures in Au-
thentication, SOUPS workshop. 7th August 2020.

1.2.4 Funding
This research received the following funding:

John and Pat Hume Doctoral Studentship. Accepted 2016-2020, superseded
by IRC GOI Scholarship in 2017.

Irish Research Council Government of Ireland Postgraduate Scholarship. Ac-
cepted 2017-2020.

CONNECT Funded Researcher. Duration 2016-2017, supplement to John and
Pat Hume Scholarship.

Travel bursary to attend SIAM conference. Date: 26th May 2017.

Scholarship to SecHuman Summer school, Germany. Date: 2nd–6th Septem-
ber 2018.

1.3 Ethics
There are a number of ethical questions we considered before embarking on our
research. Firstly, the use of illegally leaked password datasets and secondly
the ethics of a users survey of opinions on costs of password advice. For
both we applied and successful received research approval from our university
Ethics Review Board. We will discuss the risks and mitigation for each of
these separately as each is worthy of discussion.

6

1.3. Ethics

1.3.1 Ethics of collecting and using leaked password
datasets

As part of our research we collected password datasets that had been com-
promised and were subsequently leaked to the public. There arises an issue
of privacy and security as a result of collecting and analyzing these password
databases. We used the current best practice to minimize any harm associated
with using this data. This is an account of our ethical considerations in line
with our Research Ethics Board and [160].

Stakeholders The stakeholders in this scenario are the users whose pass-
word has been included in the leaked password dataset. Also the organization
from which the passwords were leaked.

Informed consent It is not practical to gather consent from the stakehold-
ers affected. The password datasets we use are already accessible to the public
using common search engines. Our work is not the first publication to refer-
ence these specific password datasets [172], so we know the existence of the
leaks is already known.

Harms The passwords leaked could still be in use by individuals. The pass-
words themselves could contain personal information. In some cases the leaked
database includes other personal details such as email addresses or names.

Safeguards We recorded the frequency with which each password occurred
in the database and then ranked these frequencies. This was the only infor-
mation we needed to retain. Therefore, we removed the personally identi-
fying information, usernames and emails, from our datasets before analysis.
In addition, the actual passwords leaked do not appear in our publications.
(We mention that the password “123456” appeared 290729 times in the rock-
you.com password dataset since this has been published previously by other
researchers [98, 184].)

Public interest Attackers have access to these password datasets and likely
structure their attacks using the knowledge gathered from them. Therefore it
is in the public interest for our analysis and defenses to be derived using the

7

1.3. Ethics

Figure 1.1: Infographic with instructions for users for the survey

knowledge we can glean from these available password datasets. The use of
these datasets by multiple researchers is positive for reproducibility and offers
advantages over “generated” passwords created by participants in controlled
studies [46].

1.3.2 Ethics of authentication costs survey
In my research we are interested in the costs that users face as result of fol-
lowing password advice and requirements. We created a series of surveys for
administrators and users to complete. These surveyed the severity and fre-
quency with which they experience costs and inconveniences as a result of
authentication advice. We also asked for comments and whether they ap-
proved of the given piece of advice. It was an anonymous survey.

Figure 1.1 shows an infographic providing users with an explanation of how
to complete each survey question.

This research was approved by the Maynooth University Ethics Review Board.
The following are the key considerations that were made in relation to this

8

1.3. Ethics

survey:

How will participants be recruited? We used a snowball sampling tech-
nique. Initially circulating the survey to contacts in industry and in the general
population via social media and other means and encouraging them to recruit
future subjects from among their acquaintances.

Who will the participants be? Participants will be a mixture of end
users, computer administrators/security personnel.

Justification for numbers if applicable: We have no set numbers on the
survey. However, we hope to recruit 50 participants including both adminis-
trators and end users.

Will participants be remunerated and if so in what form? No

Conflict of interest? It is possible that we will recruit a disproportionate
number of participants who have a vested interest in security. However, we
are interested in whether we have missed any categories of costs. Therefore,
this should not be a problem. If they agree with our assessment that is useful,
but we are more interested in knowing whether we have missed categories of
costs so their deeper security knowledge would be beneficial.

Potential Risks: It is possible that participants who have had a frustrating
experience with an authentication mechanism may use the survey to express
their frustration.

We have provided the advice as collected from websites and have not expressed
opinions in relation to it. We are asking for opinions and frustration is one
of these opinions. We are not enforcing the authentication advice on the
participants in the survey. Given that we are trying to understand the costs
of authentication, it is possible such participants may find the opportunity to
express frustration cathartic.

Potential Benefits for this Research: Benefits to participants: In our
previous research we identified that large burdens are placed on users as part
of authentication procedures. Participants in this study will be given the

9

1.4. Conclusion

opportunity to voice the costs they experience as a result of authentication
advice.

Benefits to usable security research: Our research project offers the first en-
compassing insight into the costs associated with authentication advice. Using
literature reviews and the user insights gained from this survey, this is the first
piece of work categorising the costs of authentication advice. It will provide
a source of information for security researchers who are trying to develop au-
thentication mechanisms that offer both security and usability for end users.
This survey will indicate the shortcomings of current usability goals and po-
tentially provide inspiration for how to rectify these.

Benefits to wider society: The wider goal of this research is to investigate the
trade-offs between the costs and benefits of authentication security advice. In
the past, research has shown that advice such as “regularly change your pass-
word” (i.e. change it every 90 days), offers little security advantage but results
in significant inconveniences to users. Thus the usability does not trade-off
well in terms of the security gained. We envision our research providing direc-
tion for security administrators so that they can enforce advice which will have
a tangible benefit to the security of their organization, for minimum impact
on their employees and users.

Risk/Benefit Analysis: There are few risks associated with our research
and the information we learn will be valuable for improving authentication
for end users, for making authentication procedures cost/time effective for
organizations and providing security specialists and researchers an insight into
the shortcomings of current advice in providing usability and security.

The data we collect is anonymous and it should not be possible to use it to
identify an individual or their security practices.

1.4 Conclusion
In this chapter we have provided an overview of the work that is included in
this thesis. We also listed key outputs of the research including publications
and datasets. Finally, we provided a discussion of the ethical considerations
associated with our work. We provided information regarding the steps taken
to mitigate harm and the potential benefits of the work.

10

1.4. Conclusion

The rest of this thesis continues as follows. Chapter 2 investigates circulated
password advice. It includes input from user studies and describes models for
categorizing the costs and security benefits of this circulated authentication
advice. In Chapter 3, we construct a metric for measuring success in pass-
word guessing. We leverage this metric to provide proofs of convergence which
demonstrate the increased vulnerability of all users of a website as a result of
a leak of any users’ passwords from that website. In Chapter 4, we provide
a framework for using the multi-armed bandit problem in the context of the
password guesser and use real world examples to demonstrate its effective-
ness. Finally, in Chapter 5 we introduce methods for quantifying the trade-off
that exists between the security benefits and usability costs for authentication
practices. We show how these models can be compared to provide an orga-
nization with information on the best authentication policies to implement,
taking into account their own budget and priorities. We leverage this model
to demonstrate the effectiveness of the NIST 2017 Digital Identity Guidelines
in comparison to the NIST 2003 Electronic Authentication Guidelines.

In each chapter we include a literature review of related work and a discussion
of the results.

11

CHAPTER 2
Evaluating Password Advice

When it comes to passwords, conflicting advice can be found everywhere. Differ-
ent sources give different types of advice related to authentication. In this chapter
such advice is studied. First, using a sample collection of authentication advice, we
observe that different organisations’ advice is often contradictory and at odds with
current research. We highlight the difficulties organisations and users have when
determining which advice is worth following. Consequently, we develop a structure
for identifying costs of advice. Our model incorporates factors that affect organ-
isations and users, including, for example, usability aspects. Similarly, we model
the security benefits brought by such advice. We then apply these models to our
taxonomy of advice to indicate the potential effectiveness of the security recom-
mendations. We conduct a user study to inform the costs involved and to develop
our model. We find that most of the advice places large burdens on humans, both
system administrators, and end-users. Over 85% of the costs we identified related
to the need for additional human labour or effort. This chapter is based on research
published in [114] and presented at the 2017 USENIX Security Symposium [166].

2.1 Introduction
Password security is an essential part of our online security. However, the
advice and restrictions placed on passwords have made them a source of con-
siderable inconvenience for users [1]. Rules introduced around passwords and

12

2.1. Introduction

other authentication procedures sometimes seem unsupported by research and
their security objectives can be unclear [181].

In his 2003 book “Beyond Fear”, Schneier explains that “almost every security
measure requires trade-offs. These trade-offs might be worse usability of a
system, additional financial costs or a decrease of security in another place”. In
this chapter we delve deeper into the trade-offs and effects of security policies
and discover whether decreases to usability are justified by security increases.

Understanding the extent of the costs to the user or organisation and trading
these off for the benefits is important if we envision a user and organisation
as having a fixed amount of effort they are willing to exert for their security.
Wasting a large amount of this compliance budget [9] with advice that is high
cost and low impact means other advice with more effective benefits might
get pushed aside. This research highlights the often-hidden usability costs of
authentication security policies.

In this chapter, we describe our collection of security advice and discuss a
method of categorizing this advice. We also introduce a provisional structure
for identifying categories of costs. We then create cost and benefit models
which can be used to evaluate authentication advice. We use these models to
evaluate the 270 pieces of authentication advice we collected. We discuss the
trade-off which takes place between the costs and the benefits for each piece
of advice and offer insight into the general trends in the costs and benefits of
authentication policies. The work in this chapter is published in part in our
2017 conference paper [114].

In Section 2.3 we describe our method for collecting authentication advice, in
Section 2.4 we describe the categorization of the advice and our method for
representing the advice in tables. In Section 2.5, we discuss the characteristics
of the advice we collected, with particular emphasis on its relation to current
literature. In Section 2.6 we define our method for identifying categories of
costs that exist for authentication advice. In Section 2.7, we describe the set up
of our user study which investigates how users and administrators are affected
by the need to follow or implement security advice. The results of this user
study are represented in Table 2.5 and described in Appendix B. Section 2.8
outlines our model of the benefits of authentication advice. Further details
on the assigned benefits of advice are available in Appendix C. Section 2.9

13

2.2. Related Work

discusses these identified costs and benefits. In this section, we also identify
patterns and traits in the costs and benefits identified.

2.2 Related Work
Research into areas of authentication security is regularly conducted. Re-
searchers are interested in; guessing password [83], password reuse [170, 57]
and alternatives to passwords [13, 154], among many other areas.

Researchers have been interested in modelling and improving password guess-
ing for a long time. The first strategic methods used dictionary attacks and
were proposed by Morris and Thompson in 1979 [106]. These are still widely
used today in the form of John the ripper [80] and Hashcat [63]. Users’ pass-
words are inherently easy to guess as they often take predictable forms. In
2012, Malone and Maher investigated the prevalence of high frequency pass-
words in datasets [98]. They found that these passwords were often simple
patterns such as “123456” and “000000” and that they often follow a theme re-
lated to the service they were chosen from. For example, a common LinkedIn
password is “LinkedIn”. It is possible for controls to be put in place to mit-
igate this, such as blocklisting common passwords or installing a password
strength meter to guide users away from weak passwords. Kelley et al. looked
at a method of computing the expected number of guesses before a certain
password is compromised [83]. They used this guess-number calculator to
model the security that is offered by different composition and blocklisting
restrictions.1 Ur et al. in 2012 measured users’ reactions to password strength
meters [163]. They found that passwords created when a stringent password
meter was in place had an increased resistance to password cracking than
those created with no meter in place. However, they also reported that users
found these stringent meters annoying and that it led to them taking more
time to create a password. Here we see a direct trade off between usability
and password security.

In 2013, Nithyanand and Johnson studied the password habits of 20 par-
ticipants [123]. They reported that 19 of 20 participants said they reused
passwords for multiple accounts. In 2014, Das et al. estimated that 43–51%

1For example, your password must contain upper case and lower case letters, numbers
and symbols, or, your password must be at least 16 characters long.

14

2.2. Related Work

of users re-use passwords across sites [34]. They created a cross-site guessing
algorithm which can use a users’ leaked password from one site to guess their
potentially similar or modified passwords on another site. In 2018, Wang et
al. conducted a large scale empirical analysis of password reuse [170]. They
studied a dataset of 28.8 million users across 107 services over 8 years. They
observed that 38% of the users directly reused the same password at another
site and a further 21% of users altered and then reused the same password at
a new site. Advice regarding password reuse is evidently regularly disregarded
by users. To protect their users, some providers monitor black-market stolen
password databases and notify their users if they notice a password which is
currently in use for that user on their service. In 2018, Golla et al. studied
these notifications and investigated user perceptions showing that 84.5% of
users self-reported that they would intend to take action within 24 hours of
seeing the notification [57].

Passwords are not the only form of authentication, though they remain the
most prevalent. Bonneau et al. completed a comprehensive study of password
alternatives including: password managers, federated single sign-on, graphical
passwords, one-time passwords, hardware tokens, phone-aided schemes and
biometrics [13]. They consider each authentication method under the head-
ings of DUS: deployability, usability and security. In this 2012 analysis, they
found that none of these alternative methods retained the full set of benefits
that can be offered by standard text-based passwords. In 2011, Stajano intro-
duced a hardware token called Pico [154]. It was designed to replace passwords
and transform the current “something you know” authentication question into
a “something you have” question. Rather than providing a usability security
trade-off, Pico claimed to offer greater usability and greater security. However,
in Bonneau et al.’s analysis it fell short on deployability. In 2017, inspired by
Pico, Peeters and Grenman introduced n-Auth [130]. N-Auth is an authen-
tication solution designed to work with any number of accounts and using a
users’ mobile device. It claims to solve many of the deployability issues which
surfaced for Pico, potentially offering deployability, security and usability in
a single protocol. Also in 2017, Halunen et al. extended Bonneau et al.’s
work evaluating password alternatives [61]. They expanded the deployability,
usability and security metrics introduced by Bonneau et al. and used the five
categories: flexibility, security, non-intrusive, usability and privacy.

15

2.2. Related Work

Authentication policies place a large burden on users and organisations [75].
In the aptly titled paper “The true cost of unusable password policies: pass-
word use in the wild”, Inglesant and Sasse [75] find that users are generally
concerned with maintaining security, but that while an organisation or user
may want to enforce strong security, if the time and monetary constraints are
too high then it might not be feasible. Redmiles et al. show that the quantity
of advice that users are given is too broad and that even experts struggle to
prioritise it [135]. Adams and Sasse [1] find that low motivation and poor un-
derstanding of the threats lead users to circumvent password security policies.
Beautement et al. find that bypassing security policies is a widely employed
practice [9]. They introduce the idea of a compliance budget, which formalizes
the understanding that users and organisations do not have unlimited capacity
to follow new instructions and advice.

Herley [66] argues that a users’ rejection of security advice is rational from
an economic perspective. Herley quantifies the costs versus benefits for three
specific authentication guidelines: password rules, phishing site identification
advice and SSL certificate warnings. Redmiles et al. show that when partic-
ipants are explicitly aware of security risks and costs they will likely make a
rational (utility optimal) security choice [134]. This provides evidence that
the user will follow a security policy that they perceive to be beneficial. This
encourages the use of clear policies which emphasise a benefit for users that
can be seen as a counteraction for the costs they will be expected to bear.

Braz et al. [17] propose a usability inspection method which can be used to
compare the security problem to the usability criteria for online tasks such
as; authenticate yourself, transfer funds or buy a concert ticket. Shay and
Bertino [148] and Arnell et al. [6] have built simulations to model the costs
versus the benefits of complexity rules, throttling and regular expiry. Shay and
Bertino explain that security is an economic as well as a computer problem.

In this chapter, we demonstrate that security advice can be ambiguous, con-
tradictory and at times may not even have any clear benefits. We expand on
current work by defining a formal approach to identifying costs of security ad-
vice and instigate a user study to identify the costs that apply to a large range
of authentication advice. We also apply a simple framework for analysing the
authentication related security benefits of advice. This allows us to identify

16

2.3. Collection of password advice

costs and benefits for all classes of authentication security advice.

2.3 Collection of password advice
To begin studying password advice, we first needed to collect a selection of
the advice that is distributed to users. We primarily used Internet searches to
collect password advice, but also looked at advice given by standards agencies
and multinational companies. We attempted to recreate the actions an indi-
vidual or organisation might take when seeking to inform themselves about
proper password practices. As such, while the advice given in academic papers
might be more considered, if it was not easily accessible, we did not include
it in our study. In total, we collected 270 pieces of password advice from 20
different sources. The 270 pieces of advice are shown in Appendix A and the
types of sources from which the advice was gathered are shown in Table 2.1.

An interesting application of our work is the simplification of visualizing the
costs and benefits of password advice. This can be applied to other advice we
know is implemented that was not collected in our survey. Out of curiosity
we added “Do not allow users to paste passwords”. This has been discussed
online as a piece of bad advice which unfortunately became common practice,
but has no discernible security ramifications [73].

Table 2.1: Break down of advice sources.

Source Number
General articles 6
Multinational companies 5
Security specialists 5
Universities 4

2.4 Categorization of password advice
To extract meaning from the pieces of advice that we collected, we systemat-
ically subdivided the advice into categories. Within each category we created
statements, which generalized the recommendations pertaining to each cate-
gory.

17

2.4. Categorization of password advice

2.4.1 Method of categorization
Our first step after collecting the advice was to group it into categories. For
this we considered each piece of advice individually. The first pieces of advice
we examined suggested our starting categories. From there, each piece of
advice was either included in one of our existing categories, expanded the
scope of an existing category or created a new category to suit it. For example,
when approaching a piece of advice which said “Use a unique password for each
of your important accounts” we created the category Reuse across Accounts.
However when a second piece of advice stated “Don’t recycle passwords” we
altered the name of the category to be the more general Password reuse. As
an example, the first two columns of Figure 2.1 shows the seventeen pieces of
advice which became grouped under the category Password reuse. Appendix A
shows the grouping for all pieces of advice gathered.

In total, we identified 27 categories shown in Table 2.2. The categories are
listed in two columns; one showing categories containing advice aimed at users
and the second showing advice aimed primarily towards organisations. Also
included are the number of pieces of advice under each category.

We collected 179 pieces of advice aimed towards users and 91 pieces of advice
aimed towards organisations. Despite its greater quantity, user advice has
been subdivided into fewer categories. We speculate this could be related to
the wider variety of roles an organisation plays in the security of passwords.
But it could also reflect our greater familiarity with user advice. While every-
one is a user, not everyone has held all roles in an organisation, and therefore
it was easier to interpret and categorize user advice.

2.4.2 Classification into statements
Once we divided the advice into categories, we noticed the pieces of advice
within each category did not necessarily promulgate similar opinions. It was
therefore necessary to subdivide the advice into statements which offer a simi-
lar message. In Figure 2.1 we can see how the seventeen pieces of advice under
Password Reuse were grouped into three distinct statements:

• Never reuse a password.

• Alter and reuse passwords.

18

2.4. Categorization of password advice

Table 2.2: Categories and the quantity of advice they contain.

Users # Organisations #
Phrases 39 Expiry 27
Composition 28 Storage 16
Personal Information 21 Generated passwords 7
Reuse 17 Individual accounts 7
Personal password storage 17 Throttling guesses 6
Length 17 Keeping system safe 6
Sharing 13 Default passwords 4
Keep your account safe 10 Administrator accounts 4
Backup password options 8 Input 3
Password managers 4 Shoulder surfing 3
Two factor authentication 3 Policies 2
Username requirements 2 Transmitting passwords 2

SNMP strings 2
Password auditing 1
Back up work 1

Total 179 Total 91

• Don’t reuse certain passwords.

In this figure we make note of pieces of advice that contradict the main state-
ment with a star (*). It is important to note that while it appears that there
is no contradictory advice within the category statement “Never reuse a pass-
word”, the third statement “Reuse certain passwords” is itself a contradiction.
We make note of this by placing a star (*) in the text box of the third category.
It is also represented by a star in Table 2.3. Already we are beginning to see
inconsistencies with the advice that is circulated.

Thus, within each category we created generalized statements of the advice
that was given. It is worth noting that the labels for advice are given from
the perspective of the majority. For example, if two pieces of advice state that
passwords should not include published phrases and one piece of advice states
that it would be a good idea to use published phrases, then the advice will be
labeled as “Don’t include published phrases”.

The statements relating to the categories of advice are shown in Table 2.3.
The full breakdown of advice into statements and categories is shown in Ap-
pendix A. Table 2.3 shows how many pieces of the advice agree with the
sentiment of the statement (number of sources advising), and how many dis-

19

2.4. Categorization of password advice

Password reuse

Category Advice Generalized
statement

Use a different password for every website
Don’t use the same password twice

It’s important to use unique passwords
for each different online account.

Users must not use the same password
for various access needs.

Avoid reusing old passwords.
Don’t recycle passwords.

Incorporate the first few letters
of the website name into your password

so that every password is different.

Add a couple of unique letters
for each site.

Select a single memorable base password
and alter it to form derivations.

*Users must not use a basic sequence
of characters that is then partially changed

based on some predictable factor.

*Users are prohibited from constructing
fixed passwords by combining a set of
characters that do not change, with a

set of characters that predictably change.

*Users must not construct passwords that are
identical or substantially similar to passwords

that they have previously employed.

Use a unique password for
each of your important accounts.

Never use your Apple ID
password with other online accounts.

Must not use the same password for Company
accounts as for other non-Company accounts.

Users should never reuse passwords
between work and home.

Passwords used for Internet services
shouldn’t be the same or similar to those
used for services accessed within College.

Never reuse
a password

Alter and
reuse passwords.

*Don’t reuse certain
types of passwords

Figure 2.1: Method for categorizing advice. Example: Reuse.

agree (number of sources contradicting). This gives a clear indication of the
inconsistencies in circulated password advice.

Splitting the advice statements by user or organisation made it easier for us
to imply the intent of the advice that the statements are describing. For
simplicity we did not separate the advice within a single category between
the two tables. In the cases where the advice is not perfectly suited to the
partition, we make note of it in our discussions. For the most part the split
gives us a good overview.

20

Table 2.3: Breakdown of advice into statements

Users #x #X
Backup password options
Email up-to-date and secure. 0 3
Security answers difficult to guess. 0 3
Do not store hints. 0 2
Composition
Must include special characters 5 7
Don’t repeat characters. 0 3
Enforce restrictions on characters. 1 12
Keep your account safe
Check web pages for SSL 0 1
Manually type URLs. 0 1
Don’t open emails from strangers. 0 1
Keep software updated. 0 2
Keep anti virus updated. 0 2
Log out of public computers. 0 2
Password protect your phone. 0 1
Length
Minimum password length. 0 13
Enforce maximum length (<40). 1 3
Password Managers
Use a password manager. 1 2
Create long random password. 0 1
Personal Information
Don’t include personal information. 1 5
Must not match account details. 0 8
Do not include names. 1 6
Personal password storage
Don’t leave in plain sight. 0 4
Don’t store in a computer file. 1 2
Write down safely. 1 6
Don’t choose “remember me”. 0 3
Phrases
Don’t use patterns. 0 6
Take initials of a phrase. 0 4
Don’t use published phrases. 1 2
Substitute symbols for letters. 1 2
Blocklist common passwords 0 2
Don’t use words. 0 16
Insert random numbers and symbols 1 4
Reuse
Never reuse a password. *5 6
Alter and reuse passwords 3 3
Don’t reuse certain passwords. 0 5
Sharing
Never share your password. 0 9
Don’t send passwords by email. 0 3
Don’t give passwords over phone. 0 1
Two factor authentication
Use for remote accounts. 0 1
Use multi-factor authentication. 0 1
2 factor authentication using phone. 0 1
Username
Enforce composition restrictions. 0 1
Don’t reuse username. 0 1

(a) User advice statements

#x = number sources contradicting.
#X= number sources advising.

Organisation #x #X
Administrator accounts
Not for everyday use. 0 1
Must have it’s own password. 0 2
Should have extra protection. 0 1
Backup work
Make digital & physical back-ups. 0 1
Default passwords
Change all default passwords. 0 4
Expiry
Store history to eliminate reuse. 0 5
Change your password regularly. 4 8
Change if suspect compromise. 0 10
Generated passwords
Use random bit generator. *2 2
Must aid memory retention. 0 2
Must be issued immediately. 0 1
Only valid for first login. 0 1
Distribute in a sealed envelope. 0 1
Individual accounts
One account per user. 0 4
Each account password protected. 0 3
Input
Don’t performed truncation. 0 1
Accept all characters. 1 1
Keeping system safe
Implement Defense in Depth. 0 2
Implement Technical Defenses. 0 1
Apply boot protection. 0 1
Monitor and analyse intrusions. 0 1
Regularly apply security patches. 0 1
Network: SNMP community strings
Don’t define as standard defaults. 0 1
Different to login password. 0 1
Password auditing
Attempt to crack passwords. 0 1
Policies
Establish clear policies. 0 2
Shoulder surfing
Offer to display password. 0 1
Enter your password discretely. 0 2
Storage
Encrypt passwords. *4 7
Restrict access to password files. 0 2
Encrypt password files. 0 1
Store password hashes. 0 4
Don’t hardcode passwords. 0 1
Contracts state how pwds protected. 0 1
Throttling
Throttle password guesses. 0 6
Transmitting passwords
Don’t transmit in cleartext. 0 1
Request over a protected channel. 0 1

(b) Verifier advice statements

2.5. Discussion of advice collected

2.5 Discussion of advice collected
In this section we will discuss the advice we collected. For each advice category
we will provide more information about the intention of the advice statements
within a category. We will refer to interesting characteristics within the advice
we collected, context in relation to how advice can be implemented and make
connections to relevant academic literature. We will also refer to some inter-
esting comments we received from users and administrators who were part of
our user study (described later in Section 2.7).

The advice categories are discussed in alphabetical order. We will alternate
between discussion of categories as a whole, discussion of specific advice state-
ments within a category, and at times, dividing our discussion between the
advice in a category that was contradicted by different sources and the ad-
vice that was unanimously given by sources. This section is best read with
Table 2.3 at hand.

2.5.1 Administrator Accounts
This category relates to access controls. The four pieces of advice in this cat-
egory recommend creating a clear distinction between administrator accounts
with privileged access and normal user accounts. This means an administra-
tor must switch between their privileged and general user account depending
on their current task. This could be time consuming for an administrator.
This burden is lessened by the implementation of programs such as su and
sudo which allow users to easily run programs which require extra security
privileges. All advice in this category is unanimous.

2.5.2 Backup password options
The advice relating to backups for forgotten passwords refers to email, security
questions and hints. All the advice is given unanimously. Three organisations
recommend the use of security questions. Schechter et al. show that security
questions can be very easily guessed and are also easily forgotten by users [144].
The do not store hints advice and the requirement for security questions to
be difficult to guess increases the forgettability for users.

22

2.5. Discussion of advice collected

2.5.3 Backup work
One organisation recommended making digital and physical back ups. This
can save an organisation a large amount of hardship if a breach or ransom
attack occurs. It takes time, computing memory and resources in advance
though with the organisation needing to save regular digital and physical back
ups.

2.5.4 Composition
Composition restrictions are regularly enforced by websites but the advice
given is not consistent from site to site. It is interesting to note that Herley [66]
hypothesizes that different websites may deliberately have policies which are
restrictive to different degrees as this can help ensure that users do not share
passwords between sites. Below we will discuss each of the three statements
associated with composition.

Must include special characters Seven sites instructed users to include
special characters in their passwords, but five sites recommended placing re-
strictions on the special characters that could be used. The main restriction
on special characters was “do not use spaces”. However, one piece of advice
stated the more direct “do not use special characters”. By not allowing users
to include any special characters an attackers’ search space is decreased.

Don’t repeat characters Not allowing the repetition of characters deters
users from choosing passwords such as “aaaaaaa” or “wwddcc”. Depending on
the strictness of the restriction it could eliminate words such as “bookkeeper”
or “goddessship”. It could also cause some inconvenience for random pass-
word generators where the word “Sdt2htTtd65c8h” could be rejected. It is
likely that any passwords that consist of common sequential strings could be
removed using a blocklist rather than a blanket-ban on consecutive repeating
characters.

Enforce restrictions on characters We collected twelve pieces of advice
encouraging composition restrictions on passwords and only one piece of ad-
vice against it. The source rejecting composition rules was the NIST 2017
authentication guidelines [59]. These guidelines have received praise from

23

2.5. Discussion of advice collected

the authentication research community [32]. This raises the question about
whether organisations will begin to disseminate these new security practices
or continue to enforce their stringent password restrictions?

Kelley et al. show that strict composition rules do increase the security of pass-
words [83]. However, similar security can be offered by password blocklists or
mandating minimum 16-character passwords. In a related study, Komanduri
et al. [87] showed that the 16-character password restriction was less annoying
and less difficult for users. In addition, when composition rules are enforced,
the probability of a user including a “1” as their number and an “!” as there
symbol is high [164]. So, an attacker who knows the composition restriction
in place could potentially tailor their attacks to suit it.

2.5.5 Default Passwords
Four organisations recommended changing all default passwords. Default
passwords are used in Internet of Things devices, wifi routers and other equip-
ment among other things. These default passwords are in their essence not
secure. They have been shared publicly and often the same logins are used
for many or all of the devices of that type manufactured by a given company.
Manufacturers set a default password, which an administrator is supposed to
change during setup. However, Farik et al. analysed 1096 network routers
and found only 359 distinct passwords and only 259 unique passwords [47].
In fact, 18.8% of the routers studied required no login password. Other com-
mon default passwords in the routers were: ‘admin’ (15.8%), ‘password’ (6%),
‘1234’ (2.9%), ‘epicrouter’ (1.6%), ‘0’ (1.4%), ‘root’ (1%), ‘changeme’ (1%),
‘tech’ (1%), ‘access’ (0.9%) and ‘router’ (0.8%). In our user study (which we
will describe in Section 2.7), all administrators surveyed agreed with changing
default passwords. Changing the default password takes time during the set
up of the device but once done should not need to be updated unless it is
compromised.

2.5.6 Expiry
Unanimous We found five pieces of advice telling organisations to Store
password history to eliminate reuse, one encouraged organisations to Enforce
a minimum password age and ten were in favor of Changing passwords if com-
promise is suspected. If organisations do store their users’ password history

24

2.5. Discussion of advice collected

this creates an additional security hole as the company needs to allocate re-
sources to protect this file. Also, even though users can no longer reuse prior
passwords, alterations are still possible [149]. In fact, Zhang, Monrose and
Reiter [185] identify that we can easily predict new passwords from old when
password aging policies force updates.

The reason given for introducing a minimum password age is to prevent users
from bypassing the password expiry system by entering a new password and
then changing it right back to the old one [103]. However, if an attacker gains
access to a users’ account and changes their password the user will be unable
to change it again until the required number of days have elapsed, or with an
administrators’ help.

Ten pieces of advice recommended changing passwords if a compromise is
suspected. This can be inconvenient for users not affected by the compromise,
and also those who are. If there is a breach at the server the users were not
at fault yet still they must choose a new password.

Contradicting From anecdotal evidence we know the advice change your
password regularly is widely hated by users [60]. This is summarized by one
user in our user study saying “I hate this! The only solution I’ve come up
with is to increment a number in the password each time. So inconvenient and
frustrating, especially when combined with other bad password advice”. Seven
pieces of the advice we collected encouraged the use of password expiry while
only four pieces of advice discouraged it. This is despite research suggesting
that the security benefits are minimal [24][185]. This implies the inconvenience
to users is worth less to organisations than the minimal security benefits. Or,
do organisations want to be seen to be enforcing strong security practices, and
forcing expiry is just one way of doing this?

2.5.7 Generated Passwords
Contradicting We have two contradictory advice statements in this cate-
gory. One advises creating random passwords using a random bit generator.
The second states that generated passwords should aid memory retention.
Random passwords are very difficult for users to remember [187].

25

2.5. Discussion of advice collected

Unanimous One piece of advice said that generated passwords must not
be stored and one piece of advice said that generated passwords should only
be valid for the users’ first login. The former takes administrative time to
distribute immediately and the user cannot clarify the password is correct if
it has not been stored anywhere. The second requires the user to generate
their own password as well as administrators to generate the initial generated
password.

2.5.8 Individual Accounts
Having one account per user with a password is important for maintaining
access controls and also tracking errors or attacks back to a source account. It
is standard to enforce this in organisations. One of our user study respondents
commented to say that “the alternative is unthinkable now”. Though, two
respondents did say that their approval of the advice would depend on the
system.

2.5.9 Input
One organisation advised that truncation of the password should never be
enforced. That is, if a user creates a 12 character password, the verifier should
not decide to just store and compare the first 6 characters for authentication.
This advice has a clear security impact as the user will not realise that their
password is much weaker than they intended. The magnitude of the costs
of not allowing truncation seem small, though one administrator in our user
survey did flag that truncation allows “compatibility with legacy systems”.

There was disagreement between two organisations about accepting all char-
acters. One organisation argued for acceptance of all ASCII and UNICODE
characters. This is expensive because it requires string normalization. The
other organisation encouraged the removal of certain characters, specifically
they recommended removing consecutive or all space characters.

2.5.10 Keeping system safe
All the advice in this category was unanimous. It recommends a number of
background defense strategies. Implement defense in depth and apply techni-
cal defences are both vague pieces of advice but good in theory. They require
a system layered with security, and technical defenses can reduce the human

26

2.5. Discussion of advice collected

factor. Applying access controls is one form of a defense in depth strategy. It
makes sure that users have access only to their isolated parts of the larger sys-
tem. Monitor and analyze intrusions is a continuous job and often intrusion
points are only discovered retrospectively.

2.5.11 Keep your account safe
Check webpages for TLS This advice tells the user to check that the
connection from the web server to the browser is encrypted, usually by iden-
tifying the closed padlock in the URL bar. However, Schechter et al. found
that 53% of their study participants attempted to log in to a site after they
were interrupted by a strong security warning. Likely, even if users see an
unlocked padlock symbol they will still continue to use a webpage [146]. In
addition, [38] show that checking a valid certificate exists is no longer a good
protection against phishing. In 2018, 49.4% of phishing sites were using SS-
L/TLS.

Manually type URLs Manually typing URLs can be very time consum-
ing for users and the assortment of symbols included can make transcription
difficult. Manually typing URLs means a user should not be fooled by a fake
link. For example, a link www.safe.com which actually directs to www.you-
are-in-trouble.com. Manually typing the URLs can lead to a typographical
error and a malicious website could take advantage of this. For example a
website called www.faceboook.com which masquerades as facebook and asks
for login credentials. Only one piece of advice asked for URLs to be manually
typed.

Don’t open emails from strangers The goal of this advice is to protect
users against fraudulent emails and viruses in email attachments. However, it
is unclear how effective a user proactively checking the “From” email address
would be against these attacks. By means of Email Spoofing, an attacker
can very easily create an email that appears to come from someone it does
not [71]. In certain jobs it can be impossible to not open email from strangers
and even in everyday life it can be very inconvenient. However, a 2012 study
by Böhme and Moore found that as a result of concerns over cybercrime 42% of
participants say they do not open email from strangers [11]. We only collected
one piece of advice which said Don’t open emails from strangers.

27

2.5. Discussion of advice collected

Keep software updated & keep antivirus updated Two places recom-
mended these pieces of advice. In their paper “Tales of Software Updates:
The process of updating software” Vaniea and Rashidi found that 49.3% of
respondents relayed negative experiences with software updates [168]. This is
likely similar for antivirus updates with the added disadvantage that antivirus
may also need to be repurchased regularly.

Log out of public computers Finding the person before you on the public
computer has not logged off can lead to different reactions. Some might take
advantage and snoop around, maybe leave a message for the user to see to
know that they were vulnerable, or just log them off. But with this privileged
access an opportunistic attacker can do a lot of damage. Spending money
with linked credit cards, masquerading as the user and asking for money to
be transferred by the user’s peers, and setting up backdoors into the accounts
for future use, among other things. Despite the fact that we know these are
threats we could find little evidence of reported breaches as a result of this.
Is it possible that it does not occur? Or maybe do victims just not reveal this
as the reason for their breach?

Password protect your phone Nowadays users can conduct most online
transactions via mobile phones. Their portability makes them susceptible to
theft. Therefore, password protecting phones could be more important even
than password protecting our computers. Yet because phones are carried
on our person, it is possible that users are more likely to leave themselves
continuously logged on to applications.

2.5.12 Length
Enforce a minimum password length Enforcing a minimum length in-
conveniences memorability and may force users to alter or change their pass-
word. If our aim is to minimize password reuse, then this might not necessarily
be a draw back [66]. A minimum length could also be seen as reducing the
total search space of an attacker. However, it definitely has the advantage of
restricting the use of zero or one character passwords and protecting against
simple brute force attacks. Most of the advice encouraged the minimum length
to be set at eight characters.

28

2.5. Discussion of advice collected

Enforce maximum password length Three pieces of advice recommended
enforcing a maximum password length: 15 characters [76], 20 characters [129]
and 40 characters [77]. Interestingly Paypal do not list maximum password
length as one of their restrictions. Only when a user attempts to enter their
password is the restriction revealed. NIST 2017 guidelines [59] state that
“verifiers should permit user-chosen memorized secrets to be at least 64 char-
acters in length”. Restricting the length of a password inconveniences a users’
personal system for password generation, in particular it affects users who usu-
ally choose long passwords. It also restricts the output of a random password
generator and introduces an upper bound on the attacker’s search space.

2.5.13 Network: SNMP community strings
A SNMP2 community string can be compared to a username or password;
knowing the string provides access to a device or router’s statistics. Commu-
nity strings are only used in devices supporting the SNMPv1 and SNMPv2c
protocols. The newer SNMPv3 uses an encryption key along with a username
and password for authentication.

Don’t define SNMP network community strings as standard defaults
The standard defaults for community strings are set by the vendor. Vendors
can choose the same password for all their devices and can set default pass-
words as simple as ‘public’. These defaults are generally easily guessed or
accessible to attackers who can use them to find out about an organisation’s
network and potential access points.

SNMP community strings should be different to login passwords
Generally community strings are not encrypted. Because they are transmitted
in cleartext they can be read by anyone. This is an issue if an administrator
has chosen a value for a community string which is the same as a password
they use elsewhere.

2.5.14 Password auditing
Attempt to crack passwords Administrators attempting to crack users’
passwords is a method for removing the “low hanging fruit” from attackers

2SNMP: Simple Network Management Protocol [152].

29

2.5. Discussion of advice collected

reach. By requiring users to change their password if it was guessed by the
administrator, the hope is that a stronger password will then be chosen by
the user. This is a classic application of the original “crack” program. The
shellscript “Scripts/nastygram” is invoked by the password cracker to send
mail to users who have guessable passwords [110]. This is a pretty standard
policy for organisations [84][182] yet only one piece of advice we collected
recommended it. We wonder whether organisations are unwilling to openly
admit to and recommend this practice. Maybe this would change if there were
standardised ethical procedures in place.

2.5.15 Password managers
Use a password manager Password managers are a convenient method for
storing and auto-filling users’ passwords. The single sign on means that users
recall a single master password which is used to protect all other passwords.
A password manager does mean that the user is relying on an external agent
to store their passwords and therefore if this agent is compromised then the
passwords of all accounts are compromised.

Password managers which automatically fill in the users’ credentials with no
user interaction do have some corner case vulnerabilities [150]. Though this
same paper shows that a password manager can provide more security than
the normal manual typing of the password. But it does depend on the set up
of the specific password manager.

Throughout the user studies (described in Section 2.7) we saw very positive
responses in favour of password managers. Respondents in our survey said
“Would almost consider it essential for modern Internet usage. Some addi-
tional setup and potentially cost, but absolutely worth it” and “I think using
a password manager is pretty much essential at this stage”. Though one other
respondent said: “Password managers can be good. Muscle memory is better”.

Create long random passwords One piece of advice recommended that
when a user is using a password manager they should “create long random
passwords”. Long random passwords are resilient to brute force guessing but
generally are too much of a memory strain for users. Where a password
manager is saving the password for each use, the usability issues are no longer
a concern.

30

2.5. Discussion of advice collected

2.5.16 Personal information
Unanimous Eight pieces of advice instruct against choosing passwords that
match account information. The advice is enforceable and protects against
elementary targeted attacks [78]. In 1989, Bishop and Klein cracked 40% of
14,000 UNIX accounts using guesses derived from associated usernames or
account numbers and dictionaries [10].

Contradicting The advice, don’t include personal information in your pass-
word is issued by five sources. It is partially contradicted by the advice which
says: “Personal details such as spouse’s name, vehicle license plate, PPS or
social security number and birthday must not be used unless accompanied by
additional unrelated characters” [39]. It does not seem feasible to enforce this
without cross referencing against some body of user information. However,
if the advice is followed it would protect against a targeted attack. Castel-
luccia et al., find they can crack 5% more passwords by leveraging personal
information about users [21].

Eight different sources advise against the inclusion of names in passwords,
e.g. “do not choose any common name” [14]. However, one source contradicts
this saying: Choose “someone else’s mother’s maiden name (not your own
mother’s maiden name)” [55]. By not including your own mother’s maiden
name a targeted attack will not be affected. However, it offers no protection
from a bulk guessing attack. We consider a ban on names to be capable of
eliminating a significant number of guesses for an attacker. In addition, words
which double as names could be eliminated, “Bob”, “Amber”, “Jack”, as a
result of this restriction.

2.5.17 Personal password storage
Unanimous Four sources advised users to not leave passwords in plain sight.
This advice is difficult for an organisation to enforce.

Of the three sources warning against the use of the “remember me” option, two
advised never using it, and one said never to use it on a public computer. By
not using the “remember me” option, there is an increased need to remember
passwords. Also, more user time is consumed, since the user now needs to enter

31

2.5. Discussion of advice collected

their password every time. It does decrease the chance of an opportunistic or
targeted attack.

Contradicting Two sources told users to not store passwords in a plain text
computer file and one source recommended that if you were doing it, a unique
name should be chosen for the file so people don’t know what’s inside. This
advice still shows an awareness of the risks of a targeted attack.

If a user writes their passwords down safely then if they forget their password
they can retrieve it from the safe location. Adams and Sasse [1] conducted
a survey of corporate password users and found them flustered by password
requirements and coping by writing passwords down on post-it notes. Ko-
manduri et al. [87] found that most participants in their study write down
or otherwise store their passwords. Interestingly they also find that, storage
is correlated with the use of higher-entropy passwords. In fact, some experts
recommend writing passwords down as a mechanism to cope with numerous
passwords [93]. However, Shay et al. found that users are more likely to
share and reuse their passwords than to write them down [149]. We found six
pieces of advice recommending that users write their passwords down safely,
and one piece of advice discouraging it. In our survey of administrators (Sec-
tion 2.7), four administrators approved of users writing passwords down safely,
two disapproved and one was neutral.

2.5.18 Phrases
Advice regarding password phrases was the most commonly given advice we
encountered. This implies that advice is mostly concerned with making pass-
words “strong”. While this is important for some attacks, for attacks such as
phishing and keylogging the strength of the password is irrelevant [186, 53].

Unanimous Within the category Phrases there were no contradictions for
the statements: Don’t use patterns, Take initials of a phrase and Don’t use
words. The last is particularly interesting since from leaked password database
we know users primarily choose word based passwords [176]. Shay et al.
find that the “use of dictionary words and names are still the most common
strategies for creating passwords” [149]. This depicts how ineffective some

32

2.5. Discussion of advice collected

password advice can be and is possibly a reflection on the costs appearing to
not outweigh the benefits from a users’ point of view.

Contradicting The statements: Don’t use published phrases and Substitute
symbols for letters had contradictions. For don’t use published phrases the
advice given was:

1. “Don’t use song lyrics, quotes or anything else that has been published.”

2. “Do not choose names from popular culture.”

3. “Choose a line of a song that other people would not associate with you.”

The last piece of advice directly contradicts the first. This inconsistency makes
it no surprise that users seem disinclined to follow security advice [75, 1].

The advice statement Substitute symbols for letters is proposed by two sources
but is advised against by a third. We know from Warner [174] that passwords
with simple character substitutions are weak. Yet, 2 of 3 pieces of advice
recommend it. This could stem from the attitude that it is “better than
nothing”.

2.5.19 Policies
Establish clear policies Two places encouraged organisations to establish
clear policies. This is interesting since a lot of the advice we have collected
is contradictory. Including the advice from those two organisations who gave
this advice!

2.5.20 Reuse
We collected six pieces of advice telling users to never reuse passwords and
three pieces telling users to not reuse passwords for certain sites. In addition,
we found three pieces of advice encouraging users to alter and reuse their
passwords and three pieces telling users to not alter and reuse their passwords.
There seems to be little agreement among the distributed advice in terms of
password reuse.

33

2.5. Discussion of advice collected

Never reuse a password vs. reuse for certain accounts Das et al. esti-
mate that 43–51% of users re-use passwords across sites [34]. They also provide
algorithms that improve an attacker’s ability to exploit this fact. Florêncio,
Herley and Van Oorschot [52] declare that, “far from being unallowable, pass-
word re-use is a necessary and sensible tool in managing a portfolio” of cre-
dentials. They recommend grouping passwords according to their importance
and reusing passwords only within those groups. Interestingly, the advice we
collected in the category Don’t reuse certain passwords gave a slightly different
take on this advice. The advice mostly asked users to not use the password
used for their site anywhere else, e.g. “Never use your Apple ID password for
other online accounts”. Most organisations gave advice prioritizing their own
accounts. Only one piece of advice suggested using a unique password for any
important accounts [58].

In our user study, one respondent said “I experience regular frustration and
lose valuable time at work trying to login to numerous platforms with different
passwords”.

Alter and reuse passwords An alternative to grouping accounts for reuse
is to alter and then reuse a password. This advice was given by three sources
and rejected by three sources. Alterations to password are often very pre-
dictable. Using a cross-site password guessing algorithm, Das et al. [34] were
able to guess approximately 10% of non-identical password pairs in less than
10 attempts and approximately 30% in less than 100 attempts.

2.5.21 Sharing
Nine pieces of advice said “Never share your password”. Three specified not
sharing by email and one specified not sharing over the phone.

Weirich and Sasse find that sharing your password is regarded as a gesture of
trust [179]. Refusing to share your password with someone is an indication
that you do not trust them. A 2011 study of 122 people found that one third of
respondents reported sharing their personal email password, a quarter shared
their Facebook password and approximately 20 % of people who had work
email passwords reported sharing them with colleagues [81]. However, the
study did find that thought and consideration is given before the password

34

2.5. Discussion of advice collected

is shared. This tells us that users are aware of the security risks and accept
them on the ground of trust.

2.5.22 Shoulder surfing
Offer to display password One piece of advice recommended offering to
display the users’ password when they type it at login. Jacob Nielsen in 2009
challenges the masking of passwords (i.e. password: ∗∗∗∗∗∗∗∗) [119]. Bruce
Schneier, after originally agreeing with the removal of masking, here [147]
sums up why password masking needs to continue in certain contexts.

Enter your password discretely This advice is unenforceable and relies
on user education. Research has analyzed technical mitigations for the threat
of a shoulder surfing attack [90, 140]. However, Florêncio, Herley and Coskun
suspect that shoulder surfing attacks are not very common as humans are very
good at detecting people in their personal space [50]. Eiband et al. find that
shoulder surfing mainly occurs in an opportunistic, non-malicious way and it
is usually personal data that is observed [43].

2.5.23 Storage
Store password hashes Four pieces of advice recommended storing pass-
words as hashes. A cryptographic hash is a bit string of a fixed size which
should uniquely represent a password. It is irreversible but is deterministic i.e.
the same password will always map to the same hash. An attacker can dis-
cover the passwords by creating a large look up table (rainbow tables) which
matches each password to a corresponding hash value. This is very effective
for passwords up to a certain length and after this point a brute force search
is still possible [51].

Two of the pieces of advice recommending hashes also recommended using
a salt. A salt is a large random, non-secret value which can be stored with
the password hash. The salt randomizes the output of the password hash,
making the use of rainbow tables infeasible. An guessing attack is necessary
for revealing each password.

One piece of advice relating to salting said to use “a unique salt for each
account”. The second salt related piece of advice did not specify whether the
same salt could be used for all accounts or whether a unique salt was to be

35

2.5. Discussion of advice collected

used. If the same salt is used then a look up table is still an advantageous
attack.

Florêncio et al. provide a decision tree in their paper “An Administrator’s
Guide to Internet Password Research” showing the attacks different methods
of password storage are susceptible to [51].

For our evaluation of the costs and benefits of this advice we assumed that
passwords would be both hashed and salted.

Encrypt passwords Encryption of passwords was the first common method
recommended as a means of protecting passwords [106]. However it is often
reversible and a key needs to be protected for security to be maintained. It
is recommended that the hashing and salting method is used for password
storage. Despite this, seven pieces of advice recommended password encryp-
tion, in comparison to only four pieces of advice recommending hashing and,
of those, only two recommending hashing and salting. In the case of a pass-
word leak, either the key is revealed along with the password database or it
is not. If the key is revealed all passwords are immediately decipherable. If
the key is not revealed then brute force guessing can be attempted against the
decryption key but this is a difficult task.

Don’t hardcode passwords Hardcoding passwords will make it very diffi-
cult to automate changes making it a less usable method. Hardcoding will also
make it less secure since it is stored in plaintext to a file that an administrator
can directly edit.

Access to password file and encrypting password file Advice recom-
mended encrypting password files and restricting access to those files. Not
allowing all employees access to the passwords of all users seems like intu-
itive protections but only 1 source mentioned encrypting files and only two
mentioned implementing access controls for the password file.

2.5.24 Throttling
Throttle password guesses To fight against online guessing we can have
a fixed or exponentially increasing delay after each failed authentication at-
tempt. For example after 10 incorrect guesses the account is locked for 24

36

2.5. Discussion of advice collected

hours or until it is unlocked by an administrator. Throttling (or rate limiting)
password guesses drastically reduces the number of guesses an attacker can
make. The attacker can no longer continuously make guesses until the correct
password is accepted. However, because of the right skewed nature of pass-
word distribution, the attacker does still have a high probability of success
with a small number of guesses [98, 115]. The cost of throttling could be the
unintended lock out of a legitimate user. For example, Brostoff and Sasse [18]
find that with a three strike system 31% of users are unfairly locked out and
with a ten strike system it is 7%.

2.5.25 Transmitting passwords
Four pieces of advice recommend not transmitting passwords in plaintext. Two
pieces of advice say to request passwords over a protected channel. These are
very similar pieces of advice since both groupings place the onus on the organ-
isation to oversee that passwords are sent by protected channels. If passwords
are transmitted in cleartext they are susceptible to any eavesdropper on the
network. Let’s Encrypt has in recent years helped to make security certificates
accessible to more websites [92]. However, providing a secure channel for pass-
words is not an easy task. In a 2017, two hour long lab study, 18.5% of their
knowledgeable participants failed to set up a secure HTTPS connection [89].

2.5.26 Two factor authentication
Use-multi factor authentication Multi-factor authentication tradition-
ally involves: something you are, something you know, and something you
have. Examples for each of these respectively are: fingerprint, password, and
a USB key token. One piece of advice recommended using multi-factor au-
thentication. Using something you have as one of the requirements for authen-
tication means that the user may need to carry an additional item around with
them. In addition, this item (unlike something you know or something you
are) is easily susceptible to theft. If theft does occur though, the user is still
nearly as secure as if the second factor had never been used.

Notably, respondents in our user study expressed an approval for two factor
authentication but only for use with certain accounts. One respondent said “I
like this feature for anything related to monetary transactions”.

37

2.5. Discussion of advice collected

Use two factor authentication on phone Using a phone would count as
the something you have form of authentication. One piece of advice recom-
mended this. In 2017, Peeters and Grenman introduced n-Auth [130]. N-Auth
is an authentication solution designed to work with any number of accounts
and using a users’ mobile device.

Use for remote accounts One piece of advice said to use multi-factor au-
thentication for remote accounts. Remote accounts are often more vulnerable
as the user might need to connect over an insecure channel. Therefore, the
multi-factor authentication process is seen as adding extra security to the ac-
count. It is also more likely that the second factor will be compromised if used
remotely; either by theft or by eavesdropping.

2.5.27 Username
Enforce composition restrictions on usernames Florêncio, Herley and
Coskun argue that it is better to increase the strength of the userID rather than
the password [50]. They propose that this will protect against online guessing
attacks but will not majorly increase the cost to users since the username can
be recorded visibly.

In our user study, six of eight users asked about this advice said they did not
approve of it. One user commented that it was “Stupid and pointless” and
another said “Can’t see a good reason for this, but with a password manager
it wouldn’t be too painful.”. This emphasises the importance of explicitly
explaining rationale when advice is passed onto users.

Don’t reuse username If the same username is used for multiple accounts
then once the password for one account is compromised, this password can be
tried against the same person’s other accounts. Das et al. find that 3% of
users directly re-use passwords between sites and many others introduce small
modifications to their passwords across sites [34]. Not reusing a username
could be one way to protect against an attacker leveraging this vulnerability
and could be less burdensome on the user than a restriction on altering and
reusing passwords.

38

2.6. Costs Model

2.5.28 Summary
We have now finished our discussion of the 27 advice categories which contain
the 270 pieces of authentication advice we collected. We acknowledged in our
discussion that some of the advice collected contradicts what security experts
and researchers consider to be best practice. Similarly, we made note of the
large cohort of advice that was contradicted by different sources. This shows
a lack of consensus between organisations about what advice is effective. We
believe that if users are receiving contradicting advice from different sources
then this is likely decreasing users’ confidence in the advice they are given.
This, as well as an imbalance between usability costs and benefits, is likely a
reason for users’ unwillingness to follow many pieces of security advice.

In the next section, Section 2.6, we will be delving deeper into the usability and
implementation costs that accompany this advice. We will also be reporting
the verdict of users and administrators regarding whether they approve of
these pieces of security advice. In section 2.8, we will be discussing the security
benefits of this advice. This will give us a clearer idea of the cost and benefit
trade-offs that exist for each piece of advice. This trade-off will be discussed
in Section 2.9.

2.6 Costs Model
In this section we describe our methodology for the creation of our costs model.
We began with a brainstorming exercise. At the heart of it was a conscious
consideration for the usability costs; costs which are often-overlooked when
security policies are implemented [33]. Table 2.4 shows our finalized cost
categories.

We begin by presenting our initial identification of categories of costs and then
discuss their refinement. This involved analysis of severity and frequency of
costs by surveyed systems administrators and end-users.

2.6.1 Identification of Cost Categories
To begin, we considered any costs that we could think of that related to
the implementation of each piece of advice we collected. We viewed costs as
any burdens on the user who must follow the advice, or any burdens on the
organisation who must either follow or enforce the advice. Figure 2.2 shows

39

2.6. Costs Model

Must not
match account
information

Increased
computing
power for
verifier

Inconveniences
use of a

personal system
for password
generation

∼ Increases risk
of forgetting

∼ Need to pick
a new password

Organisations’
time taken to
program.

(a) Personal Information: Must not match
account information

Store history to
eliminate reuse

Increased
organisation
computing

power Creates an
additional

security hole

Increased risk of
forgetting

Possible
multiple

attempts until a
valid password

is chosen

Organisations’
time taken to

program
Need to pick a
new password

(b) Expiry: Store history to eliminate reuse

Figure 2.2: Identifying costs for advice statements.

two examples of this brainstorming exercise for the advice statements “Must
not match account information” and “Store [password] history to eliminate
reuse”. After analyzing the 79 advice statements in this way we had identified
10 categories of costs. These initial cost categories were:

1. Increased risk of forgetting
2. Need to pick a new password
3. Possible multiple attempts until a valid password is chosen
4. Reduced search space for attacker guessing
5. Company/organisation’s time taken to enforce
6. Hard or impossible to enforce
7. Inconveniences a user’s personal system for generating passwords
8. Created an additional security hole
9. Increased Computing power needed
10. User time or inconvenience.

2.6.2 Refining cost categories
These gave us our initial categorization of what costs come into play when
an organisation or user wishes to obey or enforce password advice [114]. We
then went through a process of refining these categories. In the following

40

2.6. Costs Model

subsections, we explain the process of finalizing these cost categories. Our
final set of costs categories is shown in Table 2.4.

2.6.2.1 Sub-costs

We notice that some categories are outcomes of others. For example, increased
risk of forgetting is an obvious outcome of needing to pick a new password.
Similarly, many categories can be seen to have “sub-costs” which we have not
explicitly listed in our categories. For example, increased risk of users aban-
doning site and increased number of password resets are sub-costs of increased
risk of forgetting. To minimize overlap we chose the highest-level categories
that could occur without being a sub-cost. For example, user time remained
as a distinct category as at times we recognize that there is no cost other than
the users’ time. Whereas, we removed the category possible multiple attempts
to choose a valid password as it never occurred other than as a sub-cost of
need to pick a new password.

2.6.2.2 Removal of cost categories

Three of our cost categories did not relate to our definition of costs as burdens
on the user or organisation. These were: creates an additional security hole,
reduced search space for attacker guessing, and impossible to enforce.

Creates an additional security hole refers to advice that while it may protect
against one thing, opens up another avenue of attack. For example, offering to
display the password at login makes it easier for the user to enter the password
correctly but increases the chance of a shoulder surfing attack.

Placing a restriction on the maximum number of characters allowed in a pass-
word is an example of advice which could reduce the search space for an at-
tacker guessing. For example, if only eight-character passwords are allowed
then an attacker has a smaller search space.

Both of these categories relate more to the chance of attacks occurring than
to particular burdens on the user or organisation. Therefore, we consider both
of them in light of the benefits rather than costs. Benefits of password advice
are discussed in Section 2.8.

Impossible to enforce refers to any advice that an organisation distributes but

41

2.6. Costs Model

cannot enforce. This can lead to an illusion of higher security than actually
exists. The term ‘security theatre’ was coined in 2003 by Bruce Schneier [19]
and could apply here. The organisation may feel they are secure with multiple
authentication procedures in place. But if these are in no way enforceable then
they have little guarantee of offering any improvement to security.

A piece of advice that is Impossible to enforce only has costs and benefits if
it is voluntarily followed. An interesting question is; what is the probability
optional advice such as this is followed, and what is the impact of user educa-
tion on its uptake? We remove it as a cost category as it does not necessarily
introduce a ‘burden’ on either the user of the organisation.

2.6.2.3 Additional cost categories

There was one cost which when we looked back we noticed we had overlooked.
It was the cost of additional physical resources that might be needed by the
user or the organisation in order to follow the advice. The prime example of
this is two factor authentication which might require a specialized USB device
or token. We included this need for additional resources as an additional item
in our list of costs.

2.6.2.4 User versus organisation costs

Analyzing the cost categories, we wanted some way to distinguish between
costs borne by the user and costs borne by the organisation. We believe
it will be interesting to know who bears most of the costs; the user or the
organisation. In addition, what might be a small cost for an organisation
could be a large cost for a user. We therefore separated cost categories to
be user and organisation specific e.g. user computing power separate from
organisation computing power.

2.6.2.5 Minor costs

In our analysis we acknowledged the need to distinguish the extent to which
a cost occurs. For example, both “Enforce restrictions on characters in pass-
words” and “Make digital and physical back ups” require organisation time.
But very little organisation time is needed to enforce a composition restriction
and a lot of effort is needed to digitally and physically back up work. It is

42

2.7. User study of costs

Table 2.4: Finalized cost categories.

Organisation Costs
Increased help desk/user support time
User education required
Organisation needs extra resources
Takes organisation time to implement
Increases the organisation’s computing power needed
User Costs
Makes it more difficult to create a password
Makes it less easy to remember
Requires extra resources
Requires the creation of a new password
Increases the computing power needed
Requires other extra time or effort

not within the scope of this model to have a full grading of the costs, but
we do acknowledge a difference between small or partially felt costs and more
substantial costs.

2.6.2.6 Periodic costs

We also notice that advice such as “Make digital and physical back ups” and
“Keep email up-to-date and secure” require continued action. This signifi-
cantly increases the costs. We acknowledge three types of costs: once off costs
usually relating to setup or account creation, costs which occur at every login
and periodic costs which occur repeatedly over different time frames.

2.6.2.7 Positive costs

Finally, some pieces of advice reduced the burden on the organisation or user.
These pieces of advice we acknowledge as ‘positive costs’.

The costs listed in Table 2.4 are the finalised 11 cost categories that were used
in our user study.

2.7 User study of costs
Once satisfied that we had a provisional set of cost categories for users and for
organisations we began our user study. There were 10 surveys in total, five

43

2.7. User study of costs

aimed at administrators and five aimed towards end users. These are detailed
below.

2.7.1 User and administrator surveys
We created a series of surveys which asked users and administrators to identify
which categories of costs apply to each piece of advice. Participants were
randomly redirected to one of the 5 surveys relevant to them. This allowed us
to ask about the large number of advice statements we had collected without
overburdening participants. We did include some overlap in the end-user
surveys as every user was asked about:

• Include specific character types in your password. E.g. your password
must include uppercase, lowercase, digit, symbol
• Change your password regularly
• Never reuse a password
• Never share your password
• You cannot paste in your passwords
• Use 2-factor authentication
• Use a password manager

There was no overlap in the administrators’ surveys as they were asked a
larger variety of questions. For example, administrators were quizzed on costs
associated with hashing and salting passwords and monitoring and analysing
intrusions which users were not asked about.

Participants were chosen using a snowball sampling technique. The study was
approved by our university Ethics Review Board. For a full description of the
ethical considerations, please see Section 1.3.2.

In the survey, participants were asked to specify the severity and frequency
with which they experience costs and inconveniences as a result of authenti-
cation advice. We also asked participants to indicate whether they approved
of the given piece of advice. Figure 2.3 shows an infographic providing users
with an explanation of how to complete a survey question. Beside it, users
were given the following example text:

44

2.7. User study of costs

Figure 2.3: Infographic with instructions for users for the survey

For example: for the advice “Change your password regularly” you might con-
sider the following costs:
• Makes it less easy to remember (periodically - every time I need to change
it)
• Need to pick a new password (periodically - every time I need to change
it)
• Takes extra time (periodically - sometimes I can’t start work until I
change the password)

You could complete the question for this advice as shown in Figure 2.3.
Note these costs are individual and may differ for you and you are not required
to offer explanations.

Administrators were given a similar description. A full version of the ques-
tions and answers for the user survey [113] and administrator survey [112] is
available on Github.

2.7.2 Feedback on user cost categories
After users had attempted to assign cost categories to the advice statements,
they were asked at the end of the survey whether they agree with the cost
categories that were used in the survey.

45

2.7. User study of costs

For the user survey the prevailing answer was between ‘Somewhat’ and ‘Yes’.
In summary, 21 end-users said Somewhat, 18 said Yes and 1 said No.

The user who chose ‘No’ said: “In most cases the categories seemed not ap-
plicable to the points so most were of no cost to me”. This is a valid point, for
many advice statements there was only one cost category that users deemed
to apply, and for some advice such as “Every user in an organisation must
have their own account”, the majority of participants decided that there was
no associated user costs.

After asking participants whether they agreed with the cost categories, we
asked whether there were any cost categories that they think should be added
or removed. We received the following suggestions. One person said we could
remove computing power. One person said a cost could be that the advice “de-
creases sense of security in password”. Another participant suggested maybe
including the cost category “makes it harder to follow other advice”. They
gave the example that needing to have long passwords would make it more
difficult to not write them down somewhere. Finally, one participant sug-
gested that there is a “cost to personal stress related to constantly interacting
with devices that require various different logins and passwords and eat up
time and energy”. All 34 other participants suggested no changes.

We did consider removing the user computing power cost, but in the end
decided that in some areas it might be relevant. For example, for the pieces of
advice “Keep anti-virus updated” and “Keep software updated” the majority
of users said that computing power was a minor cost. This can relate to a
slow-down of computing processes during an installation or waiting for restarts
during updates.

The ability of a participant to follow multiple pieces of advice simultaneously
is very important to consider. For example, Florêncio et al. show that never
reusing a password and also random password choice is an impossible task
outside the bounds of human memory [52]. In fact, many respondents in our
survey made the point that the advice “Never reuse a password” is impossible
to uphold unless it is coupled with the use of a password manager. For this
reason, to really get a sense of the value or effect of a piece of advice it is
important to consider it in light of a complete security policy. This is what
we do when we quantify the value of advice in Chapter 5.

46

2.7. User study of costs

A yes/no answer system would have made the survey easier for participants
to understand and simplify the completion. We were eager to get informa-
tion about severity and frequency, but in retrospect a simplified version of the
survey should have been considered. We did also notice that their was misun-
derstanding among participants about the meaning of the ‘Positive costs’. We
think a different term should have been used to describe these that was more
self-descriptive. Based on the answers, we believe some participants indicated
‘positive’ when they were ‘positive’ there was a cost there. These participants
were always the minority so largely did not affect the results.

Finally, the stress associated with current password systems is exemplified by
the respondents’ encouragement for “costs to personal health” to be included
as a category. When we consider a security system and speak about usability,
it is mitigating this stress and pressure that users are burdened by that we
want to achieve. We believe this stress is a result of the human effort and
mental strain that is encompassed within the existing categories.

2.7.3 Feedback on organisation cost categories
As with users, after administrators had attempted to assign organisation cost
categories to the advice statements, they were asked at the end of the survey
whether they agree with the cost categories that were used in the survey.

The majority of administrators agreed with the five cost categories that were
used to denote organisation/administrator costs in this survey. However,
nearly as many said they ‘Somewhat’ agreed. 13 administrators said Yes,
12 said Somewhat and 4 said No.

The most common comment we received was that user burdens were not in-
cluded as a cost category. It is likely that administrators were not aware that
a second survey existed aimed at users and the burdens they experience. How-
ever, the fact that many administrators insisted that user burdens must be
taken into account is reassuring. It shows a changing in the ethos within secu-
rity development and indicates that there could exist a changing perspective
which is no longer viewing users as the enemy [1].

One respondent commented that the ‘resources’ cost was not specific enough.
From feedback we received during the survey, we acknowledged that a mis-
understanding existed with the term ‘additional resources needed’. Some re-

47

2.7. User study of costs

spondents viewed resources as additional personnel needed whereas we were
referring to resources as physical purchases required. We categorised a need for
additional personnel under increased help desk/user support time and/or time
take to implement. We did include a clarification for this partway through
the study stating that “Resources refers to physical resources that may need
to be acquired or purchased”. After this clarification the responses seemed
more aligned with this definition. For this reason though, a resource cost is
sometimes identified where it does not seem clear to us why it should be. We
do leave it in as significant increases in necessary personnel and other forms
of resources are forms of valid burdens for an organisation.

One participant mentioned that “Everything has a cost sometimes it is small,
but in may areas questioned in this survey, the benefit outweighs the cost”.
This a nice indication that this comparison of costs versus benefits of security
advice is something that security administrators are required to do mentally
for each policy consideration.

Two participant mentioned other costs. One said that “Some things need
more than just help desk resources — development time, administration, au-
diting”. The second participant said “There is more than just training and
help support in terms of cost. Their is also engineering cost, audit cost, risk
assessment cost, employee quality costs (not all employees can implement the
policies discussed here in an enterprise environment). Technology cost. En-
forcement cost. Incident response cost (for policy violations)”. These are all
interesting areas for consideration. We would have viewed all of these under
the organisation time taken to implement the policy, though employee quality
costs is not something we considered (e.g. the cost of recruiting and retaining
highly skilled employees needed to implement advice).

Finally, one respondent mentioned that the extent of costs can depend strongly
on the ethos of a company. They state that “Having a business leadership
team that fully supports IT Security and is prepared to champion it will for
example make the initial and ongoing “cost” in terms of resources much easier.
Many of the things here will depend not just on technology but the culture and
maturity of the organisation.” This alludes to feedback we received throughout
the survey and directly from some respondents: the costs experienced differ
for each organisation. While the general costs felt might be similar, the extent

48

2.7. User study of costs

to which they are felt and the difficulty involved in implementing advice will
strongly depend on the ethos, size and sector or services of the company.
This model only provides a broad indication of the categories of costs felt by
the majority. In Chapter 5, when we quantify these costs, there is a strong
relationship between the costs felt and the type of organisation we consider.

2.7.4 Visualisation of survey responses
We received 41 participants for our end-user survey and 32 participants for our
administrator survey. We received insightful comments about the costs from
both a user and administrator perspective. A minimum of eight end-users
indicated the costs they associated with each piece of advice and a minimum
of five administrators indicated the organisation costs they perceived.

In Table 2.5, we detail the costs that users and administrators identified for
each advice statement. A minor cost is identified as #, and a more substantial
cost is identified as .

A super-scripted symbol is used to denote the frequency of the costs. Costs
at login are denoted by an at symbol: @ and periodic costs are denoted by
a sun: ☼. ‘Positive costs’ are represented with the positive symbol: +.

The tables summarize the costs that respondents identified for each piece of
advice. We use the following rules for identifying what costs the participants
agreed exist for each piece of advice (i.e. did participants believe a cost major,
minor, positive or doesn’t apply):

• If one answer option accounts for more votes than any other then it is
the majority answer. For example, in Figure 2.4a most respondents in
the administrator survey indicated that the organisation requires major
extra resources to enforce the advice “Digital and physical backups of
work should be maintained”.

• If two answers are selected with equal frequency we choose the one that
represents the largest cost but note with an underline that there was
variability in the responses, e.g. . This means we are choosing to
overestimate rather than underestimate costs. See Figure 2.4b which
shows that for the piece of advice “Digital and physical backups of work
should be maintained”, 37.5% of respondents believed it has a minor

49

2.7. User study of costs

(a) organisation requires extra re-
sources.

(b) Takes organisation time to
implement

(c) User education required

Major

Minor

Doesn't apply

Figure 2.4: Pie charts showing responses for three different cost categories for
the advice “Digital and physical backups of work should be maintained”

affect on takes organisation time to implement and 37.5% believed it
was a major cost. In this case we represent it as a major cost.

• If ‘Doesn’t apply’ is outweighed or equaled by minor and major combined
then we assign it as minor.3 We again indicate that there is variability.
In Figure 2.4c, we see that for the cost category user education required
half the users said non-applicable. But half said that it was either a
major or minor cost. Therefore, it is marked as a minor cost.

In Table 2.5 you can see these costs represented in the table under the category
“Backup work” for the piece of advice “Digital and physical backups of work
should be maintained”.

Users and administrators were also asked about their approval of the advice
statements. The results of this are represented in the table for both users
and administrators. A 4 represents the majority of respondents’ approval of
the advice. 8 indicates that the majority disapproved and n represents the
majority of respondents indicating that they were neutral about the advice.
Occasionally, respondents were split between different approval ratings. This is

3Note that “Doesn’t apply” was the default response for the survey questions.

50

2.7. User study of costs

also indicated in the table. For example, if users were split between approving
of the advice and feeling neutral about the advice, we represent this as 3/n.

In Table 2.5 we represent the costs that users and/or administrators associated
with each piece of advice. In some cases, users or administrators were not
always consulted for every piece of advice. This was an attempt to reduce the
size of the survey. In these cases, we highlight the corresponding row in the
table (see the organisation side of the row “Enforce maximum length”). At
times we indicate obvious costs if they exist. For example for the “Enforce
maximum length” advice, the administrative costs could be extrapolated from
the “Minimum password length” costs.

Further impressions, characteristics and notable respondent comments are in-
cluded in Appendix B. A discussion of the costs identified is included in our
discussion section, Section 2.9.

51

Table 2.5: Costs of implementing password advice

Organisation User costs

Advice to Users In
cr
ea
se
d
he
lp

de
sk
/u

se
r

su
pp

or
t
tim

e
ne
ed
ed

U
se
r
ed
uc
at
io
n
re
qu

ire
d

R
eq
ui
re
s
ex
tr
a
re
so
ur
ce
s

Ta
ke
s
tim

e
to

im
pl
em

en
t

In
cr
ea
se
d
co
m
pu

tin
g

po
w
er

ne
ed
ed

A
dm

in
is
tr
at
or

ap
pr
ov
al

M
ak
es

it
m
or
e
di
ffi
cu
lt

to
cr
ea
te

a
pa

ss
w
or
d

M
ak
es

it
le
ss

ea
sy

to
re
m
em

be
r

R
eq
ui
re
s
ex
tr
a
re
so
ur
ce
s

R
eq
ui
re
s
th
e
cr
ea
tio

n
of

a
ne
w

pa
ss
w
or
d

In
cr
ea
se
s
th
e
co
m
pu

tin
g

po
w
er

ne
ed
ed

R
eq
ui
re
s
ot
he
r
ex
tr
a
tim

e
or

eff
or
t

U
se
r
ap
pr
ov
al

Backup password options
Email up-to-date and secure 4 #☼ 4

Security answers difficult to guess #☼ ☼ # # 4 # # # 3/n

Do not store hints #☼ #☼ #☼ 4 @ # 4

Composition
Include specific character types # #☼ # 3/n # #@ # 4

Keep your accounts safe
Check web pages for TLS #☼ ☼ 4 #@ 4

Manually type URLs #☼ #☼ 8 # ☼ n

Don’t open emails from strangers ☼ ☼ ☼ #☼ 8 4

Keep software updated #☼ #☼ #☼ ☼ 4 # #☼ 4

Keep anti virus updated #☼ #☼ 4 ☼ #☼ #☼ 4

Log out of public computers ☼ 4 #@ 4

Password protect your phone #☼ #☼ # 4 # # # #@ 4

Length
Minimum password length # # # 4 @ # 3/7

Enforce maximum length (<40) # # # # 8

Password managers
Use a password manager # #☼ # # 4 + # 4

Create long random password # # # 4 n

Personal information
Don’t include personal information #☼ #@ 4

Must not match account details # # # 4 #@ 4

Personal password storage
Don’t leave in plain sight #☼ 4 # 4

Don’t store in a computer file #☼ #☼ #☼ 4 #@ # 4

Write down safely #☼ + # # 4

Don’t choose “remember me” # 3/n # @ #@ n

Phrases
Don’t use patterns #☼ # # #@ 4

Blocklist common password #☼ # 4 # # # # 4

Don’t use published phrases #☼ # # @ # # 4

Substitute symbols for the letters #☼ # #@ n

Don’t use dictionary words #☼ #☼ # 4 @ # # n

 , filled circle: major cost. #, empty circle: minor cost. +, plus: positive cost.
@, superscript @: cost occurs at each login. ☼, superscript ☼: cost occurs periodically.
, underline: implies that variance existed in the costs that respondents indicated.

3/n: approval split between Yes and Neutral.

In
cr
ea
se
d
he
lp

de
sk
/u

se
r

su
pp

or
t
tim

e
ne
ed
ed

U
se
r
ed
uc
at
io
n
re
qu

ire
d

R
eq
ui
re
s
ex
tr
a
re
so
ur
ce
s

Ta
ke
s
tim

e
to

im
pl
em

en
t

In
cr
ea
se
d
co
m
pu

tin
g

po
w
er

ne
ed
ed

A
dm

in
is
tr
at
or

ap
pr
ov
al

M
ak
es

it
m
or
e
di
ffi
cu
lt

to
cr
ea
te

a
pa

ss
w
or
d

M
ak
es

it
le
ss

ea
sy

to
re
m
em

be
r

R
eq
ui
re
s
ex
tr
a
re
so
ur
ce
s

R
eq
ui
re
s
th
e
cr
ea
tio

n
of

a
ne
w

pa
ss
w
or
d

In
cr
ea
se
s
th
e
co
m
pu

tin
g

po
w
er

ne
ed
ed

R
eq
ui
re
s
ot
he
r
ex
tr
a
tim

e
or

eff
or
t

U
se
r
ap
pr
ov
al

Reuse
Never reuse a password ☼ 4 ☼ @ ☼ 4

Alter and reuse passwords #☼ #☼ # # 4 #☼ #☼ 8

Don’t reuse certain passwords #☼ 4 #☼ #☼ 4

Sharing
Never share a password # #☼ #☼ 4 4

Don’t send passwords by email #☼ 4 4

Don’t give passwords over phone # #☼ 4 # 4

Two-factor authentication (2FA)
Use 2FA using app or special device ☼ ☼ 4 @ #@ 4

Use 2FA on phone ☼ # 3/n @ # 4

Use 2FA for remote accounts #☼ #☼ #☼ # 4 #@ #@ 3/7

Username
Enforce restrictions on characters #☼ #☼ # 4 8

Don’t reuse username # 8 # ☼ n/7

Advice to organisations
Administrator Accounts
Not for everyday use # #☼ # # 4

Must have it’s own password #☼ # # 4

Should have extra protection # 4

Backup work
Make digital & physical back-ups # # # # 4 ☼ #☼ #☼ 4

Default passwords
Change all default passwords #☼ # # 4 4

Expiry
Store history to eliminate reuse # # # 4 #☼ ☼ ☼ 4

Change your password regularly ☼ ☼ # 8 ☼ ☼ ☼ ☼ 8

Change if suspect compromise #☼ #☼ # # 4 # # 4

Generate passwords
Use random bit generator # # # # 4 @ 4

Must aid memory retention 3/n #@ # # n

Must be issued immediately # 3/n # # 4

Distribute in a sealed envelope # 4 #@ # # 4

Only valid for first login # # #☼ 4 # 4

 , filled circle: major cost. #, empty circle: minor cost. +, plus: positive cost.
@, superscript @: cost occurs at each login. ☼, superscript ☼: cost occurs periodically.
, underline: implies that variance existed in the costs that respondents indicated.

3/n: approval split between Yes and Neutral.

In
cr
ea
se
d
he
lp

de
sk
/u

se
r

su
pp

or
t
tim

e
ne
ed
ed

U
se
r
ed
uc
at
io
n
re
qu

ire
d

R
eq
ui
re
s
ex
tr
a
re
so
ur
ce
s

Ta
ke
s
tim

e
to

im
pl
em

en
t

In
cr
ea
se
d
co
m
pu

tin
g

po
w
er

ne
ed
ed

A
dm

in
is
tr
at
or

ap
pr
ov
al

M
ak
es

it
m
or
e
di
ffi
cu
lt

to
cr
ea
te

a
pa

ss
w
or
d

M
ak
es

it
le
ss

ea
sy

to
re
m
em

be
r

R
eq
ui
re
s
ex
tr
a
re
so
ur
ce
s

R
eq
ui
re
s
th
e
cr
ea
tio

n
of

a
ne
w

pa
ss
w
or
d

In
cr
ea
se
s
th
e
co
m
pu

tin
g

po
w
er

ne
ed
ed

R
eq
ui
re
s
ot
he
r
ex
tr
a
tim

e
or

eff
or
t

U
se
r
ap
pr
ov
al

Individual accounts
One account per user # # # # 4 4

Each account password protected # 4 # # 4

Input
Don’t perform truncation # # 3/n

Accept all ASCII characters # # # 4 +
Keep system safe
Implement Defense in Depth ☼ ☼ ☼ ☼ # 4

Implement Technical Depth # # # # 4

Apply access control systems ☼ #☼ #☼ ☼ 3/n # # 4

Monitor and analyze intrusions #☼ #☼ ☼ #☼ 4

Regularly apply security patches # #☼ ☼ ☼ #☼ 4

Network: SNMP community strings
Don’t define as standard defaults # # # 3/n

Different to login password # 4

Password auditing
Attempt to crack passwords #☼ #☼ #☼ #☼ #☼ 4 # # # 4

Policies
Establish clear policies # #☼ # 4

Shoulder surfing
Offer to display password # # n 4

Enter your password discretely # # # 4

Storage
Encrypt password files # # # 4

Restrict access to password files #☼ #☼ # # 4

Store password hashes # # # 4

Encrypt passwords # # # # 4

Don’t hardcode passwords # #☼ # # 4

Throttling
Throttle password guesses #☼ #☼ #☼ # 4 # # 4

Transmitting passwords
Don’t transmit in cleartext #☼ ☼ # # 4

Request over a protected channel #☼ #☼ # # 3/n

Don’t allow users to paste passwords ☼ #☼ # 8 #@ #@ 8

 , filled circle: major cost. #, empty circle: minor cost. +, plus: positive cost.
@, superscript @: cost occurs at each login. ☼, superscript ☼: cost occurs periodically.
, underline: implies that variance existed in the costs that respondents indicated.

3/n: approval split between Yes and Neutral.

2.8. Benefits Model

2.8 Benefits Model
Now we ask the questions: What are the benefits of this advice? What goal
is the advice trying to achieve? From our analysis of costs, it is evident that
advice is generally not attempting to make authentication more usable. It is
our understanding that it is trying to improve security. In this section we give
a method to identify such improvements, which we call benefits.

2.8.1 Defining Benefit Categories
It is broadly believed that advice is attempting to guide the creation of robust
authentication systems with the goal of preventing unauthorized access to an
account or to data [6, 49, 66, 148]. This is what we define as the goal of the
advice. Therefore, the benefit of a piece of advice is the effect it has towards
achieving this goal.

Unauthorized access has many avenues and one piece of advice is unlikely to
protect against them all. For example, requiring passwords of length 12 might
help against a password guessing attack, but will do nothing to protect against
phishing. In order to represent how ‘beneficial’ a piece of advice is, we would
like to know in which ways the piece of advice protects against unauthorized
access, if at all.

To this end, we require a concise list of the different methods an adver-
sary could use to gain access to a protected account. The NIST 2017 Dig-
ital Identity Guidelines [59] document includes a table of “Authenticator
Threats”. Given that this NIST 2017 authentication document has been well-
regarded [32] and highly researched document, we accept these as a concise
list of the attack vectors against authentication. Below, in our Table 2.8, we
list the attacks from Table 8-1 in the Authentication and Lifecycle Manage-
ment volume of the NIST 2017 Digital Identity Guidelines. Included is the
name, details and example for each different attack type. In places we diverge
slightly from the official description and/or example provided in the NIST
document and instead indicate our interpretation of the threat.

We then considered the threats addressed by our advice statements. All the
threats mitigated or created by each piece of advice fit under these 11 cate-
gories, except the threat mitigated by “Log out of public computers”. If a user
does not log out of a public computer then the only protection a user has is

55

2.8. Benefits Model

the moral compass of the next person who uses that computer. In this way a
user’s account can already be thought of as in a state of compromise. It was
not obvious which of the 11 NIST categories this opportunistic attack comes
under. As a stopgap we placed it as Eavesdropping.

56

Table 2.8: Attack types on authentication

Attack type Description Examples
Assertion manufacture
or modification

The assertion is used to communicate the
result of the authentication process from
the verifier to the Relying Party (RP). The
verifier and the RP may be the same en-
tity, or separate entities.

Use of assertion replay to impersonate a
valid user or leakage of assertion information
through the browser [153].

Physical theft A physical authenticator or physical de-
vice used in the authentication process is
stolen by an attacker.

A hardware cryptographic key (e.g. a USB
authenticator), a phone, computer or one-
time-password device is stolen.

Duplication The subscriber’s authenticator has been
copied with or without their knowledge.

Passwords or private key written on paper
or stored in an electronic file are copied. A
counterfeit biometric authenticator is manu-
factured.

Eavesdropping The authenticator secret or authenticator
output is revealed to the attacker as the
subscriber is authenticating.

Passwords are physically observed during
keyboard entry or intercepted by keystroke
logging software or recorded during trans-
mission or via network packet sniffing.

Offline Cracking An offline guessing attack is an analytical
guessing attack by an attacker, it requires
little to no communication with the sys-
tem under attack.

A dataset of passwords or keys which are
hashed and salted or encrypted are made
available to an attacker (leaked). Using a
dictionary or brute force guessing method
the attacker attempts to guess the plaintext
values of these protected secrets.

Side Channel Attack This attack leverages an aspect of the im-
plementation of the computer system or
security device.

An attacker exploits information about a
cryptographic key gathered from power, tim-
ing or audio data.

Phishing or Pharming Fooling the subscriber into thinking the
attacker is a verifier. Phishing: electronic
communication masquerading as the veri-
fier. Pharming: directing a website’s traf-
fic to a masquerading fake site.

A password or key is revealed by a bank sub-
scriber in response to an email inquiry from
a phisher pretending to represent the bank.
A password is revealed by the subscriber at
a fake verifier website reached through DNS
spoofing. [22, 5].

Social Engineering The attacker establishes a level of trust
with a subscriber in order to convince the
subscriber to reveal their authenticator se-
cret or authenticator output.

An attacker masquerading as a system ad-
ministrator makes a telephone inquiry re-
questing the victim’s password. Attacker
convinces mobile operator to redirect the
victim’s mobile phone messages to the at-
tacker.

Online Guessing The attacker connects to the online server
of the verifier and attempts to guess the
valid authenticator output for one or mul-
tiple users.

An attacker who knows the usernames for all
the accounts guesses the top ten most popu-
lar passwords in order to try to access them.
An attacker who knows neither the username
nor password guesses combinations of both
to try to unlock the account.

Endpoint Compromise Malicious code on the endpoint authenti-
cates without the victim’s consent, com-
promises the authenticator or causes au-
thentication to other than the intended
verifier.

Malicious code can steal data from the users’
device. Malicious code can be used to con-
duct man-in-the-middle attacks on all con-
nections. New trusted certificates can be in-
stalled on the users’ device.

Unauthorized binding An attacker is able to cause an authenti-
cator under their control to be bound to a
subscriber’s account.

Forcing a password reset to change password
to one the attacker knows. Accessing the
password file and changing the password (or
other authenticator) bound to the user’s ac-
count. Creation of a second USB or linking
another authentication method to a user’s
account.

2.8. Benefits Model

2.8.2 Identifying Benefits of password advice
As with costs, which could be major or minor, the benefits provided by dif-
ferent advice also vary. The benefits of advice therefore should reflect the
probability of each attack being successful. Given some baseline chance of
each attack, we reflect on whether a piece of advice increases or decreases the
chance that that attack is successful. We show the result of this analysis for
our 79 advice statements in Table 2.9.

Throughout our table we mark each piece of advice as either increasing or de-
creasing the chance of compromise. However, there is an interesting question
about what baseline the advice increases or decreases the chance of compro-
mise relative to. We describe two mechanisms for determining this baseline.

We first thought of the baseline as being a passive version of the advice.
For example, if the advice is: “Email up-to-date and secure” or “Encrypt
passwords” then the baseline we measure the improvements from is doing
nothing. This made sense for a lot of the advice statements, but not all. For
example, the advice “Do not store hints” is already a passive action, but we
do not want to measure its affects against itself.

Our second consideration for the baseline was the opposite of what the advice
stated. For example, for the advice “do not store hints” we consider the
difference in attack threat between this and “do store hints”. Or maybe less
strictly, “you are allowed to store hints”.

We have chosen to use this ‘opposite’ method as it appears the logical com-
parison for most pieces of advice. The downside is that the opposite can, in a
few cases, be too ‘strict’. For example, the opposite of “do not include names”
and “don’t repeat characters” are “include names” and “repeat characters”
respectively, both unnatural pieces of advice. Two pieces of advice had am-
biguous opposites. The opposite of “write down safely” could either be “don’t
write down” or “write down, but not safely”. In this case, we chose to consider
the opposite as “don’t write down”. Similarly, we choose the opposite of “alter
and reuse passwords” to be that reuse is allowed even without altering.

As said, for our purposes in this chapter we identify the increase or decrease
in the chance of attack by comparing to the opposite of the specific piece of
advice. However, in a real-world situation a proposed policy could simply be

58

2.8. Benefits Model

compared in light of the former policy in place.

No matter what baseline method is chosen the discussions in Appendix C
should be relevant.

2.8.3 Representation of password advice benefits in
tables

We use the symbols ⇑ and ⇓ to indicate an increase or decrease respectively
in the probability of success for the attack type. ↑ and ↓ indicate less sig-
nificant increases or decreases in the probabilities of success for the attacks.
An underline, , indicates that the improvement is not directly enforceable.
This could be because it is impossible for an organisation to bind their users
to following the advice. Or, simply, that it is too vague and therefore there is
ambiguity on how an organisation or user might follow it.

In Appendix C, we include explanations for why we believe the chances of
certain attacks are impacted by the advice.

59

Table 2.9: Benefits of implementing password advice

Attack Types

Advice to users A
ss
er
tio

n
m
an

uf
ac
tu
re

or
M
od

ifi
ca
tio

n

Ph
ys
ic
al

T
he

ft

D
up

lic
at
io
n

Ea
ve
sd
ro
pp

in
g

O
ffl
in
e
G
ue

ss
in
g
A
tt
ac
ks

Si
de

C
ha

nn
el

A
tt
ac
k

Ph
ish

in
g
or

Ph
ar
m
in
g

So
ci
al

En
gi
ne

er
in
g

O
nl
in
e
G
ue

ss
in
g

En
dp

oi
nt

C
om

pr
om

ise

U
na

ut
ho

riz
ed

bi
nd

in
g

Backup password options
Email up-to-date and secure ↓ ↓ ↓ ↓
Security answers difficult to guess ↓
Do not store hints ⇓ ↓ ⇓
Composition
Must include special characters ⇓ ⇓
Don’t repeat characters ⇓ ⇓
Enforce restrictions on characters ↓ ↓
Keep your account safe
Check web pages for TLS ⇓ ↓
Manually type URLs ⇑ ⇓
Don’t open emails from strangers ⇓ ⇓
Keep software updated ⇓ ⇓ ⇓
Keep anti virus updated ⇓
Log out of public computers ⇓
Password protect your phone. ⇓
Length
Minimum password length ⇓ ⇓
Enforce maximum length (<40) ⇑ ⇑ ⇑
Password managers
Use a password manager ⇑ ⇓ ⇓
Create long random passwords ⇓ ⇓
Personal Information
Don’t include personal information ⇓ ⇓
Must not match account details ⇓ ⇓
Do not include names ⇓ ⇓
Personal password storage
Don’t leave in plain sight ⇓
Don’t store in a computer file ⇓
Write down safely ↑ ↑
Don’t choose "remember me" ⇓

⇓ Decreases the probability of attack. ⇑ Increases the probability of attack.
↑ Minorly increases the probability of attack. ↓ Minorly decreases the probability of attack.

, underline: advice is impossible to enforce; it must be followed voluntarily or in a certain way.

A
ss
er
tio

n
m
an

uf
ac
tu
re

or
M
od

ifi
ca
tio

n

Ph
ys
ic
al

T
he

ft

D
up

lic
at
io
n

Ea
ve
sd
ro
pp

in
g

O
ffl
in
e
G
ue

ss
in
g
A
tt
ac
ks

Si
de

C
ha

nn
el

A
tt
ac
k

Ph
ish

in
g
or

Ph
ar
m
in
g

So
ci
al

En
gi
ne

er
in
g

O
nl
in
e
G
ue

ss
in
g

En
dp

oi
nt

C
om

pr
om

ise

U
na

ut
ho

riz
ed

bi
nd

in
g

Phrases
Don’t use patterns ⇓ ⇓
Blocklist common passwords ⇓ ⇓
Take initials of a phrase ⇓ ⇓
Don’t use published phrases ⇓ ⇓
Substitute symbols for letters ⇓ ⇓
Don’t use words ⇓ ⇓
Insert random numbers and symbols ⇓ ⇓
Reuse
Never reuse a password ⇓ ⇓
Alter and reuse passwords ↓ ↑ ↑ ↓
Don’t reuse certain passwords ↓ ↑ ↑ ↓
Sharing
Never share your password ⇓ ⇓
Don’t send passwords by email ⇓ ⇓
Don’t give passwords over phone ⇓ ⇓
Two factor authentication (2FA)
Use 2FA using app or special device ↑ ⇓ ⇓
Use 2FA on phone ↑ ↑ ↑ ⇓ ⇓ ↑
Use 2FA for remote accounts ↑ ⇑ ⇓ ⇓
Username
Enforce composition restrictions ⇓
Don’t reuse username ↓ ⇓

Advice to organisations
Administrator accounts
Not for everyday use ⇓ ⇓
Must have it’s own password ⇓ ⇓
Should have extra protection ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Backup work
Make digital & physical back-ups ↑
Default passwords
Change all default passwords ⇓
Expiry
Store history to eliminate reuse ⇑ ⇓ ⇓
Change your password regularly ↓ ↓
Change if suspect compromise ⇓ ⇓

⇓ Decreases the probability of attack. ⇑ Increases the probability of attack.
↑ Minorly increases the probability of attack. ↓ Minorly decreases the probability of attack.

, underline: advice is impossible to enforce; it must be followed voluntarily or in a certain way.

A
ss
er
tio

n
m
an

uf
ac
tu
re

or
M
od

ifi
ca
tio

n

Ph
ys
ic
al

T
he

ft

D
up

lic
at
io
n

Ea
ve
sd
ro
pp

in
g

O
ffl
in
e
G
ue

ss
in
g
A
tt
ac
ks

Si
de

C
ha

nn
el

A
tt
ac
k

Ph
ish

in
g
or

Ph
ar
m
in
g

So
ci
al

En
gi
ne

er
in
g

O
nl
in
e
G
ue

ss
in
g

En
dp

oi
nt

C
om

pr
om

ise

U
na

ut
ho

riz
ed

bi
nd

in
g

Generated passwords
Use random bit generator ⇓ ⇓
Must aid memory retention ⇑ ⇑
Must be issued immediately ⇓
Distribute in a sealed envelope ⇑ ↑ ⇓
Only valid for first login ⇓
Individual accounts
One account per user ⇓ ⇓ ⇓ ⇓ ⇓
Each account password protected ⇓ ↓ ⇓
Input
Don’t perform truncation ⇓ ⇓ ⇓
Accept all characters ⇓ ⇓ ↓
Keep system safe
Implement Defense in Depth ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Implement Technical Defenses ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Apply access control systems ⇓ ⇓ ⇓ ↓ ↓ ↓ ↓ ↓ ↓
Monitor and analyse intrusions ⇓ ↓ ↓ ⇓ ⇓
Regularly apply security patches ↓ ↓ ⇓ ↓
Network: Community strings
Don’t define as standard default ⇓
Different to login password ⇓ ⇓
Password Cracking
Attempt to crack passwords ⇓
Policies
Establish clear policies
Shoulder surfing
Offer to display password ⇑
Enter your password discretely ⇓
Storage
Encrypt password files ⇓ ⇓ ⇓
Restrict access to password files ⇓ ⇓ ⇓
Hash and salt passwords ⇓
Encrypt passwords ⇓
Don’t hardcode passwords ⇓
Throttling
Throttle password guesses ⇓
Transmitting passwords
Don’t transmit in cleartext ⇓ ⇓ ⇓
Request over a protected channel ⇓ ⇓ ⇓

Don’t allow users to paste passwords

⇓ Decreases the probability of attack. ⇑ Increases the probability of attack.
↑ Minorly increases the probability of attack. ↓ Minorly decreases the probability of attack.

, underline: advice is impossible to enforce; it must be followed voluntarily or in a certain way.

2.9. Discussion

2.9 Discussion
In this section we will discuss the characteristics we discovered within the costs
and benefits of security advice. We begin with some general observations on
the cost analysis in Table 2.5.

2.9.1 Costs discussion
The costs associated with implementing and following advice are shown in
Table 2.5. In this table the mode user cost category was increased risk of for-
getting and the mode organisation cost category was user education required.
It is important to note that while organisation time is required to develop and
run user education, user time is also necessary. Therefore, each time we see a
user education cost, we recall that this involves another burden for users.

There were 212 costs identified across all the pieces of advice for the organ-
isation and 114 costs identified for users. Of these the users identified that
26% of them were major costs. Administrators identified that 16% of the costs
to the organisation were major. 26% of these major organisation costs were
attributed to user education.

Of the 212 organisation costs, 45% were repeating costs, i.e. they were felt at
each login or periodically. Of the users 114 costs 44% were repeating. However,
nearly half (48%) of the repeating organisation costs were attributed to user
education; a cost that will be felt by users as well. Similarly, of the user
repeating costs 38% were related to the cost of forgetting as many attributed
this as occurring at login. The cost of forgetting is a cost that is felt by
the organisation as well; since the users’ only solution is often to contact the
organisation help desk.

Of our eleven cost categories, help desk time, time to implement, user ed-
ucation and all the user costs excluding computing power involve a human
directly. In these categories, advice is adding to the emotional burden or
workload of the individuals involved. These categories account for 85% of all
the costs identified. In the user survey we witness strong emotional responses
towards the advice we asked users to analyse. We received responses such as
“I am sick of passwords and logins and they are making me less productive as
I have to look up the passwords so often!!” and “The cost to personal health of

63

2.9. Discussion

the stress of constantly interacting with devices that require various different
logins and passwords-and eat up time and energy!!”.

Users only agreed on two pieces of advice that have a positive impact on a cost
category. These are: “Use a password manager” and “Write your password
down safely”. Both of these had a positive impact on memorability.

2.9.2 Approval of advice
For each piece of advice, we asked users and administrators to indicate whether
they approved of the advice, felt neutral about it or disagreed with it. In
Table 2.5 we indicate the opinion agreed by the majority of respondents.

In this section, we will analyse two areas of interest. First, we will investigate
advice that we received unanimous opinions of. Second, we will investigate
disagreements between users and administrators about what advice was good.

Unanimous approval of advice Below we show the pieces of advice that
administrators unanimously agreed with:

• Minimum password length

• Keep anti virus updated

• Use a password manager

• When using a password manager create long random password

• Don’t leave your passwords in plain sight

• Don’t send passwords by email

• Administrator Accounts should have extra protection

• Change all default passwords

• Change password if suspect compromise

• Regularly apply security patches

• Encrypt password files

• Don’t hardcode passwords

64

2.9. Discussion

• Throttle password guessing

• Don’t transmit passwords in cleartext

There was no piece of advice that administrators or users unanimously dis-
agreed with. For each piece of advice, an average of 7 administrators gave
their opinions.

Administrators only agreed unanimously about 14 of the 68 pieces of advice
they were asked about; 21%. There were 20 pieces of advice that administra-
tors were divided between yes and no on. The remaining pieces of advice had
responses which included neutral responses.

More end-users responded to advice than administrators. Therefore, it is less
likely that they all agree. In particular, for the seven pieces of advice given
in Section 2.7.1, all 41 end-users gave their opinions. The following pieces of
advice are those that end-users unanimously agreed with:

• Log out of public computers

• Don’t send passwords by email

• Change password if suspect compromise

The end-user respondents gave vastly different approval ratings for the advice.
Unanimous approval was only recorded for three of the 55 pieces of advice they
evaluated (5%). Users were divided between yes and no (not just neutral) on
67% of the pieces of advice. We considered a misinterpretation of advice af-
fecting this result but looking to the users’ comments this contrast in approval
was reinforced by vastly contrasting comments. For example, for the advice
you should not be able to paste your password when logging in, one user said:

“If someone is trying to copy/paste a password, they’re probably
beyond help.”

While another user said:

65

2.9. Discussion

“This is horrendous advice that leads to problems using password
managers. It encourages using crappy passwords.”

These responses represent the disagreements we noticed between users for
some pieces of advice. For this advice which discouraged allowing users to
paste in their password when logging in, 14 end-users said they approve of the
advice, 10 were neutral and 17 users disagreed with the advice.

We also considered whether the contrast in opinions could be a result of the
high level of security knowledge some users had in contrast to others. Because
we used a snowball sampling technique we could have attracted a large number
of users who are security advocates. Take this response to the advice “Change
passwords regularly” for example:

“This [advice] is in conflict with evidence-based approaches to pass-
word security from NIST. Frequent password change requirements
lead to people using worse passwords because they keep having to
remember new ones. They will generally make minimal changes,
and may be driven to record them somewhere insecure. This re-
duces security. It can cause upheaval with access issues across
heterogeneous systems.”

The user who gave this response indicated that their internet security knowl-
edge ranked as 4 out of 5.

In Figure 2.5 we plot the number of users who assigned themselves to each
Internet security rank. Users were told to “Select a rank on the below scale
from 1 (very poor) to 5 (very knowledgeable) to describe your internet secu-
rity knowledge”. No users described their knowledge as very poor but after
that we seem to have a reasonable spread across the remaining four ranks
with an expected lower number of people indicating that they are 5 (very
knowledgeable).

User versus administrator opinions At times we noticed that users and
administrators disagree in their approval of advice. In Table 2.12 we list the
pieces of advice where user approval contrasted with administrator approval.
For each piece of advice we indicate the proportion of each group that agrees,

66

2.9. Discussion

Rank

of

 re
sp

on
de

nt
s

0

2

4

6

8

10

12

1 2 3 4 5

Figure 2.5: Internet security knowledge ranks from 1 (very poor) to 5 (very
knowledgeable) self-assigned by user-survey participants.

disagreed and was neutral about the advice. Notice that for these pieces of
advice, there was also differing opinions within the groups about whether the
advice was creditable.

Administrators unanimously agreed with enforcing a minimum password length
whereas users were more varied in their reaction to it. One user said that it
“depends what it is protecting”. Similarly for 2-factor authentication for re-
mote logins, users were varied in their approval, whereas administrators were
generally in favour.

Three of five administrators disagreed with not opening emails from strangers.
But users were strongly in favour of it. A 2012 study by Böhme and Moore
found that as a result of concerns over cybercrime 42% of participants said
they do not open email from strangers [11].

Administrators were generally in favour with altering a password before reusing
it at another site. But most users surveys did not approve of the advice. One
user who disagreed with the advice said “Impossible to remember what pass-
word goes with what site”. A different user who disagreed said “Any method
to your password creation makes it less secure”. Administrators gave no com-
ments about why they agreed or disagreed with the advice.

The advice “Include specific characters in your username” somewhat divided
administrator opinions and users strongly disagreed with it. In a 2007 research
paper [50] Florêncio et al. determined that rather than making the secret
password more complex, complexity could instead be added to the username.
Users can choose and record a long username and this will likely offer effective

67

2.9. Discussion

Table 2.12: Advice where users and administrators gave differing approval
rating

Administrators Users
D
ec
isi
on

#
Ye

s

#
ne
ut
ra
l

#
N
o

Advice #
Ye

s

#
ne
ut
ra
l

#
N
o

D
ec
isi
on

4 6 0 0 Minimum password length 3 2 3 3/7

8 2 0 3 Don’t open emails from strangers 6 2 0 4

4 6 1 1 Use 2FA remote accounts 3 2 3 3/7

4 4 1 1 Alter and reuse passwords 2 1 4 8

4 3 1 2 Include specific characters in your username 0 2 6 8

The majority rating for each group is shown in the Decision column and the numbers
indicating the Yes, Neutral and No option in both groups are also shown.

protection from a bulk guessing attack. The very attack that a complex or
long password is hoping to achieve.

One administrator disapproved of this advice saying “good for passwords, over
complicates usernames as password should be secure, usernames are often
generated based on firstname.lastname etc”. Two users commented on the
advice. One said “Stupid and pointless” and another said “Can’t see a good
reason for this, but with a password manager it wouldn’t be too painful”. If
this policy was being implemented for an organisation then these responses
emphasise the need for it to be coupled with effective user-education and
validation.

Summary Throughout the survey, user responses showed a strong sense of
willingness to follow advice provided it seemed to have a benefit. For example,
for the advice regularly change passwords one user commented: “Undoubtedly
sensible, undoubtedly annoying”. However, much of the advice that users
viewed as effective has been shown by security researchers to have limited
security benefits [24, 185]. While not in the majority, this was also true for a
some of the administrator’s responses.

There is substantial evidence in the responses (Appendix B) that user ed-
ucation has been effective, as users can echo the advice that was given in
historic security documents [20]. However, very few users and administra-

68

2.9. Discussion

tors showed an awareness of new recommendation which have superseded the
legacy advice [59]. For example, the 2017 NIST advice recommends not in-
troducing restrictions on the characters allowed in passwords. Yet, most users
and administrators indicated that they agreed with forcing the use of certain
characters in passwords. Note that this new NIST advice has been available
and circulating since 2017. Our user and administrator survey took place in
October 2020.

2.9.3 Costly advice
We want to consider what the most costly advice seems to be. Other than a
ranked severity and frequency score, we do not at this time have the means
to quantify the exact costs involved. To gather an impression of the costly
advice we introduce an arbitrary scoring mechanism for each cost.

We assign 2 points to a major cost which reoccurs at each login, 1.5 to a major
periodic cost, and 1 to a major one-time cost. A minor login cost is assigned
1, minor periodic cost 0.75, and a minor one time cost is 0.5. A positive cost
can account for -2.

Using this elementary analysis, the six most costly pieces of advice are:

• Change your password regularly (score 9.5)

• Use 2-factor authentication on phone (score 7.5)

• Use 2-factor authentication using app or special device (score 7)

• Never reuse a password (score 6.5)

• Implement Defense in Depth (score 6.5)

• Attempt to crack passwords (score 6.25)

We can also see which pieces of advice are the most costly to end-users. To
do this we can sum the scores from all the user cost categories and the user
education category. This gives the six most user-costly advice as:

• Change your password regularly (score 7.5)

• Never reuse a password (score 6.5)

69

2.9. Discussion

• Don’t use dictionary words in your password (score 4.75)

• Use 2-factor authentication using app or special device (score 4.5)

• Store history to eliminate reuse (score 4.25)

• Don’t use published phrases as your password (score 4.25)

Notice that the score for the never reuse password advice remains the same,
as the organisation has no ability other than user education to enforce this
cost.

These items may not be a surprise to those working in security operations. But
it will be interesting to compare this to the benefits of these advice statements.
Particularly since the majority of administrators and end-users deemed “Use 2-
factor authentication using app or special device” and “never reuse a pasword”
to be acceptable advice, and the only advice they disagreed with in these lists
is “Change your password regularly”.

2.9.4 Benefits discussion
Now we look at the benefits identified in Tables 2.9. Observe that overall,
the advice does seem to decrease the chance of compromise. This should be
unsurprising as this is, after all, the aim of authentication policies. However,
there are some areas where there are increases in the chance of attacks. Eight
advice statements have major negative benefits and six pieces of advice have
minor negative benefits. That is, in some areas, these pieces of advice can
increase the probability of compromise. The remaining 65 advice statements
all show improvements for security.

2.9.4.1 Beneficial advice

In Section 2.9.3, we created an elementary scoring system to investigate which
costs seemed to have the highest burdens on users and organisations. We can
invoke a similar system here so get a sense of which pieces of advice are able
to offer the most security.

For benefits we use the following rules: a large decrease in attack risk (⇓)
counts for 2 points, a minor decrease to attack risk (↓) is 1 point. A small
increase to risk (↑) is -1 point and a large increase of risk (⇑) is -2 points.

70

2.9. Discussion

Using this methodology, the most security beneficial pieces of advice appear
to be:

• Apply access control systems (score 12)

• Administrator accounts should have extra protection (score 11)

• Implement Defense in Depth (score 11)

• Implement Technical Defenses (score 11)

• One account per user (score 11)

• Monitor and analyze intrusions (score 10)

The advice that resulted in the greatest increase in risk was the advice Enforce
maximum length (<40) which had a score of -6.

2.9.4.2 Attack protection

In the current model framework, it might not always be meaningful to compare
the security impact of one piece of advice against another. Take, for example,
one piece of advice which decreases the probability of compromise against one
attack type, and a piece of advice that decreases the probability of compromise
against three attack types. It is likely that the latter piece of advice is “better”
but in reality, different attacks occur with higher frequency than others, and
therefore protecting against one attack which occurs regularly might be more
effective than protecting against three rare attack types. This leads us to an
interesting question on the frequency with which the different types of attacks
are successful, and whether there is more advice against the more frequent
attack types.

Phishing, for example, occurs continuously, from targeted spear phishing at-
tacks to mass phishing emails [5]. Whereas side channel attacks, while they
attract interest from researchers, appear to have small real-world chance of
occurring. We found that the attacks most protected against in our advice
were online and offline guessing attacks. A similar amount of advice tried to
protect against phishing attacks as side channel attacks.

71

2.9. Discussion

Assertion_manufacture

Physical_theft

Duplication

Eavesdropping

Offline_guessing

Side_channel_attack

Phishing

Social_engineering

Online_guessing

Endpoint_compromise

Unauthorized_binding

0 10 20 30
Number of pieces of advice

A
tta

ck
 T

yp
e

Decrease chance of attack Increase chance of attack

Figure 2.6: Number of times advice effects each attack type (excluding minor
increases and decreases)

Figure 2.6 shows the number of times an attack was affected by a piece of
advice. Green bars show the number of times a piece of advice decreased the
chance of this attack occurring. The red-boxed bars show the number of times
a piece of advice increased the chance of the given attack occurring.

Physical theft had the least amount of advice that helped protect against it and
had a lot of a advice that leads to a minor increase in the chance of a physical
theft. This is because of advice such as “use 2-factor authentication using a
phone” which introduces an additional physical object into the authentication
procedure.

2.9.5 Costs versus benefits trade-off
We are interested in the trade-offs between the costs and the benefits. Is
high-cost advice balanced by high benefits? Or are users paying high usability
costs for small increases to security?

We found in our benefits discussion that “one account per user” offered many
security benefits. It has four one time minor costs and three of them are

72

2.9. Discussion

borne by the organisation. The fourth is user education which is borne by
both user and organisation. This, therefore, offers a significant increase in
security without placing major inconveniences on the user.

In our benefits analysis, we found that “Enforce maximum [password] length”
had no positive security value. We find that it places three minor costs on
the organisation and one minor cost on the user. This is an example of advice
which compromises usability for no increase in security. Unfortunately, this
practice is still enforced by organisations. In 2007, Furnell assessed the policies
of 10 different websites and 3 enforced maximum lengths on passwords: two
limited the length to 10 characters and one limited it at 16 [54]. In addition,
we found that some websites only reveal their limit on password length after
the user has attempted to use a longer password [129].

“Change your password regularly” gives minor protection against offline and
online guessing attacks. But it has 6 major periodic costs and 1 minor one-
time cost and therefore the benefits are unlikely to offset the costs. This is in
line with the results of Chiasson et al. [24].

An expensive piece of advice was “use multi-factor authentication”. But it
does offer increase in security against online guessing and phishing attacks,
two of the most common attack types. Whether the benefits outweigh the
costs will likely depend on its implementation and the needs of the specific
organisation and users.

One very beneficial piece of advice appears to be: “encrypt password files”.
This protects against three attack types and most of the costs are borne by the
organisation rather than the user. “Don’t transmit in cleartext” and “Request
over a protected channel” both protect against a number of attacks and the
only cost to users is likely an insignificant increase in computing power.

The user piece of advice “Keep software updated” protects against three attack
types but it incurs two periodic costs to the user and one minor cost. In these
cases, it is more difficult to determine at a glance whether the advice is cost
beneficial for the user.

The user piece of advice “Use a Password manager” was well regarded by users
in our study. It can protect against three attack types and most of the costs it
incurs are to the organisation. A password manager greatly reduces the users’

73

2.10. Conclusion

memory load and by extension a user can use as long, random and complex
of a password as they wish. However, as with many of the pieces of advice,
the value of a password manager will lie in how users utilise it. If a user uses
a password manager and continues to reuse a common password choice across
multiple sites then many of the potential benefits won’t materialize.

Finally, we note that our “canary” worked. We included the advice “Don’t
allow users to paste passwords” knowing that it had been determined by the
security community to have no security value [73] and both users and admin-
istrators identified it as a piece of advice that they disapprove of (users with
slightly more uncertainty). We also could not identify any security benefits
for the advice under our attack categories.

For the 79 advice statements we collected, and the one piece of advice we added
in, we identified the costs and benefits of each one. We also notice that, in
general, the costs are human effort costs; both on the system administrators
who must implement the authentication policies, and on the user who must
abide by them.

Most advice was concerned with protecting against online and offline guessing
attacks. Keylogging and phishing or pharming attacks are not mentioned as
often, despite their prevalence. Most of the protection against offline guessing
is focused on improving password strength rather than back end-processes.
This is one of the examples where the burden is placed on the user rather
than the organisation.

2.10 Conclusion
In this chapter, we categorized and discussed currently circulated password
recommendations given by security specialists, multinational companies and
public bodies. We find that the advice given by different organisations is
contradictory and often at odds with security and usability research findings.
41% of the 270 recommendations we collected were contradicted by recom-
mendations given by another organisation.

Using a taxonomy of 270 pieces of collected password advice we develop a
model of costs and benefits of advice. We identify the costs of authentication
advice as the resources, human or otherwise, which are required for the advice

74

2.10. Conclusion

to be implemented. We define the benefits as the change in security risk. Both
costs and benefits can be positive or negative; advice can reduce the number
of resources needed, and advice can increase or decrease the risk.

Using input from 73 end-users and administrators we applied the classification
of costs to the collected advice we gain an insight into the usability of current
authentication recommendations. We find most of the advice places large
burdens on humans, both system administrators, and end-users. Over 85%
of the costs we identified related to the need for additional human labour
or effort. We also find that a lot of the security advice focused on small
improvements to security which resulted in heavy costs.

But reassuringly we did collect some advice which can offer large security ben-
efits for small usability constraints. We also conclude that if an organisation
is willing to bear costs on themselves, they can significantly improve usability
for their end-users, and simultaneously increase their security.

In Chapter 5 we will build on the work introduced in this chapter. We will
be leveraging attack frequency and the quantifiable human costs of authen-
tication, in order to comprehensively evaluate the costs versus benefits of
authentication security policies. But first, in Chapter 3 and Chapter 4 we will
delve deeper into one of the more studied and prevalent authentication attack
vectors: password guessing.

75

CHAPTER 3
Convergence of Password

Guessing to Optimal Success
Rates

Password guessing is one of the most common methods an attacker will use for com-
promising end users. We often hear that passwords belonging to website users have
been leaked and revealed to the public. These leaks compromise the users involved
but also feed the wealth of knowledge attackers have about users’ passwords. The
more informed attackers are about password creation, the better their password
guessing becomes. In this chapter, we demonstrate using proofs of convergence and
real-world password data that the vulnerability of all users of a website increases as
a result of a leak of any of the users’ passwords from that website. We show that
a leak that reveals the passwords of just 1% of the users provides an attacker with
enough information to potentially have a success rate of over 84% when trying to
compromise other users of the same website. For researchers, it is often difficult to
quantify the effectiveness of guessing strategies, particularly when guessing differ-
ent datasets. We construct a model of password guessing that can be used to offer
visual comparisons and formulate theorems corresponding to guessing success. This
chapter is based on research published in [115] and [116].

76

3.1. Introduction

3.1 Introduction
The resistance of passwords to guessing is essential to our online security.
Passwords are used to protect our online banking, shopping, insurance ac-
counts, social media, and email, among many other things. An attacker’s goal
is to gain access to these accounts, often by directly guessing passwords. Once
an attacker has access, they can make a financial gain from that user’s account
directly or use the user as a base for spam, botnet, ransomware, and phishing
attacks. Our work is important for gaining a better understanding of our vul-
nerabilities to password attackers and to raise the awareness of organizations
to the damage leaked password datasets can cause.

Guessing passwords in the right order is important for an attacker as they
wish to compromise as many users as possible with a small number of guesses.
Password guessing can be divided into two types: online guessing and offline
guessing. In an online guessing attack, the attacker attempts to guess combi-
nations of the username and password directly on the live system, for example,
on a website login page. The number of guesses is often limited by throttling
techniques, such as locking a user out when a certain number of wrong guesses
has been reached. In this case, an attacker will often need to make a correct
guess in less than, say, 100 attempts [59].

An offline guessing attack can only occur after a dataset of passwords has been
leaked. These leaks occur relatively frequently and can result in reputational
damage to multinational organizations and governments [65]. Once a password
dataset has been leaked, then the method that was used to store the passwords
is important. If passwords are stored in plaintext or they are encrypted and
the key is leaked, then they are already available to attackers. If they are
hashed and unsalted, then most passwords can be found using a hash lookup
table (rainbow tables) [124]. Finally, if they are hashed and salted, then offline
guessing is necessary [51]. In an offline guessing attack, the attacker guesses
a password, combines it with the random salt associated with each user, and
then hashes the combined value. The goal of the attacker is to compromise as
many users as possible with as few guesses as possible and, therefore, get the
best returns for their time and resources used.

In this chapter, we formalize an understanding of password guessing success.
This allows a comparison of guessing success, and is particularly useful for

77

3.2. Related work

comparing guessing when a variety of password datasets are used. This for-
mulation of guessing success also allows for the development of a model of
guessing that can be analytically studied. We use it to prove that convergence
to optimum guessing success rates occurs when a sample of passwords from a
password set is used to guess the whole password set. We continue by showing
empirically that this convergence occurs when real leaked password datasets
are used. In fact, we can show that, when a sample of users are compromised,
information is also revealed about the characteristics of the remaining users’
passwords, thus allowing us to see an effect on the guessing success when
informing our guessing using the leaked sample.

In Section 3.3, we introduce a model for measuring the effectiveness of pass-
word guessing. In Section 3.4, we prove that, using a sample of passwords,
we can effectively guess the password in a dataset with a loss that converges
to zero as the sample becomes large. Section 3.5 provides a graphical ex-
ample of the guessing function and introduces real-world leaked datasets. In
Section 3.6, we use our guessing function to demonstrate the effectiveness
of samples at compromising the remaining users in the dataset from which
they were drawn. Section 3.7 introduces potential variants of our convergence
theorems that allow for a small amount of guessing loss and therefore bet-
ter describe the empirical data and the motivations of an attacker. Finally,
in Section 3.8, we demonstrate the threat to an organization of a subset of
their users being compromised. We show that organizations are vulnerable if
a subset of their passwords is leaked.

3.2 Related work
Attackers use large dictionaries of words, as well as lists of most popular
password choices to inform their password guesses. It is important for re-
searchers to understand the methods used by attackers in order to know how
to best protect online accounts. There has been considerable research de-
veloping password guessing strategies. Narayanan et al. employed Markov
models to enable faster dictionary attacks [118]. Weir et al. used probabilistic
context-free grammar (PCFG) which were trained using password breaches
and used to assign probabilities to passwords for guessing [178]. Dürmuth et
al. proposed an updated password guessing model based on Markov models,
called OMEN [21]. Houshmand and Aggarwal created a method for merging

78

3.2. Related work

multiple grammars for dictionary-based PCFG models [70]. These methods
will be discussed in more detail in Section 4.2.

User chosen passwords are inherently easy for automations to guess [98]. Of-
ten websites have offered guidance for users on how to choose stronger pass-
words [163]. In order to offer improvements, it is important that conclu-
sions can be made regarding the “guessability” of a given password. In 2003,
Burr [20] suggested that password strength could be measured using Claude
Shannon’s entropy measure: H(X) = −∑n

i=1 P (xi) logP (xi). Massey [100]
showed that Shannon’s entropy provides a lower bound on the expected num-
ber of guesses, but one that it not tight in general. In 2010, Weir et al. used
real password datasets to show that entropy is not an accurate measure of
password guessability. [177]. In 2012, Christiansen and Duffy showed that,
when appropriately scaled, as the password length grows, the logarithm of the
guesswork can provide direct estimates of the guesswork distribution when
passwords are long [28]. Further analysis into the distribution of password
has sparked an interest for many researchers. Many believed that user pass-
word choices would follow a Zipf distribution [145]. Zipf’s law was originally
formulated in linguistics. It states that given some corpus of natural language
utterances, the frequency of any word is inversely proportional to its rank in
the frequency table. In 2012, Malone and Maher showed that user password
choice does not follow a Zipf distribution [98].

These entropy and distribution measures are now rarely used and entropy
itself is considered a poor measure of password guessability [83]. Instead, real
world passwords are typically used to measure password security. The first
to explore real world passwords and report their guessability were Morris and
Thompson in 1979 [106]. They found that using a simple dictionary they were
able to guess one third of all the users’ passwords in 5 minutes. This flags some
key issues with reporting the guessability of a password set using guessing as
analysis. Firstly, we do not know what words were in the dictionary and what
order they were tried in. In addition, we know that the guessing method they
used compromised one third of the passwords in five minutes, but this does not
tell us that this approach was effective or ineffective since they have not told us
what the optimum number of passwords compromised in that time could have
been. Therefore, while this real world guessing does indicate that the users’
passwords in the dataset were possibly very easy to guess, no conclusions can

79

3.3. Model

be made about the effectiveness of the guessing method.

Other researchers have developed more sophisticated methods for measuring
guessing success. Melicher et al. modeled password guessability using neural
networks [102], Durmuth et al. used an ordered Markov enumerator to simu-
late attackers’ password guessing [42], Hitaj et al. used deep learning [68], and
Weir et al. used probabilistic context-free grammars [178]. In 2012, Bonneau
looked at a number of different options for password guessing metrics [12].
Kelley et al, developed Weir’s work to create a guess number calculator which
can determine at what point a given password guessing algorithm, trained
with a given data set, would guess a specific password. However, Ur et al.
show that the choice of guessing approach and the dictionaries used can bias
research conclusions [165].

In this research we investigate guessing success in context. We acknowledge
that depending on the password set we are guessing, a return rate for a guess-
ing algorithm of m% of users’ passwords in n guesses is either efficient or
ineffective. We introduce a measure of password guessing which allows com-
parisons to be drawn when guessing different sized password sets with differing
distributions using different dictionaries of guesses. This measure can then be
used to bound guessing success. We leverage it in order to uncover the effect a
small number of leaked passwords can have on the vulnerability of a website’s
entire user cohort.

3.3 Model
When we report the number of users that a guessing technique compromises,
it is important to consider this in light of the maximum number of users it is
possible to compromise for that number of guesses on that dataset. This can
depend on the total number of users in the dataset and also on the distribution
of password choices by those users. Therefore, reporting the number of guesses
that a technique makes does not give the full picture unless context is provided.
We, therefore, begin by introducing a model that can report effective guessing
measured with respect to the guessing potential.

Suppose we have a set of passwords X chosen by N users. We rank and order
these passwords, so the most popular password is rank 1, the second most
popular is rank 2, and so on, until rank |X|, where |X| is the number of dif-

80

3.3. Model

ferent password choices; we can break ties between equally popular passwords
arbitrarily. Let p(x) be the probability that the password x is used by a ran-
domly selected user from the group N ; note that q will also be a probability
distribution, and we can extend it to a probability measure on X. Let σ(k)
be the password of rank k in distribution p.

Question: If we take n samples from a dataset X of users’ passwords, how
effectively do these n samples guess the passwords of the other N users from
the same dataset?
First, we define a method for measuring the effectiveness of guessing.

3.3.1 Optimal Guessing
The optimal guessing strategy [100] involves using the rank and order of p.
If we guess the first g passwords, then the fraction of passwords guessed is

F(g) =
g∑

k=1
p(σ(k)). (3.1)

The function is cumulative because we want to know after g guesses how many
users we have compromised, rather than caring about how many users were
compromised on the g-th guess.

3.3.2 Guessing With a Sample
Suppose we take a sample of n passwords and rank and order them to form a
second distribution qn. Let σqn(k) be the password of rank k in the distribution
qn. Now, we use the distribution qn to guess passwords that are actually
distributed with frequency p. We can define a function similar to the one
above that will tell us how many users in p will be compromised when using
the rank and order of the passwords in qn.

Gqn(g) =
g∑

k=1
p(σqn(k)). (3.2)

3.3.3 Guessing Loss
Combining the optimal guessing strategy with guessing using a sample, we
define a method for describing how well a set of ordered password guesses can

81

3.4. Proof of Convergence of Password Guessing

guess a dataset of passwords as:

Hqn(g) = F(g)− Gqn(g) =
g∑

k=1
p(σ(k))− p(σqn(k)). (3.3)

This function measures the gap between the optimal strategy and the ability
of a probability distribution qn to guess a second probability distribution p.

3.4 Proof of Convergence of Password
Guessing

Using this model, we might hope to use a sample to drive password guessing
with zero loss. When Hqn(g) ≡ 0, we have guessed every user’s password as
fast as possible. We will now prove that, as the number of samples increases,
we converge towards a zero-loss system.

Definition 3.4.1 (δ). Consider the minimum size of the gap between two
distinct adjacent probabilities of p:

δ = min
g
{p(σ(g))− p(σ(g + 1)) | p(σ(g)) 6= p(σ(g + 1))} ,

where we take p(σ(g)) = 0 if g > |X|.

Lemma 3.4.1. Suppose qn is a sample of size n drawn from the distribution
p. A lower bound on the probability of zero loss can be given by

P[Hqn = 0] ≥ P[‖p− qn‖∞ < δ/2].

Proof: Consider probability distributions q, where ‖p − q‖∞ < δ/2. Note
that, for the two passwords w and w′, if we had p(w) > p(w′), then q(w) >
q(w′), as the difference between p(w) and p(w′) must have been at least δ,
but |p(w) − q(w)| < δ/2, and likewise for w′. Thus, σq orders passwords of
differing p probability in the same order as p.

On the other hand, if p(w) = p(w′), and w is replaced by w′ in the ordering
σq, then the contribution to Hqn is p(w) − p(w′) = 0. We conclude that if
‖p− q‖∞ < δ/2, then Hqn = 0.

82

3.4. Proof of Convergence of Password Guessing

We will now show that the second probability in Lemma 3.4.1 goes to 1 as
n→∞ using Sanov’s Theorem.

Theorem 3.4.2 (Convergence to optimal guessing using Sanov’s theorem).
Suppose qn is a sample of size n drawn from the distribution p.

P[Hqn = 0] ≥ P[‖p− qn‖∞ < δ/2]→ 1 as n→∞

and
P[‖p− qn‖∞ < δ/2] ≥ 1− (n+ 1)|X|2−n δ

2
2 .

Proof: Let A be the set of q with ‖p− q‖∞ ≥ δ/2. Pinsker’s inequality [162]
tells us that, for any q ∈ A,

max
E⊂X
{|p(E)− q(E)|} ≤

√
DKL(q||p)

2 ,

where E is any event. In particular, if q ∈ A, then the gap between the
probabilities is always at least δ/2, and the max on the left must be at least
δ/2, so

δ

2 ≤
√
DKL(q||p)

2 ,

and so δ2/2 ≤ DKL(q||p). Sanov’s Theorem [31] says

P[qn ∈ A] ≤ (n+ 1)|X|2−nd∗ ,

where
d∗ = min

q∈A
DKL(q||p).

=⇒ P[qn ∈ A] ≤ (n+ 1)|X|2−n δ
2
2 .

We conclude that P[qn ∈ A]→ 0, so P[‖p− qn‖∞ < δ/2]→ 1 as n→∞.

Theorem 3.4.2 shows that a sample of size n will converge to the distribution
of the whole dataset p with a probability approaching 1 as n→∞.

However, this convergence is slow. The turning point of the probability bound

83

3.4. Proof of Convergence of Password Guessing

is
δ2 ln 2

2 − |X|
n+ 1 = 0.

This tells us the point at which the function must start increasing towards
1. It is determined by the ratio of the sample size n to the total size of the
dataset |X|. Rearranging, we can find the value of n that the bound must
have turned by

n = 2|X|
δ2 ln 2 + 1.

Since δ is a probability value between 0 and 1, we can see that the number of
samples n in q will need to be at least two times greater than the number of
different passwords in the dataset.

In fact, typical values of δ will result in considerably larger n. δ relates to
the difference in frequency between two adjacently ranked passwords. This
difference in frequency is often 1. Given a dataset of N users, and a probability
difference between a password chosen by two users and a password chosen by
one user of δ = 1/N , this will give

n = 2|X|N2

ln 2 + 1.

While Theorem 3.4.2 does demonstrate that our guesses success will con-
verge to zero, the rate of convergence is too slow to be useful. We, therefore,
present a second method for identifying an alternative lower bound for the
convergence.

Theorem 3.4.3 (Convergence to optimal guessing using the central limit
theorem). Suppose qn is a sample of size n drawn from the distribution p.
Then, as n→∞

P[Hqn = 0] ≥ P[‖p− qn‖∞ < δ/2] ≥
(

1−Q
(

δ
√
n

2‖A‖∞

))|X|
→ 1,

where Q(x) is the probability that a standard normal random variable takes a
value larger than x.

Proof: Given that qn is sampled from distribution p in an essentially multi-
nomial way, we know that E[qn] = p and that the covariance for the entries of

84

3.4. Proof of Convergence of Password Guessing

qn will be Σ/n [188]. Where

Σi,j =

pi(1− pi) if i = j

−pipj otherwise.

The multivariate central limit theorem tells us that qn is approximately normal
N(p,Σ/n).

Note that Σ is real valued, symmetric, and diagonally dominant, and so pos-
itive semidefinite, thus having non-negative eigenvalues. Consequently, by
spectral decomposition [69], we can write Σ = UΛUT , where UUT = I and Λ
is a matrix with Σ’s eigenvalues on the diagonal. Let A = UΛ1/2, and then
AAT = Σ and samples from N(p,Σ) can be generated by forming a vector z
with coordinates that are N(0, 1) and then taking p+ Az/

√
n.

Now,

P
[
‖p− qn‖∞ <

δ

2

]
= P

[
‖Az‖∞√

n
<
δ

2

]
≥ P

[
‖A‖∞‖z‖∞√

n
<
δ

2

]
= P

[
‖z‖∞ <

δ
√
n

2‖A‖∞

]
.

Or, in terms of the Q function, noting that z has |X| independent components,

P
[
‖z‖∞ <

δ
√
n

2‖A‖∞

]
=
(

1−Q
(

δ
√
n

2‖A‖∞

))|X|
.

So, as n→∞, Q(.)→ 0, so P[.]→ 1.

In fact, to simplify this expression, we can give an estimate for ‖A‖∞. The
entries of A, aij = uijλ

1/2
j , and so by the Cauchy–Schwartz inequality,

‖A‖∞ = max
i

(∑
j

|aij|
)

= max
i

(∑
j

|uijλ1/2
j |

)
= max

i
|〈ui, λ1/2〉| ≤ max

i
‖ui‖2 ‖λ1/2‖2.

However, ‖ui‖2 = 1 because the rows of U are orthogonal vectors and

‖λ1/2‖2 =
√∑

j

(λ1/2
j)2 =

√
trace(Σ).

So,
‖A‖∞ ≤

√
trace(Σ) =

√
p1(1− p1) + p2(1− p2) +

85

3.4. Proof of Convergence of Password Guessing

Note that, as ∑ pi = 1, we can find the largest possible value of p1(1− p1) +
p2(1− p2) + . . . to be 1− 1/|X| ≤ 1.

We conclude that

P
[
‖p− qn‖∞ <

δ

2

]
≥
(

1−Q
(

δ
√
n

2‖A‖∞

))|X|

≥
(

1−Q
(

δ
√
n

2
√

trace Σ

))|X|
≥
(

1−Q
(
δ
√
n

2

))|X|
.

Unlike our previous bound, this bound derived by the central limit theorem
is monotonic in n. The convergence function is monotonic and between 0 and
1. The parameters |X| and n determine the rate of convergence but there is
no turning point of the function. This function offers a better bound on the
convergence.

For example, take a toy dataset with just 8 users and a minimum distance
between the probability of password choices as δ = 1/N = 0.125. Figure 3.1a
shows the convergence to 1 for both bounds. Even for this small dataset size,
the number of samples needed for a probability of close to 1 is large. We
can see the bound provided by the central limit theorem is much better than
the Sanov bound. This effect is further emphasized the larger the size of the
dataset X.

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

y

Sanov

CLT

(a) Comparison of Convergence bounds.

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n

y

CLT

(b) CLT bound: n = 0→ 500.

Figure 3.1: (a) Convergence bound with Sanov’s theorem versus with (b) the
central limit theorem.

86

3.5. Test on Real-World Leaked Password Datasets

3.5 Test on Real-World Leaked Password
Datasets

Theorems 3.4.2 and 3.4.3 tell us that if we continue to choose samples from a
dataset, then these will have zero guessing loss with probability approaching 1
as n→∞. We are interested in the application of this convergence to a real-
world password leak. Our question is whether a leak of a subset of a dataset
can, in practice, give away valuable information about the distribution of the
remaining passwords in that same dataset.

In this section, we introduce five datasets of passwords that have been leaked
to the public from real organizations. We comment on the distribution of these
passwords. Then, sampling passwords from these datasets, we see whether the
samples provide an effective guessing strategy with respect to our guessing loss
function.

3.5.1 Datasets
3.5.1.1 Computerbits.ie Dataset: N = 1795

In 2009, 1795 users’ passwords were leaked from the Irish website Computer-
bits.ie. Figure 3.2a shows the top 11 most popular passwords in this dataset.
We can see many Irish-orientated words: dublin, ireland, munster, celtic. The
second most popular password for the website Computerbits.ie was “comput-
erbits”, reinforcing the idea that the service provider has an impact on the
user’s choice of password [175].

3.5.1.2 Hotmail.com Dataset: N = 7300

Ten thousand users’ passwords from the website Hotmail.com were made pub-
lic in 2009 when they were uploaded to pastebin.com [36] by an anonymous
user. Though it is still unknown, it is suspected that the users had been com-
promised by means of phishing scams [8]. Figure 3.2b shows the frequency of
the first 11 most popular passwords chosen by users in the Hotmail dataset.
The most popular password is “123456” which occurs with frequency 48. The
password of rank 11 occurs with frequency 5. So, all passwords of rank greater
than ten have a frequency less than or equal to 5. In total, there are 6670
ranks in the Hotmail distribution, i.e., there are 6670 distinct passwords in the

87

3.5. Test on Real-World Leaked Password Datasets

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

p
a
ssw

o
rd

co
m

p
u
te

rb
its

1
2

3
4

5
6

d
u
b

lin

le
tm

e
in

q
w

e
rty

ire
la

n
d

1
2

3
4

5
6

7

m
u
n
ste

r

liv
e
rp

o
o
l1

ce
ltic

(a) Computerbits.ie distri-
bution

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1
2

3
4

5
6

1
2

3
4

5
6

7
8

9

1
1

1
1

1
1

1
2

3
4

5
6

7
8

te
q

u
ie

ro

0
0

0
0

0
0

a
le

ja
n
d

ro

se
b

a
stia

n

e
stre

lla

1
2

3
4

5
6

7

5
5

5
5

5
5

(b) Hotmail.com distribu-
tion.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1
2

3
4

5
6

fi
cke

n

1
2

3
4

5

h
a
llo

1
2

3
4

5
6

7
8

9

sch
a
tz

1
2

3
4

5
6

7
8

d
a
n
ie

l

1
2

3
4

a
skim

m
a
m

a

(c) Flirtlife.de distribu-
tion.

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

a
b

c1
2

3

1
2

3
4

5
6

a

1
2

q
w

2
3

w
e

1
2

3
a
b

c

a
1

2
3

4
5

6

1
2

3
q

w
e

se
cre

t6
6

6

Y
fD

b
U

fN
jH

1
0

3
0

5
0

7
0

a
sd

1
2

3

q
w

e
rty

1
2

3

1
q

2
w

3
e
4

r

(d) 000webhost.com distri-
bution.

 0

 50000

 100000

 150000

 200000

 250000

 300000

1
2

3
4

5
6

1
2

3
4

5

1
2

3
4

5
6

7
8

9

p
a
ssw

o
rd

ilo
v
e
y
o
u

p
rin

ce
ss

1
2

3
4

5
6

7

ro
cky

o
u

1
2

3
4

5
6

7
8

a
b

c1
2

3

n
ico

le

(e) Rockyou.com distribu-
tion.

Figure 3.2: Distribution of password choices: frequency of passwords in ranks
1 to 11.

dataset. The top password represents 0.66% of the Hotmail users’ passwords,
and the rank 11 password represents 0.068% of the Hotmail users’ passwords.

3.5.1.3 Flirtlife.de Dataset: N = 98,912

In 2006, over 100,000 passwords were leaked from a German dating site Flirtlife.de.
A write-up by Heise online [141], a German security information website,
states that the leaked file contained many usernames and passwords with ty-
pographic errors. It seems that attackers were harvesting the data during
log-in attempts.

This means that, in the dataset, for a small number of users, we had multiple
passwords. We followed the clean up method specified in [98]: we took the
user’s password as the last entry seen for that user. In this way, we ignore
passwords where the users first attempts were the wrong password or previous
passwords when a password change has occurred. There were also 18 blank
password fields, and we removed these from the dataset, too. After this clean-
ing process, we were left with 98,912 users and 43,838 different passwords.

The distribution of the first 11 passwords from the Flirtlife dataset are shown
in Figure 3.2c. As noticed by [98], we see that passwords in these top ranks

88

3.5. Test on Real-World Leaked Password Datasets

have meanings in German or Turkish. For example, ‘schatz’ and ‘askin’ are
German and Turkish terms of endearment, respectively. The rank 1 password
represents 1.45% of the Flirtlife users’ passwords, and the rank 11 password
represents 0.16% of the Flirtlife users’ passwords.

3.5.1.4 000webhost.com Dataset: N = 15,252,206

In 2015, 15 million users’ passwords were leaked from 000webhost.com [56].
The attacker exploited a bug in an outdated version of PHP. The passwords
were plaintext and created with a composition policy that forced them to be
at least 6 characters long and must include both letters and numbers. Today,
a lot of websites will enforce a composition policy on passwords. It will be
interesting to see the impact this has on the effectiveness of guessing the
password dataset distribution. The leaked dataset was cleaned in the same
way as in [56]. All passwords longer than 256 characters and passwords that
were not ASCII were removed.

The distribution of the top 11 passwords in the 000webhost.com dataset is
shown in Figure 3.2d. All passwords are a mixture of letters and numbers.
There is a clear pattern to each password, though less obviously for the pass-
word ‘YfDbUfNjH10305070’. The letters, YfDbUfNjH, can be mapped to a
Russian word which means “navigator” [173]. It is unclear why this password
is so popular. It could be a Russian botnet that is using the same password
for each of its bot accounts [183]. There are 10 million distinct passwords in
the dataset. The rank 1 password represents a surprisingly low 0.16% of the
users’ passwords, and the rank 11 password represents 0.05%.

3.5.1.5 Rockyou.com Dataset: N = 32,602,877

In December 2009, 32 million user credentials were leaked by the company
Rockyou. The passwords were stored in plaintext and the hackers used a 10-
year-old SQL vulnerability to gain access to the database. The platform did
not allow the inclusion of special characters in passwords. Figure 3.2e shows
the distribution of the first 11 Rockyou passwords. The rank 1 password in
the Rockyou dataset represents 0.89% of the total dataset, and the rank 11
password represents 0.05% of the total users’ passwords in the dataset.

89

3.5. Test on Real-World Leaked Password Datasets

3.5.2 Demonstration of Guessing Function
In Section 3.3.3, we defined a method for measuring the effectiveness of pass-
word guessing. We will now graph the functions Fp(g), Gqn(g) and Hqn(g).
Note that the y-axis for functions Fp(g), Gqn(g) is a measurement of number
of successes and therefore we want large values. But, Hqn(g) is a measurement
of cumulative loss, so we want Hqn(g) to be small. The goal is to have the
sample guessing, Gqn(g), as close as possible to the optimal guessing, Fp(g),
thus keeping the loss, Hqn(g), as low as possible.

In Figure 3.3, we chose n =100 users’ passwords, with replacement, from
the Hotmail dataset. The 100 users’ passwords were ranked and ordered and
used to guess the passwords of all the 7300 Hotmail users whose passwords
are in our dataset. We were able to compromise a total of 234 users, 134
more than those in the original sample. In the Figure, the blue dashed line
represents the optimal number of successes, Fp(g). The green dot and dash
line shows the number of success for each guess using the sample of 100 users’
passwords, Gqn(g). The red line is reporting loss rather than success. It is
the difference between the optimal guessing and guessing using the password
sample, Hqn(g) = Fp(g)− Gqn(g).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50 60 70 80 90 100

k Guesses

F(k) optimal
H(k) Guessing Loss

G(k) guessing with q

Figure 3.3: Hotmail dataset guessed using a sample of size n = 100 users.

The sample of 100 users was chosen randomly from the 7300 users in the
Hotmail dataset. But, because we sample with replacement, we managed to

90

3.6. Empirical Evidence of Convergence

choose the same user twice. We discover this because there were 99 guesses
made instead of 100, but the password of frequency 1 in q resulted in only 1
success in p. Note that, because all passwords after rank 1 in q occur with
frequency 1, the ordering is arbitrary. Therefore, in this example, the jumps
in loss could occur at any point after guess 1.

We can see a small reduction in loss at guess number 23, where 15 users were
compromised. This was when the second most popular password “123456789”
was guessed. On guess 46, the most popular password in the Hotmail dataset
was guessed. This guess of password “123456” compromised 48 users.

Even for this small sample size (only 1% of the total dataset), we have a low
loss. We only failed to compromise 0.03 of the users we could have potentially
compromised with the optimum first 100 guesses. Gqn(g) achieved almost half
the efficiency of the optimal strategy with 100 guesses.

3.6 Empirical Evidence of Convergence
Our convergence proof, Theorem 3.4.2, leveraging Sanov’s Theorem tells us
that the convergence of the loss function goes towards zero with respect to
|X|
n+1 . That is, an important value for convergence is the ratio of the number
of different passwords in the full dataset over the number of users’ passwords
in the sample.

In this way, the larger the sample size, the smaller the loss we expect. In
Figure 3.4, we take samples of size 1%, 10%, 25%, 50%, 75%, 100%, and 200%
of the original dataset size. For example, a sample of 200% of the Hotmail
dataset involves drawing from the 7300 users’ passwords 14,600 times with
replacement.

As expected, we found that the increase in the number of samples does reduce
loss. We initially see an increase in loss as the number of guesses increases.
This increase occurs because we are dealing with a cumulative function, and
the more guesses we make, the greater the potential we have to diverge from
the optimal guessing. Notice that a peak occurs at approximately 420 guesses.
In the Hotmail dataset, there are only 420 non-unique passwords (i.e., 420
password choices were chosen by more than one user). So, passwords in the
Hotmail dataset after rank 420 have frequency 1; therefore each guess can only

91

3.6. Empirical Evidence of Convergence

be equal to or more successful than the optimal at that rank.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 10 100 1000

H
:

Lo
ss

k Guesses

Sample size
1% of N

10% of N
25% of N
50% of N
75% of N

100% of N
200% of N

Figure 3.4: Probability loss: using samples of users from the Hotmail dataset
to guess the passwords of all N users in the Hotmail dataset.

The Hotmail dataset has a relatively large number of unique passwords. The
ratio of number of users N to number of passwords |X| for the Hotmail dataset
is 0.91, and 0.86 of the users chose a unique password. The ratio of users to
passwords in the Flirtlife dataset is 0.44, and 0.32 of the users chose unique
passwords. The ratio for the Rockyou dataset is also 0.44, and the fraction
of users who chose unique passwords is 0.3645. In Figure 3.5, we plot the
same loss function, for the same proportions of the dataset, using the Flirtlife
dataset and the Rockyou dataset.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 10 100 1000 10000

H
:

Lo
ss

k Guesses

Sample size
1% of N

10% of N
25% of N
50% of N
75% of N

100% of N
200% of N

(a) Flirtlife

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 10 100 1000 10000 100000 1x106 1x107

H
:

Lo
ss

k Guesses

1% of N
10% of N
25% of N
50% of N
75% of N

100% of N
200% of N

(b) Rockyou

Figure 3.5: Probability loss for sample sizes n determined as a proportion of
N .

92

3.6. Empirical Evidence of Convergence

Again, we see the larger sample sizes result in smaller loss. The largest value
of loss for both was from the sample of size 1%. This resulted in a loss of
0.16 for Flirtlife and 0.125 for Rockyou, much higher than the largest Hotmail
loss. Though it is not shown in the graphs, we note that the maximum loss
for a sample from the Computerbits dataset was 0.055 and the maximum loss
for a sample from the 000webhost dataset was 0.12. The turning point in the
loss function occurs at approximately 12,442 guesses for Flirtlife. 12,442 is
the number of non-unique passwords in the Flirtlife dataset. Similarly, we see
the turning point for the Rockyou plots at ~2,450,000, matching the number
of unique passwords in the Rockyou dataset.

In all three graphs, we can see that guessing using the sample is effective.
When guessing using a sample, we lose, at most, 16% of the total users we
could have compromised with the same number of optimal guesses. The loss
of 16% for Flirtlife is the maximum over the entire range and with a sample of
just 1% of the total number of users. If we look at the first 100 guesses when
we have a sample of 10% of the users, we can see our loss is down at 0.007; that
is, we are unable to compromise just 0.7% of the potentially compromisable
users.

Figures 3.4 and 3.5 show that we were effectively able to guess users’ passwords
using a sample of passwords from other users of the same website. Even with
a sample representing just 1% of the total number of users, we have a loss less
than 0.16.

3.6.1 Spread of Results
In each of the previous graphs, we have only plotted results for one sample
set of each size. But, results could vary depending on passwords chosen in the
sample. Because we are anticipating convergence as n → ∞, we expect the
spread to decrease for increases in sample sizes.

93

3.6. Empirical Evidence of Convergence

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1 10 100 1000 10000

H
(k

)
G

u
e
ss

in
g

 L
o
ss

k Guesses

1% of N
10% of N
25% of N
50% of N
75% of N

100% of N
200% of N

Figure 3.6: Guessing Flirtlife.de dataset, size N = 98,912, using multiple
samples of each size.

In Figure 3.6, we plot the results of guessing the Flirtlife dataset using multiple
samples of each size. We plot 20 different samples for each sample size. We
can see that for a sample of size 1% of the dataset we have more spread in the
data than for a sample 50% the size of the dataset and much more than for
the sample of size 200%. At the end of the guessing, the difference between
the max and min value for the samples of size 1% was 0.021, representing
a difference in users compromised of 2121. In Table 3.1, we summarize the
spread of the results for guessing the Flirtlife dataset. We report these results
as frequency loss, i.e., the number of users from N = 98,912 that we were
unable to compromise.

94

3.6. Empirical Evidence of Convergence

Table 3.1: Spread of loss results for 20 samples of each size n which are
guessing the Flirtlife dataset.

Sample size Spread of Loss

% of N n mean max min range

1% 989 15151.0 16608 14487 2121

10% 9891 12651.3 12980 12390 590

25% 24728 9194.9 9394 8946 448

50% 49456 4109.6 4219 3987 232

75% 74184 2100.1 2181 2018 163

100% 98912 1139.1 1210 1073 137

200% 197824 122.7 136 106 30

3.6.2 When Does Loss Reach Zero?
Despite the fact that we have low loss, in none of these graphs do we reach
a loss of zero. In Rockyou, for the sample of size 200%, we still had 26,795
users to compromise. Flirtlife we had 130 users, and Hotmail we had 5 users
left to compromise.

Focusing on Hotmail, we investigated how many guesses it takes for our loss
function to reach zero. Using a sample 300% the size of the number of users,
we converge to zero with guess number 6172. In Figure 3.1b, we had a dataset
with just 8 users, and for both Sanov and Central Limit Theorem (CLT), at
300% of 8, n = 24, we can see we are still only just above 0 probability of
convergence.

For the Flirtlife dataset, incrementing our sample size by 100% of N each time,
we did not get a loss of zero until we had a sample 600% the size of N . In this
case, we had a loss of zero repeatedly within the first 100 guesses, but as the
number of guesses increased, we had approximately 120 users whose passwords
we could not guess. We returned to a loss of zero at guess number 43,098. For
a sample 600% of 8 in Figure 3.1a, n = 48, we still have a probability near to 0.
This implies that our construction of the bounds in the convergence proofs are
more strict than desirable for representing real-world guessing effectiveness.

95

3.7. Improvements to Models

3.7 Improvements to Models
For the Flirtlife dataset, we need a sample 600% the size of the number of
users in the set in order to get a loss of 0. But, with a sample size that
is 50% the number of users in the dataset, we have a loss of just 4%. An
attacker is unlikely to care about getting every single user and will likely
be interested in compromising the most users with a reasonable number of
guesses. In Theorems 3.4.2 and 3.4.3, we show that the loss will converge to
zero as n→∞. But, instead, we could look at a situation where we just want
our loss to be small. We now provide additional theorems that show that we
can limit the amount of loss we are willing to accept.

Specifically, we want to show that, if we take n samples drawn from a distri-
bution p of passwords and form the resulting distribution qn, then as n→∞
we have P[Hqn < ε] → 1, i.e., in our guessing effectiveness we can choose to
accept a small amount of loss, ε. We consider two methods for accepting an
ε amount of loss. The first is a cut-off method, and the second is a blocking
method.

3.7.1 Cut-Off Point to Allow ε Loss
The premise of this method is to divide the guessing into two parts, as shown
in Figure 3.7. We consider the first part to be the high frequency passwords.
For these, we want the guessing to be exact, i.e., the order of q matches the
order of p for these ranks. After some cutoff point Gε, we are not particularly
concerned with the order of the remaining passwords. We wish to define the
cut-off point such that the loss does not exceed a value ε.

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

G
e

0 5 10 15 20

σ(k)

Figure 3.7: Demonstration of the cut-off point Gε.

96

3.7. Improvements to Models

Lemma 3.7.1. The lower bound on the probability of ε loss is defined by

P[||Hqn||∞ < ε] ≥ P[‖p− qn‖∞ < δε/2],

where Gε is chosen such that

bn/2c−1∑
g=0

p(σ(Gε + g))− p(σ(|X| − g)) < ε.

Proof: When g < Gε, we proceed in the same way as in Lemma 3.4.1 to
achieve zero loss, i.e., we choose

δε = min
g<Gε
{p(σ(g))− p(σ(g + 1)) | p(σ(g)) 6= p(σ(g + 1))} .

Note that this δε will typically be larger than δ.

P[Hqn|{g<Gε} = 0] ≥ P[‖p− qn‖∞ < δε/2].

When g ≥ Gε, we know that the loss function H will be bounded by the
case where q is ordered in the worst possible way. That is, the order of
q = p(σ(|X|)), . . . , p(σ(Gε)), where σ(|X|) is the last ranked password in p.

If there are n ranks between σ(Gε) and σ(|X|), then the loss will increase for at
most the first bn/2c ranks; by the symmetry of p(σ(Gε+g)) and p(σ(|X|−g)).
Therefore, the maximum value the loss can be is

bn/2c−1∑
g=0

p(σ(Gε + g))− p(σ(|X| − g)) < ε.

Using this method, we decide what value we are willing to accept as our ε
loss and then work from there to compute the cut-off Gε. The assumption in
this method is that an attacker is concerned with guessing the high frequency
passwords in the exact order and cares less about the exact ordering of the
low frequency passwords. This method can be employed to effectively model
the actions of an attacker performing an online guessing attack.

97

3.7. Improvements to Models

3.7.2 Blocking Method to Allow ε Loss
In this method, we employ some leniency to allow small changes between the
ranks of passwords. The assumption is that, if an attacker is making a block of
10 password guesses against all accounts, then it matters little to an attacker
whether the rank 4 guess is more successful than the rank 2 guess because the
loss will have balanced out after the 10 guesses.

> δmin

> δmin

> δmin

g1 g2 gz

Block 1
Block 2
Block 3
Block 4

Figure 3.8: Demonstration of the δ block split.

Our motivation for this method is another attempt to increase the value δ.
This should provide us with a stricter bound since an increase in δ will in turn
increase P[‖p−qn‖∞ < δ/2], which bounds our convergence in Theorems 3.4.2
and 3.4.3.

The premise is that we can divide the passwords into blocks with the jump
between each block of a defined size δ, as in Figure 3.8. We concede that
all passwords can change order within the blocks, but no password can move
outside the block, and the blocks cannot change order. The loss, ε, is a result
of the passwords that we are unable to group into a block.

It is possible to maintain a model with a notional zero loss by mandating that
passwords remaining outside the blocks are guessed with accuracy. However,
by the logic that these will be the high ranks and, therefore are likely to have
low frequency, we decide not to assign any effort to correctly ordering these
passwords and, instead, accept the loss. In the same way as for Lemma 3.7.1,
we assume that such remaining passwords take the worst possible ordering;
therefore, this provides us with a bound on our loss ε.

98

3.7. Improvements to Models

Lemma 3.7.2. Given a block of ranks separated by {g1, . . . , gz} and a δmin > 0
so that

p(σ(gi))− p(σ(gi + 1)) > δmin,

∀ i = {1, . . . , z}, we have

P [Hqn(gi) = 0 ∀gi and Hqn(g) ≤ ε ∀g>gz] ≥ P[‖p− qn‖∞ < δ/2].

Proof: Take δ to be

δ = min
1≤i≤z

{p(σ(gi))− p(σ(gi + 1))} ≥ δmin.

Then,
P[Hqn(gi) = 0] ≥ P[‖p− qn‖∞ < δ/2].

The condition on the right ensures the blocks do not change order; so, at
gi, the end of a block, all passwords in previous blocks have been guessed,
meaning Hqn(gi) = 0.

If the last ranked password, σ(|X|), is contained inside the last block, then
we have zero error. However, if we cannot create an end by using a jump of
size δmin for our last block, then those ranks outside of a block will denote our
loss ε. This loss is bound by

bn/2c−1∑
k=0

p(σ(gz + k))− p(σ(|X| − k)) < ε.

Note that this blocking method may have applications for certain types of
password guessing. For most of our attacks, we assume that passwords are
guessed one at a time against all users, which is a reasonable match for some
online guessing or offline guessing where an attacker has assigned a GPU core
to each user/salt. Here, passwords could be guessed one at a time against each
user by hashing them with respect to the user’s specific salt. However, another
method of guessing could be to feed blocks of passwords to a GPU, with each
core working on a different password. This might apply when password hashes
were unsalted or all hashed with a common salt. In the latter case, a successful
guess would happen when any password in a block matches; so, a model that

99

3.8. The Threat of Compromise from a Leaked Sample of Passwords

disregards reordering within a block could be useful.

3.8 The Threat of Compromise from a
Leaked Sample of Passwords

One of our initial claims was that revealing a sample of passwords from a
dataset could help an attacker more than generic information about password
choices. In this section, we provide evidence for this claim by using samples
from one dataset to guess passwords in a different dataset. If there is a re-
lationship between the passwords chosen by users at the same site, then we
expect to get the lowest loss when guessing using passwords sampled from the
same website.

3.8.1 Methodology
We took samples of size n = 1000 users’ passwords from each of our four
datasets and used these to guess the passwords of all the users in the full
datasets. Below, we will discuss specific details regarding our methodology,
and we then discuss results in Section 3.8.2.

3.8.1.1 Sample Size

Our samples were size n = 1000. It might have been desirable to use a larger
sample size, for example, 10,000; however, we were limited by the number of
passwords in the Computerbits password set and wanted the examples below
to be comparable. In Section 3.6.1, we found that, for small sample sizes,
there was a spread in the result of the guessing.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 100 200 300 400 500 600 700 800 900 1000

H
(k

)
G

u
e
ss

in
g
 L

o
ss

k Guesses

Figure 3.9: Rockyou 20 samples, size n = 1000.

100

3.8. The Threat of Compromise from a Leaked Sample of Passwords

For example, in Figure 3.9, we plot the loss for 20 Rockyou samples of size
n = 1000. n = 1000 represents just 0.003% of the Rockyou dataset; as a
result, we see a diversity in the success of the sample at guessing. As a result
of the potential for differing results, we will run multiple trials for each sample
size.

3.8.1.2 John the Ripper

We also included in the results the loss if the passwords are guessed using the
top 1000 passwords in the John the Ripper (JtR) basic wordlist [80]. John
the Ripper is one of many password cracking software tools. Its strength lies
in its password mangling tools. It takes a base password and mangles it to
create other related passwords. For example, it might start with the pass-
word ‘password’ and mangle it by exchanging vowels with symbols to create
a password guess “p@ssw0rd”. For our comparison, we take the basic wordlist
that JtR can work on, which has just 3546 words. In the classic configuration
of JtR, these 3546 would be guessed and then word mangling rules would be
applied to the words to produce subsequent guesses. By including the guess-
ing success for JtR, we provide a reference point for the effectiveness of the
guessing relative to this common tool. The first 10 passwords in the John the
Ripper wordlist we used are listed in Table 3.2. These have similarities to the
top 10 passwords in the leaked datasets, shown in Figure 3.2, but they cannot
include website, topic, nor demographic-specific word choices.

Table 3.2: First 10 passwords in the John the Ripper wordlist.

Rank Password
1 123456
2 12345
3 password
4 password1
5 123456789
6 12345678
7 1234567890
8 abc123
9 computer
10 tigger

101

3.8. The Threat of Compromise from a Leaked Sample of Passwords

3.8.1.3 Sampling With and Without Replacement

We present the results of guessing when we sample both with and without
replacement. When we sample with replacement, we might consider that
we have a false sense of success because we are counting successes when we
compromise users whose passwords we already knew and were part of our
sample. However, an attacker may not be able to remove the users they
already know from a dataset and, instead, risks wasting guesses retrieving
data they already know.

First, in Section 3.8.2, we discuss the graphs that show sampling with replace-
ment. When guessing with replacement, we simply rank and order our samples
and use the ordering to guess the passwords in the dataset. We mark how
many users we managed to compromise and subtract this from the optimum
number of users we could have compromised had we used the best choice of
password for that guess number, as per the function Hqn(g). This loss value
is plotted as a function of the number of guesses.

Second, in Section 3.8.3, guessing without replacement removes the bias from
marking a success when the user’s password in question was already part of
our sample. Our method for guessing without replacement involves sampling
1000 passwords from each dataset without replacement. These samples are
then used to guess the passwords in each dataset. However, when guessing
using a sample, x, chosen from the dataset we are now guessing, X, we remove
all the users who were used to form our sample from the dataset; X−x. Thus,
we are now using x to try to guess X − x. All samples that were chosen from
a different dataset can be used to guess dataset X as normal.

3.8.2 Guessing Results: With Replacement
Figure 3.10 shows the comparisons of guessing effectiveness when sampling
with replacement for each sample source. Notice that, depending on the sam-
ple source, there are a different number of guesses made. For example, in
Figure 3.10a, the sample from Computerbits made just 726 guesses, whereas
the Rockyou sample made 984 guesses. This is because, when we sampled 1000
users from the Computerbits dataset, we returned only 726 distinct passwords.
We can use the expectation of the number of distinct passwords to estimate

102

3.8. The Threat of Compromise from a Leaked Sample of Passwords

the number of distinct passwords we actually see in a sample of size n:

∑
i

(1− (1− pi)n)

Using this, we expect to see 732 distinct passwords in a sample of 1000 users’
passwords from the Computerbits dataset, 915 in a Hotmail sample, 909 for
Flirtlife, 995 in a 000webhost sample, and 979 in a Rockyou sample. This is a
reflection of the proportion of the probability that lies in the high frequency
passwords in each dataset.

In Figure 3.10a we see that the Computerbits sample is by far the most ef-
fective at guessing the Computerbits dataset. It offers improvements over
guessing with the basic JtR wordlist or with samples from the other four
datasets. A turning point occurs at g = 88, when we guess with the sample
from Computerbits. This is because all passwords of rank greater than g = 88
have frequency 1.

Figure 3.10b shows that the Hotmail sample guesses the Hotmail dataset most
effectively. We can also see that the distance from the optimum begins de-
creasing from g = 420 guesses, where we encounter the passwords that occur
with frequency 1. For both the Hotmail dataset and the Computerbits dataset,
the JtR basic wordlist performs only slightly more effectively than guessing
with the samples of passwords collected from the other datasets.

Figure 3.10c depicts the Flirtlife sample guessing the Flirtlife dataset the most
effectively. The JtR list performs more effectively than all but the Flirtlife
sample.

In Figure 3.10d, we can see that the sample chosen from the 000webhost
dataset guesses the 000webhost dataset most effectively. In every other plot,
the 000webhost sample is significantly worse than all other samples when used
for guessing. This is likely a consequence of the composition rules that the
000webhost website enforced; while the other sites enforced no rules, 000web-
host passwords must include both letters and numbers.

The John the Ripper set does a good job of guessing the 000webhost dataset,
and the Rockyou sample is the next best option.

Figure 3.10e shows the Rockyou password set guessed using each of our five

103

3.8. The Threat of Compromise from a Leaked Sample of Passwords

samples. The 000webhost sample is least effective at guessing the Rockyou
dataset. This is followed by the Computerbits and Hotmail samples. There
is very little difference between the returns from the Flirtlife sample and the
Rockyou sample. However, when repeated for 100 trials, we find that the
mean loss is higher for the Flirtlife sample; therefore, the Rockyou samples do
overall perform better. Surprisingly, the John the Ripper wordlist outperforms
the Rockyou sample. The Rockyou dataset is a wordlist option for the John
the Ripper tool. It is likely that the Rockyou password distribution was used
to form the contents and ordering of the passwords in the John the Ripper
basic wordlist we are using. We suspect this explains why it can so effectively
guess the Rockyou data and outperforms a sample of 1000 Rockyou users.

104

3.8. The Threat of Compromise from a Leaked Sample of Passwords

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

using sample from Compubits
using sample from Hotmail
using sample from Flirtlife
using sample from Rockyou
using sample from 000webhost
first 1000 from JtR

(a) Loss guessing Computerbits.ie
dataset: N = 1795.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

using sample from Hotmail
using sample from Compubits
using sample from Flirtlife
using sample from 000webhost
using sample from Rockyou
first 1000 from JtR

(b) Loss guessing Hotmail.com dataset:
N = 7300.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

using sample from Flirtlife
using sample from Compubits

using sample from Hotmail
using sample from 000webhost

using sample from Rockyou
first 1000 from JtR

(c) Loss guessing Flirtlife.de dataset: N =
98, 912.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

using sample from 000webhost
using sample from Compubits

using sample from Hotmail
using sample from Flirtlife

using sample from Rockyou
first 1000 from JtR

(d) Loss guessing 000webhost.com: N =
15, 252, 206.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

using sample from Rockyou
using sample from Compubits
using sample from Hotmail
using sample from Flirtlife
using sample from 000webhost
first 1000 from JtR

(e) Loss guessing Rockyou.com dataset:
N = 32, 602, 877.

Figure 3.10: Datasets guessed using n = 1000 samples from Computerbits,
Hotmail, Flirtlife, 000webhost, Rockyou, and John the Ripper (JtR) with
replacement.

3.8.3 Guessing Results: Without Replacement
Now, we report the results of our guessing without replacement. Again, we
will find that when guessing using the sample chosen from the dataset, we are

105

3.8. The Threat of Compromise from a Leaked Sample of Passwords

guessing most effectively. In this case, there is less of a spread between the re-
sults from using the samples from different datasets. Therefore, in Figure 3.11,
we show the results of 5 guessing trials for each sample. The results are gen-
erally much closer to the results of guessing using the established John the
Ripper basic wordlist. We will discuss each graph in Figure 3.11 individually.

Figure 3.11a shows that the sample from Computerbits guesses the remaining
users’ passwords in Computerbits with less loss than guessing with samples
from Rockyou, 000webhost, Flirtlife, or Hotmail. However, though Computer-
bits offers the best guessing, the loss as a result of guessing the Computerbits
dataset is very high (<∼ 0.6) in comparison to the loss when guessing the
other four datasets (<∼ 0.3).

In Figure 3.11b, again, we see that guessing with the sample from the Hot-
mail dataset offers more successful guessing of Hotmail than guessing with
the samples from the other datasets. Similar to the situation for the other
datasets, the 000webhost sample gives the worst returns when used to guess
the Hotmail dataset.

In Figure 3.11c, the sample from Flirtlife performs best at guessing Flirtlife,
showing significant improvements over guessing with the other samples and
over guessing with the JtR basic wordlist.

Figure 3.11d shows the sample from 000webhost guessing the remaining users’
passwords in 000webhost better than the other samples and JtR. In fact, we
can see that the loss when guessing 000webhost passwords is very low. For the
000webhost sample, we get a final loss of less than 0.035. That is, we failed
to compromise just 3.5% of the users we could have optimally compromised
in 1000 guesses. Even for guessing using the other datasets, we had a loss of
less that 0.045 when guessing 000webhost.

Similar to when we guessed the Rockyou dataset using samples chosen with
replacement, in Figure 3.10e, we again find that guessing using a Rockyou
sample and a Flirtlife sample offer similar results. Running 100 trials, we get
a 90% confidence interval for the end loss as a result of guessing Rockyou
using samples from Rockyou of [0.0770, 0.083], and a 90% confidence interval
for samples drawn from Flirtlife gives a loss interval of [0.0774, 0.083]. These
are close, but one thing to note is that the loss is consistently increasing

106

3.8. The Threat of Compromise from a Leaked Sample of Passwords

with each guess made. The Rockyou samples can make an average of 979
guesses, whereas Flirtlife samples make an average of only 912 guesses. In
Figure 3.11e, we see that at the end of the guessing the Flirtlife loss stops
increasing, whereas the Rockyou loss continues to increase for the additional
guesses it makes, making the end result of the loss from guessing higher in
comparison for Rockyou.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

5 samples from Compubits
5 samples from Hotmail
5 samples from Flirtlife
5 samples from 000webhost
5 samples from Rockyou
first 1000 from JtR

(a) Loss guessing Computerbits.ie
dataset.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)
k Guesses

5 samples from Hotmail
5 samples from Compubits
5 samples from Flirtlife
5 samples from 000webhost
5 samples from Rockyou
first 1000 from JtR

(b) Loss guessing Hotmail.com dataset.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

5 samples from Flirtlife
5 samples from Compubits
5 samples from Hotmail
5 samples from 000webhost
5 samples from Rockyou
first 1000 from JtR

(c) Loss guessing Flirtlife.de dataset.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

5 samples from 000webhost
5 samples from Compubits

5 samples from Hotmail
5 samples from Flirtlife

5 samples from Rockyou
first 1000 from JtR

(d) Loss guessing 000webhost.com
dataset.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600 700 800 900 1000

H
q
(k

)

k Guesses

5 samples from Rockyou
5 samples from Compubits
5 samples from Hotmail
5 samples from Flirtlife
5 samples from 000webhost
first 1000 from JtR

(e) Loss guessing Rockyou.com dataset.

Figure 3.11: Datasets guessed using samples, of size n = 1000, chosen without
replacement from Computerbits, Hotmail, Flirtlife, 000webhost, Rockyou, and
JtR.

107

3.9. Discussion

3.9 Discussion
In Figure 3.11a, we find that a sample from Computerbits guesses the remain-
ing users’ passwords in Computerbits better than any of the samples from
Rockyou, 000webhost, Flirtlife, or Hotmail. This is interesting because if we
assume all users choose passwords with a certain distribution, then we would
expect Rockyou with 32 million users’ passwords to give the best approx-
imation of that distribution. Instead, Computerbits, with just 1795 users,
offers the best guessing success. This tells us that there are certain char-
acteristics within a dataset, such as demographic of users and inclusion of
site-specific terminology, that impact choice of passwords. This supports the
work of other researchers [175, 98] and confirms that access to a small number
of users’ passwords from a particular website can be leveraged to compromise
remaining users of the same site.

We have shown both theoretically and in practice that a sample of passwords
taken from a dataset will help compromise the remaining users in that dataset.
This research provides evidence supporting the advice: “Users should be pro-
hibited from creating passwords obtained from previous breaches” [59, 30].
Our findings also highlight the importance of protecting every user of a web-
site or online service. Sometimes, a small number of users can be compromised
by phishing, guessing attacks, or other means, but, by proof of convergence of
this sample towards the distribution of the whole dataset, we know that the
information gained by the attackers about the passwords of these users can
be used to compromise the remaining users in the dataset.

We observed that samples from the 000webhost dataset were less effective for
guessing the other datasets we considered. It seems likely that this means that
one should consider composition policy when doing cross-website password
guessing. This suggests that, while passwords from the same source are most
likely to compromise users, sources of passwords with matching composition
policies are more likely to produce matches.

When guessing the 000webhost dataset, we found that we were able to guess
with very little loss. Figure 3.11d shows that, using 1000 users to guess the
000webhost dataset results in loss less than 0.045, whereas guessing the Rock-
you password set (Fig. 3.11e) results in a loss of up to 0.12. Looking at the
frequency with which passwords are chosen can give us some insight into why

108

3.10. Conclusion

the loss for 000webhost is low. The 10 most popular passwords in the Rockyou
dataset account for 2.05% of all the Rockyou users’ passwords, whereas the
10 most popular 000webhost passwords account for 0.8% of the users’ pass-
words. We conjecture that the introduction of the composition policy reduces
the non-uniformity of the password distribution.

In 2016, Florêncio, Herley, and Van Oorschot pointed out that, once a few
accounts are compromised, control over these can be leveraged to bring down
a whole system [53]. They introduced the concept of a saturation point, αsat,
a value between 0 and 1 which represents the fraction of the user population
that needs to be compromised before the entire system can be said to be
overrun. The authors suggest that, once α = 0.5, a system can be considered
to be completely overrun. At this point, there would be very few resources the
attacker cannot access, and, due to malicious actions from the compromised
accounts, such as spam, the system would become unusable. In our work on
this topic [115], we have demonstrated that if we have a sample which includes
just 10% of the users if flirtlife.de, then we can leverage the passwords in
this sample to compromise approximately 45% of the remaining users in the
Flirtlife set. Thus, jumping the number of compromised accounts much closer
to the saturation point.

We are impressed by how well the basic John the Ripper wordlist does at
guessing. When guessing without replacement, the basic JtR wordlist, at
times, performs well at guessing the Computerbits and Hotmail datasets and
is consistently best at guessing the Rockyou dataset. The strength of JtR lies
in mangling rules. We believe this work provides evidence for the power of
seeding JtR input wordlists with passwords gained from previous small leaks
from the same website. Mangling rules can also then be applied to these
inputs.

3.10 Conclusion
In this chapter, we introduced a model for measuring the effectiveness of pass-
word guessing. Leveraging this model, we proved that, by using a sample of
passwords, we can capably guess the passwords in a dataset with a loss which
converges to zero as the number of samples gets large. We also provided vari-
ations of these proofs which allow for a small amount of guessing loss and,

109

3.10. Conclusion

therefore, more accurately describe the empirical data and the motivations of
an attacker. Our guessing model is used to visualize the effectiveness of sam-
ples at guessing and allows us to compare the performance of different samples
at guessing datasets of different sizes. We demonstrated that organizations
face the risk of subsequent compromises when a subset of their users’ pass-
words are revealed. We have shown both theoretically and in practice that a
sample of passwords taken from a dataset will help compromise the remaining
users in that dataset effectively.

110

CHAPTER 4
Multi-armed bandit approach to

password guessing

The multi-armed bandit is a mathematical interpretation of the problem a gambler
faces when confronted with a number of different machines (bandits). The gam-
bler wants to explore different machines to discover which machine offers the best
rewards, but simultaneously wants to exploit the most profitable machine. A pass-
word guesser is faced with a similar dilemma. They have lists of leaked password
sets, dictionaries of words, and demographic information about the users, but they
don’t know which dictionary will reap the best rewards. In this chapter, we provide
a framework for using the multi-armed bandit problem in the context of the pass-
word guesser and use some examples to show that it can be effective. This chapter
is based on research presented at WAY ’20 [117] and PasswordsCon ’20.

4.1 Introduction
Passwords are a widely used form of authentication online. However, one
major weakness of passwords is that human chosen passwords can be easily
guessed by automated attacks. In fact, with the regular occurrence of leaks
of password datasets, attackers are provided with an increasing amount of
data to inform password guesses. It is important for security advocates and
researchers to understand the capabilities of attackers given they have access

111

4.1. Introduction

to this data. This way, we can create countermeasures to protect the security
of Internet users.

Users from similar demographics will often choose similar passwords [98, 116].
In addition, users have been observed choosing passwords that reflect the na-
ture of the website they are choosing the password for [175]. In this chapter,
we investigate whether an automated learning algorithm can identify these id-
iosyncrasies within a password set and whether it can leverage this knowledge
in order to improve the success of password guessing rates.

A commonly used method for guessing passwords involves using dictionaries
of password guesses and guessing these in an optimum order in order to com-
promise as many users as possible. Guessing passwords in the optimal order
is important for an attacker as they wish to compromise many users with a
small number of guesses. In particular, an online attacker is often using auto-
mated attacks and is limited to a certain number of guesses before a lockout
is triggered. It is a challenge for an attacker to discover which guesses will
result in the highest success rates.

In this chapter, we suggest and develop an explore and exploit protocol based
on the classic multi-armed bandit problem. This protocol can be used to
guess a password set effectively using guesses from a selection of dictionaries.
Because of the learning nature of the model over a small number of guesses,
we view this as a method which could prove effective as an online guessing
method.

In Section 4.2 we describe related work. In Section 4.3 we describe the multi-
armed bandit problem and Section 4.4 describes the formal set-up of the bandit
problem in the context of password guessing. Section 4.5 describes the tools
used for solving the problem and offers a validation of these methods. Sec-
tion 4.6 introduces a selection of variable values which can be used within the
model. Section 4.7 runs the full multi-armed bandit model on a selection of
simulated password sets. We demonstrate the model’s ability to assign ap-
propriate weightings to dictionaries and that, given these weightings, we can
effectively guess the password sets. Section 4.8 discusses these results and
Section 4.9 uses the results to inform decisions regarding the optimal variable
values for use in the model.

112

4.2. Related work

Given that we were able to differentiate characteristics within the simulated
password sets, in Section 4.10 we show that the multi-armed bandit can match
password sets and dictionaries created by users of the same nationality. We
also demonstrate that using a subset of passwords from users known to be of
the same nationality as those whose passwords exist in the password set will
improve guessing successes over passwords from a general population of users.

Finally, in Section 4.11 we investigate whether using the multi-armed bandit
model can be used to improve guessing for a password set. We find that
the multi-armed bandit does offer improvements over direct guessing with
a single dictionary or guessing from a dictionary at random. However, we
acknowledge that the set-up of the bandit could be altered in order to be
optimised for guessing successes. Section 4.12 discusses the results of our
multi-armed bandit work.

4.2 Related work
For a long time researchers have been interested in modelling and improving
password guessing. The first strategic methods involved dictionary attacks.
These were proposed by Morris and Thompson in 1979 [106] and are still
widely used today in the form of John the Ripper [80] and HashCat [63].
HashCat takes dictionaries of words and for the first word in the dictionary
HashCat applies word mangling rules to it. For example, the first word is
password and HashCat applies mangling rules to guess password, password1,
Password, P@ssword, P@$$W0rd etc. Then HashCat moves onto the next
word and applies the same word mangling rules to it. John the ripper has
a similar approach but it takes the first mangling rule and runs through the
whole dictionary with it. Then moves onto the next mangling rule. In both
cases, a dictionary of ordered guesses is required. This is usually made up
of previous leaked password datasets, a dictionary of words, a dictionary of
names and maybe a list of particular guesses based on the demographics of
the individuals whose passwords we hope to guess.

In 2005, Narayanan and Shmatikov employed Markov models to enable faster
dictionary attacks [118]. A Markov model is a stochastic model used to
model a randomly changing system. A typical Markov model predicts the
next character in a sequence based on the current character. Markov models

113

4.2. Related work

are a standard technique used in natural language processing. Narayanan and
Shmatikov applied them to passwords and were able to significantly reduce the
search space and improve guessing returns for a selection of password datasets.

In 2009, Weir et al. used probabilistic context-free grammars (PCFG) to
guess passwords [178]. Probabilistic context free grammars are used in com-
putational linguistics to help model and understand the structure of languages.
Instead of characterising passwords character by character, a PCFG charac-
terises a password according to its “structures”. Structures can be password
guesses or word mangling templates that can take dictionary words as input.
Weir et al. automated the creation of probabilistic context-free grammars for
passwords by training them on password breaches and then used them to as-
sign probabilities to passwords for guessing. Researchers have developed Weir
et al.’s PCFG into a tailored password cracking system [27, 35] and into a
measurement system for password guessability [83].

In 2013, Dürmuth et al. proposed an updated password guessing model based
on Markov models, called OMEN [42]. As part of their initial paper they
demonstrated an OMEN specific method for merging personal information
with a dictionary of guesses [21]. They acknowledged the difficulty of merging
guesses from two different sources. Independently, Ma et al. also showed
that a correctly tailed Markov model will outperform PCFGs at password
guessing [97].

In 2016, Wang et al. developed a targeted password guessing model which
seeds guesses using users’ personally identifiable information [173]. Wang et
al. leverage existing probabilistic techniques including Markov models and
PCFG as well as Bayesian theory. They create tags for specific personally
identifying information (PII) associated with a user. In their most successful
version, TarGuess-I, they use training with these type-based PII tags to create
a semantic aware PCFG. Independently, Li et al. also created a method
for seeding password guesses with personal information. Their guessing also
extended the probabilistic context free grammar method [94].

Also in 2016, the use of artificial neural networks for password guessing was
proposed by Melicher et al. [102]. Artificial Neural networks (or, simply, neu-
ral networks) are computation models inspired by biological neural networks.
Artificial neural networks are a machine learning technique particularly useful

114

4.2. Related work

for fuzzy classification problems and generating novel sequences (such as a
password not in the training data). Melicher et al. show that their neural net-
work method can be more effective than both Markov and PCFG methods.
In addition, because neural networks can be highly compressed, they show
that they can be used to efficiently carry out client-side password strength
checking. In 2017, Houshmand and Aggarwal created a method for merging
multiple grammars for dictionary-based PCFG models [70].

Hitaj et al. proposed using deep generative adversarial networks (GAN) to
create password guesses [68]. A generative adversarial network pits one neural
network against another in a zero-sum game. A GAN is able to generate new
data which exhibits the same distribution as the training set. PassGAN is
able to autonomously learn the distribution of real passwords from leaked
passwords and can leverage these to generate guesses. In contrast to Markov
and PCFG models, PassGAN does not require a-priori knowledge of password
structures.

In 2018, Liu et al. suggested a deep learning model of password guessing
which could combine PCFG with the artificial recurrent neural network LSTM
[180]. This method, called GENPass, was designed to overcome the limitation
of neural networks that means they can not, in their raw form, be used for
cross-site attacks. This was an important contribution as leveraging passwords
leaked from one website to use to guess the same users’ passwords on another
site is a common attack.

Pal et al. in 2019, developed a password manipulation tool called PASS2PATH [126].
Leveraging the knowledge that users alter and reuse their passwords, this
guessing model can transform a base user password into effective targeted
password guesses.

Probably the most similar to our work is work by Pasquini et al. [127]. In
2019 they introduced the idea of “password strong locality” to describe the
grouping together of passwords that share fine-grained characteristics. By
grouping passwords into these localities, they can then train their learning
model to generate passwords that are similar to those that it has previously
seen. For example, passwords with the structure “jimmy****” would all be
grouped together such that “jimmybean” and “jimmybear” are both guess
options within the group. In this way, conditional password guessing becomes

115

4.2. Related work

possible, for example if the first five characters are known and the remaining
four need to be guessed. This password locality can also be leveraged to help
with password guessing. In particular, it allows the guessing of passwords that
are unique to the attacked password set as they will be guessed if they share
a locality with already guessed passwords.

Determining the order to make password guesses is a hard problem. Particu-
larly when drawing from multiple sources which often do not provide obviously
compatible probability scores to order them.

The most widely used guessing strategy involves combining wordlists with
word mangling rules. The success of this strategy, which is demonstrated by
Hashcat and John the Ripper, is best highlighted through the success of both
teams in the annual KoreLogic “Crack Me If You Can” contest, and also in
the wide spread use of both software [88, 80, 63]. Our research expands on the
existing literature and practices by exploring a method for effectively ordering
the input wordlist.

A password guesser will have access to information from multiple sources:
previous password leaks, language dictionaries, site specific terms and demo-
graphic information about the users, among other things. In this chapter, we
describe our work optimising the choice of guesses by combining the informa-
tion from all the available sources (called dictionaries).

This is a new piece of research that, to the best of our knowledge, has not
been tackled analytically. Previous research has focused on creating words to
guess. We investigate the optimum ordering of the wordlist which can contain
words from multiple sources including PCFG created words or simply from
leaked password sets. Our contributions are as follows:

• Our learning algorithm develops its learning about the distribution of
the password set it is guessing with every guess made. Importantly, it
requires no a-priori training.

• Its adaptive nature allows it to react to new information and tailor the
guessing strategy accordingly and in real-time. This strategy makes
it a particularly dominant strategy for automated and adaptive online
guessing. In simulations we show that within 1 to 10 guesses the model

116

4.3. The multi-armed bandit problem

can accurately determine the distribution of a password set.

• Given a password set formed by users predominantly from a single na-
tionality our model can accurately and efficiently recognise this charac-
teristic and tailor the guessing to use an appropriate dictionary.

• We also show that this improves guessing, revealing that using pass-
words generated by other users from that same nationality will improve
guessing over using a general ranked wordlist (even when language is
not a factor, i.e. both nationalities use the same language).

• In many previous wordlist approaches, a single ordered wordlist is cre-
ated. In our method, wordlists are separated based on their source or
characteristics. In this chapter, we demonstrate that this method allows
for effective guessing from the promising dictionaries which are tailored
to the characteristics discovered within the password set.

• We show that a method (denotedQ-method) of guessing which combines
guesses from multiple dictionaries according to the perceived weightings
of those dictionaries, is generally more effective at guessing than any
single wordlist of leaked passwords.

This adaptive learning model demonstrates that a password guesser can learn
about a password set with each guess made. This demonstrates the effective-
ness of dynamic real-time analysis of guessing returns.

4.3 The multi-armed bandit problem
The multi-armed bandit problem describes the trade-off a gambler faces when
faced with a number of different gambling machines [156]. Each machine pro-
vides a random reward from a probability distribution specific to that machine.
The crucial problem the gambler faces is how much time to spend exploring
different machines and how much time to spend exploiting the machine that
seems to offer the best rewards. The objective of the gambler is to maximize
the sum of rewards earned through a sequence of lever pulls.

In our scenario, we regard each dictionary as a machine which will give a
certain distribution of successes. We want to explore the returns from each
dictionary and also exploit the most promising dictionary, in order to make

117

4.4. Password guessing problem set up

effective guesses. With each guess we learn more about the distribution of
the password set we are trying to guess. Leveraging this knowledge, we can
guess using the dictionary that best matches the password set distribution,
thus maximising rewards.

In the following sections we describe our set up of the multi-armed bandit
problem in the context of password guessing.

4.4 Password guessing problem set up
Suppose we have n dictionaries. Each dictionary i = 1 . . . n, has a probability
distribution pi, and σi(k) denotes the position of password k in dictionary i.
So, the probability assigned to password k in dictionary i is pi,σi(k).

Suppose we make m guesses where the words guessed are kj for j = 1 . . .m.
Each of these words is guessed against the N users in the password set and
we find Nj, the number of users’ passwords compromised with guess number
j.

To model the password set that we are trying to guess, we suppose it has
been generated by choosing passwords from our n dictionaries. Let qi be the
proportion of passwords from dictionary i that generated the password set.
Our aim will be to estimate q1, . . . , qn noting that

n∑
i

qi = 1 and qi ≥ 0. (4.1)

This means that the qi are coordinates of a point in a probability simplex. If
the password set was really composed from the dictionaries with proportions
qi, the probability of seeing password k in the password set would be

Qk :=
n∑
i=1

qipi,σi(k). (4.2)

Given the Nj, we will use this probability to build a maximum likelihood
estimator.

118

4.5. Maximum likelihood estimation

4.5 Maximum likelihood estimation
Given this problem set up, we can construct a likelihood function which will
describe the likelihood that a given set of parameters q1, . . . , qn accurately
describe the password set. In this section, we introduce the likelihood estima-
tor function, prove that a unique maximum value exists and demonstrate the
convergence to this maximum.

4.5.1 Likelihood estimator
Maximum likelihood estimation is a method for estimating the parameters of
a probability distribution using observed data [44]. It does so by selecting the
parameters so that the observed data is most probable.

We construct the following likelihood for our model with m guesses:

L =
(

N

N1 · · · Nm (N −N1 · · · −Nm)

)
·QN1

k1 Q
N2
k2 · · ·Q

Nm
km

(4.3)

· (1−Qk1 · · · −Qkm)N−N1···−Nm ,

where the first term is the multinomial coefficient representing each unique way
the successes can be structured. The second term denotes how many times
password kj is expected to be seen in the passwordset, Qk, to the power of
how many times it was actually seen. The final term represents the remaining
guesses and states that they account for the remaining users’ passwords in the
passwordset that have not yet been compromised.

Our goal is to maximise this likelihood function by choosing good estimates
for q1, . . . qn based on our observed rewards from each previous guess. Note,
with each guess we learn more about qi for all the dictionaries. In fact, one of
the features of this model compared to a traditional multi-armed bandit model
is that when we make a guess we learn something about all the dictionaries.

We can take the log of the likelihood function to create a simplified expression.
In addition, we can remove the multinomial which is simply a constant for any
values of ~Q. This leaves us with:

119

4.5. Maximum likelihood estimation

logL = const +N1 logQk1 +N2 logQk2 + · · ·+Nm logQkm (4.4)

+ (N −N1 − · · · −Nm) log (1−Qk1 − · · · −Qkm).

4.5.2 Maximising the likelihood function
Except in limited cases, the likelihood equation (Equation 4.3) cannot be
solved explicitly. We were able to prove that the log-likelihood function for
our system is concave, and therefore the likelihood function has a unique
maximum value.

Theorem 4.5.1 (Concavity of log likelihood function). The log likelihood
function, logL, for L defined in 4.3 is concave.

Proof: Required to prove that

logL(α~q + (1− α)~r) ≥ α logL(~q) + (1− α) logL(~r).

We begin with a simplification of the notation used in the Likelihood function
by converting to vector notation.

Let
g(~Q) =

m+1∑
j=1

Nj logQj

where Nm+1 = N −
m∑
j=1

Nj and Qm+1 = 1−
m∑
j=1

Qj.

As before (4.2), Qj =
n∑
i=1

qipi,σi(kj) and therefore

Qm+1 = 1−
m∑
j=1

n∑
i=1

qipi,σi(kj) =
n∑
i=1

qi(1−
m∑
j=1

pi,σi(kj)).

Now, let

logL(~q) =
m+1∑
j=1

Nj logQj = g(~Q), where ~Q = P~q

120

4.5. Maximum likelihood estimation

Therefore, we can now rewrite

logL(α~q + (1− α)~r) = g (P (α~q + (1− α)~r))

= g (αP~q + (1− α)P~r)

=
m+1∑
j=1

Nj log(α(P~q)j + (1− α)(P~r)j)

But, log is a concave function so we know that for any a, b ∈ R+ log(α(a) +
(1−α)(b)) ≥ α log(a) + (1−α) log(b). Therefore for a = (P~q)j and b = (P~r)j:

≥
m+1∑
j=1

Nj(α log(P~q)j + (1− α) log(P~r)j)

= α
m+1∑
j=1

Nj log(P~q)j + (1− α)
m+1∑
j=1

Nj log(P~r)j

= αg(~Q) + (1− α)g(~R)

= α logL(~q) + (1− α) logL(~r)

Because the log-likelihood function is concave, any local maximum we find
will be a global maximum. We use gradient descent techniques to find the
qi that maximises L after m guesses subject to the constraints in (4.1). We
iteratively change the estimated qi values, q̂i.

4.5.3 Maximising within a constrained environment
As we iterate through the gradient descent, it is important that we stay within
the constraints of the system. In particular, we are required to meet the
following constraints:

n∑
i

qi = 1 and qi ≥ 0.

To meet these requirements we project the gradient vector onto a probability
simplex and then constrain our steps so that we always stay within that space.
Projecting the gradient vector onto the probability simplex corresponds to
adding a constant to each entry of the gradient so that the entries sum to 0.

121

4.5. Maximum likelihood estimation

We then move in the direction of this gradient with checks that we never go
outside the boundaries of the simplex.

With each iteration of our gradient descent we move a step in the direction
which maximises our likelihood function. The size of the possible step is
computed within β and then the actual size of the step taken is scaled by α
(α is a gradient descent constant described in Section 4.6.3):

Move from ~p to ~p+ αβ~g.

For each gradient descent we compute the value β such that:

• β ≤ 1

• β||~g|| ≤ 1

• ~p+β~g lies within the simplex. i.e. 0 ≤ ~p+β~g ≤ 1, where the inequalities
hold entrywise.

We can now use this gradient descent method to estimate the parameters
q1, . . . , qn which maximise the likelihood function. These parameters q1, . . . , qn

denote the weightings assigned to the dictionaries and are informed based on
the information collected from each password guess.

4.5.4 Gradient descent validation
The goal of the gradient descent is to converge towards the maximum of the
likelihood function and thus find the proportions qi that provide the best
explanation of the distribution of the password set seen after m guesses. For
initial validation of the gradient descent performance we take four different
leaked password datasets as dictionaries.

The datasets we used are leaked passwords from users of hotmail.com, flirtlife.de,
computerbits.ie and 000webhost.com1. They contain 7300, 98912, 1795 and
15,252,206 users’ passwords respectively. The datasets were compromised by
various methods so the lists may only contain a random, and possibly bi-

1These are the same datasets as those used and described in Section 3.5.1.

122

4.5. Maximum likelihood estimation

ased, sample of users [116]. As far as we can tell only the 000webhost dataset
imposed composition2 policies on users [56].

We took a random sample of 1000 users’ passwords from the 98912 users in
the Flirtlife dataset. In Chapter 3, we showed that when guessing a sample
of leaked passwords from a website, the most effective guesses will come from
the passwords of other users of that same site [116]. Therefore, if the gradient
descent is effective we expect it to show that the sample most closely compares
to the Flirtlife dictionary.

In Figure 4.1, we show the q value estimates during the convergence of the
gradient descent for the likelihood function seeded with just one guess. This
single guess was the password 123456 because it is widely considered to be
the most commonly used password. We began by setting the q̂-values to
1/n = 0.25, and then used 100 steps of gradient descent with a scaling of
α = 0.1 on the step size to estimate the proportions. We recorded the qi values
that, during the gradient descent, gave the maximum Likelihood value. This
way, we remember the best value if we overstep the maximum. As expected,
the estimation suggests that a high proportion of the passwords in the sample
were drawn from the flirtlife.de dictionary.

The password 123456 occurred in all four password sets but using the distri-
bution of those datasets the likelihood function was able to determine that
the proportion in the sample best matched the proportion in Flirtlife. If we
were guessing the full Flirtlife dataset with several guesses, rather than just a
sample from it with one guess, then this proportion will be closer to 100%.

The optimization assigns a non-zero proportion to two of the other dictionar-
ies. This implies these dictionaries hold some guessing value. As we collect
more information from additional guesses we expect that the proportion as-
signed to those dictionaries will converge to zero.

In the above example, all 1000 passwords came from a random sample of
Flirtlife. We will investigate in later examples whether the maximum likeli-
hood estimation can determine the breakdown of where passwords come from

2Composition of a password describes what characters are allowed or must be included
in the password. For example, a password composition policy which is often used is "you
must include an uppercase character, a lowercase character, a number and symbol in your
password".

123

4.6. Variables in the multi-armed bandit model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

gradient descent loop

000webhost
Computerbits

Flirtlife
Hotmail

Figure 4.1: Estimating the distribution of a password set using information
from 1 guess and α = 0.1.

when composed of different dictionaries.

4.6 Variables in the multi-armed bandit
model

Let us now suggest some variations of the gradient descent and the maximum
likelihood estimates when forming a password guessing multi-armed bandit.
We are interested in which of these variations produces the best results.

4.6.1 Gradient descent initialization variables
We expect the gradient descent to improve with each guess made since every
guess provides it with more information. There are a number of ways of
initialising the gradient descent after each guess provides new information.
The following are three different methods for choosing the initialisation value:

Random Randomly pick starting values for q̂i, subject to (4.1),

Average Choose the average starting value, i.e. assume the passwords are
distributed evenly between the n dictionaries, so q̂i = 1/n,

124

4.6. Variables in the multi-armed bandit model

Best Use our previous best estimate for the q̂-values, based on the gradient
descent results for the previous guess.

4.6.2 Informing our guess choices
Once we have generated our estimate of the q̂-values, we want to use them to
inform our next guess. We suggest three options for how to choose our next
guess:

Random Randomly choose a dictionary and guess the next most popular
password in that dictionary.

Best dictionary Guess the next most popular password from the dictionary
with the highest corresponding q̂-value.

Q-method Use all the information from all the q̂-values for the dictionaries
and all the frequencies of the passwords in the dictionaries to inform our
next guess.

These options have different advantages. In the first option, we randomly
choose a dictionary to guess from, but we are still taking the most probable
guess from the dictionary we choose. This option emphasises the continued
exploration of all the dictionaries. In the second option, we are choosing the
dictionary we believe accounts for the largest proportion of the password set.

The last option is specifically basing password guess choices on equation (4.2).
It uses our predicted q̂-values to estimate the probability of seeing each word
k. If, for example, we have a word k which has frequency f1(k) in dictionary
1 but also occurs in dictionary 2 and 3 with frequencies f2(k) and f3(k) re-
spectively. Using equation (4.2), where pi,σi(k) = fi(k)/size of dictionary i, we
can compute the total probability of this word occurring in the password set.
This method should determine which word k has the highest probability of
being in the password set and use this word as our next guess.

4.6.3 Gradient descent step size
As part of our gradient descent convergence we iteratively take steps in the
direction of the likelihood maximum. The scaling on the size of these steps
taken is a variable α as part of our system. This step size variable, α, was

125

4.7. Multi-armed bandit Validation

introduced in Section 4.5.3. A step size which is too large could fail to converge
to the maximum and instead overstep it, a step size too small means we may
never reach the maximum value. There are a number of options for choosing
this step size, three popular options are listed below:

Constant alpha Let α be a small constant. For example 0.1. This setup
means that the step size will become smaller as we converge towards the
maximum.

Constant step size Keep the step size constant by choosing an α value that
depends on the size of the step taken, α = ε

||~g|| . A downside of this fixed
step size is that when we get close to the maximum, we could take a
fixed size step past it.

Adaptive The step size can be adapted based on the perceived gains. For
example, if the Likelihood function is increasing, then we might try
increasing α on the next step. Whereas, if the movement will make the
function decrease then we can scale back α until we get a value which will
not cause a decrease. This option means that the function will definitely
increase on each step. However, it is important to verify that we remain
within the probability simplex with each adaption of α.

Advantages and disadvantages exist for each choice for computing the step-
size variable. The choice of the α value is important as a poor α value could
mean the system never converges to the maximum. The choice of an effective
step-size variable is dependant on the specific system.

4.7 Multi-armed bandit Validation
We will now look at some examples of the performance of our multi-armed
bandit model against simulated password sets. Guessing against simulated
password sets allows us to identify whether the multi-armed bandit model
is capable of identifying the characteristics of a password set (i.e. the qi)
in a controlled environment. It also allows us to compare and contrast the
effectiveness of the different model variables (introduced above in Section 4.6).

In these simulations we guess one word at a time and then compute the es-
timated weighting of each dictionary. We also report separately the number

126

4.7. Multi-armed bandit Validation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
compu_dist.txt flife_dist.txt hmail_dist.txt

Figure 4.2: Password set 1 q-value estimates. Initialization: average q̂-values,
Guessing: Q-method.

of users compromised after each guess is made. We hope to show that the
simulations are able to approximate the true distribution of the password set.
We also expect to find that the “Q-method” of guessing is more effective than
a random dictionary choice strategy and we could also find that it is better or
as good as simply guessing using the estimated “best” dictionary.

In each of the below plots we have used the constant alpha method for
computing the gradient step size and set this value to 0.1. We show the q-
value estimates plot for the best combination of initialisation and guess choice
methods. We discuss the alternative methods later in Section 4.9.

4.7.1 Password set 1: 60% Flirtlife, 30% Hotmail, 10%
Computerbits

We begin by creating a password set made up of 10,000 users’ passwords; 60%
were selected randomly from the flirtlife.de dataset, 30% from the hotmail.com
dataset and 10% from the computerbits.ie dataset.

In Figure 4.2, we plot the estimated q-values after the gradient descent was
completed for each guess. For this graph, the gradient descent was initialised
using average q̂-values, q̂i = 1/3, and the Q-method was used for guessing.
The actual proportions are shown as solid horizontal lines. Even after a small
number of guesses we have good predictions for how the password set is dis-
tributed between the three dictionaries.

In Figure 4.3, we show the number of users successfully compromised as the

127

4.7. Multi-armed bandit Validation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

Figure 4.3: Guessing returns for password set 1.

number of guesses increases. The successes are the average over fifty runs to
reduce the variance in the random guessing method. Results are shown for
each combination of initialisation and guessing method. As one might expect,
picking guesses from a dictionary at random resulted in the lowest success
rates. Both the Q-method and guessing from the best dictionary resulted
in successes very close to the optimal line. After 100 guesses these methods
had compromised 795 users, in comparison to the 870 users compromised by
guessing the correct password in the correct order for every guess. In this case
all the initialisation methods (random, average and best qs) perform similarly.

4.7.2 Password set 2: 60% 000webhost, 30% Hotmail,
10% Computerbits

In Figure 4.4, we show the estimated q-values for a 10,000 user password set
made from 000webhost, Hotmail and Computerbits with a 6:3:1 split. Again,
we get good estimates for the q-values. As the 000webhost passwords had
composition rules in force but the other dictionaries did not, we may see
different behaviour for the guessing successes.

In Figure 4.5, we show the guessing success rate. Interestingly, in this case,
guessing from the best dictionary performed even worse than guessing from a

128

4.7. Multi-armed bandit Validation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
000webhost_dist.txt compu_dist.txt hmail_dist.txt

Figure 4.4: Password set 2 q-value estimates. Initialization: average q̂-values,
Guessing: Q-method.

random dictionary. In Chapter 3, we discovered that the 000webhost dataset
is particularly poor at guessing Hotmail and Computerbits users’ passwords.
According to the characteristics of this password set, 000webhost is accurately
weighted as accounting for the largest proportion of password set. However,
when we guess solely from the best ranked dictionary (dashed lines) we get
lower guessing returns than when we randomly choose a dictionary to guess
from (dotted lines). This highlights an important distinction between optimis-
ing our model for effective guessing and optimising to best represent the char-
acteristics within the password set (this is explored further in Section 4.11.1).
As per Chapter 3, we hypothesise that the low guessing success of 000webhost
is due to it being the only dataset we analyse which included rules on how
passwords should be formatted [56].

It is worth noting that the Q-method of guessing would also be skewed by
the high ranking of the 000webhost passwords and their low guessing success.
However, it still performs slightly better than the random method, and sig-
nificantly better than guessing from the best dictionary (avg. results over 100
trials).

All the initialisation methods in this password set that guess from the ranked
best dictionary do poorly. However, initialising with random q-values (purple
dashed line) does perform better than other initialisation methods (green and
blue dashed lines) when guessing using the best dictionary method. We believe
this is a feature of the occasional failure of the random q-value to successfully
converge. We will discuss this more in Section 4.9.2. In brief, when q-values

129

4.7. Multi-armed bandit Validation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

Figure 4.5: Guessing returns for password set 2.

are initialised randomly, one dictionary can begin by being ranked very high
in comparison to the others. In this case, it is sometimes possible that the
gradient descent does not have sufficient time to converge. In this case, a
password set other than 000webhost can be ranked as best. Analysing the
returns, it is this that allows the random method to perform better than the
other initialisation methods when guesses are chosen from the best ranked
dictionary (i.e. guessing returns are occasionally improved when 000webhost
is not ranked as the best).

4.7.3 Password set 3: 60% Hotmail, 30% Flirtlife, 10%
Computerbits

In Figure 4.6, we show the estimated q-values for a 10,000 user password set
made from Hotmail, Flirtlife and Computerbits with a 6:3:1 split. The ap-
proximation for the Computerbits dictionary falls slightly below the correct
level and the Flirtlife estimate is slightly above. The approximation for the
strongest dictionary, Hotmail, is accurate. The estimates have mostly con-
verged by guess 10 and there is little divergence after that point.

Figure 4.7 shows the guessing success rate for this password set. In this case
we see that the Q-method fares better than the random and best dictionary

130

4.7. Multi-armed bandit Validation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
hmail_dist.txt flife_dist.txt compu_dist.txt

Figure 4.6: Password set 3 q-value estimates. Initialization: average q̂-values,
Guessing: Q-method.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

Figure 4.7: Guessing returns for password set 3.

methods. In fact, it is close to the optimal guessing method. By the end
of the guessing the Q-method has compromised an average of 1106 users.
An optimal strategy at this point would have compromised 1223 users. The
best dictionary method compromised an average of 980 users and random
compromised an average of 962 over 5 runs. We see very little difference in
success rates for the different initialisation methods within each guess choice.

131

4.8. Discussion of results for simulated password sets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

000webhost_dist.txtcompu_dist.txt flife_dist.txthmail_dist.txt

Figure 4.8: Password set 4 q-value estimates. Initialization: average q̂-values,
Guessing: best dictionary.

4.7.4 Password set 4: 55% hotmail, 30% flirtlife, 10%
000webhost, 5% Computerbits

The final password set we look at is composed of 10,000 users’ passwords from
4 different dictionaries. In Figure 4.8, we display the estimated q-values. The
model gives an accurate approximation of the q-values. Figure 4.9 shows the
successes when guessing this password set. Again, we see that theQ-method is
effective at guessing, this time performing significantly better than the other
guessing methods. We notice that the successes are close to the optimal.
Particularly for the first 20 guesses, where the Q-method compromised 303
users in comparison to 317 compromised by optimal guessing.

4.8 Discussion of results for simulated
password sets

The multi-armed bandit automation is able to match characteristics in a pass-
word set to characteristics in the dictionaries used for guessing. We have seen
that for a variety of synthetic examples, guessing using the multi-armed ban-
dit technique can be effective both for compromising users and estimating how
the passwords have been chosen.

In all examples we saw that guessing using the Q-method is consistently ef-
fective in comparison to other dictionary selection methods. In general, we
found that the initialization method had little bearing on the success results.
This stems from the concave nature of our log-likelihood function, meaning

132

4.9. Choosing variables in the multi-armed bandit model

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

Figure 4.9: Guessing returns for password set 4.

that, for most set-ups, the function will converge to a single maximum when
estimating the distributions.

These initial results demonstrate that the relationship between password choice
and user cohorts is tangible and identifiable by automation. We are now mo-
tivated to investigate whether these characteristics can be identified in real
password leaks. In the next section, Section 4.9, we investigate the optimum
set-up for our multi-armed bandit model. Leveraging this, we then explore
whether the demographic information of users in a password leak can be de-
termined (Section 4.10.1); whether this information can successfully inform
guessing (Section 4.10.2); and whether a multi-armed bandit can outperform
simple dictionaries of guesses at password guessing (Section 4.10.2).

4.9 Choosing variables in the multi-armed
bandit model

By creating and guessing simulated password sets we have been able to test
the various variables within the set up of our multi-armed bandit model. In
this section we will discuss each variable type and discuss the value of this
variable that we found worked most effectively. In future experiments, this
will allow us to generate results with the model set up effectively.

133

4.9. Choosing variables in the multi-armed bandit model

4.9.1 Variables for optimising success
In Section 4.6, we introduced 3 methods for informing our guess choice: Ran-
dom dictionary, Best dictionary, and Q-method. We also included three meth-
ods for initialising the q-values: Random, Average and Best. In Section 4.7,
we plotted the successes for each combination of the variables. We found
that all the options which informed the guess choice using the Q-method pro-
duced the best results. However, there was little variation in output between
the different initialisation methods. In Figure 4.5 and Figure 4.9 we found
that initialising with a random q-value performed marginally better than the
other two options when used in conjunction with the Best dictionary guessing
choice method. Therefore, if a single method is desired then using the Ran-
dom method of initialising the q-values and the Q-method for informing the
guess choice seems to offer the best returns for compromising users.

4.9.2 Variables for estimating the characteristics of
the password set

When estimating the q-values assigned to each dictionary, the variables in the
multi-armed bandit play an important role.

Let us first look at the nine graphs produced by combinations of the guess
choice and initialisation variables for password set 1 (as defined in Section 4.7.1).
The results are shown in Figure 4.10.

134

4.9. Choosing variables in the multi-armed bandit model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(a) Random qs, Random dict.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(b) Random qs, Best dict.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(c) Random qs, Q-method

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(d) Average qs, Random dict.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(e) Average qs, Best dict.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(f) Average qs, Q-method

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(g) Best qs, Random dict.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(h) Best qs, Best dict.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(i) Best qs, Q-method

Figure 4.10: Password set 1 q-value estimates. Shown for each combination of initialisation and guess
choice method.

135

4.9. Choosing variables in the multi-armed bandit model

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
000webhost_dist.txt

compu_dist.txt

flife_dist.txt

hmail_dist.txt

Figure 4.11: Password set 4 q-value estimates. Initialization: best q̂-values,
Guessing: best dictionary.

Guess choice: Best dictionary We can see that the best dictionary
method for choosing guesses is not effective for determining the character-
istics of a password set. This is because of the emphasis on exploitation of the
best dictionary over exploring all the dictionaries. Where there is large over-
lap between the passwords in the dictionaries, the best method will provide
information about the distribution of each dictionary. However, when this is
not the case we do not learn about the relationship between the password
set and all the dictionaries. A particularly poor set up is guessing from the
best dictionary and initialising gradient descent with the previous best values.
Figure 4.11 shows the outcome of this set-up for password set 4. Notice that
despite incorrectly approximating the 0.55:0.3:0.1:0.05 split of the password
set, it does not diverge from its initial approximation. Below we will explain
why this can occur in the model.

Initialisation: Best qs When the number of guesses is less than the num-
ber of dictionaries the likelihood function can be degenerate. This means
multiple combinations of q-values can maximise the likelihood function. This
is not as much of an issue in the Average and Random initialisation methods
but in the Best qs initialisation method we are seeding the next guess with
the best q-values from our previous guess. But because we are constrained
by the probability simplex defined by (4.1), movement to leave this initial
approximation can be constrained. See Figure 4.12 depicting a 3-dictionary
probability simplex which shows ~q in a corner of the simplex. q-values in a
corner position are limited in the valid directions they can move in. This

136

4.9. Choosing variables in the multi-armed bandit model

Figure 4.12: Diagram impression of a probability simplex for a 3-dictionary
set. Depicts q-values starting in one corner of the simplex.

creates the potential to become “stuck”. It is further emphasised when the
Best dictionary method is used for guess choice as it is compounded now by
limiting the information gathered about any password set other than the one
estimated as the best. A simple solution is to reset the q-values before each
new guess is made, as is done in the Average values method. A more com-
plex solution could involve avoiding seeding guesses until a non-degenerate
likelihood function can be derived.

Initialisation: Random qs Notice the spikes in two of the graphs which
show initialisation with random q-values.3 These spikes represent a failure
to converge when the randomly chosen initial q̂ values are far from the true
values. In our other simulated password sets, these spikes were also present in
the graphs which used random qs for initialisation and a random dictionary
for guessing. For this reason we will avoid using the random initialisation
method when determining the make-up of a password set.

4.9.2.1 Conclusion

Based on this analysis, we find that the results from the models initialised
using both Random q-values and previous Best q-values are not reliable. In
addition when guesses are chosen from the Best dictionary only, the model
does not fare well at approximating the q-values. The Average q initialisa-
tion method paired with either the Random dictionary guess choice or the
Q-method guess choice performs consistently well at approximating charac-

3Because the random initialisation is non-deterministic, these spikes can occur to a
greater or lesser extent in different iterations. To demonstrate the existence of the spikes,
we have intentionally chosen graphs from an iteration in which the spikes are prominent.

137

4.9. Choosing variables in the multi-armed bandit model

teristics. One advantage of the Q-method over the random dictionary choice
is that it is deterministic.

4.9.3 Variables for Gradient descent step size
As well as different options for initialisation and guess choice, we also have
a number of choices for the gradient descent step sizes. In Section 4.6, we
introduced three popular options for the step size variable within gradient
descent literature [161]. Each method has advantages and disadvantages and
it is important to choose a method that works for a given set-up of the multi-
armed bandit.

We implemented these three options in four ways:

• Constant alpha

• Constant step size

• Starting with constant alpha and then adapting step size

• Starting with constant step size and then adapting.

Recall the adaptation involves increasing the step size if it will result in an
increased likelihood value and similarly decreasing the step size incrementally
until the resulting likelihood is an improvement on the last likelihood. Thus we
can guarantee that each step results in an increase to the likelihood function.

4.9.3.1 Successes

Figure 4.13 shows the success plots for password set 1 using the 4 different
step size methods. There does not appear to be a significant difference in the
success rates for the different step size options.

4.9.3.2 Estimating the q-values

Our goal is to achieve an accurate prediction of the q-values for a selection
of dictionaries to help us determine the characteristics of the password set.
We therefore compare how effectively the step size options estimate the q-
values. We can do this in two ways. By looking directly at the q-values and
visually comparing them against the actual values. Alternatively by plotting

138

4.9. Choosing variables in the multi-armed bandit model

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(a) Constant alpha

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(b) Constant step size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(c) Adapting constant alpha

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(d) Adapting constant step size

Figure 4.13: Password set 1 guessing successes. Shown for each combination
of gradient descent step size methods.

the distance the q-values are from the optimal and analysing this graph. Below
we do both and see that both show us that the constant alpha approach seems
to work best with our model.

For a single initialisation and guess choice In the previous section we
determined that the Average qs Random dictionary setup was a reliable set-up
for estimating the q values. Therefore, in Figure 4.14 we show the Average
qs Random dictionary set-up of the model for estimating password set 1 for
the four step size options. We can see that constant alpha seems to give the
best approximation of the true q-values for this set-up of the initialisation and
guess choice. Both adaptive options give a poor estimation and the constant
step size option performs only slightly worse than constant alpha.

L1 norms An L1 norm is the sum of the magnitudes of vectors in a space.
It can be used to define a metric which is the sum of the absolute difference
of the components of the vectors.

139

4.9. Choosing variables in the multi-armed bandit model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(a) Constant alpha

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(b) Constant step size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(c) Adapting constant alpha

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses

(d) Adapting constant step size

Figure 4.14: Password set 1 q-value estimates. Shown for each combination
of gradient descent step size methods.

||x||1 =
n∑
i=1
|x|.

In this norm, all the components of the vector are weighted equally. We can
use the L1 norm to measure the distance between the actual and estimated q
values at each guessing point. The result is the sum of the differences between
the actual and estimated q for each dictionary.

Figure 4.15 compares the L1 norms for the four step methods. In Figure 4.15a
we see the L1 norms for the constant alpha set up. All of the Q-method
approximations have L1 norms consistently close to zero after an initial peak
within the first 3 guesses. We see spikes in the Random qs Best dictionary plot
and the other two Best dictionary options perform poorly. Random dictionary
choice performs well with an L1 norm generally less than 0.1.

Figure 4.15b shows the L1 norms for the constant step size method. We
see regular spikes in the Random qs Best dictionary method. There is more
variation in theQ-method results. The L1 norm for the Best qs Best dictionary

140

4.9. Choosing variables in the multi-armed bandit model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90 100

L1
 d

is
ta

n
ce

 f
ro

m
 a

ct
u
a
l

guesses
Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(a) Constant alpha

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

L1
 d

is
ta

n
ce

 f
ro

m
 a

ct
u
a
l

guesses
Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(b) Constant step size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

L1
 d

is
ta

n
ce

 f
ro

m
 a

ct
u
a
l

guesses
Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(c) Adapting constant alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90 100

L1
 d

is
ta

n
ce

 f
ro

m
 a

ct
u
a
l

guesses
Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

(d) Adapting constant step size

Figure 4.15: Password set 1 L1 norms. Shown for each combination of gradient
descent step size methods.

method never converges to zero.

The general impression from the two adaptive plots (Figures 4.15c and 4.15d)
is that they are inconsistent in their estimation. We see spikes in all the Ran-
dom q initialisation methods. The adapting constant step size method reports
reasonably small L1 values when initialised using the Average qs method and
choosing guesses using the Q-method, or when it is initialised using Best qs
and guesses are chosen from a Random dictionary. The adapting constant
alpha method only shows low L1 values for Average qs initialisation and Q-
method guess choice.

From this analysis we can conclude that the best estimates for the q values
are provided using the constant alpha method for determining step size. This
method involved a set alpha included in the iteration which results in a reduced
step size as we approach the maximum. For our model we used the value
α = 0.1 though other values were also tested including 0.5 and 0.01.

In this section we have covered in detail the variables that are used in our
multi-armed bandit model. It is important for us to test the combination of
variables on the data we know the actual composition of. This allows us to

141

4.10. Demographics

compare against true values. Going forward we will test our bandit model on
password sets for which we hold no information about. It is important that
we have tested our model and tailored it in a way that verifies the results of
these exotic password sets.

4.10 Demographics
Users’ demographics such as nationality and language play an important role
in their password choices [98, 3, 62]. We are interested in two key questions:

• Given a password set formed by users predominantly from a single na-
tionality. Can the multi-armed bandit recognise which dictionary best
matches this locality.

• Does using passwords generated by other users from that same nation-
ality improve guessing?

4.10.1 Matching nationality characteristics
In Chapter 3.5.1, we introduced 5 password datasets. Of these, two have a
distinct demographic origin. One is the 2006 Flirtlife password leak which
revealed over 100,000 passwords from the German dating site Flirtlife.de. Its
users are believed to be predominantly German and Turkish. In 2009, 1795
users’ passwords were leaked from the Irish website Computerbits.ie.

Computerbits will represent an Irish password set. We will use Flirtlife as an
example of a German password set.

We formed dictionaries to guess these password sets. We required a dictionary
which included passwords created by Irish users and one with passwords by
German users.

In 2019, over 773 million passwords and email address pairs were leaked in
a collection called Collection #1 [74]. This collection contains 31 sub collec-
tions, believed to have been collected over 2000 site breaches. I could verify
the authenticity of two of these sub collections by identifying my own old
credentials in the breach.

We chose to work with one of these collections titled ‘‘Collection__#1_NEW_
combo_semi_private_EU_combo.tar.gz’’. This contains 366,471,471 unique

142

4.10. Demographics

email address password pairs. From this we extracted all the passwords whose
corresponding email address contained the country code top-level domain “.ie”
and separately “.de”. These formed our nationality specific user dictionaries
from Ireland and Germany with 90,583 and 6,541,691 users respectively.

Irish passwords We are interested in whether the multi-armed bandit will
match the distribution of the Irish password set computerbits.ie to the extrap-
olated Irish dictionary taken from the subset of Collection #1 (denoted “Irish
users” from now on). To test this we ran the multi-armed bandit set up as
per the optimal parameters found in Section 4.9.2.

In Figure 4.16, we included three dictionaries, the hotmail.com leaked pass-
words, the flirtlife.de password set and the Irish users. Hotmail.com is an
international website. However, it is suspected that the Hotmail users in the
dataset we have were compromised by means of phishing scams aimed at the
Latino community. Flirtlife is a dating site with predominantly German and
Turkish users. Figure 4.16 plots the breakdown estimated by the multi-armed
bandit. From the first guess it estimates that the passwords in the comput-
erbits.ie set match closely to the passwords chosen by the Irish users from
the Collection #1 subset. This plot was initialised using average q̂-values
and guesses were chosen using the Q-method. However, every combination of
initialisation and guess choice provided an estimate which assigned the Irish
users dictionary a rating substantially higher than the other dictionaries. No-
tice that some weighting is assigned to the Hotmail dictionary but none to the
flirtlife.de password set.

In Figure 4.17 we included four dictionaries. The additional dictionary we
include is the Rockyou.com password set leaked in 2009. It includes 32 mil-
lion users’ passwords and had an international audience. The language used
on Rockyou applications was English. Given the common spoken tongue in
Ireland is English and that the Rockyou password set is often used as an ef-
fective base to seed guessing, we expect the Rockyou users to be somewhat
representative of the Irish Computerbits users.

Figure 4.17 shows the estimated breakdown for the computerbits.ie passwords.
In the beginning Rockyou is assigned a weighting nearly as high as the Irish
users. However, the value of Rockyou declines as the number of guesses in-

143

4.10. Demographics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
Irish_users hmail_dist.txt flife_dist.txt

Figure 4.16: q-value estimates for the Irish password set from Computerbits.ie
estimated using three dictionaries. Initialization: average q̂-values, Guessing:
Q-method.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
rockyousorted.txtIrish_users hmail_dist.txt flife_dist.txt

Figure 4.17: q-value estimates for the Irish password set from Computerbits.ie
estimated using four dictionaries. Initialization: average q̂-values, Guessing:
Q-method.

creases. In all combinations of initialisation and guess methods, the multi-
armed bandit was able to identify that the Computerbits passwords most
closely matched the Irish subset of users.

German password We now try guess the flirtlife.de password set using
the dictionary of German users. While flirtlife.de is a German dating site,
its main users were both German and Turkish. Therefore, we do expect the
multi-armed bandit to find it more difficult to match it to the solely German
user dictionary.

Figure 4.18 shows the approximation of how flirtlife is characterized by three
dictionaries: German users, rockyou.com and hotmail.com. Up until 50 guesses,

144

4.10. Demographics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160 180 200

q
 v

a
lu

e
 e

st
im

a
te

guesses

rockyousorted.txtGerman_users hmail_dist.txt

Figure 4.18: q-value estimates for the German password set from flirtlife.de
estimated using three dictionaries. Initialization: average q̂-values, Guessing:
Q-method.

most weighting is assigned to the Rockyou dictionary. However after 50
guesses, the German users’ passwords overtake Rockyou and remain slightly
ahead up to at least guess 200.

The multi-armed bandit was still able to identify that the characteristics in
Flirtlife best matched those of the German users. However, the effect does not
take place until the high frequency passwords, up to 50, have been guessed.
This is likely a result of Flirtlife not being a solely German password set and
Rockyou being a better representation of a general population.

4.10.2 Password nationality to inform guessing
We saw that the multi-armed bandit can link a password set to a dictionary
based on characteristics within the passwords that divulge the demographics
of the users. Does using passwords generated by these other users of the same
nationality improve guessing?

Irish users In Figure 4.19 we guess the passwords in the Irish computer-
bits.ie password set. We guess them using the order and passwords from the
full ‘‘Collection__#1_NEW_ combo_semi_private_EU_combo.tar.gz’’. We
label this full dataset “all users”. We made 100 guesses against the 1795 users
in the Computerbits password set. The top 100 most popular words were cho-
sen in order from each dictionary. The dictionary composed of only Irish users
performed better at guessing than the dictionary with all users’ passwords in
it. We also include the guessing success for two versions of our multi-armed

145

4.11. Improving password guessing

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

S
u
cc

e
ss

e
s

Guesses
Irish users
all users
Bestqs : from_best

Averageqs : by Q
optimum

Figure 4.19: Guessing the Irish password set Computerbits.ie. Compares
successes between guessing using a full dictionary of passwords and just those
passwords belonging to Irish users.

bandit model. These both perform as well as guessing using the Irish users
set. The black line shows the returns for an optimum first 100 guesses.

German users In Figure 4.20, we guess the Flirtlife password set using
two dictionaries similar to above. We can see that using just the German
users’ passwords ranked in order, is more effective that using all users pass-
words. Both multi-armed bandit models perform better than simply using the
distribution of all users’ passwords to rank and order guesses.

4.11 Improving password guessing
Given a set of leaked passwords, that we have no a-priori knowledge about, we
are interested in whether the multi-armed bandit can learn which dictionaries
to choose guesses from. In this section we investigate whether the Q-method
of choosing passwords between dictionaries can offer a guessing improvement
over a random choice of dictionary and choosing from the predicted “best”
dictionary.

Recall that the Q-method used the weighting of dictionaries and the propor-
tion of each password in those dictionaries to decide on the next guess.

146

4.11. Improving password guessing

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

S
u
cc

e
ss

e
s

Guesses
German users
all users
Bestqs : from_best

Averageqs : by Q
optimum

Figure 4.20: Guessing the German password set from Flirtlife.de. Compares
successes between guessing using a full dictionary of passwords and just those
passwords belonging to German users.

For this investigation we use two leaked password sets. The 2009, rockyou.com
password leak which included 32 million user credentials. The passwords were
stored in plaintext and the hackers used a 10-year-old SQL vulnerability to
gain access to the database. The 2012 yahoo.com Yahoo Voices password leak
which included 453,492 users’ passwords [15], all in plaintext and also com-
promised using an SQL injection. We chose these password sets as we can be
reasonably confident that they give a good representation of users. The plain-
text passwords means we are not excluding low frequency passwords which
might not be easily guessable. In addition, a compromise due to phishing or
social engineering might mean we would only have a small subset of users from
a similar demographic.

4.11.1 Rockyou.com password set
In this section, we describe the guessing of the Rockyou password set. Four
dictionaries were used for the guessing: Computerbits, Hotmail, Flirtlife and
000webhost.

Figure 4.21 shows the estimated breakdown of Rockyou between the four dic-
tionaries. Hotmail is assigned the highest rating with 000webhost, flirtlife

147

4.11. Improving password guessing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
compu_dist.txt

hmail_dist.txt

flife_dist.txt

000webhost_dist.txt

Figure 4.21: q-value estimates for Rockyou. Initialization: average q̂-values,
Guessing: Q-method.

and computerbits falling below it respectively. In terms of the breadth of
the audience demographic in each of the dictionaries, this assessment of the
breakdown seems logical. The nationality specific websites such as Comput-
erbits and Flirtlife fall lowest and 000webhost, which enforces composition
restrictions, fares slightly worse that Hotmail.

Figure 4.22 shows the guessing successes for the Rockyou password set guessed
using the four dictionaries. There is little differentiation between the initial-
isation methods. However, the guess choice significantly impacted the num-
ber of successes. The optimum number of successes for 100 guesses against
the Rockyou password set is 1,483,668 users compromised. The Q-method
compromised an average of 945,371 users. Choosing from the estimated best
dictionary compromised 846,772 users on average, and choosing a dictionary
at random to guess from resulted in the lowest number of average successes
at 781,164.

We can see the Q-method performs better than the next best method by
compromising just under 100,000 more users.

Comparison to single dictionary guessing Our multi-armed bandit was
designed to be able to distinguish the weightings assigned to a selection of pass-
word guessing dictionaries in order to characterise a given password set. To
converge to the optimum characterisation, we maximise a likelihood function
which is designed to match the distributions in the dictionaries to those in the
files.

148

4.11. Improving password guessing

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

Figure 4.22: Guessing returns for rockyou.com

Here we are investigating whether leveraging this information about the dis-
tribution of the password set can directly aid guessing. We therefore com-
pare the guessing returns for the Q-method to guessing returns from simply
guessing using each dictionary separately. Figure 4.23 shows the Rockyou
password set guessed using 4 dictionaries separately. The purple solid line
also shows the guessing returns when the dictionaries are combined using our
multi-armed bandit Q-method approach. The Q-method performs well, com-
promising 945,371 users in comparison to 804,731, 703,041, 603,783 and 64,024
from Flirtlife, Hotmail, Computerbits and 000webhost respectively.

Compare the ordering in Figure 4.21 to that in Figure 4.23. Notice that,
the weightings assigned to the dictionaries do not necessarily correspond to
a better guessing result when the dictionaries are used individually. This
is because the multi-armed bandit was designed with the goal of matching
characteristics not optimising guessing. That is, the maximum likelihood will
match a password set to dictionaries that follow a similar distribution. Let’s
take for example a password set which does not include the word “hellothere”.
If only one of the 3 dictionaries also does not contain this word then it will
be assigned a good match for that password set for that guess. However, not
containing this word has little baring on its ability to guess the password set.

149

4.11. Improving password guessing

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 20 40 60 80 100

S
u
cc

e
ss

e
s

Guesses
Q-method
compu_dist.txt
hmail_dist.txt

flife_dist.txt
000webhost_dist.txt
optimum

Figure 4.23: Single dictionary guessing returns for rockyou.com versus multi-
armed bandit guessing

It simple means it matches the distribution.

If we guess a large number of passwords which do not exist in the password
set, then we will see dictionaries matched against it which also do not con-
tain these passwords. This provides a motivation for using a function other
than maximum likelihood. If optimising guessing returns is the goal, then we
suggest one which can weight successes more than weighing failures.

4.11.2 Yahoo.com password set
The yahoo.com password set was leaked in 2012 and contains 453,492 users’
passwords. Figure 4.24 shows the estimated weighting of each dictionary for
the Yahoo password set. Again we see what the flirtlife and computerbits
password sets are weighted as low impact. The hotmail password set starts off
strong but as the guessing continues its impact decreases towards zero. The
000webhost dictionary is consistently weighted at 0.5 but is overtaken as the
best dictionary by Rockyou after 60 guesses.

In Figure 4.25 we plot the guessing returns for the yahoo password set. Again
we have multiple set-ups for guessing. We are interested in comparing the Q-
method of guessing (solid lines) against guessing using the “best” dictionary

150

4.11. Improving password guessing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

q
 v

a
lu

e
 e

st
im

a
te

guesses
compu_dist.txt
hmail_dist.txt
flife_dist.txt

000webhost_dist.txt
rockyousorted.txt

Figure 4.24: q-value estimates for Yahoo. Initialization: average q̂-values,
Guessing: Q-method.

(dashed lines) and choosing a dictionary at random to guess from (dotted
lines).

The Q-method performs better than the other options with a return after
100 guesses of 8812 users when initialised with average q-values. The worst
method initialised using average q-values and guessed from the best dictio-
nary. Notice, that it does begin to improve at guess number 90. It is only at
this point that the Initialization: average q̂-values, Guessing: Best dictionary,
consistently assigns the Rockyou password set as being the highest ranked
(best) dictionary.

Comparison to single dictionary guessing Figure 4.26 shows the Ya-
hoo password set guessed using 5 dictionaries separately. The blue solid line
represents the guessing returns when guessing using the Rockyou dictionary
of passwords. It performs the best of all the dictionaries and better than our
multi-armed bandit Q-method approach. The purple solid line represents the
Q-method which aims to combine the words from each of the dictionaries to
guess in an effective order. It performs better than four of the dictionaries,
but, as mentioned, performs worse than simple guessing using the Rockyou
dictionary. However, as we would expect, it does begin to improve once it has
ranked Rockyou as the best dictionary at guess 60. The Q-method depicted
has been initialised using average q-values.

Importantly, the bandit method of guessing can still be viewed as preferable
to single dictionary guessing for this password set. Because the bandit model

151

4.11. Improving password guessing

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 S

u
cc

e
ss

e
s

Guesses

Randomqs : by Q
Randomqs : from_best
Randomqs : from_rand

Averageqs : by Q
Averageqs : from_best
Averageqs : from_rand

Bestqs : from_best
Bestqs : from_rand

Bestqs : by Q
Optimum

Figure 4.25: Guessing returns for yahoo.com

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100

S
u
cc

e
ss

e
s

Guesses
Q-method
compu_dist.txt
hmail_dist.txt
flife_dist.txt

000webhost_dist.txt
rockyousorted.txt
optimum

Figure 4.26: Single dictionary guessing returns for yahoo.com versus multi-
armed bandit guessing

152

4.12. Discussion of Results

has the ability to learn, it is able to adjust its guesses to favour a dictionary
that it rates highly. In comparison, guessing using a single password set does
not offer learning and all 5 possible dictionaries would need to be tried in order
to determine which is performing best.

4.12 Discussion of Results
The multi-armed bandit has the ability to distinguish a demographic category
such as nationality from a password set. This can offer insights into password
datasets and their sources. Leveraging this demographic information gathered,
we showed that guessing tailored to the demographic in question will improve
guessing successes.

For guessing a password set that we have no demographic insights about, the
multi-armed bandit offers an automated method for optimising the choice of
guesses when a selection of dictionaries is available. Though occasionally a
single dictionary might offer better guessing returns, the value of the multi-
armed bandit lies in its ability to learn. The adaptive model feeds on the
information gathered from each guess and updates its recommendations with
each new piece of information received.

There is a broad potential for expanding this work. We suggest three ways we
believe this work can be developed. Given access to password datasets which
contain passwords created under different composition policies, investigate
whether the multi-armed bandit can identify the policies used to link it to a
dictionary with an equivalent policy in place. The multi-armed bandit is not
dependent on a strictly structured ranking from dictionaries. Therefore we
suggest an investigation into using the bandit model to seed guesses with a
users’ personal information. As mentioned, when the goal is optimising guesses
rather than identifying characteristics, an underlying optimization function
other than maximum likelihood estimation could be used in the bandit model.

4.13 Conclusion
We used a multi-armed bandit approach to uncover the distribution of a pass-
word set and to optimise the order we choose passwords for guessing from
dictionaries, thus improving the success of our guessing.

153

4.13. Conclusion

We showed that the multi-armed bandit learning algorithm could identify the
dictionary which best matches a password set. We also showed that this can
be used to identify the nationality of the users in a password set, and that
guessing can be improved by guessing using passwords chosen by other users
of the same nationality.

We identified that the multi-armed bandit can be used to improve how pass-
words are chosen when a selection of dictionaries are available. The ability to
learn from each guess makes it a viable threat in online password guessing. A
multi-armed bandit learning model should recognise composition restrictions,
language, content topics and demographic information from each successful
password guess and tailor the mangling rules and dictionaries used in order
to target this.

Knowing the potential of this guessing model is useful for both users and
organizations. It provides further evidence for the importance of guiding users
away from passwords which reflect characteristics associated with demographic
or website specific terms. It also demonstrates that password choices differ
measurably depending on their source use. This could indicate that websites
could consider tailored blocklisting techniques. In particular, websites who
have experienced previous password leaks could work at restricting future
users from using passwords which occurred with a high frequency in that leak.

154

CHAPTER 5
Quantifying the costs and
benefits of authentication

policies

Authentication is integral to our online world. Millions are spent worldwide by or-
ganizations to achieve authentication security. Yet we regularly see attacks which
expose weak security practices. We showed in Chapter 2 that security advice relat-
ing to authentication given by one organization can directly contradict advice given
by another. There is currently no general framework an organization can use to
determine what authentication practices are good for them or bad. In Chapter 2
we modelled the costs users and administrators perceive with authentication advice
and also which security benefits exist for the same pieces of advice. In this chap-
ter we introduce our methods for quantifying the trade-off between these costs and
benefits. We show how these models can be compared to provide an organization
with information on the best authentication policies to implement, taking into ac-
count their own security budget and priorities. We leverage this model to compare
the NIST 2003 Electronic Authentication Guidelines with the NIST 2017 Digital
Identity Guidelines. In doing so, we demonstrate the value of the NIST 2017 advice
in terms of both security and usability. This chapter is based on research presented
at USENIX ’17, HEAnet ’18 and PasswordsCon ’18.

155

5.1. Introduction

5.1 Introduction
Authentication is an essential part of our online world. Yet many organiza-
tions implement weak security procedures. We consider two reasons for this:
first, that organizations do not receive clear consistent advice on best practice
security procedures; second, that the benefits of a strong security policy do
not always outweigh the costs of implementing and maintaining such a policy.

In Chapter 2, we described our collection of authentication advice and found
that it is often inconsistent. In addition we found that, at times, advice
circulated contradicts what researchers might consider to be the best practice.

In this chapter, we introduce quantitative models which can allow an organi-
zation to trade-off the costs and benefits of authentication advice in order to
make informed security and usability decisions.

We use these models to quantify the costs and benefits of the NIST 2003 Elec-
tronic Authentication Guidelines and the NIST 2017 Digital identity guide-
lines. The NIST 2017 policy superseded the 2003 policy and at the time of
publication there was discussion about the failings of the 2003 policy [41]. We
were interested in quantifying the increase in usable security that the NIST
2017 policy claimed to offer over the obsolete 2003 policy.

This research will allow organizations to make informed decisions about their
authentication security policies. The adjustable model allows an organization
to tailor the output to identify the best policy with respect the their personal
security and usability needs. An organization with 50 internal employees may
want a different policy to an organization with 1000 remote users. This model
allows this to be represented. We hope that considering a security policy with
respect to its usability will allow organizations to make more informed choices
which will in turn lead to stronger security [1, 25].

In Section 5.3, we recall the cost categories that were introduced and evaluated
in Chapter 2. In Section 5.4, we formally define our model. Section 5.4.1
details the benefits model and how it can be quantified and Section 5.4.2
describes the same for the costs model. In Section 5.5, we provide a brief
description of the five varieties of NIST authentication policies that we will
evaluate. In Section 5.6 we use our model to identify the value of each NIST
policy for a simulated company. Then, in Section 5.7 we compare the impact

156

5.2. Related work

of organisation size and security and usability priorities on the value of each
policy. We begin, in Section 5.2, with related work.

5.2 Related work
Lampson [91] in 2009 said

“The root cause of the problem is economics: we don’t know the
costs either of getting security or of not having it” ... “To fix this
we need to measure the cost of security, and especially the time
users spend on it.”

Usability with security has become a subject of interest in the last few years.
It gained attention in 1999, with the publication of Adams and Sasse’s paper
“Users are not the enemy” [1]. In this work, Adams and Sasse gathered survey
responses from 139 users asked about their password practices and perceptions.
This was then followed by in-depth interviews with 30 of these users. The
authors demonstrated that users were often forced to comply with security
mechanisms that were incompatible with their work procedures. In these
cases, they found that users employed workarounds for the security policies,
which would circumvent the whole procedure. Adams and Sasse emphasise
that security systems must be designed with usability in mind, as otherwise
mechanisms that might look secure on paper will fail in practice.

In 2005, Cranor and Garfinkel published their book “Security and Usability:
Designing Secure Systems that People Can Use” [33]. This book covered fun-
damental topics in the usable security discussion. It included chapters on
Usability design and evaluation for privacy and security solutions, The mem-
orability and security of passwords, and Usable biometrics. Of particular rele-
vance to our work is the chapter “Evaluating Authentication Mechanisms” by
Karen Renaud. In this chapter [138] and in the related paper [137], Renaud
quantified the quality of web authentication mechanisms. Uniquely at this
time, Renaud took into account usability metrics. Renaud evaluated a selec-
tion of different authentication mechanisms including: biometrics, passwords
(syntactic1, semantic2 and one-time), graphical codes, recognition based sys-

1Syntactic passwords were defined as a remembered sequence of letters and digits.
2Semantic passwords rely on a cognitive process to produce the required password.

157

5.2. Related work

tems, location based systems, and public key authentication schemes (using
a cryptographic hardware device or certificate stored on the user’s machine).
Each of these authentication mechanisms were evaluated with respect to ac-
cessibility, memorability, security and vulnerability. The paper concludes that
graphical mechanisms show potential and that semantic passwords could also
be a good alternative to the classical password. However, Renaud does note
that most developers use semantic passwords only to request the mother’s
maiden name, which is a misuse and worthless. Renaud dismissed public key
authentication schemes as being poorly implemented and difficult to use at
the time the paper was written. Renaud’s work highlights the importance
of quantifying both security and usability in order for information security
decisions to be made.

We are interested in usability and it’s relationship to authentication security.
In particular, when we think of security, we refer to the reduction in risk that
a security mechanism or procedure can provide.

In their 2007 paper, Jøsang et al. showed that many security risks are caused
by poor usability [79]. They emphasise the importance of considering security
usability as part of vulnerability analysis and risk assessment. They describe
a set of security usability principles. These include: users must understand
which security actions are required of them, users must have sufficient knowl-
edge and ability to take correct security actions, the mental and physical load
of a security action must be tolerable, and the system must provide the user
with sufficient information for deriving a security conclusion. They use these
principles to assess the usability of security actions expected of users. They
argue that, using these it is now possible to quantify the trade-offs between
theoretical security and practical security.

In 2007, Renaud continued her work evaluating authentication mechanisms
with a thorough analysis of security risks associated with them [139]. Re-
naud defines risk in the web authentication context as: “the possibility of an
intrusion, and consequent harm, to a web site, by means of exploitation of
authentication mechanism vulnerabilities”. Renaud highlights that we do not
have an idea of any website’s actual exposure to vulnerabilities. However, we
do know what opportunities an attacker has for an attack. Renaud therefore

158

5.2. Related work

equates security risk to opportunity and summarizes opportunity as:

Opportunity = Guessability + Observability + Recordability + Analysability
Resistability .

Renaud uses a point system to assign scores for each of Guessability, Observ-
ability, Recordability, Analysability and Resistability for a given authentication
mechanism. In this way, Renaud created a quantification framework to sup-
port choice between different authentication mechanisms.

Building on Renaud’s work, Mihajlov et al. released two papers in 2011. The
first looked at quantifying the usability and security in authentication [104].
The second, leveraged this methodology to build a conceptual framework for
evaluating usable security in authentication mechanisms [105]. Their work
involved a scoring system similar to the one developed by Renaud [137]. They
began by identifying the quality criteria of import in both usability and secu-
rity. They could then assess a given authentication mechanism with respect
to this quality criteria. The mechanism is assigned a value between 0 and 1
for each quality criteria to indicate the level of quality it provides. A total
quality score can then be derived for each mechanism and this allows authen-
tication mechanisms to be compared to each other in terms of both usability
and security.

Braz et al. [17] proposed a usability inspection method which could be used
to compare the security problem to the usability criteria for online tasks such
as; authenticate yourself, transfer funds or buy a concert ticket.

Shay and Bertino [148] built a simulation tool that can model the costs versus
the benefits of complexity rules, throttling, and regular password expiry. Their
model simulates users and accounts so that an organisation can test out a
security policy before rolling it out to actual users. The model can take into
account: increased help desk time as a result of mandated password changes
and the increased ability of a user to memorize their password after they
have had it for a long time. They also include a probability of a compromise
as a variable read into the simulation. The password strength as a result
of a particular policy is measured in entropy. The value of the password
rules is measured based on the balance of Income − Cost, where income is
the income generated by users utilizing the service, and cost includes both

159

5.2. Related work

fixed daily operating costs and variable costs such as help desk calls and costs
resulting from an account compromise. Their model can allow analysis of the
impact of enforcing variations of these three rules on passwords and can allow
organizations to determine the net value of implementing them. However,
their model is solely concerned with protecting against compromise due to
online guessing attacks and compromise resulting from a user writing their
password down. Shay and Bertino explain that security is an economic as
well as a computer problem.

In 2009, Herley [66] argued that a users’ rejections of security advice is rational
from an economic perspective. Herley quantifies the costs versus benefits for
three specific authentication guidelines: password rules, phishing site iden-
tification advice and SSL certificate warnings. Herley concludes that most
security advice offers a poor cost-benefit trade-off for users.

In 2011, Altinkemer et al. [4] quantified costs and benefits associated with im-
plementing a new authentication system. In particular, they were interested
in the effects, for an online service or product provider, of implementing a
one-factor versus a two-factor system. They investigate the impact of both
authentication options with reference to the additional implementation costs,
the probability that a customer will switch to a competitor’s product or ser-
vice, and the expected losses should the new system fail.

In 2012, Bonneau et al. developed a qualitative mechanism for assessing the
value of different authentication mechanisms [13]. They created a qualitative
framework which assessed whether each mechanism met quality goals under
three key categories: usability, deployability and security. In 2016, Realpe
et al. created a set of 153 heuristics to grade applications on their user au-
thentication processes [133]. They created these qualitative heuristics under
the headings of: usability, security, operability, accessibility, reliability, and
performance.

Similar to Shay et al [148], Arnell et al. use simulations to compare the ef-
fectiveness of two different password policies [6]. Arnell et al. created utility
equations for an organisation to allow them to determine the best policy for
them. The utility was based on three factors: breaches, productivity loss and
necessary investment in support services (such as help desk staff). For a given
policy, they computed the Cost of Breaches (the total annual breach costs to

160

5.2. Related work

the organization) and the Cost of Performance Loss (the annual performance
loss due to password resets for the organization). The performance loss statis-
tics were gathered using studies which recorded users’ time taken to generate
a password, number of failed password entry attempts and the frequency that
users forgot their passwords. They collected these statistics for three different
password composition rules. As a demonstration of their model they compare
a policy which requires a six character password to one which required a 12
character password. Their work demonstrated that it is possible to quantifi-
ably measure the impact of security decisions in a utility-driven context.

Authentication mechanisms cannot be considered outside of the policy they
are implemented in. For example, there is little point mandating complex
password composition if the passwords will be stored in plaintext, with no
rate limiting against online guessing, and they are communicated in the clear.
Our work in this chapter, builds on the current research in the following ways:

1. Previous work has quantified the value of password composition and
regular password expiry rules or specific pieces of advice such as SSL
certificate warnings. We provide a plenary analysis of the costs and
benefits of an entire authentication policy.

2. Instead of arbitrary scoring as an evaluation of usability costs, we can
provide exact costs based on time. This allows for differentiation be-
tween costs of different magnitude that are reoccurring at different rates.

3. This finer analysis allows us to analyse characteristics within costs and
benefits for any authentication policy. This provides us with the data
needed to investigate the impact of changing parameters such as organ-
isation size, security priority and user value on the effectiveness of a
policy.

4. These models are applied to password policies which researchers have
intuition about the advantages of. The NIST 2017 policy was a fully
considered policy, praised by many security experts. Our analysis high-
lights the value of this policy and the failings of those it was compared
to.

161

5.3. Cost and benefit categories

Table 5.1: Cost categories as defined in Chapter 2.

Organisation Costs
Increased help desk/user support time
User education required
Organisation needs extra resources
Takes organisation time to implement
Increases the organisation’s computing power needed
User Costs
Makes it more difficult to create a password
Makes it less easy to remember
Requires extra resources
Requires the creation of a new password
Increases the computing power needed
Requires other extra time or effort

5. Authentication policies are enforced by organisations and therefore it is
an organisation who must analyse the cost benefit trade-offs based on
their own priorities and needs. Our model is adaptable to tailor to a
specific organisation and offers a financial evaluation of the trade-offs.

This chapter will provide our methodology for quantifying the security benefits
and usability costs of enforcing a password policy.

5.3 Cost and benefit categories
The value of an authentication policy can be defined as the security benefits
the policy brings minus the costs it invokes.

In Chapter 2, we defined 11 cost categories, 5 costs to the company enforcing
the advice and 6 categories of potential costs for the users following the advice.

These costs are listed in Table 5.1. Recall that the benefits of following au-
thentication advice can be categorized according to the NIST 2017 Authenti-
cator Threats. These are listed here in Table 5.2 and further descriptions are
available in Table 2.8 in Chapter 2.

5.4 Model
Modelling the value of an authentication policy will trade off these costs versus
benefits. In this section, we formally describe this model and derive equations

162

5.4. Model

Table 5.2: Categories of security benefits.

1. Assertion manufacture or modification
2. Physical theft
3. Duplication
4. Eavesdropping
5. Offline Cracking
6. Side Channel Attack
7. Phishing or Pharming
8. Social Engineering
9. Online Guessing
10. Endpoint Compromise
11. Unauthorized binding

which permit its quantification. As mentioned, we define the value of a pass-
word policy as the benefits minus the costs.

E[Value] = E[Benefits− Costs] (5.1)

By design, our benefits, B, are determined by the possible attacks, ωa, and
the costs, C, are dependent on the possible user or organization actions, ωu.
Both ωa and ωu are results of the password policy.

∑
ωa,ωu

E[Benefits− Costs] =
∑
ωa,ωu

Pωa,ωu

(
Bωa − Cωa

)
(5.2)

=
∑
ωa,ωu

(
Pωa,ωuBωa

)
−
(
Pωa,ωuCωa

)
(5.3)

We assume ωa and ωu are independent

=
∑
ωa,ωu

(
PωaPωuBωa − PωaPωuCωa

)
(5.4)

Because ∑ωa

(
Pωa

)
= 1 and ∑ωu

(
Pωu

)
= 1

=
∑
ωa

(PωaBωa)−
∑
ωu

(PωuCωu) (5.5)

So we have that the benefit is the sum of all the benefits the authentication

163

5.4. Model

policy offers against each attack type a. The cost is the sum of the cost of
each user/organization action resulting from the authentication policy.

We now define the individual models for the benefit and the cost. Section 5.4.1
will describe our methods for modeling the benefits and Section 5.4.2 describes
our model of the costs.

5.4.1 Benefits
We define the expected benefit of an authentication policy as: the difference
in the expected losses with and without the policy.

E[Benefits] = E[Loss without policy]− E[Loss with policy] (5.6)

The E[Loss without policy] and E[Loss with policy] are calculated using the
same method. Therefore we will describe the method for calculating losses and
it can be applied to the scenario with and without an authentication policy.

We define two classes of Losses: L1, the loss as a result of each individual
user compromise and Fsystem, the loss as a result of system overrun or system
failure.

Lωa = Fsystemωa
+
∑
n

L1n,ωa (5.7)

To define system failure, Fsystem, we use the concept of a saturation point α
which Flôrencio et al. develop [53]. This α represents the fraction of accounts
that need to be compromised before a system can be consider to be completely
overrun. This point 0 < α ≤ 1 can be relatively low when each currently
compromised account can be leveraged to compromise others. When a fraction
α of the total N number of users are compromised we can consider a system
to be completely overrun.

We define Xn to be our indicator of compromise and Fsystem to be our indicator

164

5.4. Model

of system failure.

Xn =

1 if user n compromised by any attack

0 otherwise
(5.8)

Fsystemωa
=

Lsystem if ∑nXn > αN

0 otherwise
(5.9)

Lsystem is the losses as a result of system failure or system overrun. This loss
could include reputation cost to the organization, loss of ability to function,
and could potentially equal or exceed the total value of the organization.

E[Loss] =
∑

PωaLωa =
∑

Pωa

(
Fsystemωa +

∑
n

L1n,ωa

)
(5.10)

=
∑
ωa

PωaFsystemωa
−
∑
n

L1n,ωa

∑
ωa

Pωa (5.11)

Unless Xn = 1 or Fsystem = Lsystem the term is 0 for all ωa possibilities. Also
assuming Xn are independent we get:

= Lsystem.P
[∑

nXn > αN
]

+∑
nP[Xn = 1]L1n (5.12)

We make the assumption that up until αN accounts are compromised Xn are
identically distributed. Also that L1 is constant for each user n. Then given
large N we can use a normal approximation [37] N (µ, σ2) to estimate the
probability that a fraction α of the accounts are compromised. Finally, let
P[Xn = 1] := p.

= P

[
N
(
p,
p(1− p)

N

)
> α

]
Lsystem +NpL1 (5.13)

Now we can calculate the E[Loss without policy] and E[Loss with policy] to
find the E[Benefits]. The probability p for E[Loss without policy] is the appli-
cation of Equation 5.13 where p is the probability of a compromise when no
mitigation is in place.

165

5.4. Model

5.4.1.1 Quantifying benefit

In this section we show the additional steps necessary for quantifying Equa-
tion 5.13. We define the probability that Xn is compromised as the probability
that at least one of the a attacks is successful.

P[Xn = 1] := p := 1−
∏
a

(1− Pa) (5.14)

This method of quantification will work when all the attack types are inde-
pendent of each other. In most cases this is true, however, we encounter an
exception with offline guessing.

Offline guessing Offline guessing is a trial and error guessing attack against
an offline dataset of passwords. In order for the guessing against all accounts
to take place, the password dataset must first have been compromised. We
call this a dataset leak.

To model this, we look at the expectation, first when no password dataset
leak occurs, and secondly when a leak has occurred.

E[Loss] = E[Loss|no leak]P[no leak] + E[Loss|leak]P[leak] (5.15)

This simplifies our calculations. In the situation when there is no leak the
P[offline guessing] = 0. So all attacks can be calculated using p = 1 −∏
a(1 − Pa) normally. We denote the answer pl′ . When a leak does occur

the P[offline guessing] = P[password cracked]. So again this can be included
in the p = 1−∏a(1− Pa) normally. We denote it pl.

5.4.2 Costs
To develop the cost part of equation 5.1 we look at costs in terms of a set of
ωu outcomes that occur as a result of the advice,

E[Costs] =
∑
ωu

PωuCωu . (5.16)

166

5.4. Model

However, we are only interested in the outcomes ωu which will result in a cost
to the user or organization. To identify the costs associated with enforcing
advice we leverage the cost categories we created in Chapter 2. These 12 types
of costs were listed again in Table 5.1.

Because any wu which does not result in a cost will make Cωu zero, it is rea-
sonable to re-write our equation just in terms of categories we have identified
costs for. We will refer to these as Ci for i = 1 . . .m. The cost output from
these categories is dependent on the piece of advice j and also a piece of advice
could result in a number of repetitions of each cost. We denote the number
of repetitions of each cost as R. The probability P of a cost occurring is
dependent on the advice and category.

E[Costs] =
∑
i.j

Pi,jCi,jRi,j (5.17)

5.4.2.1 Quantifying costs

In Chapter 2, we identified categories of costs associated with authentication
advice. These related to both user and organisation costs. We ran a user and
administrator survey to gather feedback about these cost categories.

We need to be able to quantify the monetary cost from each of the cost
categories identified in Table 5.1.

In Section 2.6.2.1 we recognised that each cost category can contain sub-costs.
At that time, for clarity in the model, we chose the high level costs only.
However, now for each cost category we continue to identify sub-costs until
we have costs that can be defined financially. Figure 5.1 shows this visually
for the category Increased risk of forgetting.

Increased risk of forgetting inconveniences the organization as a result of ne-
cessitating password resets and also takes up more of the users’ time. The
inconvenience can also result in a user simply abandoning the website. In this
case, the profit from that user is lost. In some situations the password policy
enforcer or organization will not care about the inconvenience to users and
in other situations users will be high priority. We create an optional variable
0 ≤ U ≤ 1 which indicates the weight an organization places on their users’

167

5.4. Model

Increased risk of forgetting.

(P abandon site)×($profit per user)

cost of user time

($average user wage)×(time taken)

cost of organization’s time

($average admin wage)×(time taken)

Figure 5.1: Costs associated with Increased risk of forgetting.

satisfaction.

Table 5.3a shows the quantification of each cost category. All-capitalized
words refer to constants; these can be inputted based on the organization’s
data. These are defined in Table 5.3b. Lower case variables are dependent on
the pieces of advice in the policy. Each equation is named Ci() and the input
variables are indicated in the brackets. t refers to time, tc to computing time,
and u to costs borne by the user and o to costs borne by the organization.
Table 5.3c describes the estimates for the probabilities which are required for
the equations in Table 5.3a.

There are two things to note in Table 5.3a. First, the user education category
has been split into two parts. This is because there are costs to both users
and organisation as a result of user education, and the costs felt will differ in
duration and repetition depending on the group. Secondly, we note that in
the organisation cost categories, we have three categories which are defined
by the same cost equations. These are the help desk, implementation, and
providing user education costs. This is because each of these costs relate to
an employee time cost. Similarly the user education incurs the same costs as
the simple user time cost. We leave these as separate categories for clarity
with regard to the type of cost being assigned and also to match with the
costs identified by users and administrators in our user study (Section 2.7).

168

Table 5.3: Quantifying functions and variables for policy costs.
Define function Equation
C1(to): Increased help desk/user support
time

= supportTimeTaken ∗ $ADMIN WAGES

C2(to): User education provided = EducatorTimeTaken ∗ $ADMIN WAGES
C3(ro): Cost of additional organization re-
sources needed

= $orgResources

C4(to): Cost of the Organization’s time
taken to implement

= timeToImplement ∗ $ADMIN WAGES

C5(tco
): Cost of the organization’s comput-

ing power
= orgCompTime ∗ $COMP POWER COST

C6(timeChoosePwd): Cost of increasing
difficulty of password creation

= P[abandon|created authenticator rejected] ∗ ($ORG PROFIT
PER USER) + C11(timeChoosePwd) + P[forget] ∗ C7()

C7(): Cost of forgetting = P[abandon|forget] ∗ ($ORG PROFIT PER USER) +
C1(TIME ADMIN RESET) + C11(TIME ADMIN RESET)

C8(ru): Cost of additional user resources
needed

= U ∗ $userResources

C9(timeChoosePwd): Cost of needing to
create a new password

= P[abandon during creation] ∗ ($ORG PROFIT PER USER) +
C11(timeChoosePwd) + C5(TIME HASH SALT ENCRYPT)
+ P[forget|new password] ∗ C7()

C10(tcu): Cost of the users’ computing
power

= U ∗ userCompTime ∗ $COMP POWER COST

C11(tu) = : Cost of the users’ time and in-
convenience

= U ∗ userTime ∗ $USER WAGES

C12(tu): User education = U ∗ EducationTimeTaken ∗ $USER WAGES
(a) Quantification for each cost category.

Constants
$ADMIN WAGES: the cost of the administrator’s
time.

$USER WAGES: the cost to the users’ time.

$ORG PROFIT PER USER: organization’s profit
per user.

$COMP POWER COST: cost of computing.

TIME ADMIN RESET: time taken for the admin-
istrator to reset the authenticator (e.g. password).

U: weight on user importance.

TIME CHOOSE PWD: time taken for a user to
create a new password.

TIME HASH SALT ENCRYPT: time taken to hash salt or
otherwise encrypt a users’ passwords.

L1 = $ORG PROFIT PER USER + (U)(TIME ADMIN RESET)($USER WAGES) +
(TIME ADMIN RESET)($ADMIN WAGES) + $DAMAGES.

(b) Table of constants.

Estimating Probabilities
P[abandon|forget]: = Fraction of users who have abandoned the site after they fail

to recall their password.
P[abandon|created authenticator rejected]: = Fraction of users who have abandoned the site after their pass-

word was rejected at creation.
P[abandon during creation]: = Fraction of users who have abandoned the site any time during

password creation.
P[forget]: = Fraction representing the average number of resets per user.
P[forget|new password]: = Fraction of users whose authenticator needed to be reset di-

rectly after it has been created.
(c) Table of probabilities.

5.5. NIST authentication policies

5.5 NIST authentication policies
We will use this model to quantify the value of the NIST (National Institute of
Standards and Technology) authentication policies. But first let us introduce
these policies. The exact advice we quantify from these policies is included in
Appendix D. Here, we provide an overview of each policy and simply highlight
the key components.

5.5.1 NIST 2003
We begin with the NIST 2003 “Electronic Authentication Guideline”. These
2003 guidelines have received widespread criticism in recent years [101, 155].
However, in 2003, very few understood the impact the advice would have [41].
The 2003 advice was created with federal agencies in mind and was designed to
have varying levels which could each offer a different level of security. However,
the advice was widely taken on board by universities and large companies
and was enforced without consideration for user time. Furthermore, it was
the highest level of password rules that were taken on board, rather than
the weakest. This was exacerbated by future NIST policies augmenting the
original NIST document by introducing additional restrictions.

In this section, we describe the NIST 2003 Level 1 security advice and the
NIST 2003 Level 4 security advice (highest level). We also look at the evolved
NIST 2003 advice which represents advice that was widely used in practice. It
includes a 90 day expiration of passwords and strict composition restrictions.
We refer to this advice as the 2007 NIST advice, since the first written example
we found for it was in the 2007 NIST documents, [122] and [121].

NIST 2003 Level 1 The NIST 2003 Level 1 guidelines describe a challenge
response protocol. There is no requirement at this level to use approved cryp-
tographic techniques and this level does not require cryptographic methods
that block offline analysis by eavesdroppers. There is no composition require-
ments3 on the choice of passwords. A lockout is enforced for 1 minute after 3
incorrect guesses. The password files contain an “inversion”4 of the password
rather than the password itself.

3Composition of a password describes what characters are allowed or must be included in
the password. For example, a typical composition policy is “you must include an uppercase
character, a lowercase character, a number and symbol in your password”.

4We consider an “inversion” to be an invertible encryption method using a key.

170

5.5. NIST authentication policies

NIST 2003 Level 4 Level 4 is the highest authentication policy in the
NIST 2003 standards. It requires authentication using a hardware crypto-
graphic token and a password. Client authenticated TLS is recommended
for the authentication process. This involves the client holding a certificate
and corresponding private key for that website. Users need to re-authenticate
themselves every 24 hours. Passwords are stored in encrypted form. An ac-
count is locked for 24 hours after 6 successive failed authentication attempts.
Passwords must be: at least 8 characters long and must contain at least one
upper case letter, one lower case letter, one number and one special character,
and a dictionary is used to remove common words and prevent permutations
of the username as a password. Passwords must be changed every two years.

NIST 2007 We use the term “NIST 2007” to describe a debasement of the
NIST 2003 policy. It represents a policy most similar to those enforced within
universities, federal bodies and companies [101, 155]. In this policy, cryptogra-
phy is used to secure passwords when they are transmitted. Passwords stored
on a server are encrypted. An account is locked for 24 hours after 6 succes-
sive failed authentication attempts. Passwords must be: at least 8 characters
long and must contain at least one upper case letter, one lower case letter, one
number and one special character, and a dictionary is used to remove common
words and prevent permutations of the username as a password. Passwords
must be changed every 90 days. Notice that, unlike the NIST 2003 Level 4
policy, this 2007 policy does not require Client authenticated TLS or a second
factor cryptographic device, but it does involve a 90 day password expiration
policy.

5.5.2 NIST 2017
In 2017, NIST released their “Digital Identity Guidelines” to supersede the
2003 document. The new guidelines received input from notable security
researchers and involved a public comment period. The four volume series
includes extensive and detailed guidelines related to authentication, identity
proofing, and assertions [59]. We focus on the authentication guidelines. Sim-
ilar to the 2003 document, the guidelines are structured according to the level
of security required. There are three levels of security detailed. We will pro-
vide an analysis of the Level 1 and Level 3 (highest) recommendations.

171

5.5. NIST authentication policies

NIST 2017 Level 1 The NIST 2017 Level 1 policy allows a number of
different authentication methods. We focus on ‘subscriber chosen memorized
secrets’ (we refer to them as passwords) which are the most common form of
authentication [67]. In the Level 1 policy, users must re-authenticate every
30 days. No more than 100 consecutive failed authentication attempts on a
single account can be made. The password should be communicated via an
authenticated protected channel. Two physical authenticators should be used
to bind the user to their online identity.

Passwords must be more than 8 characters long. There should be no composi-
tion requirements in place and all printable ASCII and UNICODE characters
should be accepted. Blocklisting of password choices should be in place. That
is, when a user creates a password, it should be compared against lists made
up of passwords obtained from previous breach corpuses, dictionary words,
repetitive or sequential characters (e.g. ‘aaaaaa’, ‘1234abcd’) and context-
specific words, such as the name of the service, the username, and derivatives
thereof. Users should have the option to view their password - rather than a
series of dots or asterisks - until it is entered. Passwords should be stored in a
hashed and salted form and a pepper5 should be used on the entire password
file.

NIST 2017 Level 3 Level 3 is the highest authentication assurance level in
the NIST 2017 policy. A cryptographic USB key and password used together
are a valid means of authentication at this level.

The rules for using a memorized secret for authentication are the same as for
the NIST 2017 Level 1 policy. Re-authentication must be performed after 15
minutes of inactivity or after 12 hours. Two physical authenticators should
be used to bind the user to their online identity. Client authenticated TLS is
recommended for securing communications between the user and the verifier.
The cryptographic device authenticators should require a physical input (e.g.,
the pressing of a button) in order to operate. It should have tamper detection
and response and the private key should be non-exportable.

5A pepper is typically an additional salt value that is used on the entire password file.
Unlike a traditional salt, a pepper is kept secret and should be stored separately from the
hashed passwords [99].

172

5.6. Value of the NIST 2017 policy

5.6 Value of the NIST 2017 policy
We have introduced 5 different authentication policies. We now use our model
to quantify the value of the NIST 2017 Level 1 policy. We do note that the
version of the NIST 2017 policy that we quantify is a high-level overview of
the authentication policy. This is simply our interpretation and many of the
nuances in the advice may be lost in this brief account.

5.6.1 Single result for a fictional company
In Appendix D we detail a full working example for applying our model to the
NIST 2017 Level 1 policy for a fictional company.

We say that the company is worth $10, 000, 000. It has 500 remote users and
the satisfaction of their users is very important to them: U = 1. Because the
users are external to the organization a compromised user would not immedi-
ately be seen as a threat to the overall system; the saturation point α = 0.5.
That is, 50% of users would need to be compromised before the reputation
and actual damage combine to bring down the organization. The damages as
a result of a single breach we set at $148 (taking this value from [132]). This
means our calculated L1, loss from a single users’ compromise, is $166. We
set both the user and administrator wages at $18 per hour. Each continued
user is worth a $15 profit to the organization.

5.6.1.1 Estimating the benefits

Using these values, we implement our model to calculate the value of the NIST
2017 Level 1 policy when the authenticator used is passwords. We encoun-
tered the difficulty of not having accurate attack breach data. We could find
little to no statistics on the probabilities of different attacks occurring. Even
when looking at the statistics that we did find on the frequency of success-
ful attacks, we found that the statistics from different sources were often not
comparable. It is vital for this model that the statistics used for each attack
are compatible with each other. Therefore we chose to take all our statistics
from the one source. We chose the 2017 Verizon’s Data Breach Investigations
Report (DBIR) [169] because the statistics were the most granular we could
find from a single source. The values we take from this source can be concep-
tually thought of as weightings. While the specific figure may not reflect a

173

5.6. Value of the NIST 2017 policy

true probability of attack. The weighting of the attack type in comparison to
other attack types is the true importance of the statistics. Therefore, provided
all the values come from the same data source, they should be appropriate
relative to the other statistics.

Figure D.1 in Appendix D, shows the table from the Verizon DBIR that we
used. It depicts the number of breaches they recorded, separated by the attack
vector and attack variety. From this figure, we can gather statistics such
as: given there is a breach the probability the attack variety was phishing
= 653/4788.

Given there is a breach these values tell us the probability it is of the variety we
are interested in. We still need the probability that a breach occurs at all. The
UK 2018 Cyber Security Breaches Survey [167] found that 72% of UK large
businesses (64% for medium, 47% for small and 40% for micro businesses)
experienced cyber security breaches or attacks in the last 12 months.6 We
take the large business value and include the probability of a breach 0.72 in
all our calculations. Naturally, one could adjust this for various factors, such
as undetected breaches or multiple breaches being counted as a single breach.
However, we will use 0.72 as an indicative value.

There are 12 attack vectors specified in the NIST 2017 Digital Authentica-
tion Guidelines. For each of these we estimate the probability of an attack
occurring.

For example for the NIST 2017 level 1 policy the passwords are encrypted
before transmission. Therefore the probability of an eavesdropping attack is:

P[eavesdropping] = P[keylogger breach] + P[physical surveillance] (5.18)

=
(

(595)(0.72)
4788

)
+
(

(21)(0.72)
4788

)
= 0.0926

Whereas when there is no policy in place the probability an eavesdropping
6Micro businesses (1 to 9 employees), small businesses (10 to 49 employees), medium

businesses (50 to 249 employees) and large businesses (250 employees or more)

174

5.6. Value of the NIST 2017 policy

attack is successful is:

P[eavesdropping] =P[network eavesdropping breach] (5.19)

+ P[keylogger breach] + P[physical surveillance breach]

=
(

(118)(0.72)
3231

)
+
(

(595)(0.72)
4788

)
+
(

(21)(0.72)
4788

)
= 0.1189

If there is no authentication procedure in place then any attempt to access
an account will result in a success. To quantify the probability that each
type of attack is attempted we use the same weightings from the DBIR table
(Figure D.1). However, the survey measured the breach type, when there was
a successful breach and each of the companies surveyed would have likely had
some security policy in place. This does mean that we are underestimating
the true benefit of an authentication policy since the Verizon DBIR reports
statistics for companies who had authentication policies in place.

This method of underestimating the benefits is prudent. We decided it was
best to underestimate the benefits and overestimate the costs and therefore
gain a better understanding of whether a policy is actually valuable. Fur-
thermore, as the underestimation exists for each policy, a comparison is still
informative.

Using this method we will now calculate the expected losses from authenti-
cation related attacks when no policy is in place. For this organization this
is estimated as: $105,571.91. The expected losses when the NIST 2017 Level
1 policy is in place is $24,529.71. This calculation is shown in detail in Ap-
pendix D.

E[Benefits] = E[Loss without policy]− E[Loss with policy] (5.20)

= $105571.91− $24529.71

= $81042.19

This tells us that the benefit for this organization of implementing the NIST
2017 Level 1 policy is $81,042.

175

5.6. Value of the NIST 2017 policy

Table 5.4: Security benefits of the five NIST policies. These do not take into
account the costs of implementing the policies.

NIST policy L1 2003 L4 2003 2007 L1 2017 L3 2017

Benefits $4,119 $105,548 $79,250 $81,042 $105,551

For each of the five policies (for this set up of the fictional company), Table 5.7
shows the security benefit of implementing the policy. These benefits will be
more significant when put in terms of the costs of achieving them. The full
computations for each policy are in Appendix D.

Notice that the security benefits from the NIST 2007 policy and the 2017
Level 1 policy are similar. Also, the 2003 Level 4 policy and the 2017 Level 3
policy have similar security benefits. However, as we will see later, the costs
of the 2007 policy and 2003 Level 4 policy are significantly higher than their
counterparts.

5.6.2 Do the benefits outweigh the costs?
We use our model to calculate the costs of implementing the NIST 2017 policy.
For each piece of advice we identify the costs relating to it and the probability
and number of times they will occur.

For example, the advice Hash and salt passwords will require: organization
time to set up (C4) and at each login a small amount of computing power (C5)
will be required to compare the supplied password with the stored hashed and
salted password. In addition, a user will now need to create a new password
(C9) if they forget theirs, as it will not be possible for the organization to
remind the user of their old one. The following equation shows the full com-
putation for the additional cost as a result of hashing and salting passwords,
notice that for each relevant cost category, Ci, we substitute a time variable
into the equations defined in Table 5.3a.

176

5.6. Value of the NIST 2017 policy

E[Cost: hash & salt] = (1)(C4(1 day))(1) + (1)(C5(2 secs))(#logins) (5.21)

+ (0.0204)(C9(85.4 secs))(#users)

= (1)(28800× 0.005)(1) + (1)(2 ∗ 0.01)(130500) + (.0204)
(
(20/100)(15)

+ (1)(85.4)(0.005) + (2)(0.01) + (20/100)(10.5)
)
(500)

= $2810.57

In Appendix D.4, the computations for all the key pieces of advice in the
NIST 2017 Level 1 policy are given. Summing the costs for all the advice in
the policy gives the total cost as:

E[Costs] =
∑
i=12
j=21

Pi,j.Ci,j.Ri,j = $99778.94 (5.22)

Table 5.5 shows the sum of all costs for this fictional company who wants to
follow one of the five NIST policy options. We notice incredibly high costs for
the NIST 2003 Level 4 policy and the 2007 policy. Recall that these values
represent everyone inconvenienced and burdened by the policy. It accounts
for the time taken out of the working day of every user who is forced to abide
by these rules.

Notice that both the NIST 2003 L4 policy and the NIST 2017 L3 policy employ
client authenticated TLS and Two-factor authentication using a specialised
device, but the cost of the 2003 L4 policy is significantly higher than the cost
of the 2017 L3 policy. Despite on the surface having similar policies, having
strict lock-out and password composition rules as well as requiring a change
of password every 2 years makes the NIST 2003 L4 policy significantly less
user-friendly.

Notice that the 2007 policy which involved password expiry every 90 days is
nearly as expensive as the 2003 L4 policy which involves client authenticated
TLS and two factor authentication. This is more significant when we consider
that the 2007 policy offered the second lowest contribution to security of the 5
policies, and now we also see that it comes with the second highest costs. Its

177

5.6. Value of the NIST 2017 policy

Table 5.5: Costs of implementation for the five NIST policies for this fictional
company.

NIST policy L1 2003 L4 2003 2007 L1 2017 L3 2017

Costs $26,469 $12,155,278 $11,931,637 $99,779 $438,787

Table 5.6: Costs to the organisation of implementing the five NIST policies
for this fictional company.

NIST policy L1 2003 L4 2003 2007 L1 2017 L3 2017

Organisation’s Costs $4,527 $35,430 $32,037 $41,020 $59,197

Percentage of overall costs 17% 0.29% 0.27% 41% 13.5%

costs were 11858% those of the NIST 2017 L1 policy which offered a similar
security benefit.

If the 2007 policy comes with such high costs, then why has it been
one of the most implemented forms of an authentication policy over
the last 20 years? Partially it is because this was the advice circulated
at the time [20], and also Florêncio and Herley find that websites that are
insulated from the effects of poor usability have no issue implementing complex
password policies [49]. This is echoed here by looking at Table 5.6. Nearly all
the cost for the NIST 2007 policy are borne by the user. 99.73% of the costs
are felt by users rather than the organisation (the organisation only bears
0.27% of the total costs). Let us compare that to the 2017 L1 policy where
the organisation carries 41% of the costs and the 2017 L3 policy where 13.5%
of the costs are borne by the organisation. The figures for the 2017 policies
demonstrate that if the organisation is willing to bear costs on themselves, the
usability and security of the authentication policy can both be significantly
improved.

Given that we now have the costs and benefits can we determine the
Value of the policy to the organization? In Table 5.8, we can compare
the costs versus the benefits for each of the five security policies.

178

5.6. Value of the NIST 2017 policy

Table 5.7: Security benefits of the five NIST policies. These do not take into
account the costs of implementing the policies.

NIST policy L1 2003 L4 2003 2007 L1 2017 L3 2017

Benefits $4,119 $105,548 $79,250 $81,042 $105,551

Costs $26,469 $12,155,278 $11,931,637 $99,779 $438,787

Organisation’s Costs $4,527 $35,430 $32,037 $41,020 $59,197

Percentage of overall costs 17% 0.29% 0.27% 41% 13.5%

However, we do note that we encountered difficulty identifying the frequency
and severity of security attacks in the wild. Therefore, while the benefits
can certainly be compared to one another, there is some uncertainty when
extrapolating benefit as a real world value. We believe an interesting future
piece of work would be identifying the margins of error for the statistics we
have provided and the impact this variation would have on the results.

In Table 5.8 row 1, all the the Values are negative. This implies that, when
user costs are taken into account and prioritised with U = 1, the benefits of
none of the policies outweighs the costs. However, note that if we look just at
the organisation costs in Table 5.6 and the second row in Table 5.8, then all
policies except for NIST 2003 Level 1 are cost-beneficial for the organisation
to implement. In fact, to an organisation, the 2003 Level 4 policy appears
to be the policy of most Value. This is despite offering essentially the same
security as the 2017 Level 3 policy, but bearing 2670% times the cost of the
2017 Level 3 policy. This emphasises the importance of considering both
user and organisation costs. In particular, if all users are employees within
the organisation, then user time is organisation time and the costs cannot
be avoided, though much of the cost may be hidden not in a security or IT
budget, but in the salary cost of employees.

In Figure 5.2, we plot the Cost (x-axis) versus Benefit (y-axis) for each of the
5 NIST policies. For a policy to hold Value, we wish it to have a large benefit

179

5.6. Value of the NIST 2017 policy

Table 5.8: Value of the five NIST policies. This compares the security benefits
and the implementation costs to determine Value.

NIST policy L1 2003 L4 2003 2007 L1 2017 L3 2017

Value: Benefit - Cost -$22,349 -$12,049,730 -$11,852,386 -$18,737 -$333,237

Benefit - only org. Costs -$408 $70,118 $47,213 $40,023 $46,354

 0

 20000

 40000

 60000

 80000

 100000

 120000

 100000 1x106 1x107

B
e
n
e
fi
t

Cost

2003-L1

2003-L4

20072017-L1

2017-L3

Figure 5.2: Scatterplot of Cost versus Benefit for the 5 NIST policies. Note
log scale x-axis.

and a small cost. The costs for the 2003 L4 and 2007 policy are very high.
Notice the log scale used on the x-axis. The costs and benefits for the 2003 L1
policy are both low. Looking at the advice, this is unsurprising. It offers little
to no benefits, for little to no cost. Both the 2017 L1 and L3 policies look
more promising. They both fall within the top left quadrant (more obvious
had we not used a log scale on the x-axis) showing that for relatively low costs
they offer relatively high benefits.

We noted that we might not have good comparability of the costs and benefits,
due to the uncertainty in some of the parameters. However, we believe that
there is reasonable comparability within the costs and within the benefits. We
are going to use a z-score-based technique [16] which facilitates comparisons
in this situation. To get a clearer comparison of the relative Value of each

180

5.6. Value of the NIST 2017 policy

Table 5.9: Value of the five NIST policies. Compares the security benefits and
the implementation costs using composite z-scores

NIST policy L1 2003 L4 2003 2007 L1 2017 L3 2017

Benefits z-score -1.92 0.72 0.17 0.17 0.86

Costs z-score 0.84 -1.24 -1.21 0.83 0.77

Value of policy: Composite z-score -0.52 -0.21 -0.53 0.48 0.78

NIST policy we convert the benefits and the costs for the five security policies
into z-scores.

A z-score is simply a value that represents the number of standard deviations
away from the mean that a value is. With these values we can create a
composite z-score. This is done by summing the Benefit and the Cost z-scores
and then computing the standard deviation of the resulting values [45]. The
composite z-score is the sum of the Cost and Benefit z-scores for that policy
divided by the standard deviation of the composite values. It is given as:

Zi = (Bzi + Czi)− µ(Bz+Cz)

σ(Bz+Cz)

where Bzi is the Benefits z-score for policy i and Czi is the Costs z-score for
policy i. σBz+Cz and µBz+Cz are the standard deviation and mean respectively
of all the (Bzi + Czi) scores for i = 1 . . . 5.

Using this adjusted scoring method we can effectively compare the Value of
each policy. Table 5.9 shows the composite z-scores which represent the com-
parative Value of each security policy. Notice that the two 2017 security
policies have a z-score which is above the mean. The L1 2017 policy is just
under half a standard deviation above the mean and the 2017 Level 3 policy
is 0.78 of a standard deviation above the mean. The 2003 Level 1 policy and
the 2007 policy both have cost benefit composite z-scores which are just over
half a standard deviation below the mean. The Level 4 2003 policy lies at 0.21
of a standard deviation below the mean. These z-values give a single value
indication representing the value of each authentication policy. It provides an
effective means of comparing the policies and for this fictional company, they
give an indication of which policy may be the most effective to implement.

181

5.7. General analysis of security policies

5.7 General analysis of security policies
The above results tell us that the NIST 2017 policies are effective in compar-
ison to the 2003 and 2007 NIST policies. We are now interested in evaluating
the effect aspects of an organisation’s characteristics and priorities have on
the effectiveness of security policies.

In this section we investigate how the costs and benefits are affected by:

• The number of users?

• The saturation point α of the organization?

• The weight placed on user satisfaction, U?

5.7.1 Number of users
To investigate the effect that the number of users has on an authentication
policy, we will plot the number of users against the Cost, Benefit, Value, and
the standardized z-value for each of the NIST authentication policies. We will
keep α and U constant at 0.5 and 1 respectively.

In Figure 5.3a the security benefits of each of the 5 policies is plotted. Notice
that the Benefits is decreasing as we go towards 200 users. We are witnessing
the affect of the Lsystem coefficient in our Losses model (Equation 5.13),

E[Loss] = P

[
N
(
p,
p(1− p)

N

)
> α

]
︸ ︷︷ ︸Lsystem +NpL1 (5.23)

This value tells us the probability that greater than α = 0.5 users are com-
promised. After this point we consider the company’s system to be overrun
and the large Lsystem cost takes effect. When the number of users is small this
Lsystem term is dominant. After the number of users exceeds ∼ 200 (depend-
ing on policy), the Lsystem coefficient effectively becomes zero. The benefit
then increases linearly according to NpL1, the cost of each individual users’
compromise.

In Figure 5.3a the NIST 2003 Level 4 and NIST 2017 Level 3 policies have
consistently the highest benefits. The 2017 Level 1 and 2007 policies have
similar benefits throughout, and the 2003 Level 1 policy offers significantly

182

5.7. General analysis of security policies

 1000

 10000

 100000

 1x106

 1x107

 10 100 1000 10000 100000

B
e
n
e
fi
t

#Users

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(a) Security benefit (log-log plot)

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 10 100 1000 10000 100000

C
o
st

s

#Users

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(b) Cost (log-log plot)

-2.5x109

-2x109

-1.5x109

-1x109

-5x108

 0

 5x108

 10 100 1000 10000 100000

V
a
lu

e
:

b
e
n
e
fi
ts

 -
 C

o
st

s

#Users

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(c) Value

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

Z
-v

a
lu

e

#users

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(d) z-value

Figure 5.3: Cost, Benefit, Value (benefits − costs) and Standardized value
(z-value) for each NIST policy. Plotted against number of users.

lower benefits than all other policies. Notice the log scale on both the x- and
y- axes in this plot.

Figure 5.3b shows the costs associated with each NIST policy. The costs are
increasing roughly linearly with the number of users. Again, this graph is
plotted using a logscale on both the x- and y- axes. The costs of the NIST
2007 and NIST 2003 Level 4 policies are overlapping. The NIST 2003 Level 1
policy has the lowest costs.

Figure 5.3c does not have a logscale y-axis as many values are negative. The
Value of the NIST 2007 and NIST 2003 Level 4 policies decreases rapidly after
N ≈ 1000 users. Though they look similar, at the end point (N = 100,000),
the NIST 2003-L1 policy has a Value ≈ −$4 Million, the NIST 2017-L1 policy
has a Value ≈ −$17 Million and the NIST 2017-L3 policy has a Value ≈ −$79
Million. Recall that these values are for a User value of U = 1.

183

5.7. General analysis of security policies

Unsurprisingly, when 100,000 users will be affected by a policy that a company
implements, the costs to all of these users far exceeds the benefits that the
policy brings to the organisation. In fact, for the NIST 2007 and NIST 2003
Level 4 policy, the Value falls below zero after just 30 users are affected by
the policy. For the NIST 2017 Level 3 policy this happens when 115 users are
affected, for the NIST 2003 Level 1 policy it is at 175 users and for the NIST
2017 Level 1 policy this happens at 390 users.

Finally, in Figure 5.3d we plot the standardized score which compares the
value of the 5 security policies. This gives us a direct comparison of the
policies against the number of users. Again, we can see the affect of the
Lsystem coefficient and its impact on the effectiveness of the policies. However,
despite this, for U = 1, α = 0.5 we see that the order of value of the policies
stays consistent along the number of users. The NIST 2017 Level 3 policy
consistently shows the best benefits for costs trade off, while the NIST 2007
policy is the worst.

5.7.2 Changing saturation point α
The saturation point α represents the fraction of user accounts that need to
be compromised before a system can be considered to be completely overrun.
This point 0 < α ≤ 1 can be relatively low, particularly if each currently
compromised account can be leveraged to compromise others or if the organ-
isation operates under the assurance of complete security. The α can in some
ways be regarded as a crude measure of the level of risk an organisation can
tolerate.

When an organisation is considered to be completely overrun it incurs a large
Lsystem cost. This value can represent the cost of a total collapse of an or-
ganisations’ system, the reputational damage an organisation might suffer
as a result of a major breach, and also direct costs such as data protection
fines [136], among other things.

Changing the value α has no impact on the costs. We plot the affect of
changing alpha against Losses, Benefit, Value and z-value. In each plot we
keep the number of users N and the user value U constant at 500 and 1
respectively.

In Figure 5.4a we plot changing saturation point α against the Losses from

184

5.7. General analysis of security policies

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ss

saturation value α

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

No policy

(a) Security loss (log y-axis)

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
e
n
e
fi
t

saturation value α

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(b) Security benefit (log y-axis)

-1.5x107

-1x107

-5x106

 0

 5x106

 1x107

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a
lu

e
:

b
e
n
e
fi
ts

 -
 C

o
st

s

saturation value α

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(c) Value

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
-v

a
lu

e

saturation value α

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(d) z-value

Figure 5.4: Cost, Benefit, Value (benefits − costs) and Standardized value
(z-value) for each NIST policy. Plotted against saturation point α.

each policy. We also include in the plot the Losses as a result of No policy.
The maximum losses when no policy is in place are generally dictated by the
value of the organisation in question. For our set up of a fictional company,
the value of the organisation is Lsystem = $107. Notice that when α < 0.3,
for user cohort of size 500, none of the NIST 2003 L1, NIST 2007 or NIST
2017 L1 policies differ significantly from the No policy losses. This is because,
at this low saturation level, it is highly likely that the threshold α of users
will be compromised and the system will become overrun, thus causing the
with-policy losses to be similar to the without-policy losses.

The NIST 2003 Level 4 and NIST 2017 Level 3 policies, which employ client
authenticated TLS and two factor authentication, exhibit a constant Loss
across all saturation values. This is because, with these policies in place, even
at the low, α = 0.01, saturation level, it is still unlikely that the threshold
α of users will be compromised and the system will become overrun. This

185

5.7. General analysis of security policies

security is a result of users of these policies being protected by three factors,
their password, their client-authentication and their specialised cryptographic
hardware device. An attacker wishing to compromise a single user, must
overcome all three mechanisms.

In Figure 5.4b we plot the policy benefits against saturation value α. Recall
that the benefit of an authentication policy is the difference between the losses
when no policy is in place and the losses when the policy in question is in place.
The smallest benefits are consistently for the NIST 2003 Level 1 policy. The
NIST 2003 Level 4 and NIST 2017 Level 3 policies both have high benefits.
Note the log scale on the y-axis.

Figure 5.4c demonstrates how the Value of each policy changes as a result of
different saturation values α. We can see that up until a saturation point of
0.3, for this fictional company with 500 users, the NIST 2017 L3 policy has
significant economic and usability value over all other policies. In fact, the
NIST 2017 L3 policy has economic value for companies with a low saturation
threshold, even when up to N = 12,500 users are impacted. This indicates
that for organisations where security is critical, the strict 2017 L3 policy is
advantageous. As the saturation point increases, the NIST 2017 L3 policy
decreases to fall below the NIST 2017 Level 1 and NIST 2003 Level 1 policies.

In Figure 5.4d the z-value for each policy is plotted against the saturation
value. There is some oscillation in the exact z-values for each policy as the
saturation value changes. However, the 2017 Level 1 and 2017 Level 3 pol-
icy are consistently above the mean. Showing that they have good combined
scores in security and usability in comparison to the other policies. At satura-
tion point ∼ 0.3 we see the 2017 Level 3 policy decrease in value and the 2017
Level 1 policy increase in value. Showing that for high risk organisations, the
NIST 2017 Level 3 policy is highly valuable and for lower risk organisations
both the 2017 Level 1 and 2017 Level 3 policies hold value.

Overall, we find that the saturation point has a significant impact on the size
of the benefits of each policy. The security benefits can differ in orders of
magnitude depending on the assigned saturation point. In addition, different
policies hold more Value depending on the saturation value. This emphasises
the importance of choosing a policy with respect to the risk framework in
which it is expected to operate.

186

5.7. General analysis of security policies

5.7.3 Weight on user satisfaction
In our costs model we introduced a weighting on the importance placed on
user satisfaction. Where a user is part of an organisation, all user time and
login time should be considered as organisation time, and therefore the only
logical setting for the user weighting is U = 1. This is the value we have used
throughout the above examples.

However, when the user is external to the organisation or, equivalently, the
user’s time is considered to be mutually exclusive from the organisation time,
then this user satisfaction value can take any value between 0 and 1.

The value of U impacts the Benefits in a minor way. This is because the value
L1, which represents the loss as a result of each individual user compromise,
includes the time the user must wait to regain access to their account:

L1 = $ORG PROFIT PER USER + (U)(TIME ADMIN RESET)($USER WAGES)

+ (TIME ADMIN RESET)($ADMIN WAGES) + $DAMAGES.

In the Figure 5.5 plots we set α = 0.5, N = 500 and vary the user weighting
value U .

In Figure 5.5a, we plot the security benefits against the changing user weight-
ing value U . There is a minor increase in the benefits. For example, the NIST
2017 L1 policy has a benefit of $80,850 at U = 0 and a benefit of $81,042 at
U = 1, a difference of $192. However, this is insignificant when compared to
the overall benefit values.

Figure 5.5b plots the costs against the user weighting. There is a roughly
linear relationship between the costs and the user weighting (Note the log
scale on the y-axis). This is because each increase in user weighting will bring
a corresponding increase to the costs. The largest increase gradient is between
the first two discrete values plotted: U = 0 and U = 0.01. When U = 0, the
NIST 2017 Level 3 policy has the highest costs of any policy with the NIST
2017 Level 1 policy in second place. However, as soon as a U = 0.01 user
weighting is applied, this ordering changes dramatically. The NIST 2007 and
NIST 2003 Level 4 policy become the most expensive by a significant margin.

187

5.7. General analysis of security policies

 1000

 10000

 100000

 1x106

 0 0.2 0.4 0.6 0.8 1

B
e
n
e
fi
t

user weighting U

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(a) Security benefits (log y-axis)

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 0.2 0.4 0.6 0.8 1

C
o
st

s

user weighting U

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(b) Cost (log y-axis)

-350000

-300000

-250000

-200000

-150000

-100000

-50000

 0

 50000

 0 0.2 0.4 0.6 0.8 1

V
a
lu

e
:

b
e
n
e
fi
ts

 -
 C

o
st

s

user weighting U

NIST 2003-L1
NIST 2017-L1
NIST 2017-L3

(c) Value

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

Z
-v

a
lu

e

user weighting U

NIST 2003-L1
NIST 2003-L4

NIST 2007
NIST 2017-L1
NIST 2017-L3

(d) z-value

Figure 5.5: Cost, Benefit, Value (benefits − costs) and Standardized value
(z-value) for each NIST policy. Plotted against user weighting U .

Notice that the increasing user weighting has a relatively small impact on the
costs of the NIST 2017 Level 1 policy.

In Figure 5.5c we do not include the Value of the NIST 2003 Level 4 policy
and the NIST 2007 policy. The Value of both linearly decreases down to
−$1.2× 107 as U → 1. We remove these in order to show a clearer plot of the
three remaining policies: NIST 2003 Level 1, NIST 2017 Level 1 and NIST
2017 Level 3. The NIST 2017 Level 3 policy has a positive economic value
when the users are weighted as having an importance less that U = 0.13. All
three policies have Value which decreases as user importance increases. This is
to be expected when trading off benefits against (user and organisation) costs.
The Value of the NIST 2017 Level 1 policy is the least affected by changing
U . Up until U = 0.8 the Value of the policy remains positive.

Figure 5.5d shows the standardized z scores for the 5 policies. This offers a

188

5.7. General analysis of security policies

simple comparison of the policies’ value is relation to each other. We can see
that other than for U = 0, the z-values of the policies remain largely unaffected
by changing U . At U = 0 though the order of policies according to z-value is
significantly different. The NIST 2003 Level 4 policy shows the highest z-value
with NIST 2007 second and then NIST 2017 Level 1, NIST 2003 Level 1 and
finally NIST 2017 Level 3. This mirrors the (Benefits - costs) Value at U = 0.
As shown in Table 5.8 in the “Benefit - only org. Costs” row, we see that
the NIST 2003 Level 4 policy has the highest Value. This is a result of the
2017 Level 3 and 2017 Level 1 policies having the highest costs when U = 0,
i.e., having the highest ‘organisation only’ costs (Table 5.6). This tells us that
when only the organisation costs are of any importance and their is no value
assigned to user time, burden, or effort then the NIST 2003 Level 4 policy
could be seen as effective.

It is important to note, that we do not see any situation where the weighting
assigned to the value of users is set to U = 0. As Cranor and Garfinkel [33]
put it:

“Computers that are theoretically secure but not usable do little
to improve the security of their users, because these machines push
their users away to less secure platforms.”

To consider users’ time and effort to be of no value is naive when considering
an authentication system.

5.7.4 General analysis summary
We find that the number of users that an authentication policy will affect will
have an impact on the expected benefit and costs of a policy. The saturation
point α is defined as the fraction of users who need to be compromised before
the system can be completely overrun. An α close to 1 represents an organi-
sation that is resilient to security risks due to individual user compromise. A
changing saturation point has an impact on which policy will be the most ef-
fective for an organisation to enforce. We find that the difference in the Value
of a security policy is significant when considered with and without users in
mind (U = 0 versus U = 1). However, variation in user weightings between
0.1 ≤ U ≤ 1 has little impact on policy value.

189

5.8. Conclusion

Overall we find that the NIST 2017 Level 1 policy shows value for widespread
deployment and the NIST 2017 Level 3 policy is very effective when security
risk is high (α < 0.3). The NIST 2003 Level 1 policy brings no significant
improvement to security, but correspondingly comes with very little user or
organisation cost. The NIST 2007 and NIST 2003 Level 4 policies place signif-
icant burdens on users and can only claim to offer the same amount of security
as the NIST 2017 Level 1 and NIST 2017 Level 3 policies respectively. Despite
coming with a 2670% increase in costs.

5.8 Conclusion
In this chapter, we provided methodology for quantifying the costs and benefits
of an organisations’ authentication policy.

To test these models we applied them to the NIST 2003, 2007 and 2017 authen-
tication guidelines. We expected the 2003 and 2007 guidelines to show poor
usability based on the wide scale criticism they recently received [101, 155].
In contrast, the new 2017 guidelines have been praised as user friendly and
security effective [32]. In Appendix D we provide the calculations for the costs
and benefits for each of these security policies.

This evaluation demonstrated the Value of the 2017 policies and emphasised
the problems with the 2003 policies. We showed that the 2003 Level 1 policy
provided little to no security benefit. The 2007 policy which involved expiry
and complex password composition requirements offered some security but
major usability costs. We found that, of the five policies evaluated, the 2017
policies were the only policies which could offer both high security and high
usability.

Using these policies as a basis, we investigated the impact an organisation’s
characteristics have on the effectiveness of the policy they choose. We modi-
fied the number of users, the organisation’s security risk, and the importance
placed on users, and assessed the impacts this had on the Value of a policy. We
found that the most impact is derived from the organisation’s security risk. A
high risk organisation will need a different security policy in place than a low
risk organisation. Similarly the number of users expected to follow a policy
will impact the Value of that policy in relation to the Cost and Benefit trade
off. This demonstrates that a one-size-fits-all policy is not effective for security

190

5.8. Conclusion

policies. Policies need to be applied when and how they are needed and not as
blanket-restrictions to all users. The NIST 2017 Level 1 and Level 3 policies
showed evidence in our evaluations of being able to offer effective differential
security at their respective levels. We would be interested, in future work, to
also assess the effectiveness of the NIST 2017 Level 2 policy.

While modeling the organisation’s risks and benefits, we found that we couldn’t
always find good estimates for the quantities we needed. The further devel-
opment of this work, particularly with the aid of additional security breach
statistics and enforcement cost information would improve the realism of our
work. We believe this research provides a valuable basis for the effective com-
parison of security policies which will allow security administrators to quantify
and support security concerns and security progress within organisations.

191

CHAPTER 6
Conclusions

This thesis aimed to provide information about password use and abuse in order
to help improve authentication for users. In this chapter, we will review what we
achieved and give recommendations for possible extensions.

6.1 Summary
The core contributions of this research are discussed in four chapters. These
respectively look at: evaluating password advice, convergence of password
guessing to optimal success rates, multi-armed bandit password guessing and
quantifying the costs and benefits of authentication policies. Below, we will
discuss each chapter in turn before discussing challenges and future work in
the next section.

In Chapter 2, we began with an evaluation of currently circulated password
advice. We categorized and discussed 272 password recommendations given
by security specialists, multinational companies and public bodies. This high-
lighted stark variations between advice given by different sources. 41% of the
recommendations we collected were contradicted by recommendations given
by another source. We surveyed administrators and users about the costs
associated with following this advice. The responses were catalogued in ta-
bles illustrating the costs and perceptions that accompany password advice.
The collected advice and the survey responses have been made available on

192

6.1. Summary

Github for use by future researchers [111, 112, 113]. Our research exposed
the disconnect that exists between the recommendations of security research,
and the advice given by organisations and believed by users. Finally in this
chapter, we qualified which attack vectors each piece of advice offered pro-
tection against. We found that most advice was concerned with protecting
against online and offline guessing attacks, with little emphasis on the security
of back-end processes.

In Chapter 3, we delved deeper into the security concerns associated with on-
line and offline password guessing. We were specifically interested in methods
to quantify the concept of guessability in order to offer guessing success results
that are independent of the underlying distribution of the data. This allows
guessing success to be compared between two password datasets in a mean-
ingful way. Our method utilised the comparison of optimal guessing to actual
guessing to provide a guessability statistic based on loss. The creation of such
a statistic allowed for detailed proofs to evolve which could offer insight into
the characteristics of password guessing. In particular, we proved that a sam-
ple of users’ passwords selected from a chosen passwordset, can be leveraged
to guess the remaining users’ passwords in that dataset with guessing loss
which converges to zero as the number of samples gets large. We showed both
theoretically and in practice that a sample of passwords taken from a dataset
will help compromise the remaining users in that dataset effectively. In fact,
a sample accounting for just 1% of a website’s users provides an attacker with
enough information to potentially have a success rate of over 84% when trying
to compromise other users of the same website.

In Chapter 4, we showed that it is possible for a learning algorithm to actively
learn characteristics of the passwords it is guessing, and that it can lever-
age this information to tailor and improve its guessing. The learning model
is based on the multi-armed bandit problem which describes the trade-off a
gambler faces when faced with a number of different gambling machines. We
showed that the techniques used to solve the multi-armed bandit problem can
be used to help an automated attacker adaptively choose between a selection of
password dictionaries by optimising according to feedback received after each
guess is made. The multi-armed bandit model has the ability to distinguish a
demographic category such as nationality from a password set. This can offer
insights into password datasets and their sources. Knowing the potential of

193

6.2. Challenges and Future Work

this guessing model is useful for both users and organizations. It provides fur-
ther evidence for the importance of guiding users away from passwords which
reflect characteristics associated with demographic or website specific terms.
It also demonstrates that password choices differ measurably depending on
their source use. This could indicate that websites could consider tailored
blocklisting techniques.

Chapter 5 revisits the costs and benefits that were qualified in Chapter 2, but
this time our goal was to use these categories to build a model for quantifying
the value of an authentication policy. We built a model which took into ac-
count users and organisation time associated with following an authentication
policy, and compared this to the security benefits the policy provides. We used
these to quantify the value of the NIST 2003 Level 1 and Level 4, 2007, and
2017 Level 1 and Level 3 authentication policies. Of these five policies eval-
uated, we found that only the 2017 policies offer both high security and high
usability. We were also able to leverage our model to investigate the charac-
teristics that have the greatest influence on the effectiveness of authentication
policies. We investigated the impact of number of users, organisation’s secu-
rity risk, and the importance of users, on the Value of a policy. We found
that a high risk organisation will need a different security policy in place than
a low risk organisation. We also conclude that if an organisation is willing
to bear costs on themselves, they can significantly improve usability for their
end-users, and simultaneously increase their security.

6.2 Challenges and Future Work
In Chapter 2, we created a concept of how to categorise password guessing.
This method involved assigning a severity (major, minor, positive) and fre-
quency (once-off, periodic, at login) to each cost category for each piece of
advice. After developing this methodology we wished to ask users for their
input. While we believe this model is an accurate way of differentiating costs,
it made for a convoluted user study. Some users misunderstood the ranking, in
particular the concept of a ‘positive cost’ being one that has a positive impact
on their authentication process. If repeating this survey, we would simplify
the general questionnaire and potentially conduct detailed interviews with a
smaller cohort of participants where we can learn about the finer details. On
the whole, we still received meaningful feedback from our user and admin-

194

6.2. Challenges and Future Work

istrator surveys. After the writing of Chapter 2, our user surveys remained
open and we plan to update our cost results in future work as we gather a
larger number of responses.

In Chapter 3, we were able to leverage our model of guessing loss in order to
derive theorems about the characteristics of passwords. However, the bounds
on the guessing functions were broad, and in our empirical results we observed
much faster convergence to the optimal than our theorem’s convergence rate
suggested. We believe structured functions describing guessing are valuable
for password security research, as they offer insights into bounds and charac-
teristics. We would be interested in future work which could develop those
introduced in our research.

There is broad potential for expanding our multi-armed bandit research. We
would be particularly interested in research that explored the extent to which
it is possible to learn personally identifiable information (PII) about users
within a password database. In Chapter 4, we showed that it is possible to
infer information about the users’ nationality. When a password dataset is
released, often PII is released along with it, such as age and gender. If this
information was combined with information that could be inferred from the
passwordset and used to identify individuals, then users would face even more
serious risks when their credentials are leaked.

In a similar direction, often password databases are found but it is not known
whether they are genuine password leaks, and if they are, then it is not known
where they come from. Combining the work from both Chapter 3 and Chap-
ter 4, we would be interested in knowing whether characteristics in samples
of passwords could be linked back to the source dataset.

Chapter 5 contains the research in this thesis that proved the most challenging.
What began as an interesting, small project turned out to be a much larger
undertaking. We were constantly thwarted by a lack of available data. In par-
ticular, we struggled to find data about security breach attempts and security
breach successes for each of the different types of attacks that we know exist.
In addition to this, we did not have access to company specific data which
would have been helpful for a more accurate ‘fictional company’. We would
like to thank our university IT department who provided some information
related to uptake for two factor authentication and provided feedback during

195

6.2. Challenges and Future Work

our modelling. We encourage the further development of this work, particu-
larly with the aid of additional security breach statistics and enforcement cost
information from within an organisation. We believe this will be possible, as
organisations who wish to make decisions about their authentication policies
can input their own data into our model.

196

APPENDIX A
Advice Statements

This appendix lists each piece of advice that was collected for Chapter 2. This
illustrates which pieces of advice were contained under each category and in each
advice statement how all the pieces of advice were categorized. A star (*) at the
beginning of the advice means it contradicts the statement it is listed under. The
categories are shown in alphabetical order:

There were 27 categories of advice in total. These are listed below. The advice
under each category are listed in this appendix.

• Administrator Accounts
• Backup Password Options
• Backup Work
• Composition
• Default passwords
• Expiry
• Generated Passwords
• Individual Accounts
• Input
• Keeping system safe
• Keep your Account safe
• Length
• Network: SNMP Community strings
• Password Auditing
• Password Manager

197

A.1. Administrator Accounts

• Personal Information
• Personal Password Storage
• Phrases
• Policies
• Reuse
• Sharing
• Shoulder surfing
• Storage
• Throttling
• Transmitting passwords
• Two factor authentication
• Username

A.1 Administrator Accounts
Administrator account not for everyday use

1. Do not use an account with administrator privileges for everyday use.

Password different for administrators account than users’ other ac-
counts

1. User accounts that have system-level privileges granted through group
memberships or programs such as sudo must have a unique password
from all other accounts held by that user to access system-level privi-
leges.

2. Administrators must use different passwords for their administrative and
non-administrative accounts.

Give administrator accounts extra protection

1. Give administrators, remote users and mobile devices extra protection.

A.2 Backup Password Options
Email up-to-date and secure

1. Make sure your backup password options are up-to-date and secure.
2. Make sure to regularly update your recovery email address

198

A.3. Backup work

3. Make sure your email password is also strong.

Security answers difficult to guess

1. The answer shouldn’t be something that someone can guess by scanning
information you’ve posted online on blogs or social networking profiles.

2. If you have to choose a question from a list of options, such as the city
where you were born, try to find a way to make your answer unique.

3. Verifiers also SHALL NOT prompt subscribers to use specific types of in-
formation (e.g., “What was the name of your first pet?”) when choosing
memorized secrets.

Do not store hints

1. Do not hint at the format of a password
2. Memorized secret verifiers SHALL NOT permit the subscriber to store

a “hint” that is accessible to an unauthenticated claimant.

A.3 Backup work
Make digital & physical back-ups.

1. Make electronic and physical back-ups or copies of all your important
work.

A.4 Composition
Must include special characters

1. Use a mix of letters, numbers, and symbols.
2. Include numbers, capital letters and symbols.
3. Numbers, symbols and combinations of upper and lower case can be

used.
4. Use a combination of upper & lower case letters, numbers and keyboard

symbols.
5. Passwords less than 12 characters long should contain mixed case letters,

digits, and symbols.
6. Use lower case, upper case, a number, and a special character.

199

A.4. Composition

7. Use combinations of numbers, symbols, and letters (uppercase and low-
ercase).

8. *No special characters.
9. *Passwords must not contain non-English characters.

10. *No spaces
11. *Spaces shouldn’t be used as some applications may trim them away.
12. *The password cannot contain the space character.

Don’t repeat characters

1. Passwords should not contain more than two (2) consecutive repeated
characters.

2. Passwords must not contain repeating strings of 3 or more identical
characters.

3. The password cannot contain three or more repeated characters.

Enforce restrictions on characters

1. Include upper and lowercase letters, and at least one number.
2. Contain at least 1 letter. Contain at least 1 number.
3. Use a mix of alphabetical and numeric characters.
4. Do not choose any all-numeral passwords.
5. Passwords must use at least three of the four available character types:

lowercase letters, uppercase letters, numbers, and symbols.
6. The password should contain a minimum of one (1) non-alphabetic char-

acter.
7. Passwords should contain at least one number and at least one special

character.
8. Must contain at least one non-alphabetic character and at least four

alphabetic characters.
9. Passwords between 12 and 15 characters long (inclusive) should contain

mixed case letters and digits.
10. Use a mixture of upper- and lowercase.
11. Use a mixture of upper- and lowercase.
12. Passwords 20 characters or longer can contain just a single case of char-

acters.

200

A.5. Default Passwords

13. *Verifiers SHOULD NOT impose other composition rules (mixtures of
different character types, for example) on memorized secrets.

A.5 Default Passwords
Change all default passwords

1. Change the manufacturer’s default passwords on all of your software.
2. Change all default passwords.
3. All vendor-supplied default passwords must be changed before any com-

puter or communications system is used.
4. Make sure that absolutely no default administrator passwords are used.

A.6 Expiry
Store history to eliminate reuse

1. Enforce Password History. Set how frequently old passwords can be
reused. Users are not allowed to reuse any of the stored passwords.

2. A password history must be maintained for all domain level.
3. On all multi-user machines, system software or locally developed soft-

ware must be used to maintain an encrypted history of previous fixed
passwords.

4. Passwords must not be the same as the previous password.
5. The password cannot match any of the last eight passwords.

Change your password regularly

1. Passwords should be changed periodically.
2. Enforce a Maximum Password Age, users should change passwords reg-

ularly.
3. Change your password regularly.
4. Have a minimum Password Age
5. Password expiration should be enforced on all accounts.
6. Change your passwords regularly (every 45 to 90 days).
7. All user-level passwords must be changed at least every six months.
8. All system-level passwords must be changed on at least a quarterly basis.
9. *The routine changing of passwords is not recommended.

201

A.7. Generated Passwords

10. *Don’t change your passwords, unless you suspect they’ve been compro-
mised.

11. *Verifiers SHOULD NOT require memorized secrets to be changed ar-
bitrarily (e.g., periodically)

12. *Normally, there should be no reason to change your password or PIN.

Change password if compromise is suspected

1. If you think that someone else knows your password, change it immedi-
ately.

2. Unless the accounts to which they apply have been hacked, in which
case they should be changed immediately.

3. If you suspect that someone else knows your password, you should
change it immediately.

4. Don’t change your passwords, unless you suspect they’ve been compro-
mised.

5. Any user suspecting that his/her password may have been compromised
must report the incident and change all passwords.

6. Unless there is evidence of compromise of the authenticator or a sub-
scriber requests a change.

7. Only ask users to change their passwords on indication or suspicion of
compromise.

8. Whenever an unauthorised party has compromised a system the rele-
vant Autonomous network manager or application administrator must
immediately change every password on the involved system.

9. Passwords must always be changed if it is known or suspected that
another person has become aware of the password.

10. If you notice something suspicious on your PayPal account. You suspect
that someone you don’t trust has your password.

A.7 Generated Passwords
Create using a random bit generator

1. SHALL be generated using an approved random bit generator.
2. Must be generated using the low order bits of system clock time or some

other frequently changing unpredictable source.

202

A.8. Individual Accounts

Must aid memory retention

1. Choose a scheme that produces passwords that are easier to remember.
2. Offer a choice of passwords, so users can select one they find memorable.

Generated passwords must be issued immediately

1. Generated passwords and pins must always be issued immediately after
they are generated.

Only valid for first login

1. Generated password valid only for the involved user’s first on-line session.

Distribute passwords in an envelope.

1. Passwords must be concealed inside an opaque envelope that will readily
reveal tampering.

A.8 Individual Accounts
One account per user

1. Everybody who uses a computer should be assigned their own user ac-
count.

2. Applications must support authentication of individual users, not groups.
3. Computer and communication system access control must have pass-

words unique to each individual user.
4. Do not allow password sharing.

Accounts must be password protected

1. Each user account should be accessible only by entering a username and
password.

2. Computer and communication system access control must be achieved
via passwords.

3. Applications must provide for some sort of role management, such that
one user can take over the functions of another without having to know
the other’s password.

203

A.9. Input

A.9 Input
Truncation should not be performed

1. Truncation of the secret SHALL NOT be performed.

All ASCII and UNICODE characters should be accepted

1. All printing ASCII[RFC 20]characters as well as the space character
SHOULD be acceptable in memorized secrets. Unicode[ISO/ISC 10646]char-
acters SHOULD be accepted as well.

2. *To make allowances for likely mistyping, verifiers MAY replace multi-
ple consecutive space characters with a single space character prior to
verification, provided that the result is at least 8 characters in length.

A.10 Keeping system safe
Implement Defense-in-Depth

1. Implement Defense-in-Depth: a layered defense strategy includes tech-
nical, organizational, and operational controls.

2. Computer and communication systems must be designed, tested, and
controlled so as to prevent both the retrieval of, and unauthorized use
of stored passwords,

Implement Technical Defenses

1. Implement Technical Defenses: firewalls, intrusion detection systems,
and Internet content filtering.

Update anti-virus

1. Update your system’s anti-virus software daily.
2. All devices connected to the Internet must be equipped with the latest

versions of anti-virus software

Regularly apply security patches

1. Regularly download vendor security "patches" for all of your software.

204

A.11. Keep your account safe

Monitor and analyze successful and attempted intrusions

1. Monitor, log, analyze, and report successful and attempted intrusions to
your systems and networks.

Boot protection

1. All workstations, no matter where they are located, must use screen-
savers with fixed-password-based boot protection along with a time-out-
after-no-activity feature.

A.11 Keep your account safe
Check for encryption and SSL

1. Check for encryption and SSL.-when accessing account.

Manually type URLs

1. Log on manually by typing what you know to be the site’s URL into
your browser window.

Don’t open emails from strangers

1. Do NOT open emails, links, or attachments from strangers.

Keep software updated

1. Make sure you’re using up-to-date anti-malware software
2. Make sure that your operating system is up-to-date.

Log out of public computers

1. When using a public computer, always sign out when your session is
complete to prevent other people from accessing your account.

2. Don’t forget to log out on a cybercafe computer.

Password protect your phone

1. Use a “password” or fingerprints for your phone too.

205

A.12. Length

A.12 Length
Minimum password length

1. Set a minimum password Length. At least eight characters.
2. Minimum password length should be 8 characters.
3. The minimum password length is 8 characters.
4. Eight or more characters.
5. Length of 6 to 40 characters.
6. Make the password at least 8 characters long.
7. At least 8 characters in length.
8. More than 8 characters long.
9. Minimum of 8 characters.

10. All passwords must have at least eight (8) characters.
11. Passwords must be at least 9 characters long.
12. Do not choose passwords of fewer than six characters.
13. Choose a password with at least eight characters. If you want greater

security, set the minimum password length to 14 characters.

Maximum password length (<40)

1. Passwords should be no more than fifteen characters in length.
2. Maximum password length 40.
3. Less than 20 characters long.
4. *Verifiers SHOULD permit user-chosen memorized secrets to be at least

64 characters in length.

A.13 Network: SNMP Community strings
Don’t define community strings as the standard defaults.

1. The community strings must be defined as something other than the
standard defaults of public, private, and system

Community string must differ from login passwords.

1. The community strings must be different from the passwords used to log
in interactively.

206

A.14. Password Auditing

A.14 Password Auditing
Try guessing passwords

1. Password cracking or guessing may be performed on a periodic or ran-
dom basis by the Infosec Team or its delegates.

A.15 Password Managers
Use a Password Manager

1. If you have a difficult time remembering multiple passwords, a trusted
password manager may be a good solution.

2. An alternative to writing down passwords is to use an online password
vault or safe. Use a Password Manager

3. *Password management software can help users, but carries risks.

Create long random passwords with password manager

1. Configure your password manager to create 30-50 random characters
with a mixture of upper- and lower-case letters, numbers, and symbols.

A.16 Personal information
Password should be unrelated to personal information

1. Create a unique password that’s unrelated to your personal information.
2. Don’t use family members’ or pets’ names. Or family birthdays. Or

your favorite football or F1 team or other words easy to work out with
a little background knowledge.

3. A car license plate number, a spouse’s name, or an address must not be
used.

4. Not a word or date associated with you (like a pet’s name, family names,
or birth dates).

5. Don’t use any personal information. Even when combined with letters
and numbers, someone who knows you, or can research you online, can
easily guess a password with this information.

6. *Personal details such as spouse’s name, vehicle license plate, PPS or so-
cial security number and birthday must not be used unless accompanied
by additional unrelated characters.

207

A.17. Personal Password Storage

Passwords must not match account information

1. Do not choose any ID number or user ID in any form, even spelled
backwards.

2. Passwords can’t contain the username.
3. Passwords must not contain your LoginID
4. Passwords must not contain any email address on record for the user

profile.
5. The password cannot contain email address.
6. Can not match username.
7. Don’t use your username or business name.
8. Do not choose part of your userid.

Do not include names

1. Do not choose your name in any form - first, middle, last, maiden, spelled
backwards, nickname or initials.

2. Do not choose any common name, e.g., Sue, Joe.
3. Passwords can’t contain parts of the user’s full name such as his first

name.
4. The password cannot contain your name.
5. Don’t use your actual name
6. Do not choose part of your name.
7. *You could use someone else’s mother’s maiden name.

A.17 Personal Password Storage
Don’t leave passwords in plain sight

1. Don’t leave notes with your passwords to various sites on your computer
or desk.

2. Don’t post it in plain sight.
3. Do not write passwords down and store them anywhere in your office.
4. Passwords must not be written down and left in a place where unautho-

rised persons might discover them.

Don’t store in a computer file

208

A.18. Phrases

1. Don’t store passwords in a document on your computer.
2. Do not store passwords in a file on a computer system or mobile devices

(phone, tablet) without Encryption.
3. *If you decide to save your passwords in a file on your computer, create

a unique name for the file so people don’t know what’s inside.

Write down safely

1. If you must write it down, hide the note somewhere where no one can
find it.

2. If you must write passwords down in order to remember them, encrypt
them in a way that is familiar to you but makes them indecipherable by
others.

3. If you have to keep your passwords somewhere, it is safer to write them
on a piece of paper and store that paper in a secure location, like a safe.

4. The display and printing of passwords should be masked, suppressed, or
otherwise obscured.

5. Store unrecoverable passwords.
6. Allow users to securely record and store their passwords.
7. *Don’t write down your password

Do not allow applications to remember your password

1. Don’t save your passwords in a web browser.
2. Do not use the “Remember Password” feature of applications (for ex-

ample, web browsers).
3. Don’t save passwords or use “Remember Me” options on a public com-

puter.

A.18 Phrases
Don’t use patterns

1. Don’t use keyboard patterns such as qwerty or qazwsx,
2. Dont use sequential patterns such as abcd1234
3. Don’t use numerical sequences.
4. Don’t use repetitive patterns on the keyboard.
5. Common character sequences must not be employed.

209

A.18. Phrases

6. Do not use ascending or descending numbers (for example 4321 or 12345),
duplicated numbers (such as 1111) or easily recognisable keypad patterns
(such as 14789 or 2580).

Blacklist common passwords

1. Prohibit the most common passwords by blacklisting.
2. Verifiers SHALL compare the prospective secrets against a list that con-

tains values known to be commonly-used, expected, or compromised.

Don’t use published phrases

1. Don’t use song lyrics, quotes or anything else that’s been published.
2. Do not choose names from popular culture, e.g., Harry_Potter, Sleepy.
3. *Choose a line of a song that other people would not associate with you.

Substitute symbols for letters

1. Consider using symbols and numbers in place of letters.
2. Replace a letter with another letter, symbol or combination, but don’t

be too obvious about it.
3. *Do not choose any word with any of the following substitutions: a →

2, a → 4, e → 3, h → 4, i → 1, l → 1, o → 0, s → $, s → 5, z → 5

Don’t use a single word

1. Don’t use a single commonplace dictionary word
2. Do not choose acronyms, geographical or product names, and technical

terms.
3. Do not choose a single word either preceded or followed by a digit, a

punctuation mark, up arrow, or space.
4. Passwords must not be a word found in the dictionary or some other

part of speech.
5. Dont use Words like password or letmein
6. Don’t use the word password
7. Compare the prospective passwords against a list of known commonly-

used, expected, and/or compromised values.
8. Prohibit the most common passwords by blacklisting.

210

A.19. Policies

9. Pick a deliberately misspelled term
10. Words in a dictionary must not be employed.
11. User-chosen passwords must also not be any part of speech.
12. Pick an odd character in an otherwise familiar term, such as phnybon

instead of funnybone
13. Choose an easily phonetically pronounceable nonsense word.
14. Combine random words.
15. Combine random words to create a passphrase.
16. Choose a combination of two unrelated words.

Insert random numbers and symbols

1. Do use a random word or phrase and insert letters and numbers into the
beginning, middle, and end.

2. Chose a phrase and pad with symbols, uppercase letters and numbers.
3. Two words separated by a non-alphabetic, non-numeric, or punctuation

character.
4. A combination of words with unusual capitalization, numbers, and spe-

cial characters interspersed.
5. *Don’t use passwords with combinations of random letters, numbers and

symbols. e.g. jal43#Koo%a.

Take initials of a phrase

1. Use a phrase and use the initial of each word.
2. Pick a phrase known to you and take the first character from each word.
3. Take initials of a phrase and swap letters for numbers.
4. Initials of an easy to remember quote of phrase.

A.19 Policies
Establish clear policies

1. You should set account policies that define a secure password for your
systems.

2. Establish clear policies and procedures for employee use of your organi-
zation’s information technologies.

211

A.20. Reuse

A.20 Reuse
Never reuse a password

1. Use a different password for every website
2. Don’t use the same password twice
3. It’s important to use unique passwords for each different online account.
4. Where possible, users must not use the same password for various access

needs.
5. Avoid reusing old passwords.
6. Don’t recycle passwords.

Alter and reuse passwords

1. Users must not use a basic sequence of characters that is then partially
changed based on some predictable factor.

2. Users are prohibited from constructing fixed passwords by combining
a set of characters that do not change, with a set of characters that
predictably change.

3. Users must not construct passwords that are identical or substantially
similar to passwords that they had previously employed.

4. *Incorporate the first few letters of the website name into your password
so that every password is different.

5. *Add a couple of unique letters for each site.
6. *Select a single memorable base password and alter it to form derivations

Don’t reuse certain types of passwords

1. Use a unique password for each of your important accounts.
2. Never use your Apple ID password with other online accounts.
3. Users must not use the same password for Company accounts as for

other non-Company accounts.
4. Users should never reuse passwords between work and home.
5. Passwords used for Internet services should not be the same or similar

to passwords used for services accessed within College.

A.21 Sharing
Don’t share your password with anyone.

212

A.22. Shoulder surfing

1. Don’t share your Apple ID with other people, even family members.
2. Never give out your password to anyone.
3. Never disclose your passwords to anyone else.
4. Don’t share your passwords.
5. Passwords must not be shared with anyone.
6. Do not share passwords with anyone,
7. Do NOT give any of your usernames, passwords, or other computer/

website access codes to anyone.
8. Never share your Maynooth University password with anyone.
9. Passwords must never be shared or revealed to anyone else besides the

authorized user.

Don’t send password by email

1. Do not send your password by email.
2. Don’t send your password to anyone in an email.
3. Passwords must not be inserted into email messages, Alliance cases or

other forms of electronic communication.

Don’t share passwords over the phone.

1. Passwords must not be revealed over the phone to anyone.

A.22 Shoulder surfing
Offer to display password

1. Verifier SHOULD offer an option to display the secret (rather than a
series of dots or asterisks, typically) as it is typed.

Conspicuously enter password.

1. Make sure no one sees you typing your password.
2. Don’t enter your password when others can see what you are typing.

A.23 Storage
Encrypt passwords

213

A.23. Storage

1. Store Password Using Reversible Encryption For All Users enable the
option on a per-user basis and then only as required to meet the user’s
actual needs.

2. Passwords must always be encrypted when held in storage for any signif-
icant period of time or when transmitted over communications system.

3. Passwords must always be encrypted (non-clear text) when held in stor-
age for any period of time

4. Never store passwords as plain text.
5. The verifier SHALL use approved encryption.
6. Applications must not store passwords in clear text or in any easily

reversible form.
7. Passwords must not be stored in readable form in batch files, auto-

matic login scripts, software macros, terminal function keys, in com-
puters without access control, or in other locations where unauthorised
persons might discover them.

Restrict access to password files.

1. Restrict access to files that contain passwords.
2. Ensure you protect files containing encrypted or hashed passwords from

unauthorized system or user access.

Encrypt password files

1. Encrypt files that contain passwords.

Store password hashes

1. Store one-way cryptographic hashes for passwords instead of storing the
passwords themselves.

2. Produce hashed representations of passwords using a unique salt for each
account.

3. Store passwords in a hashed format
4. Secrets SHALL be hashed with a salt value using an approved hash

function.

Don’t hardcode passwords into software

214

A.24. Throttling

1. To allow passwords to be changed when needed, passwords should not
be hard-coded (incorporated) into software.

Contractual agreements should stipulate how credentials are pro-
tected

1. When outsourcing, contractual agreements should stipulate how user
credentials are protected.

A.24 Throttling
Throttle password guesses.

1. Lock out a user account after a number of consecutive failed authenti-
cation attempts.

2. Have a fixed or exponentially increasing delay after each failed authen-
tication attempt.

3. Verifiers SHALL implement a throttling mechanism that effectively lim-
its the number of failed authentication attempts an attacker can make
on the subscriber’s account.

4. Allow users around 10 login attempts before locking out accounts.
5. The number of consecutive attempts to enter an incorrect password must

be strictly limited.
6. The number of consecutive attempts to enter an incorrect password must

be strictly limited.

A.25 Transmitting passwords
Do not transmit clear text password

1. Applications must not transmit passwords in clear text over the network.

Request passwords over a protected channel

1. The verifier SHALL utilize an authenticated protected channel when
requesting memorized secrets in order to provide resistance to eaves-
dropping and man-in-the-middle attacks.

215

A.26. Two factor Authentication

A.26 Two factor Authentication
Use for remote accounts

1. Consider implementing two factor authentication for all remote accounts.

Use multi-factor authentication

1. Consider using multi-factor authentication.

Enable two factor authentication using phone

1. Enable two step verification with your phone.

A.27 Username
Enforce Composition Restrictions

1. Lower case only, no spaces, no special characters. Contain a minimum
of 3 letters and 3 numbers. Length of 8 or 9 characters

Don’t reuse usernames

1. Any username used for the Internet services should not be the same or
similar to a College username.

216

APPENDIX B
Password Advice Costs

This appendix contains a description of the costs associated with each advice cat-
egory and statement. The costs correspond to those indicated by users and ad-
ministrators in our user study (Section 2.7) which are displayed in Table 2.5 in
Chapter 2. For each category, we provide further impressions, characteristics and
notable respondent comments.

B.1 User advice
We begin by discussing the advice associated with users. These are the top
12 categories in Table 2.5.

For some pieces of advice in this section, administrators were not asked about
the costs to an organisation as these costs could largely be extrapolated based
on related advice statements.

B.1.1 Backup password options
Email up-to-date and secure Most organization can not practically check
that each user has kept their email up-to-date and secure. For a compliant
user, this is a continuous process and will cost the user their time. In the
survey users were divided about whether this has no cost or a minor periodic
cost. We suspect that for most users their email client will automatically
update the email software. However, we do mark it as a minor periodic cost.
Administrators also marked this as advice as having no cost. This reinforces

217

B.1. User advice

the automated nature of email updates which will often be handled by the
external email client.

Security answers difficult to guess Making security answers difficult to
guess is a challenging task for an organisation. Administrators noted a large
number of costs associated with the advice. Most notable is major user edu-
cation periodically.

In reality, it is unlikely an organization can verify that security answers are
difficult to guess. One option could be to employ guessing and require users to
change their answers if they have been guessed. But in reality a practice such
as this would have its own additional costs and privacy concerns associated
with it. Respondent to our user survey indicated that security answers which
are difficult to guess will likely be difficult to remember and will also take time
for the user to create.

Do not store hints This statement represents two pieces of advice. One of
the pieces of advice tells organizations to not allow users to store a hint, and
one tells a user to not store a hint. Administrators in our survey were asked
“Users should not set password hints on websites” and end-users were asked
“Do not store hints about your password”. The major cost for users was that
their password would be less easy to remember and that it would require extra
time or effort. For the organisation the major cost is periodic user education.

One administrator survey respondent noted in the comments that they did
not understand the question and the interpretation they provided spoke of
password reset practices. We therefore removed their response for this ques-
tion.

B.1.2 Composition
In our user survey we asked about the composition advice “Include specific
character types in your password. E.g. your password must include uppercase,
lowercase, digit, symbol”.

Both users and administrators indicated a number of minor costs associated
with this advice.

218

B.1. User advice

B.1.3 Keep your account safe
The advice “Check web pages for TLS”and “Manually type URLs” take user
time. Users interpreted the check webpages for TLS to be only at login.
They marked it as advice they approved of. As with a lot of the advice
circulates, this advice would be very difficult for an organisation to enforce.
One administrator said “Not sure how to implement this, users often ignore
instructions”.

User identified no costs with “Don’t open emails from strangers”. We would
have thought it could interfere with daily life or work but a 2012 study by
Böhme and Moore found that as a result of concerns over cybercrime 42% of
participants say they do not open email from strangers [11].

Both “A user’s anti-virus software should be kept up to date ” and “All users
should keep software updated” require user additional computing power and
additional resourcesfor the users. Respondents to the user study also said that
it “required extra time”. Though in the case of anti-virus software, respondents
disagreed about whether it was a minor or major cost. “Log out of public
computers” has a small extra effort cost for users. The focus on administrators
is user education.

“Password protect your phone” introduces an increased password memory
burden on users. For administrators, there were varying views on whether
there was a help desk/user support cost associated with this advice. It likely
depends on how much oversight the organisation has. For example, given the
user forgets their password, is it the organisation they go to or their personal
phone provider?

B.1.4 Length
Minimum password length This advice has a major affect on the users’
risk of forgetting. It also inconveniences the users’ password creation and can
mean that a user needs to choose a new password.

Enforce maximum length (<40) This advice inconveniences the users’
personal system for password generation as a user may wish to choose a longer
password. In fact one of the pieces of advice we collected, told the organization
to limit the password length to less than 15 characters.

219

B.1. User advice

Administrators were not asked directly about the costs to the organisation
associated with enforcing a maximum length. The assumption is that it will
bear similar costs for an organisation as enforce a minimum length.

B.1.5 Password managers
Use a password manager A password manager helps a user by remem-
bering their passwords and saves the user the time of typing the password
at each site. Users indicated that using a password manager has a positive
impact on remembering passwords. Some organizations will be able to force
all their users to use a password manger but most organizations will not have
this capability. This requires additional resources for the user as the user may
need to purchase and/or download and maintain a password manager.

Respondents in the administrator survey indicated that encouraging users to
use a password manager would result in a minor increase in help/desk user
support time. They marked this as either a once off or periodic cost. We
suspect that this relates to support user may need setting up their password
manager and they may also need ongoing support.

Organisation requires extra resources if they are supplying the password man-
agement software for their employees/users.

Throughout the user studies we saw very positive responses in favour of pass-
word managers. One respondent said “Would almost consider it essential for
modern Internet usage. Some additional setup and potentially cost, but ab-
solutely worth it”. However, others had comments such as “Haven’t seriously
considered using them before” and “I’ve never been recommended one or used
one”.

Create long random passwords when using a password manager
One of the advantages of a password manager is that, because a user no longer
needs to recall their passwords, the password can be as long and complex as a
user wishes. If the password created is different to the users’ general structure
and is random, the user may never be able to remember it. One administrator
mentioned that this “assumes that the user will always have access to their
password manager. SaaS on off site work may limit this”.1

1SaaS: Software as a service [142].

220

B.1. User advice

B.1.6 Personal Information
Don’t include personal information This is a difficult thing for an orga-
nization to enforce. In fact, there is no reasonable way for an organization to
eliminate all personal information from passwords. We did not ask adminis-
trators about this information as user education is the only method they have
for enforcing the advice.

Users identified an Increased risk of forgetting as personal details could have
made the password more memorable.

Must not match account details Users were asked about the inclusion of
both personal information and account details in their passwords in the single
statement: “Don’t include personal information, account details or names in
your password”.

Because on organisation can restrict the inclusion of account information in
passwords, administrators were also asked about this advice.

B.1.7 Personal Password Storage
Don’t leave in plain sight If the users are internal to the organization
and work areas are monitored then it could be possible for an organization
to enforce this advice. However in many situations it will be impossible.
Administrators saw user education as the only organisation cost for this piece
of advice.

If the user follows the advice they have two options. They can memorize the
password in which case there is a chance it is forgotten. Or they can store it
in a hidden location which will require extra user effort or time to retrieve.
Users indicated an increased risk of forgetting as the cost associated with this
advice.

Don’t store your passwords in a computer file Unusually, for this piece
of advice, administrators were split between the help desk/user support time
being either a major cost or non-applicable.

This that marked it as a major cost indicated that it would be periodic. We
suspect they are envisioning an increase in help desk call as a result of users

221

B.1. User advice

forgetting their passwords over time. As a compromise between those who
consider it a major cost and those who saw no cost, we mark it as a minor
periodic cost and indicate variability.

Administrators were generally not in favour of users storing their passwords
in a computer file. However, many people noted that provided the file was
encrypted by the user then it was fine.

Write down safely We did not include this in the advice administrators
were asked about as they can have little impact on the practice except for user
education.

Three out of the seven respondents marked this as having a positive impact
on “Makes it less likely to forget”. Four said it was non-applicable. Perhaps
because a user could still forge their password but it will save them the in-
convenience of a reset when they do as they will simply need to locate the
recorded password. We do mark it as a positive cost for forgettability since
writing it down means the cost of forgetting won’t exist.

Two users disagreed with this advice and 4 agreed. One person was neutral.

Don’t choose “remember me” The user will now need to remember their
password instead of it being saved in the browser. In addition, at each login
the user will need to physically type their password.

B.1.8 Phrases
There exists a PAM module called ‘cracklib’ which automates blocklisting
[109]. User education is required to explain the risks of choosing a common
password and which types of passwords are likely to be common. One admin-
istrator made the point that blocklists that are not transparent lead to a lot
of user support.

Contrary to the NIST 2017 advice, one administrator responded to this advice
by saying “Force the password complexity, then this is not needed”.

We did not ask administrators about the advice “Don’t use patterns in a
password”, “Don’t use published phrases as your password” and “Substitute
symbols for the letters in your password”. The first two would come under the

222

B.1. User advice

remit of a blocklist. The third seems impossible for an organisation to enforce
and therefore would only require user education costs.

In the user study, respondents said that “Don’t use published phrases” makes
password creation more difficult, makes a password less easy to remember, and
requires a minor amount of extra time or effort on top of this. When asked
how frequently this extra time or effort was required, the prevailing answer
was N/A. The next most popular was periodic so this is how we recorded it.

B.1.9 Reuse
Never reuse a password If users never reuse a password they must create
a new password when they open an account.

Password reuse could be within an organization or across organizations. It is
very hard to enforce a no reuse policy across organizations. Administrators
marked this advice as having a major user education cost.

Alter and reuse passwords Respondents to our user study asked about
the affect this advice has on ease of password creation were split between
it being a positive and negative cost (See Figure B.1). Three users said it
was a positive cost, i.e. the advice made it easier to create a password. We
suspect this was in relation to needing to create a completely new password at
every site which was the previous piece of advice that users were asked about.
Antithetically, one user said it was a major cost when creating a password and
three users said it was a minor cost. We choose to mark it as a minor cost as
more people said major and minor combined than said positive.

There was similar discrepancy in determining whether the advice made the
password less easy to remember was positive or negative. In this case the
major and minor votes combined equaled positive. Most users typically use
the exact same password for multiple websites. Therefore, we see the baseline
as keeping all passwords the same, rather than having all random. For this
reason, and to keep with the same narrative as above, we mark it as a minor
cost.

223

B.1. User advice

Figure B.1: Alter and reuse passwords. Results from user study for the cost
category Makes it more difficult to create a password

B.1.10 Sharing
Sharing All user surveys include the advice “Never share your password”
and 36 out of 40 users agrred with it.

User comments did vary though. One user said “This feel obvious and not
something a website needs to point out”. While other pointed out that ex-
ceptions apply and sometimes a system is not capable of dealing with it:
“Sometimes it makes sense to share an account with close collaborators or
family (if the underlying system doesn’t otherwise support collaborative use).
Sharing passwords may be a justifiable risk”.

B.1.11 Two-factor authentication
Use multi-factor authentication All users were asked about implement-
ing two factor authentication. The phrasing they were given was: “When you
want to log in, you should have to enter an additional code from an app or a
special device ”.

A subset of these users were also asked specifically about two factor authenti-
cation using their phone: “When you want to log in, you should have to enter
an additional code that is sent to you by text message (or phone call)”.

In both cases users agreed that an extra resource was required at login. Using
a specific app or device also incurred an additional time cost.

Administrators were asked about “Users should have to use some form of 2-
factor authentication” and “Some form of 2-factor authentication should be
available to users”. The distinct difference being the option of choice for the

224

B.1. User advice

user. There was little difference in the costs to the organisation between the
two pieces of advice. Though it is important to note that different groups of
administrators answered each question with 6 answering the first version and
a different seven answering the second. The major difference was that 5 of 6
(83%) agreed that some form of 2-factor authentication should be available
to users, whereas only 4 of 7 (57%) agreed that users should have to use
some form of 2 factor authentication. In Table 2.5 we show the costs that
administrators related to users having to use 2-factor authentication.

One participant gave the strong opinion that 2-factor authentication “should
be completely mandatory. Be it a push notification to their phone or some
randomly generated OTP or both. Some form of MFA should be used”.2

If a phone is not used then it is likely that either the user or the organization
will have to provide the additional resource needed for authentication, for
example a USB device.

Setting up 2-factor authentication using texts to phones will also require extra
resources for the organisation as they will need the ability to initiate authen-
tication texts or phone calls of app alerts.

Additional user time is needed to complete the authentication process since
multiple factors are needed at each login. Some devices do offer a “remember
me on this device option” which would ease the burden on the users. But this
will have it’s own security trade-offs.

If the user is using ‘something you have’ to authenticate and loses it, this will
also have an impact for user time and inconvenience. Also, the user must
remember to bring the device with them.

Colnago et al. found that [29] implementing two factor authentication (2FA)
in their university increased the help desk calls by 10%. In particular, as the
deadline for implementation approached, 2FA related tickets represented 24%
of all support that was provided by their help desk.

Use for remote accounts The costs for this piece of advice are similar to
those for “Use multi-factor authentication”. The difference is that the costs
only need to apply to remote accounts. In the user study, users were unsure

2OTP: One time password [108], MFA: Multi-factor authentication.

225

B.2. Organization advice

whether this advice required an additional resource. This could be because
users maybe already have a phone on their person which will simply be used
as the second factor. Three respondents said it did not apply, two said it was
a minor cost and two said it was major. We therefore mark the severity as
minor. Also, respondents were split between the extra user time being needed
periodically or at login. Assuming the two factors are required at every login,
we mark it as a login cost.

The exact advice statement given in the user study was phrased as: “You
should use 2-factor authentication (e.g. an extra PIN) when logging into
accounts remotely”. Some respondents marked it as requiring the creation of
a new password. Maybe it was unclear to users whether they had to create
this additional PIN or not. Because we envision it as being a PIN sent to a
device and created automatically, we do not include this cost.

B.1.12 Username
Enforce restrictions on characters The majority of users in our study
assigned no cost to needing to include specific character types in their user-
name. Some said it might require a minor amount of extra time. Interestingly,
despite this, 6 respondents said they did not approve of the advice, none said
they approved and two were neutral. One participant commented to say it
was “Stupid and pointless” and another said “Can’t see a good reason for this,
but with a password manager it wouldn’t be too painful”.

B.2 Organization advice
In this section we discuss advice that was directed towards the organisation.
It relates to back-end security such as storage of passwords and other security
decisions that the organisation has control over. For some pieces of advice in
this section end-users were not consulted about the costs as we deemed them
not to be overly relevant to them in terms of costs.

B.2.1 Administrator Accounts
Not for everyday use The main cost here is to the administrator who
must switch between accounts for different tasks. This burden is lessened by
the implementation of programs such as su and sudo which allow users to

226

B.2. Organization advice

easily run programs which require extra security privileges. The organization
must also have the resources to create two accounts for the one user.

Must have its own password This requires the organization to set up
password protection on the administrator account. The administrator must
create a new password and enter it in some way at each login. Multiple users
with privileged access may all need to know the same administrator password.
This is the disadvantage of using su protocols over sudo.

Should have extra protection In relation to not using admin accounts for
everyday use, one respondent commented that “standard admin accounts are
common vectors of attack”. Another respondent mentioned using two factor
authentication for admin accounts. All administrators agreed with additional
security for administrator accounts. The only cost noted was a minor imple-
mentation cost. However, the advice does not specify what extra protection
are recommended. If it is two factor authentication that is recommended, then
this would come with its own costs for the administrator and organisation.

B.2.2 Backup work
We asked both users and administrators about the costs of needing to digitally
and physically backing up work. From a user point of view it was their own
work. From an organisation point of view it is the organisation’s files and
data. For both it requires time and resources. For the organisation there is
also a need for user education and help desk support if a back-up policy is in
place.

B.2.3 Default passwords
Change all default passwords This requires changing from default pass-
words but does not require that each password is unique and they often may be
recorded, thus not requiring much additional burden on users. Users marked
the only cost as a need to create a new password. Though admittedly, we
would see figuring out how to change the default password as another major
time cost. Often administrator accounts exist on devices and have associated
default passwords that the user of the device may know nothing about.

227

B.2. Organization advice

B.2.4 Expiry
Store history to eliminate reuse The organization must store all previ-
ous passwords, requiring memory. The user will need to pick a new password
as old passwords cannot be reused. There is also an Increased risk of forgetting
as the user may forget which passwords have been expired and which is the
current password in use.

Change your password regularly Regularly needing to change passwords
have an impact on users’ memory load as well as taking time out of their day.
Users will repeatedly need to create a new password.

Only 50% of the 40 end-users surveyed disagreed with regular password expiry.
25% were neutral and 25% agreed with it. For administrators we have a much
smaller number of responses. However, 3 administrator respondents disagreed
with expiry, 1 was neutral and 1 agreed.

Change if suspect compromise An organization can internally monitor
breaches or link with a breach application. For example receiving notifications
about their users’ credentials from https://haveibeenpwned.com [72]. The
notifications to users will require organization time, and user education and
support.

All users and administrators agreed with this advice.

B.2.5 Generated passwords
The assumption by users for most of the advice related to generated passwords
is that they will create their own password afterwards. This is evidenced by
the inclusion of a costs for the user of creating a new password for most of the
related advice. One user said “Should also be replaced hence the added cost
to create.”

One issue an administrator flagged with generated passwords is that it is
difficult to distribute them safely when off-site.

Must aid memory retention Interestingly, the eight respondents who
answered this question were split according to Figure B.2. Notice that 3 said
it was a major cost and 3 said it was a positive cost. This is interesting as it

228

https://haveibeenpwned.com

B.2. Organization advice

Figure B.2: Generated passwords must aid memory retention. Results for cost
category makes it less easy to remember.

depends on the interpretation. In comparison to choosing their own password,
any generated password will be more difficult to remember. But in terms of a
generated password that is randomly generated, it is easier to remember. We
mark it as a minor inconvenience to remembering a password as the status
quo of creating their own password would be easier to remember.

Must be issued immediately Uses users time as the user must be available
to receive the newly created password. Takes administrator time to distribute.

B.2.6 Distributed in a sealed envelope
Respondents to the user survey disagreed with whether this advice required
extra resources. Two said does not apply, two said minor and two said major.
We suspect that though the organization may need the extra resources of
envelopes, the end-users shouldn’t need any extra resources.

Only valid for first login Requires the user to generate their own password
as well as administrators to generate the initial generated password. Most
users said it had no costs but some said requires the creation of a new password,
which we mark in.

B.2.7 Individual accounts
One account per user This will require organization time to set up. The
cost can be high in an environment where there are shared computers. How-
ever, in our user study the majority of users assigned no cost to this piece of
advice.

229

B.2. Organization advice

Each user account must be password protected User study respon-
dents assigned very few costs to this advice. Three of eight answering the
question said that it brought a major cost to easy memorability and one re-
spondent said it was a minor cost. This cost was presumably assigned because
it requires another pair of account details to be remembered. However, four of
the eight respondents marked N/A for it’s affect on memorability. Therefore
we mark it as a minor variable cost.

Surprisingly, half respondents said that need to create a new password was
a non-applicable cost. This could be because, even though a new password
needs to be set, they don’t necessarily need to create a new one as potentially
an existing password could be used. However, we mark it as yes as it does
require a new password to be set.

For the administrator survey, the only cost marked was for help desk/user
support time. The majority of administrators said there was no cost for im-
plementation. We expect this is because it is considered standard on most
systems. In fact, one administrators commented to say “I haven’t awarded
severity/frequency costs because this should be mandatory and the cost is
unimportant”.

B.2.8 Input
Don’t performed truncation Users often will not notice if their pass-
word has been truncated. One administrator gives a reason for truncation as
“compatibility with legacy systems”. It takes organisation time to be able to
implement this advice and also requires extra resources.

Accept all ASCII characters The organization must create a system
which has the ability to accept all ASCII characters in a consistent way. Ac-
cepting all characters should reduce the likelihood that the policy will incon-
venience a user’s password choice.

B.2.9 Keep accounts safe
Implement Defense in Depth Because we do not know what defense in
depth strategies would be deployed, it is very difficult for administrators to
assess what costs will incur. One administrator said “Its context specific based
on the burden of costs associated with it”.

230

B.2. Organization advice

Implement Technical Defenses Similar to above, this advice is not spe-
cific enough. It shows the importance of describing exactly what systems are
intended to be put in place when giving security advice. Some respondents
suggested technical defence that should be in place. For example, “..MFA
should be mandatory, any company resources should have to be accessed over
a VPN and the access policy on that VPN should have you running some
sort of company approved anti-virus”. Others said that it is “not specific or
meaningful enough to be useful advice”.

Apply access control systems This advice was worded for administrators
as: access controls should be applied to access particular features or systems.
One respondent commented to say that the advice statement was not clear.
There was disparity in responses about the cost to organisation time for im-
plementing these access controls. Two said that implementation costs were
non-applicable, 1 said minor, 1 positive, and 2 major. We marked it as major
as we believe implementing a fully access controlled system will take time for
an organisation. However we mark it as having variability in the responses.
All except those that marked it as non-applicable indicated that it is a periodic
cost.

Access control can cause problems for end-users. One user survey respondent
noted that “The problem is that someone has to decide which parts of the
system are relevant for everyone else, and it’s easy to err on the ‘safe’ side,
which can create lots of friction.”

Intrusions should be monitored and analysed One respondent men-
tions that in order to follow this advice it is “Assuming you know the attack
vector”. This could mean working with users of the system and also engaging
in user education so that users can recognise compromises. Computing power
is also important for identifying and monitoring and analysing breaches. It is
a major organisation cost to implement.

Regularly apply security patches In order for security patches to be
applied across an organisation, users must be compliant. Administrators as-
signed user education and user support time to this advice. Administrator
survey respondents also mentioned the difficultly of this task. One said that

231

B.2. Organization advice

it “requires a lot of additional management to be done properly and audited.”
Another respondent mentioned that some patches can break existing function-
ality and a third emphasised that it is a big but necessary job.

B.2.10 Network: SNMP community strings
An SNMP community strings can be compared to a username or password,
knowing the string provides access to a device’s statistics.

As one respondent pointed out, community strings are only used in devices
supporting the SNMPv1 and SNMPv2c protocols. The newer SNMPv3 uses
an encryption key along with a username and password for authentication.

B.2.11 Password auditing
Attempt to crack passwords Both administrators and end-users were
asked about this advice. There are a large number of costs for both users and
administrators. One administrator commented to say “Don’t let it run forever
or using spare cycles on your nearby supercomputer or you’ll start cracking
relatively strong passwords too!”.

B.2.12 Establish clear policies
The exact wording of this question for administrators was: “Clear policies
should be established (e.g what passwords will be accepted or security advice
for use of IT systems)”. Users were not asked about this advice.

An administrator commented to say “Most questions of info sec come down to
good user education, good policy and effective "policing" (and that does not
necessarily mean punishment for non compliance)”.

B.2.13 Shoulder surfing
Offer to display password Administrators were asked “When logging in
there should be an option to view a password after it is typed”. Users were
asked “You should have an option to view your password after you have typed
it”.

Users saw no costs for them regarding this advice. One user commented to say
“There’s a trade-off to be made. Context matters. If you’re in a public space,
it is riskier. If you’re at home or otherwise alone, it can be helpful. Suitable

232

B.2. Organization advice

for low security applications (meme generator account?). Not suitable for high
security applications (bank?).”

Enter your password discretely Administrators were not asked about
this advice as all they can so is provide user education. One user said “Abso-
lutely! All password boxes should be starred or invisible to type”.

When a user is logging in it may take some extra time or inconvenience for
them to verify that they are entering their password discretely. Users also
marked it as impacting the ease of creating their password.

B.2.14 Storage
Encrypt password files For the organization, at each system start up the
password needs to be provided. This can be done manually, which would
require periodic organization time. Or it could be automated in which case
the password is accessible to the computer system, which would bear secu-
rity risks, by reducing the effective secrecy provided by the encryption. One
administrator noted that “It’s common practice to ensure password files are
encrypted.. To me this is a no brainer”.

Access to password files should be restricted Administrators disagreed
about whether help desk support and user education was necessary for this
piece of advice. For both, half the administrators said non-applicable, while
the other half were split between it being a minor and major cost. We mark
it as a minor cost.

One administrator commented to say that “It is dependent on the type of
organisation”. We would be curious to know which organisations would prefer
to not have access controls in place for their password files.

Hash and salt passwords In the authentication advice we collected in
Section 2.3 we found four pieces of advice recommending storing passwords
as hashes. However, of these, only two also recommended including a salt.
Because a hashed password should always be salted, we asked administrators
about hashing and salting together.

233

B.2. Organization advice

Administrator said it would require extra resources, organisation computing
power and time to implement. We did not ask users about this advice as many
would not be familiar with the terms. However, we do know that if the hash
of the password is stored, then if the user forgets their password, the password
cannot be recovered from the hash. Therefore, the user will need to create a
new password.

Encrypt passwords One respondent said “Usually you would hash, but
encryption can be used too”. Another mentioned the “Minor cost to help
desk, as passwords cannot be retrieved, only reset. Could be offset with self-
service reset, at additional overhead cost”. Another respondent said “Assume
by encrypted you mean hashed”.

Passwords should not be hardcoded One respondent did not under-
stand the question. They commented to ask if this meant using certificates
instead of passwords or MFA only. We removed this response as we believe the
hard-coding is referring to the storage of the password on the organisation’s
system.

Another administrator gave the comment “Users should be allowed set their
own password. Orgs should not keep lists of unencrypted passwords that have
been hardcoded”. This is more in line with our interpretation of the advice.

B.2.15 Throttling
Throttle password guesses Throttling involves limiting the number of
wrong guesses that can be made against an account. The cost of this is that
a legitimate user could accidentally be locked out if they mistype or forget
their password a certain number of times. For example, Brostoff and Sasse
[18] find that with a three strike system 31% of users are unfairly locked out
is. With ten strikes it is 7%. Smart systems can help to minimize the risk
for real users [95]. Users noted that this has a cost associated with time and
effort and forgetting.

One user said “means you want to be extra sure of your password, either
having it linked to the site/service or else stored somewhere that you can be
sure of getting it correct”. Another said “Depends on the value of what is
being protected and there are better ways of providing extra security”.

234

B.2. Organization advice

All administrators agreed with this advice (7/7) whereas users were less sure.
One user said they disagreed and one was neutral. Four (4/7) users did agree
with the advice.

One administrator emphasised the need to “let the user know that this can
happen, to reduce confusion”. Another administrator respondent mentioned
that depending on the system in use, setting up throttling can range from a
very simple ‘tick box’ task to a complete system overhaul.

B.2.16 Transmitting passwords
Different subsets of administrators were asked about “Don’t transmit in clear-
text” and “Request over a protected channel”. Users were not asked about
this advice.

The costs administrators noted for the two are very similar. Except for the
transmission of passwords which involved increased computing power as well.

Both involve user education and help desk time. This is to ensure users or
employees are not sending and asking for passwords using unencrypted means.

One administrator said “Passwords should not be transmitted in clear text -
having a policy that states that is one thing (with little cost), educating the
userbase to the risks of not adhering to the policy is more involved from a cost
perspective and technically policing the policy can be quite expensive. So in
effect you can have a range of answers here. I agree with going all the way
to the technical policing (systems in place to discover clear text passwords)”.
Another said that mandating that passwords should be requested over pro-
tected channels is “Good in theory, in practise my experience is that users
start to work around it”.

B.2.17 Additional advice
Don’t allow users to paste passwords Administrators and users dis-
agreed with this advice. One administrators said: “Terrible idea. Increased
help desk costs and user frustration. Makes it impossible to use password
managers”.

One user said “This is horrendous advice that leads to problems using pass-
word managers. It encourages using crappy passwords.” But some 14/31

235

B.2. Organization advice

agreed with not allowing passwords to be pasted. One user said: “auto-fill is
okay, paste is not”.

236

APPENDIX C
Password Advice Benefits

This appendix contains the rationale for how the security benefits were assigned to
each advice statement in Table 2.5 in Chapter 2.

C.1 User advice
C.1.1 Back up password options
Email up-to-date and secure. Email is used for password reset links and
often as the method that a generated password is passed to users. Therefore
having a secure email account can help against eavesdropping of passwords
by attackers. It can also prevent unauthorized binding of a new password to
a users’ account through the form of an emailed password reset. Having an
up-to-date and secure email system with a working spam/malware filter can
help to protect against phishing and pharming attacks and compromise of an
endpoint due to malware.

Do not store hints If hints were stolen then these hints could be used to
facilitate online or offline guessing or to aid a social engineering attack.

C.1.2 Composition
Enforce restrictions on characters Researchers have shown that having
complex password composition rules can make the resulting passwords more
difficult to guess [83]. Though simply allowing only long (greater than 16
characters) passwords has a similar effect on guessability and may not cause

237

C.1. User advice

as much hardship for users [83]. Having very stringent composition rules does
have the effect of limiting the search space an attacker needs to look through.
For example, a brute force exhaustive attacker has to search more possibilities
for a password which can be made up of any type of 8 characters, than for an
8 characters password which has to have two numbers, two uppercase letters,
two lower case letters and two symbols. But this only takes effect if the
unconstrained user actually chooses from all 95 possible character options.

C.1.3 Keep your account safe
Check web pages for TLS This task helps users verify that communica-
tions to this webpage will be transmitted securely with encryption. However,
it only has limited effectiveness as a strategy against phishing. In 2018, 49.4%
of phishing sites were using SSL/TLS [38].

Manually type URLs Manually typing URLs can save a user from a Phish-
ing attack as the user should recognize that the URL is not linking to the
correct website. However, manually typing URLs makes a user vulnerable to
typo-squatting/URL hijacking [157] e.g., www.goggle.com. A user is sent to
the site with the similar URL which masquerades as the website of the user’s
intended destination. The site can then ask the user to enter their login details
and store them to use on the real site. Thus the user’s password is duplicated.

Keep software updated By keeping software updated a user gains protec-
tion against vulnerabilities as soon as the patch is released. This can save a
user from eavesdropping, side channel and endpoint compromise.

Log out of public computers If a user does not log out of a public com-
puter then the only protection a user has is the moral compass of the next
person person who uses that computer. In this way a user’s account can al-
ready be thought of as in a state of compromise. It is not obvious which of
the 11 categories this opportunist attack comes under. We will somewhat
arbitrarily place it under Eavesdropping.

Password protect your phone If a phone is password protected then the
probability of endpoint compromise is lower.

238

www.goggle.com

C.1. User advice

C.1.4 Length
Minimum password length Inhibits brute force guessing as there are no
passwords to guess with a very small number of characters, which are some-
times favoured by both users and guessers.

Enforce maximum length (<40) Requiring that passwords are less than
a certain number of characters makes them easier for an eavesdropper to record
them as they are less likely to cross packet boundaries. It also makes online
and offline guessing easier as the attacker now need only guess passwords
within the given range.

C.1.5 Password managers
Use a password manager The security benefits of a password manager
will depend heavily on both how it is utilized by the user and also on the
capabilities on of the specific software that users are using. For this reason all
benefits are dependent on the implementation.

A password manager greatly reduce the users’ memory load and by extension
then a user can use as long, random and complex of a password as they wish.
Thus this act will increase security. A password manager does mean that the
user is relying on an external agent to store their passwords and therefore if
this agent is compromised or if the users password for this single account is
compromised then the passwords of all the users’ accounts are compromised.
Therefore we consider this to be a new way in which the users’ passwords can
be duplicated.

Password managers which automatically fill in the users’ credentials with no
user interaction do have some corner case vulnerabilities [150]. Though this
same paper shows that a password manager can provide more security that
the normal manual typing of the password. For example, password managers
can be effective against phishing and pharming attacks.

Create long random passwords This piece of advice was given in the
context of a password manager. “Configure your password manager to create
30–50 random characters with a mixture of upper- and lower-case letters,
numbers, and symbols.” It has the same benefits as creating a complex long
password but without the user memory costs.

239

C.1. User advice

C.1.6 Personal password storage
Don’t store in a computer file. An attacker accessing this password file
can duplicate the password.

Write down safely Even if the password is stored safely, the very act of
writing it down makes it’s duplication and physical theft possible. There is
discussion as to whether the security risks of writing passwords are in fact
very low [93]. And in fact, if users write down passwords, then they may be
more confident making stronger password choices [23][87][66].

Don’t choose “remember me”. If the “remember me” option is not used
then if an attacker steals a laptop or computer they should not automatically
have access to the accounts on it. It is equivalent to not logging out of an
account.

C.1.7 Reuse
Never reuse a password Reusing passwords has the security disadvantage
that if an attacker compromises a password on one site then the password can
be used to gain access to other sites. This means if passwords are reused then
online and offline guessing becomes much easier for an attacker. In fact, if
the password is leaked elsewhere the chance of it being compromised for this
given organization is just equal to be chance that an attacker tries.

However, even with different passwords at different sites, the attacker has a
good chance of being able to leverage the information from a separate compro-
mised site to mount effective phishing, social engineering and guessing attacks
[34]. These will be at a higher cost to the attacker though.

Alter and reuse passwords Altering and reusing passwords means not
directly reusing passwords between sites. It will make a guessing attack nec-
essary for an attacker even if they have access to a password belonging to the
same user from a different site. However, Das et al. [34] were able to guess
approximately 10% of non-identical password pairs in less than 10 attempts
and approximately 30% in less than 100 attempts. Therefore we mark it as a
limited security improvement.

240

C.1. User advice

Don’t reuse certain passwords. Asking users to not reuse certain pass-
words is equivalent to saying that a user can reuse some passwords.

In fact, if we look at the specific advice in this category we can see that most
organizations are asking users to not reuse the password for their site. This
does provide some security advantage as the attacker will not be able to di-
rectly access the protected account using the revealed password. But, as with
“don’t reuse you passwords” we know that an attacker can still leverage infor-
mation from other compromised sites to attempt phishing, social engineering
and guessing attacks.

C.1.8 Sharing
Never share your password In the process of sharing a password it could
be eavesdropped. Not allowing users to share their passwords also helps to
protect against social engineering. Though this is through the form of user
education.

C.1.9 Two-factor authentication
Use Multi-factor authentication As mentioned before multi-factor au-
thentication traditionally involves: something you are, something you know,
and something you have. The something you have is susceptible to theft.
However, if it is stolen the user if still protected by their other authentication
factor. Using multi-factor authentication decreases the success of phishing (as
second factors are often not subject to replay) and online guessing attacks
(as both factors must be guessed). We underline some of the benefits as it
depends on which factors the user or organization choose to use.

Use 2-step verification on phone The phone can be stolen or the code
can be revealed by eavesdropping or a side channel attack. But again, if the
phone is compromised, it is possible that the first step of the authentication
process will keep the users’ account secure. 2-step verification decreases the
success of an online guessing attack and a phishing attack.

Use for remote accounts Without knowledge of a specific second factor it
is hard to say what the security effects are. Therefore, depending on what the

241

C.2. Organization advice

second factor is, there is the potential for physical theft or endpoint compro-
mise to jeopardize the authentication. The probability of the exchange being
eavesdropped is much higher if used for remote accounts.

C.1.10 Username
Enforce composition restrictions on usernames Florêncio, Herley and
Coskun argue that it is better to increase the strength of the userID rather
than the passwords [50]. They propose that this will protect against online
guessing attacks but will not majorly increase the cost to users since the
username can be recorded visibly.

Don’t reuse username If the same username is used for multiple accounts
then once the password for one account is compromised, this password can
be tried against the same person’s other accounts. Das et al find that 3%, of
users directly re-use passwords between sites and many others introduce small
modifications to their passwords across sites [34]. Not reusing a username
could be one way to protect against an attacker leveraging this vulnerability
and could be less burdensome on the user than a restriction on altering and
reusing passwords.

C.2 Organization advice
C.2.1 Administrator accounts
Not for everyday use It can be argued that the more times the authen-
tication process is completed by the user, the more times it is susceptible
to compromise during entry or transmission. We therefore say that not log-
ging into the administrator account for everyday tasks decreases the chance
of eavesdropping and side channel attacks.

Must have its own password If there is one administrator then ensur-
ing that this administrator account has a distinct password means it is less
vulnerable to eavesdropping and side channel attacks. However in most sit-
uations, many users will require privileged administrator access. In this case
the problem depends on how you choose to implement this advice. If users
access the administrator privileges by typing the administrator password via
su then all privileged users must know the same password. This makes social

242

C.2. Organization advice

engineering, phishing and endpoint compromise more likely. In addition if
multiple users are recording or sharing with others the same credentials then
they are more likely to be duplicated and fall into the hands of an attacker.

Alternatively, there might be administrative access via the user’s own pass-
word (e.g. via sudo) or a second administrative account/password correspond-
ing to each user with administrative privileges.

All of these have associated security risks. In our table we have represented
the case where there is one administrator who must create a second password
which allows them access to administrator privileges.

Should have extra protection Depending on the extra protection the
account is given this will have different benefits.

C.2.2 Backup work
Make digital & physical back-ups Having a back up of work means that
attacks can be less harmful to the organization. Having backups does not
directly decrease the chance of an attack but would be factored in relation to
the costs of a breach. Having physical backups of work does mean that the
potential for physical theft now exists.

C.2.3 Expiry
Store History to eliminate reuse This advice is given alongside “Change
your password regularly”. The password must now also not match any previous
passwords. This means that knowledge of old passwords will not directly lead
to an attacker knowing a current password.

However, even though users can no longer reuse prior passwords, alterations
are still possible [149]. In fact, Zhang, Monrose and Reiter [185] identify that
we can easily predict new passwords from old when password aging policies
force updates.

In addition, if an attacker gains access to a users’ account and changes their
password, the user will be unable to change it again until the required number
of days have elapsed, or with an administrator’s help.

243

C.2. Organization advice

Finally, storing the history means there is an additional password file which
needs to be protected. Because of the close relationship between old and new
passwords [185], if this file is revealed then the information in it can be used
to effectively guess the current password [34].

Change your password regularly In a certain situation changing your
password regularly does decrease the probability of success of online guessing.
Imagine an attacker cycling through a list of guesses. If a password is changed
to something new during this guessing, then an attacker wishing to guess it
must start their guessing process again from scratch.

However, most attackers will guess the most probable guesses first and since
passwords follow a long tailed distribution [115, 98] a rational attacker will
typically stop and move onto a new account if the password is not captured
within the first few million guesses.

If the attacker correctly guesses the password within the time frame. Then
the password will be changed at the beginning of the new period. This does
bring some additional security but in reality once an attacker has access to the
account they can set up a backdoor and will not need the password in future.
Even if the attacker creates no backdoor the probability that they can guess
the next period’s password is high as users base their next password heavily on
their previous password [185, 34]. Therefore, knowledge of the password from
one period will strongly aid the attacker in guessing subsequent passwords.

Change if suspect compromise If the password has been leaked elsewhere
then the advice is to change your password. This protects you from online or
offline guessing attacks as otherwise an attacker with access to compromised
password has immediate access to the account. Some of the caveats discussed
above still apply. But the hope is that if a compromise is suspected, a user
may be less likely to create a new password very similar to their old one. In
addition the time scale to the creation of backdoor may be longer.

C.2.4 Generated passwords
Must be issued immediately This decreases the chance that generated
passwords are stolen before they are told to the user. If passwords were
created in advance they would likely be recorded as administrators could not

244

C.2. Organization advice

remember multiple generated passwords. Therefore these passwords could be
duplicated while in storage.

Distribute in a sealed envelope This increases the chance that the pass-
word is physically stolen as the envelope could be taken. The password could
also be duplicated since it has been recorded. If an adversary opens the enve-
lope and duplicates the password then it will go undiscovered if the adversary
places the password page in a new envelope and reseals it. The benefit of the
sealed envelope is that an observational, audible or network eavesdropping
attack is less likely.

Only valid for first login Because these generated passwords are often
issued and created by administrators the user has no confidence in the security
of their password up until the point they receive it. Maintaining a rule that
passwords must be changed at first login means that the user can now have
complete control over the security of this new password. This advice then
protects against previous duplication of the password.

C.2.5 Individual accounts
One account per user The alternative is multiple users using the one
account. With multiple users using the same account one user could modify
the authentication information without informing other users (unauthorized
binding). In addition, if multiple users are recording or sharing with others the
same credentials, then they are more likely to be duplicated and fall into the
hands of an attacker. Social engineering and phishing attacks and endpoint
compromise are also more likely if there are multiple points of access.

Each account password protected If there is no password we can likely
consider the account to already be in a state of compromise. Password pro-
tecting an account increases the security of the account by necessitating one
of the attacks to take place before an attacker can gain access. It obviously
protects against both online and offline guessing. In addition having a pass-
word makes a side channel attack more complex. An attacker should be able
to differentiate the difference between an account login where no password is
used and when a password is used.

245

C.2. Organization advice

C.2.6 Input
Don’t performed truncation Truncating passwords makes online and of-
fline guessing easier. It can also affect social engineering attacks. If the user
does not know that the password will be truncated they may reveal the first
few characters of the password without realizing the true security extent of
this action.

Accept all characters This increases the necessary search space of an at-
tacker attempting online or offline guessing. Allowing all characters could give
more scope for a SQL injection attack, but the hope is that there would be
adequate string escaping in place to mitigate this fear.

C.2.7 Keep accounts safe
Implement Defense in Depth Defense in depth can be divided into three
categories: physical controls, technical controls and administrative controls.
The security defense in depth can provide depends on exactly what strategies
are deployed. They have the potential to mitigate any of the eleven attack
types but without knowing what is implemented we cannot say exactly what
the security advantages or disadvantages are.

Implement Technical Defenses The same argument as above can be used
for this advice; it is not specific enough for us to know it’s benefits. Though
it is unlikely to aid against physical theft and social engineering.

Apply access control systems Access controls make sure that only certain
users have access to their required aspects of the system. With respect to
authentication, this means that only the privileged administrators have the
power to view and control the authentication procedures and modify the stored
authentication data. This protects against a malicious employee “turning off”
authentication or other security mechanics, duplicating the stored password
dataset or downloading malware to attempt side channel or keylogging attacks.
However, exactly what this advice protects against depends on which specific
access controls are put in place.

Monitor and analyze intrusions Awareness of what an attacker is doing
within the system and learning where the vulnerability is is important for

246

C.2. Organization advice

security. However this advice has no direct security affect unless the analysis
is acted on. For example, if an administrator witnesses an attacker duplicating
the plaintext password file, then a forced password change might need to
be implemented. Else if an administrator witness an attacker binding an
additional form of authentication to a user or changing the credentials for a
user, then these actions would need to be reversed. Monitoring and analyzing
intrusions could also guide user education.

C.2.8 Policies
Establish clear policies This advice does not directly increasing or de-
crease the probability of success of an attack type.

C.2.9 Storage
Encrypt password files Encrypting password files will protect against the
theft of the hard drive. However, the password used for encryption could
still be read from the RAM. If the system can access the password without
manual intervention then the password is likely to be stolen if the encrypted
file is stolen. An attacker will have more difficulty downloading the password
file for offline guessing.

Restrict access to password files Restricting access to password files will
protect against certain types of unauthorized binding. If an attacker does not
have access to the stored authentication details then the attacker will find it
difficult to change the password stored for the user or link additional passwords
or authenticators to the account. Preventing read access to a password file
could prevent offline guessing attacks.

C.2.10 Throttling
Throttling (or rate limiting) password guesses drastically reduces the number
of guesses an attacker can make. The attacker can no longer continuously
make guesses until the correct password is accepted. However, because of the
right-skewed nature of password distribution, the attacker does still have a
high probability of success with a small number of guesses [98][115].

247

C.2. Organization advice

C.2.11 Additional advice
Don’t allow users to paste passwords There appears to be no security
benefits to this advice [7] and indeed in our model we cannot find any attack
type that it mitigates.

248

APPENDIX D
NIST Calculations

In Chapter 5, we created a model that calculates the costs of enforcing authentica-
tion advice and the benefits the advice provides. The model computes the net value
of an authentication policy by comparing the costs and benefits. To examine these
models, we applied them to different versions of the National Institute of Standards
and Technology (NIST) authentication standards documents: the archived NIST
2003 Electronic Authentication Guidelines and the superseding NIST 2017 Digital
Identity Guidelines. In this appendix, we detail the methods and statistics used
for assigning benefits and costs to these policies. For each of the NIST guideline
documents, the policies are graded according to the strength of the security they
seek to provide. The NIST 2017 document offers 3 policies starting at Level 1 and
finishing at Level 3. NIST 2003, has 4 security levels. We will look at Level 1 and
Level 3 of NIST 2017 and Level 1 and 4 of NIST 2003. We also look at an adapted
version of the NIST 2003 Level 2 policy which we find in NIST 2007 documents.

D.1 Introduction
This appendix is included in order to describe, in detail, the approximation
methods that were used to quantify both the costs and benefits of the five
authentication policies compared in Chapter 5. It is not intended as an in-
teresting read and is likely best viewed as a reference guide that can provide
insight into the difficulties that materialized and how they were dealt with in
the different contexts of the authentication policies.

249

D.1. Introduction

As mentioned in Chapter 5, we repeatedly encountered problems with sourcing
accurate attack breach data. Even when looking at the statistics we did find,
we found that the statistics from different sources were often not comparable.
We acknowledge that the statistics approximated in this work could be off
by as much as a factor of ten and potentially by more. This does not make
them worthless, but instead we recommend considering them conceptually as
weightings. Each policy benefit has been computed using statistics from the
same source and therefore while a specific statistic may be unreliable, that
same statistic will be used across all policy quantifications. Therefore, the
comparisons offered in Chapter 5 are substantiated.

Here we describe the layout of this appendix. In Section D.2, we provide details
corresponding to an arbitrary set up of a fictional company. The quantification
of the policies described in this appendix are all provided for this fictional
company. A list of the statistics we require values for are listed in Section D.3
as well as an indication of where these statistics have been sourced from.
Section D.4 begins to describe the quantification of the first NIST policy: 2017
Digital Identity Guidelines Level 1. This first policy is used as the example
to explicitly describe and justify each step in the quantification of a policy.

We begin, in Section D.4.1, with a summary of the NIST 2017 Level 1 policy.
Then, in Section D.4.2, we describe how the security benefits are calculated for
this policy. This involves computing the probability of attack when the NIST
2017 Level 1 policy is in place and the probability of attack when there is no
policy in place. In Section D.4.3, the costs of implementing the NIST 2017
Level 1 policy are calculated. Finally, in Section D.4.4, the security benefits
minus the implementation costs are computed to give the overall Value of the
policy for this fictional company.

In the following sections, this same quantification is provided for the NIST
2003 Level 1 policy (Section D.5), NIST 2017 Level 3 policy (Section D.6),
NIST 2003 Level 4 policy (Section D.7), and the NIST 2007 policy (Sec-
tion D.8) respectively. The sections describing these subsequent policies largely
provide the simple numerical values, only offering further information when it
differs from the NIST 2017 level 1 policy descriptions.

250

D.2. Fictional company

D.2 Fictional company
To apply the policy value model, we begin by creating a fictional company.
Our fictional company has 500 users. We will look at this company over a 1
year time-frame. The users are important to them as they are their customers,
U=1. The users are external to the organization so a compromised user would
not immediately be seen as a threat to the overall system; the saturation
point α = 0.5. That is, 50% of users would need to be compromised before
the reputation and actual damage combine to bring down the organization.

We use the equation we define in Table 5.3 to calculate L1, the loss when a
single user is compromised. We suggested that an organisation can estimate
their expected damages as a result of a single breach as the average loss per
breach for that organization, or an organization of that type:

damages = Annual cost of breaches
#breaches

The 2018 Cost of a Data Breach Study [132] finds that the average cost per
lost or stolen record is $148. We will take this as our value for $DAMAGES.
Lsystem, the loss as a result of full system shutdown, can be set as equal to the
value of the organization, in our example we will set this as $10,000,000. The
full details for this organization are given in Table D.1.

We would like to know which authentication policy best suits this organiza-
tion’s security and usability needs.

D.3 Statistics needed for policy analysis
Our model is designed to quantify the benefits and costs of an authentication
policy. In order to do this we need to be able to quantify the security benefits
that a policy provides and the expected costs that a user and organisation will
experience. In this section, we will provide an overview of what statistics we
needed and where we sourced them.

D.3.0.1 Quantifying attacks

When an organisation wishes to make informed decisions about their security
choices, they have the advantage of access to their own company data and log
files. An organisation may even have data about how often they experience

251

D.3. Statistics needed for policy analysis

Table D.1: Details for fictional organization.

L1: $166
Lsystem: $10,000,000
U 1

$ADMIN WAGES $18/(60*60) =$0.005/second
$USER WAGES $18/(60*60) =$0.005/second
$ORG PROFIT PER USER $15
$COMP POWER COST $0.01/second

TIME ADMIN RESET 900 seconds
TIME HASH SALT ENCRYPT 2 seconds
#users 500
#logins: Number of logins by all users in 1 year 261*#users = 130500

P[abandon| forget] 10/100 = 0.1
P[abandon| created authenticator rejected] 10/100 = 0.1
P[abandon during creation] 20/100 = 0.2
P[forget] 15/100 = 0.15
P[forget| new password]: 20/100 = 0.2

attacks of different types and how often those attacks are successful. We
however do not have access to such data. We therefore will be relying on
information published in publicly available data breach reports.

For our computations, we need to know: the general probability of a breach
occurring and the probability that the breach was from a particular attack
type.1 Below we will describe the sources we found for these statistics.

The UK 2018 Cyber Security Breaches Survey [167] found that 72% of UK
large businesses (64% for medium, 47% for small and 40% for micro businesses)
experienced cyber security breaches or attacks in the last 12 months.2 We take
the large business value and include the probability of a breach as 0.72 in all
our calculations.

To find the probability of a breach of each type occurring we take values from
1We do not want to take into account breaches from any attack type because these will

not necessarily relate to authentication and, therefore, it is not reasonable to expect on
authentication policy to protect against them.

2Micro businesses (1 to 9 employees), small businesses (10 to 49 employees), medium
businesses (50 to 249 employees) and large businesses (250 employees or more)

252

D.3. Statistics needed for policy analysis

Figure D.1: 2017 Verizon’s Data Breach Investigations Report (DBIR) ta-
ble depicting the source actions for recorded breaches organised by vector of
variety [169]

Figure 5 in the 2017 Verizon’s Data Breach Investigations Report (DBIR)
[169]. This figure (shown in Figure D.1) breaks breaches down into categories
grouped by either vector or variety.3 Depending on the statistic we are in-
terested in, we will be looking at the proportion of breaches of a particular
variety or vector.

To convert the statistics in Figure D.1) to a probability of attack, we can
sum all the breaches that occur for the given vector or variety. This gives
the number of breaches of each type which occurred in the given year to the
organizations surveyed. Therefore the probability an organization experiences
a breach of each type is: The probability a breach occurs × The probability
of a breach due to this attack vector or motive, given a breach has occurred.

3The variety describes what type of attack it was, and vector describes how the attack
was carried out. For example a particular attack could be of variety ‘theft’ and the vector
is access to the ‘victim work area’.

253

D.3. Statistics needed for policy analysis

(0.72) ∗ #breaches of type a
(total # breaches) (D.1)

The total # of breaches will be 4788 if looking at an attack variety and 3231
if looking at an attack vector.

This is also the baseline value we use to estimate the probability of an attack
occurring when there is no policy in place, i.e. no mitigation. This means that
the expected Losses with no policy in place will be a significant underestimate
of the actual expected losses. This is because the Verizon DBIR values are
given for breaches, where a breach is defined as an incident that results in the
confirmed disclosure of data. Whereas if there is no mitigation in place, every
attempted attack of each type would very likely result in a successful breach.

D.3.0.2 Using the same data source for each statistic

The Verizon DBIR is not a perfect match for the values we require statistic
data for. It does not include the same categories of attack that we have chosen
to use from the NIST 2017 document. In addition, it is not directly reporting
statistics from authentication breaches, but instead focuses on any breach to
company data. It is, for this reason likely little concerned with the single
compromise of one users’ password.

However, we have chosen to use the Verizon DBIR data. The statistics in
Figure D.1 were the most granular we could find from a single source. The
values we take from this source can be conceptually thought of as weightings.
While the specific figure may not reflect a true probability of attack. The
weighting of the attack type in comparison to other attack types is the true
importance of the statistics. Therefore, provided all the values come from the
same data source, they should be appropriate relative to the other statistics.

D.3.0.3 Attack breach statistics needed

The NIST 2017 standards document [59] detailed 11 different types of attack
that an authentication security policy should protect against. We chose to use
these as the basis of our model (Chapter 2). We therefore need to be able to
measure the affect each policy has on the success of each attack type.

254

D.3. Statistics needed for policy analysis

Table D.2: Attacks success probabilities: statistics needed

P[Assertion Manufacture or Modification]
P[Physical theft]
P[Authenticator duplication]
P[Eavesdropping]
P[Password dataset leaked]
P[Offline guessing successful]
P[Side channel attack]
P[Phishing or Pharming]
P[Social engineering]
P[Online guessing]
P[Endpoint compromise]
P[Unauthorized binding]
P[targeted attack]

In Table D.2 we list the different probabilities used to compute the risk of
attack. Note that for each statistic we will need to compute the probability of
success when there is no policy in place and the probability of success when a
particular NIST policy is in place.

D.3.0.4 Quantifying costs

For each piece of advice, we need to assign costs to it. These costs represent
the affect enforcing this advice will have on users and the organisation. To
determine which costs will occur, we can use the data gathered in our user
study described in Chapter 2. However, in some cases there will also be some
probability that the cost will not occur. For example, if we force users to create
longer passwords, then only a certain proportion of the users will forget their
password. That is, the cost of forgetting a password will be invoked with a
certain probability. In Table D.3, we provide an indicative list of probabilities
we were required to estimate in order to quantify the costs. In column 2 of this
table, we provide examples of the sources we used to collect these statistics.

For each piece of advice in each policy, we also need to quantify the magnitude
of each cost. For example, if resetting a password requires physically going
to a help desk and providing identification then the time cost of forgetting a
password will be much greater than if the password can be reset via email. In
Table 5.3 in Chapter 5, we provided the equations that are used to compute
these individual costs. We will not list the exact method for determining

255

D.4. NIST 2017 Level 1 Worked example

Table D.3: Cost probabilities: statistic needed and source

P[Increased help desk/support time] University IT Services data
P[User education required] University IT Services data
P[Password more difficult to create] [164, 85, 87]
P[Increased risk of forgetting password] Komanduri et al. user study

[85, 87]
P[User time and inconvenience] Highly dependent on specific

advice, [163]
P[Losing or misplacing a physical authen-
ticator]

[159, 107, 131].

these magnitudes here as they are highly dependent on the specific advice.
For examples and further details on this see Section D.4.3.

In the following section, we will describe the exact statistics and computations
that were used to quantify the costs and benefits of the NIST 2017 Level 1
authentication policy.

D.4 NIST 2017 Level 1 Worked example
The NIST 2017 [59] policy allows a number of different authentication meth-
ods. We focus on subscriber chosen memorized secrets (typically referred to
as ‘passwords’) which are the most common form of authentication [67].

D.4.1 Policy summary
General authentication rules

• Periodic re-authentication of subscriber sessions SHALL be preformed ev-
ery 30 days.

• Access controls in place.

– Specified by NIST 800-53 [120].

• The verifier SHALL limit consecutive failed authentication attempts on a
single account to no more than 100.

• Communication between the claimant and verifier SHALL be via an au-
thenticated protected channel.

• A CSP SHOULD bind at least two physical authenticators to the sub-
scriber’s credentials.

256

D.4. NIST 2017 Level 1 Worked example

Authenticator 1: Memorized secrets

• Memorized secrets SHALL be at least 8 characters in length if chosen by
the subscriber.

• Verifiers SHOULD permit subscriber-chosen memorized secrets at least 64
characters in length.

• No other complexity requirements for memorized secrets SHOULD be im-
posed.

• All printing ASCII characters as well as the space character SHOULD be
acceptable in memorized secrets.

• Unicode characters SHOULD be accepted.

– The verifier SHOULD apply the Normalization Process for Stabilized
Strings using either the NFKC or NFKD normalization

• Truncation of the secret SHALL NOT be performed.

• Memorized secret verifiers SHALL NOT permit the subscriber to store a
“hint” that is accessible to an unauthenticated claimant.

• Verifiers SHALL NOT prompt subscribers to use specific types of infor-
mation (e.g., “What was the name of your first pet?”) when choosing
memorized secrets.

• When processing requests to establish and change memorized secrets, ver-
ifiers SHALL compare the prospective secrets against a list that contains
values known to be commonly-used, expected, or compromised. For ex-
ample, the list MAY include, but is not limited to:

– Passwords obtained from previous breach corpuses.
– Dictionary words.
– Repetitive or sequential characters (e.g. ‘aaaaaa’, ‘1234abcd’).
– Context-specific words, such as the name of the service, the username,

and derivatives thereof.

• Verifiers SHOULD offer guidance to the subscriber, such as a password-
strength meter, to assist the user in choosing a strong memorized secret.

• Verifiers SHOULD NOT require memorized secrets to be changed arbitrar-
ily.

257

D.4. NIST 2017 Level 1 Worked example

• The verifier SHOULD offer an option to display the secret - rather than a
series of dots or asterisks - until it is entered.

• Verifiers SHALL store memorized secrets in a form that is resistant to
offline attacks. Memorized secrets SHALL be salted and hashed using a
suitable one-way key derivation function.

• The salt SHALL be at least 32 bits in length and be chosen arbitrarily
so as to minimize salt value collisions among stored hashes. Both the salt
value and the resulting hash SHALL be stored for each subscriber using a
memorized secret authenticator.

• The iteration count for the PBKDF2 function SHOULD be as large as ver-
ification server performance will allow, typically at least 10,000 iterations.

• Verifiers SHOULD perform an additional iteration of a key derivation func-
tion using a salt value that is secret and known only to the verifier. The
secret salt value4 SHALL be stored separately from the hashed memorized
secrets.

D.4.2 Benefits: NIST 2017 Level 1 policy
The expected benefit of the NIST 2017 Level 1 example, will be measured by
the expected losses when no policy is in place minus the expected losses when
the NIST 2017 Level 1 policy is in place.

In Section D.4.2.1 we will compute the probability of compromise, and the
expected Loss due to compromise, when the NIST 2017 Level 1 policy is in
place. In Section D.4.2.3 we complete the same computation for when there is
no policy in place. Finally, in Section D.4.2.5 these two results are compared
to give the overall security benefit offered by the NIST 2017 Level 1 policy.

D.4.2.1 Quantifying attacks: NIST 2017 Level 1

We will now discuss the impact of the NIST 2017 Level 1 advice on each of
the 11 cost categories that we identified in Chapter 2.

Assertion Manufacture or Modification The attacker generates a false
assertion or the attacker modifies an existing assertion.

4Often known as a “pepper”.

258

D.4. NIST 2017 Level 1 Worked example

From Figure D.1, in the 2017 Verizon’s Data Breach Investigations Report
(DBIR) [169] we find that that a breach due to the variety privilege abuse
occurs 128 times. This value can be used as an estimate for an assertion being
modified or manufactured. The probability of this occurring is mitigated by
the access controls specified by NIST 800-53 [120]. To model this we account
for the percentage of users who have access to the assertion mechanisms. We
take this value as 10% of those who would have access if this advice was not
in place.

P[assertion manu or mod] = (0.1)
((128)(0.72)

4788

)
(D.2)

= 0.00192481203007365

Physical Theft A physical authenticator is stolen by an Attacker.

For the NIST 2017 Level 1 policy there is no physical authenticator that can
be stolen. However a laptop or PC could be taken. Verizon DBIR reports
39 breaches due to theft. Reauthentication is required once every 30 days. If
the user is only required to login every 30 days, then in a year time frame, a
login will only be required approximately 12 times. Therefore, if an attacker
steals a computer, there are only approximately 12 days in the year when the
device will be locked. The probability the computer is unlocked when stolen
is 1− 12

365 = 0.96712387.

If the disc is not encrypted, rebooting and rewriting the stored secret will
compromise the authentication. NIST Level 1 does not specify encrypting the
computer disc. This will require theft and tampering.

P[theft] = (D.3)

P[stolen]P[tampering] + P[stolen]P[unlocked]

=
((39)(0.72)

4788

)(27
4788

)
+
((39)(0.72)

4788

)
(0.96712387)

= 0.00570492567549227

259

D.4. NIST 2017 Level 1 Worked example

Duplication The subscriber’s authenticator has been copied with or without
their knowledge.

Duplication of the memorized secret can occur when a subscriber willingly
divulges the secret or when it has been copied without their knowledge af-
ter being recorded electronically or physically. Shay et al. [149] found that
over a quarter of their respondents reported they had shared a password. Be-
cause we need the person the password was divulged to be the same as the
attacker, we introduce the Verizon reported statistic that the vector in 108 of
3231 breaches is a partner. While this likely implies a business partner, we
can generalize to someone who trust was placed in. The attack vector in 16
breaches was the victim work area. This is likely an upper bound, however it
does account for copying a written password, copying a password from an elec-
tronic file and gaining access if the password is saved to the victim’s browser.
There is nothing in the 2017 NIST policy that mitigates the duplication of
the password.

P[duplication] = P[divulge password]P[partner exploits] (D.4)

+ P[recorded password compromised]

= (0.25)
(

(108)(0.72)
3231

)
+
(

(16)(0.72)
3231

)

= 0.00958217270195177

Eavesdropping The authenticator secret or authenticator output is revealed
to the attacker as the subscriber is authenticating. Or an out-of-band secret is
intercepted by the attacker by compromising the communication channel.

Eavesdropping can take the form of shoulder surfing, keylogging, pass-the-
hash attack, or the secret being intercepted by an attacker as it travels over a
compromised communication channel.

Verizon DBIR 2017 gives the frequency of a breach resulting from physical
surveillance as 21 in 4788. We take this for the frequency of a shoulder surfing
compromise. This is also helped by the NIST 2017 policy allowing a toggle
for displaying the password at entry.

260

D.4. NIST 2017 Level 1 Worked example

A pass-the-hash attack should not be possible under the NIST hash-salt
method since the hash is not being passed over the channel.

The NIST 2017 Level 1 guidelines require the use of approved encryption
and an authenticated protected channel when requesting memorized secrets.
This means the channel is secure from eavesdropping unless the encryption
is broken. As with all the pieces of advice, we assume that the organization
follows it to the fullest degree. Therefore the probability that an attacker
compromises the encryption is negligibly small.

In reality, the likelihood that an attacker can break the encryption to access
the data transmitted is dependent on the type of encryption used. In 2017,
the paper [89] showed that 28 administrators struggled to set up HTTPS. At
the end of a two hour lab study they found that 18.5% of their participants
failed to set up a secure HTTPS connection. However, services such as Let’s
Encrypt have made this set-up easier [92].

We were unable to find a statistic for how often eavesdropping attacks take
place. This is likely a reflection of the difficulty/impossibility of detecting an
eavesdropper.

The NIST 2017 Level 1 policy does not mitigate a keylogger attack and we
can take these values as the frequency reported in DBIR [169].

P[eavesdropping] = (D.5)

P[physical surveillance] + P[keylogger breach]

=
(

(21)(0.72)
4788

)
+
(

(595)(0.72)
4788

)

= 0.0926315789473664

Offline Guessing attacks The authenticator is exposed using analytical
methods outside the authentication mechanism. E.g. A trial and error guess-
ing attack against an offline dataset of passwords.

For offline guessing to take place a dataset or subset of encrypted passwords
must be leaked. In the case of the NIST 2017 Level 1 policy, the passwords will
be individually hashed and salted before being stored and then an additional

261

D.4. NIST 2017 Level 1 Worked example

iteration of a key derivation function with a separately stored salt (often called
a “pepper”) will take place against the whole dataset.

This means offline guessing for this policy can only occur if both the password
database and the separately stored salt (or pepper) is leaked [99].

P[user password cracked offline] (D.6)

= P[passwords leaked ∪ pepper leaked]P[user password cracked]

We saw already, in Section 5.4.1.1, that our benefits model has been adjusted
to take into account the dependence of offline guessing on the dataset already
being leaked before cracking can occur. But now we include the requirement
for the pepper to also be leaked before cracking can occur.

It is worth noting that there are situations when brute force guessing will still
be feasible even if the pepper is not leaked [40]. However, in these scenarios
it is likely that other aspects of the NIST 2017 Level 1 requirements have not
been adhered to. For example, salting individual passwords and not storing
hints.

E[Benefits] = (D.7)

E[Benefits|(no password leak ∪ no salt leak)]P[no leak ∪ no salt]

+ E[Benefits|(password leak ∩ salt leak)]P[(password leak ∩ salt leak)]

The 2017 Verizon’s Data Breach Investigations Report [169] states that, from
4788 breaches, 49 breaches resulted in the capture of stored data.

We need two separately stored data files to be leaked. However we only need
a breach to occur once:

262

D.4. NIST 2017 Level 1 Worked example

P[database of passwords is leaked ∩ salt leaked] (D.8)

=
(

(49)(0.72)
4788

)(
49

4788

)

= 0.0000754078177923466

We can see that the Level 1 NIST 2017 policy makes offline guessing very
difficult for an attacker. Given that both the password dataset and the salt
have been leaked, we look for the probability a password in that database is
cracked.

Because the passwords are also individually salted, some of the attackers’
computing power is consumed by combining each guess with all the possible
salts. Therefore instead of the usual 1013 guesses we would allow an attacker,
this time the attacker will make 1013/#unique salts. NIST 2017 requires that
the salts are randomly generated for each user. Therefore #unique salts =
#users.

There have been many suggestions by researchers for ways to model password
guessing; Entropy [20] which has now been disproved [83], Zipf law [98] [171]
[143] and Loss analysis in comparison to optimal rates [116].

However, the best way to determine how susceptible your password set is
to cracking is to attempt password cracking or an equivalent such as Kel-
ley at al.’s guess-number calculator [83]. Kelley et al.’s paper “Guess again
(and again and again): Measuring password strength by simulating password-
cracking algorithms”, gives the result for the number of guesses required to
crack passwords created under a variety of password composition policies. For
example, for their BlacklistHard policy they required their study participants
to create a password which contained “at least 8 characters,” did “not contain
a dictionary word” and did not exist in “a five-billion-word dictionary created
using the algorithm outlined by Weir et al. [178]”. One of their guessing ex-
periments showed that they could guess 23% of the passwords in this dataset
in 1013 guesses. Only 5.5% were guessed in 1010 guesses. We use this value as
the probability an offline guessing attack successfully guesses a password since
the NIST 2017 level 1 policy requires passwords to be created using similar

263

D.4. NIST 2017 Level 1 Worked example

constraints.

P[user password is guessed in (1013/#unique salts) guesses] (D.9)

= P[user password is guessed in 1010 guesses]

= 0.055

Side Channel Attack The authenticator secret is exposed using physical
characteristics of the authenticator.

While side channel attacks are generally designed against cryptographic keys,
there is at least one attack which will work against password [158]. The
attack involves changing one character at a time to one that requires a longer
processing time. Thus when the password is typed by the user the attacker
can identify whether that character occurred in the password. There is some
probability that the user will detect the changes occurring as their password
will be rejected if the changed key does exist in their password. We set the
probability that the attack goes ahead undetected at 0.8. The attacker will
need to force the user to download malware onto their machine.

We presume that this attack would be targeted at an individual. Hackmaged-
don [128] finds that 15.2% of attacks are targeted. Of those 22.3% target indi-
viduals. Giving our overall probability of a user being targeted as: 3.3896%.

P[side channel attack] = (D.10)

P[targeted attack].P[not detected].P[malware]

= (0.033896)(0.8)
((33)(0.72)

3231

)
= 0.000199410451251986

Phishing or Pharming The authenticator output is captured by fooling the
subscriber into thinking the attacker is a verifier or relying party.

The NIST 2017 level 1 policy offers no mitigation for phishing or pharm-
ing, and therefore we consult the Verizon DBIR documents for the frequency
breaches from such attacks occurring. We use the statistic provided for phish-
ing as there is none available for pharming.

264

D.4. NIST 2017 Level 1 Worked example

P[phishing ∪ pharming] = (D.11)

P[phishing] = (653)(0.72)
4788 = 0.0981954887218051

Social Engineering The attacker establishes a level of trust with a sub-
scriber in order to convince the subscriber to reveal their authenticator secret
or authenticator output.

The mitigation suggested by the NIST 2017 guidelines is to avoid using authen-
ticators that present a risk of social engineering of third parties. Memorized
secrets do not fall into this category and we have no mitigation at level 1
against social engineering. The Verizon DBIR reports that 39 breaches are
of the variety social pretexting. That is, a person presents a false motive for
requiring information.

P[social engineering] = P[pretexting] = (39)(0.72)
4788 = 0.00586466165413429

(D.12)

Online Guessing attacks The attacker connects to the verifier online and
attempts to guess a valid authenticator output in the context of that verifier.
E.g. An attacker performs repeated login trials by guessing possible values for
the password and username.

For online guessing, the attacker does not need to have access to the pass-
word dataset. However, a knowledge of both the username and password is
necessary.

Therefore for an online guessing attack an attacker can either target individ-
uals whose username they know or can easily find out, and then guess their
password. Or alternatively, they can attempt to guess both the username and
the password of any person.

In both cases online guessing is hindered by rate limiting or throttling. An
organization can increase the time allowed between guessing attempts or stop
all attempts after a threshold number of wrong guesses. The NIST 2017
guidelines allows at most 100 consecutive incorrect attempts. The counter

265

D.4. NIST 2017 Level 1 Worked example

will reset to zero every time there is a successful login. We assume a user will
login once per working day so the counter will reset when this happens. This
means in 1 year an attacker can try 99*261 guesses against a user’s account.
Kelley et al. show the percentage of passwords guessed in 99 ∗ 261 = 25839
guesses is approximately 1% [83].

Because the limit on wrong guesses is attached to a subscriber’s account, an
attacker can try many wrong usernames and they will not be tallied. Therefore
we calculate the probability of guessing a username in 1013 guesses. In real-
ity we hope that an organizations’ administrator could prohibit such a large
number of username guesses by blocking the IP address of the attacker, but
this mechanism is not stated in the NIST 2017 policy. Because there are no
blacklisting or composition requirements on the usernames for the NIST 2017
level 1 policy, we use Kelley et al.’s [83] guessing return for their Basic8survey
password. A study of the strength of usernames could be an interesting future
research project. 63% of these passwords could be guessed in 1013 guesses.

We would like to know the probability that each of these two types of online
guessing attacks take place. place. To estimate the probability of an attacker
targeting a user whose username they know we use the Hackmageddon statis-
tics from 2017 [128]. These tell us that an individual has a probability of
0.033896 of having a targeted attack against them. Verizon DBIR tells us
that breaches due to brute force or use of stolen credentials occur 73 and 631
times respectively.

P[online guessing successful] = (D.13)

P[targeted attack].P[password in (99*261) guesses]

+ P[brute force or using stolen creds]P[(username guessed in 1013 guesses]

∗ P[password guessed in (99*261)]

= (0.033896) (0.01)(0.72) +
((73 + 631)(0.72)

4788

)
(0.63)(0.01)

= 0.000910998568420505

Endpoint compromise Malicious code on the endpoint proxies remote ac-
cess to a connected authenticator without the subscriber’s consent or causes

266

D.4. NIST 2017 Level 1 Worked example

authentication to other than the intended verifier or compromises a multi-
factor software cryptographic authenticator.

The NIST Level 1 guidelines do not include mitigations for endpoint compro-
mise. Therefore, finding a frequency in the Verizon report we use the statistic
for the number of breaches which leverage a backdoor or C2 servers. C2, com-
mand and control servers are used by attackers to maintain communications
with compromised systems within a target network.

P[endpoint compromise] = P[breach using backdoor or C2] (D.14)

= (678)(0.72)
4788 = 0.101954887218044

Unauthorized binding An attacker is able to cause an authenticator under
their control to be bound to a subscriber’s account.

The unauthorized binding of the authenticator to an attacker could take the
form of an unauthorized password reset. In order for an attacker to success-
fully reset a subscriber’s password they would need to already have access to
their email account and be interested in targeting that individual since it is a
time consuming attack. Alternatively they could reset a password by having
physical access to the unencrypted computer disc and rebooting and resetting
the password. We assume this would also have to be a targeted attack.

P[unauthorized binding] =
(
P[use stolen credentials] ∪ P[physical theft]

)
(D.15)

∗ P[targeted attack]

=
(

(631)(0.72)
4788 + (39)(0.72)

4788

)
(0.033896) = 0.00341508571428736

D.4.2.2 Calculation of NIST 2017 Level 1 Losses

Recall the following equation for computing the expected loss from password
attacks:

267

D.4. NIST 2017 Level 1 Worked example

E[Loss] =
(
P

[
N
(
pl,

pl(1− pl)
N

)
> α

]
Lsystem +NplL1

)
P[leak] (D.16)

+
(
P

[
N
(
pl′ ,

pl′(1− pl′)
N

)
> α

]
Lsystem +Npl′L1

)
P[leak′]

where pl = P[compromise|leak], pl′ = P[compromise|no leak] and P[leak′] =
P[no leak].

So we calculate the probability of compromise separately for when a leak has
occurred and when a leak has not occurred. P[offline guess] will equal zero for
pl′ but will equal 0.055 in pl (Equation D.9). The probability of compromise
is given in terms of each attack type:

p = 1−
∏
a

(1− Pa)

= 1− (1− P[assertion manu])(1− P[theft])(1− P[dup]) (D.17)

(1− P[eavesdrop])(1− P[offline guess])(1− P[side channel])

(1− P[phishing])(1− P[social eng])(1− P[online guess])

(1− P[endpoint])(1− P[unauth bind])

For the NIST 2017 Level 1 policy this computation with and without a leak occurring
is:

pl = P[compromise|leak] = 0.324538796275133 (D.18)

pl′ = P[compromise|no leak] = 0.285226239444585 (D.19)

Now, taking the values defined in Section D.1: Lsystem = $107, L1 = $166,
and N = 500 users. We calculate the expected loss due to compromise for the
organization when the NIST 2017 Level 1 policy is in place.

268

D.4. NIST 2017 Level 1 Worked example

E[Loss|NIST 2017 L1 policy] = (D.20)(
P

[
N
(

0.324538796275133, (0.324538796275133)(1− 0.324538796275133)
500

)
> 0.5

]
× $107

+ (500)(0.324538796275133)($166)
)
× 0.0000754078177923466

+
(
P

[
N
(

0.285226239444585, (0.285226239444585)(1− 0.285226239444585)
500

)
> 0.5

]
× $107

+ (500)(0.285226239444585)($166)
)
× (1− 0.0000754078177923466)

= 2.10466041986588 + 24527.6078713633 = 24529.7125317831

D.4.2.3 Quantifying attacks: No policy

In order to determine the ‘benefit’ of a password policy, we compare the losses
with the policy in place to losses that would occur without the policy.

Thus for each type of attack the authentication policy mitigates, we require
a statistic indicating how probable this attack would have been without the
policy. We will be using the DBIR [169] statistics as the baseline values
for each attack type. Below are the baseline values for each attack type.
Explanations are offered where they were not covered in Section D.4.2.1.

Assertion Manufacture or Modification

P[assertion manufacture or modification] =
(

(128)(0.72)
4788

)
= 0.0192481203007521

(D.21)

Physical Theft

P[theft] = (39)(0.72)
4788 = 0.00586466165413429 (D.22)

Duplication

P[duplication] = P[divulge.password] ∗ P[partner.exploits] (D.23)

+ P[recorded.password.compromised]

= (0.25)
(

(108)(0.72)
3231

)
+
(

(16)(0.72)
3231

)
= 0.00958217270195177

269

D.4. NIST 2017 Level 1 Worked example

Eavesdropping Eavesdropping can take the form of shoulder surfing, key-
logging, skimming, pass-the-hash attack, or the secret being intercepted by an
attacker as it travels over a compromised communication channel.

P[eavesdropping] = P[network eavesdropping breach] (D.24)

+ P[keylogger breach] + P[physical surveillance breach]

=
(

(118)(0.72)
3231

)
+
(

(595)(0.72)
4788

)
+
(

(21)(0.72)
4788

)
= 0.118926843571323

Offline Guessing attacks

P[database of passwords is leaked] =
(

(49)(0.72)
4788

)
= 0.00736842105263307

(D.25)

With no policy in place the passwords will be stored in plaintext. Therefore once
the password set has been leaked, the passwords will be visible to all.

P[user password is guessed in 1013 guesses] = 1 (D.26)

Side Channel Attack

P[side channel attack] =P[targeted attack].P[not detected].P[malware] (D.27)

=(0.033896)(0.8)
((33)(0.72)

3231

)
= 0.000199410451253493

(D.28)

Phishing or Pharming

P[phishing ∩ pharming] = P[phishing] = (653)(0.72)
4788 = 0.0981954887218045

(D.29)

Social Engineering

P[social engineering] = P[pretexting] = (39)(0.72)
4788 = 0.00586466165413534

(D.30)

270

D.4. NIST 2017 Level 1 Worked example

Online Guessing attacks It is reasonable to assume that any password
with less than 8 characters can easily be guessed in an exhaustive search. In
the Yahoo.com password set [15] (had no password composition restrictions)
22.428% of the passwords contained less than 8 characters. After 8 characters
we know that 63% of the passwords can be guessed in 1013 [83]. This indicates
that when no policy is in place, an attacker should be able to guess at least
71.29836% of the users’ passwords in a year. Given that there are no restric-
tions on the username we use this same value to estimate the probability it is
guessed by an attacker.

P[online guessing successful] = (D.31)

P[targeted attack].P[password guessed in 1013 guesses]

+ P[brute force or using stolen creds].P[username guessed in 1013 guesses]

∗ P[password guessed in 1013]

= (0.033896)(0.7129836)(0.72) +
((73 + 631)(0.72)

4788

)
(0.7129836)(0.7129836)

= 0.0712162867316309

Endpoint compromise

P[endpoint compromise] = (678)(0.72)
4788 = 0.101954887218044 (D.32)

Unauthorized binding

P[unauthorized binding] = (D.33)(
P[use stolen credentials] ∪ P[physical theft]

)
P[targeted attack]

=
(

(631)(0.72)
4788 + (39)(0.72)

4788

)
(0.033896) = 0.00341508571428736

D.4.2.4 Calculation of Losses with No policy

pl = P[compromise|leak] = 1 (D.34)

pl′ = P[compromise|no leak] = 0.366081483597361 (D.35)

271

D.4. NIST 2017 Level 1 Worked example

E[Loss|No policy] = (D.36)(
P

[
N
(

1, (1)(1− 1)
500

)
> 0.5

]
× $107 + (500)(1)($166)

)
× 0.00736842105263307

+
(
P

[
N
(

0.366081483597361, (0.366081483597361)(1− 0.366081483597361)
500

)
> 0.5

]
× $107 + (500)(0.366081483597361)($166)

)
× (1− 0.366081483597361)

= $74317.89 + $31254.01 = $105571.91

D.4.2.5 Quantifying benefit of the NIST 2017 Level 1 policy

The expected benefit of the NIST 2017 Level 1 policy is measured by the
expected losses when no policy is in place minus the expected losses when the
NIST 2017 Level 1 policy is in place.

E[Benefits] = E[Loss without policy]− E[Loss with policy] (D.37)

= $105571.90− $24529.71 (D.38)

= $81042.19 (D.39)

This tells us that the overall benefit for this organization of implementing the
NIST 2017 Level 1 policy is $81042.19.

D.4.3 Costs: NIST 2017 Level 1 policy
Table 5.3 defines the twelve categories of costs. To quantify each equation
we must input values which will depend on the individual organization and
the individual pieces of advice. As mentioned, the lowercase items in these
equations are variables dependent on the advice and the capitals are constants
known or set by the organization. We identify each cost, probability and
number of repetitions with {i, j} where i denotes the cost category 1 . . . 12
and j denotes the piece of advice the cost belongs to.

In this section we will quantify the cost associated with each piece of advice
in the NIST 2017 Level 1 policy. We use input from our user administrator
surveys described in Section 2.6 as well as our own insights and analysis.

272

D.4. NIST 2017 Level 1 Worked example

In order to keep the survey concise, we allowed respondents to optionally
include the rationale behind their assigned costs. This means that in some
cases we do not have a clear quantifiable idea of what the costs are. We
therefore include an arbitrary scaling for the assigned costs where we do not
know the exact values. These are described below. In all other cases we are
able to give more accurate quantifications.

Minor user education costs that are periodic we assign as 1 hour of admin-
istrative time every 6 months and 15 minutes of every users’ time every 6
months. For Major user education costs this becomes 1 hour every month for
the organisation and 15 minutes every month for each users. Minor organisa-
tion time to implement is assigned as 1 day, Major is three weeks (120 hours),
except in cases when we know it to be longer or shorter. Finally, minor help
desk time is assigned as 15 minutes per user per year while major help desk
time is assigned as 15 minutes per user every 3 months. These values were
formulated using input from system administrators, developers and log data
from our university’s implementation of multi-factor authentication as well as
from feedback we received from the administrator surveys (Section 2). These
values can be inputted into the quantified model directly according to Ta-
ble 2.5. Where more insightful values can be provided we have detailed these
below.

j=1: Composition Enforcing these composition restrictions will take mi-
nor C4,1: Organizations’ time to implement. According to the above rules we
assign the task 1 day. This time may involve the time to approve the use of the
system and establish an effective blocklist tailored to the organisation. This
cost will occur with probability 1 and will be repeated once in time frame T ,
R4,1 = 1.

Administrators in our study agreed that this advice does not require additional
computing power for organisations. However they did say it would require
user education. On the Organisation side of the table we assign 1 hour every
6 months for the organisation to provide this user education and on the User
side in C12,1 we assign 15 minutes every 6 months for the users to receive this
information.

We would like to know how the probability of forgetting is affected by different

273

D.4. NIST 2017 Level 1 Worked example

composition policies. We could find no literature identifying the distribution
of the probability of forgetting. We would like to know whether the probability
is correlated with the guessability of the password. Some researchers have de-
scribed forgettability in terms of the entropy of a password [148]. Komanduri
et al. record the number of participants in each of their password composition
groups who forgot their passwords [87]. However they found no significant
difference in the rates across different conditions. They did find that partic-
ipants in the stricter composition groups wrote down their passwords more
frequently than those in the other groups. We believe the correlation between
forgettability and strength would be an interesting study for researchers and
would be very beneficial for further understanding user behavior.

For the purpose of our example we will use statistics sent to us by Saranga
Komanduri [85, 86]. The probability that a user forgets a password that was
chosen according to the rules of the BlacklistHard Policy is P7,1 = 0.02044025.

We are interested in the probability that the advice makes it more difficult for
a user to create a password. Ur et al. found that of their 49 study participants,
43 (88%) said they had a well-defined process for creating passwords [164] and
similarly in our user study, 90% of participants said that this advice would
make it more difficult for them to create a password.

The probability of a conflict occurring can be estimated using a leaked or past
password dataset:

P8 = Number of passwords which do not abide by the policy
Total number of passwords in database (D.40)

Or alternatively

P8 = average number of password rejections at creation (D.41)

This second equation can give a value greater than 1 but while this makes it no
longer a probability it does give a much better estimate for the inconvenience
to the user.

The likelihood that these composition rulesmakes it more difficult for a user to
create a password can also be taken from the statistics for Komanduri’s Black-
listHard policy. They report users making an average of 0.98 attempts before

274

D.4. NIST 2017 Level 1 Worked example

successfully creating a password which satisfied the BlacklistHard restrictions.
P8,1 = 0.98. The time to choose a new password under this composition policy
is 85.4 seconds; C8,1(85.4). We also include the basic cost need to pick a new
password since a new password will need to be chosen as a result of a new
policy being put in place; C9,1(85.4). This is repeated once for each user.

The help desk cost of a user forgetting their password is covered under the
cost of forgetting function. Recall the cost function for forgetting is:

C7() :Cost of forgetting = P[abandon|forget] ∗ ($ORG PROFIT PER USER)

+ C1(TIME ADMIN RESET) + C11(TIME ADMIN RESET)

j=2: Input The costs associated with allowing the full input types by the
subscriber falls with the organization authenticating. The system must be
able to accept all ASCII and Unicode characters. In our administrator survey,
administrators were asked about the costs of allowing all ASCII characters.
Administrators said there was a minor cost associated with this. In order
to accept both ASCII and UNICODE characters we expect there to be a
major implementation cost. Accepting all UNICODE characters introduce
complications because different keyboards in different locales will potentially
give you different encoding. What works on one computer may not work
on another computer. However, its implementation is certainly possible and
involves applying a normalization process for stabilized strings. NIST suggests
using either the NFKC or NFKD normalization [59].

Password hint Not allowing a hint allows for the same forgetability nor-
mally associated with a password policy; P7,1 = 0.02044025. However, this is
already accounted for in j = 1 composition rules so there are no other costs
associated with this piece of advice.

Specific knowledge based questions Using specific information questions
for authentication allow for a high success rate for both brute force guessing
and targeted attacks. The information required to answer the questions can
often be found very easily through online searches or can be known by a
peer. There is no real cost associated with not allowing these question-answer

275

D.4. NIST 2017 Level 1 Worked example

authentication methods since an alternative, email or other, can still be used
for password recovery. Therefore we leave it out of our calculations.

j=3: Password strength meter Ur et al. [163] present research relating
to study participants’ reaction to password meters. They found that “the
majority of participants who saw the most stringent meters changed their mind
partway into password creation, erasing what they had typed and creating a
different password”. From Table 3 in Ur’s paper we find that the percentage of
participants who changed their password while entering it when there was no
meter was 14.4% and the number of participants who changed their password
when there was a meter was an average of 32% over all the different stringency
password meters. The difference of 32%− 14% = 18% is what we take as the
probability a password meter “inconveniences a user’s personal system for
password creation”, P8,3 = 0.18, though, notably, in the study, participants
voluntarily chose to change their password. Ur et al. also report that between
27% and 40% of participants in the four stringent password meter conditions
found the meter annoying. This is in comparison to 13% of the lenient/baseline
meter participants. We use the low 13% as the annoyance of using a password
meter, P11,3 = 0.13. To assign a cost to the inconvenience of the password
meter we take the difference between the average time taken by those using the
password meter (33.6s) and those creating passwords with no meter (19.9s).
C11,3 = 33.6s−19.9s = 13.7seconds. Including a password strength meter will
take organisation time to implement and will also involve user education.

j=4: Toggle to display entered secret Administrators in our survey
indicated that there was minor cost to the organisation involved to implement
this. We therefore assign it 1 day for set-up, C4,4(1 day). It also involved
user education. This toggle helps users who would have made a typo in their
password on entry. Therefore we take the costs to be ‘negative’ to show that
the advice is offering an improvement in these areas. To measure how likely
a typo is we take Komanduri’s statistics [85] which record an average of 0.08
confirmation failures for participants using the BlacklistHard policy. So when
the secret is able to be toggled visible a user no longer needs to wait for the
authentication process to reject the password before realizing it must have
been typed wrong. So the probability is P2,5=P3,5=0.08 per login that a user
saves 3 seconds of authentication time −C2,5(3).

276

D.4. NIST 2017 Level 1 Worked example

j=5: Hash and salt passwords Administrators said this was a minor
implementation cost. We have assigned 1 day of organizations time to setting
up a system which will hash and salt a password according to the requirements
of the NIST 2017 policy. There is an additional 2 seconds of computing time
needed for the organization during the authentication procedure.

The disadvantage of hashing and salting passwords over using reversible en-
cryption is that if the password is forgotten it must be created anew. The user
cannot be simply reminded of their old password as the organization should
not have access to it. We therefore determine that a user will have to choose
a new password with the same probability that they forget their password
with P9,5 = the probability of forgetting = 0.02044. The cost C9(85.4) will
therefore occur with probability P9,5 for each user.

Password expiry Not requiring expiry has no costs associated with it. If
expiry was enforced multiple costs would need to be reoccurring. For example,
all costs associated with composition of the password would reoccur every time
the password needs to be recreated.

j=6: Throttling The policy states that:

• The verifier SHALL limit consecutive failed authentication attempts on
a single account to no more than 100.

While throttling protects against online guessing it means that an adversary
can intentionally lock users out of their accounts [51]. The probability of an
adversary seeking to leverage throttling to conduct a denial of service attack
depends on the organization. We were unable to find any statistics on its
occurrence despite it being an easily measurable attack. We suspect this type
of attack would very rarely be used to target an organization, but it is easily
used against an individual. To calculate the probability of this we look at
the probability of a breach due to a brute force guessing attack [169] and the
probability of a targeted attack [128]. The probability affects each user.

277

D.4. NIST 2017 Level 1 Worked example

P2,4 = P[targeted attack∪ brute force attacker] = (D.42)

(0.033896)
(

(73)(0.72)
4788

)
= 0.00037209142

Though it is not stated in the policy, we assume the lockout time at 100 con-
secutive incorrect guesses is 12 hours or until an administrator can unlock the
account. We calculate the cost as 12 hours of the users’ time C11,6(12 hours),
and assign the minor help desk, user education and implementation costs as
specified by respondents in our administrator survey (Section 2).

j=7: Access to password files should be restricted In our adminis-
trator survey we found that this advice incurred minor help desk costs peri-
odically, a small amount of user education periodically and that it is a minor
cost to implement.

j=8: Access controls should be applied to access to particular fea-
tures or systems System wide access controls incur major help desk/user
support time and minor user education. It also takes major periodic time to
implement. we see this as an initial major set up cost and then a minor per
user cost so that each user can be set up with the access controls applicable
to them.

Administrators assigned a major help desk cost to users and users assigned
a minor increase in their time or effort. We therefore assume these two are
related and add in a 15 minute user time or effort for each user as a result of
this policy.

In Table D.2 we reference this information using a second set of rows as we
have multiple inputs to some cost categories.

j=9: Two physical authenticators The policy states that:

• The CSP SHALL bind at least one, and SHOULD bind at least two,
physical (something you have) authenticators to the subscriber’s online
identity, in addition to a memorized secret or one or more biometrics.

278

D.4. NIST 2017 Level 1 Worked example

– While all identifying information is self-asserted at Level 1, preser-
vation of online material or an online reputation makes it undesir-
able to lose control of an account due to the loss of an authentica-
tor. The second authenticator makes it possible to securely recover
from an authenticator loss. For this reason, a CSP SHOULD bind
at least two physical authenticators to the subscriber’s credential
at Level 1 as well.

At creation, either a user will need to provide the physical authenticators or the
organisation will need to. We assume the organisation provides the devices.
We assign 15 minutes of the organization’s time per user to distribute the
two physical authenticators. We also estimate each authenticator will cost the
organization $6 and the postage of these authenticators will cost $0.50.

We estimate the probability a user loses one of the authenticators as 0.01. In
this instance the organization will need to send a replacement.

We also assign a minor user education for teaching users the purpose of these
physical authenticators. There is a help desk cost should a user lose an au-
thenticator.

j=10: Authenticated protected channel Setting up an authenticated
channel could at one time have high costs for the organization in both time and
money. Now free and efficient certificates and pre-written code is available to
make the task accessible to any organization or administrator. Administrators
marked this as a minor cost under the advice statement “don’t transmit in
cleartext”. We assign 1 day for the implementation. Administrators also
marked it as having user education and help desk time.

j=11: Re-authentication This requirement affects the amount of times
each user must authenticate. We have generally assumed that the user will
login daily. Here however we assign a cost to the number of mandatory logins.
The user must re-authenticate every 30 days. So in a 1 year time frame, the
number of mandatory logins is:

279

D.4. NIST 2017 Level 1 Worked example

#logins =
 T

re-authentication requirement

(#users) = 365
30 = 12 (D.43)

We assign 20 minutes organization time to automate this. Using Komanduri’s
statistics we estimate that the authentication process takes 31.85 seconds for
the Blacklist Hard policy.

D.4.3.1 Calculation of NIST 2017 Level 1 costs

E[Costs] =
∑
i=12
j=11

Pi,j.Ci,j.Ri,j (D.44)

Table D.2 shows the costs associated with each of the j = 11 pieces of advice
in NIST 2017 Level 1 policy.

280

Figure D.2: Costs of implementing the NIST 2017 Level 1 password advice.

Organisation costs User costs

C
₁(

t)
: I

n
cr

ea
se

d
he

lp
 d

es
k/

us
er

su

p
p

or
t

ti
m

e

C
₂(

tₒ)
: U

se
r

ed
uc

at
io

n
 p

ro
vi

de
d

C
₃(

rₒ
):

 A
dd

it
io

n
al

 o
rg

an
iz

at
io

n

re
so

ur
ce

s

C
₄(

tₒ)
: O

rg
an

iz
at

io
n

 t
im

e
ta

ke
n

to

 im
p

le
m

en
t

C
₅(

tc
ₒ)

: I
n

cr
ea

se
d

or
ga

n
iz

at
io

n

co
m

p
ut

in
g

p
ow

er
 n

ee
de

d

C
₆(

tᵤ
):

 M
ak

es
 it

 m
or

e
di

ff
ic

ul
t

to
 c

re
at

e
a

p
as

sw
or

d

C
₇:

 In
cr

ea
se

d
ri

sk
 o

f f
or

ge
tt

in
g

C
₈(

rᵤ
):

 A
dd

it
io

n
al

 u
se

r
re

so
ur

ce
s

n
ee

de
d

C
₉(

tᵤ
):

 N
ee

d
to

 p
ic

k
a

n
ew

p

as
sw

or
d

C
₁₀

(t
cᵤ

):
 I

n
cr

ea
se

d
us

er

co
m

p
ut

in
g

p
ow

er
 n

ee
d

C
₁₁

(t
ᵤ)

: U
se

r
ti

m
e

an
d

in
co

n
ve

n
ie

n
ce

C
₁₂

(t
ᵤ)

: U
se

r
ed

uc
at

io
n

 t
im

e
re

qu
ir

ed

j=1: Composition p(i,1) 1 1 0.98 0.02044 1 1

C(i,1) C₂(1hr) C₄(1 day) C₆(85.4 secs) C₇ C₉(85.4 secs) C₁₂(15mins)

R(i,1) 2 1 #users #users #users 2*#users

j=2: Input p(i,2) 1 1 1 1

C(i,2) C₁(15mins) C₂(1hr) C₄(3 week) C₁₂(15mins)

R(i,2) #users 2 1 2*#users

j=3:Password strength meter p(i,3) 1 1 0.18 0.13 1

C(i,3) C₂(1hr) C₄(1 day) C₆(85.4 secs) C₁₁(13.7 secs) C₁₂(15mins)

R(i,3) 2 1 #users #users 2*#users

j=4: Toggle to display entered
secret p(i,4) 1 1 0.08 1

C(i,4) C₂(1hr) C₄(1 day) -C₁₁(3 secs) C₁₂(15mins)

R(i,4) 2 1 #logins 2*#users

j=5: Hash and salt passwords p(i,5) 1 1 0.02044

C(i,5) C₄(1 day) C₅(2 secs) C₉(85.4 secs)

R(i,5) 1 #logins #users

j=6: Throttling p(i,6) 1 1 1 0.000071576 1

C(i,6) C₁(15mins) C₂(1hr) C₄(1 day) C₁₁(12hrs) C₁₂(15mins)

R(i,6) #users 2 1 #users 2*#users

j=7: Access to password files p(i,7) 1 1 1

C(i,7) C₁(15mins) C₂(1hr) C₄(1 day)

R(i,7) #users 2 1

j=8: Access controls applied to
features & systems p(i,8) 1 1 1 1 1

C(i,8) C₁(15mins) C₂(1hr) C₄(3 weeks) C₁₁(15 mins) C₁₂(15mins)

R(i,8) 4*#users 2 1 #users 2*#users

j=8: continued p(i,8) 1

C(i,8) C₄(15mins)

R(i,8) #users

j=9: Two physical authenticators p(i,9) 0.01 1 1 1 0.01

C(i,9) C₁(15mins) C₂(1hr) C₃($12.50) C₄(15mins) C₁₁(15 mins)

R(i,9) #users 2 #users #users #users

j=9 continued p(i,9) 0.01 0.01

C(i,9) C₃($6.50) C₄(15mins)

R(i,9) #users #users

j=10: Authenticated protected
channel p(i,7) 1 1 1 1

C(i,7) C₁(15mins) C₂(1hr) C₄(1 day) C₁₂(15mins)

R(i,7) #users 12 1 12*#users

j=11: Reauthentication p(i,8) 1 1

C(i,8) C₄(1 day) C₁₁(31.85 secs)

R(i,8) 1 12*(#users)

D.4. NIST 2017 Level 1 Worked example

We take the constant values defined in Section D.2 for the organization and
first fill these into the cost categories. For example, $ADMIN WAGES =
$18/(60 ∗ 60) = $0.005/second.

The cost category equations then become:
C1(t0) = supportT imeTaken ∗ 0.005
C2(to) = EducatorT ime ∗ 0.005
C3(ro) = $orgResources
C4(to) = timeToImplement ∗ 0.005
C5(tco) = orgCompTime ∗ 0.01
C6(timeChoosePwd) = (10/100)∗15+C11(timeChoosePwd)+(15/100)∗C7()
C7() = (10/100) ∗ 15 + C1(900) + C11(900)
C8(ru) = 1 ∗ $userResources
C9(timeChoosePwd) = (20/100)∗15+C11(timeChoosePwd)+C5(2)+(20/100)∗
C7()
C10(tcu) = 1 ∗ userCompTime ∗ 0.01
C11(tu) = 1 ∗ userT ime ∗ 0.005
C12(tu) = 1 ∗ EducationT ime ∗ 0.005

Now for each piece of advice j we can fill the input values from the table into
these cost categories. Finally, we multiply each Ci,j by the corresponding Pi,j
and Ri,j.

282

D.4. NIST 2017 Level 1 Worked example

E[Costs]j=1 = ((1)(60 ∗ 60 ∗ 0.005)(2)) + ((1)(60 ∗ 60 ∗ 8)(0.005)(1))

+ ((0.98)((10/100 ∗ 15) + (1 ∗ 85.4 ∗ 0.005) + (15/100)((10/100) ∗ 15 + (900 ∗ 0.005)

+ (1 ∗ 900 ∗ 0.005)))(500)) + ((0.02044)((10/100) ∗ 15 + (900 ∗ 0.005)

+ (1 ∗ 900 ∗ 0.005))(500)) + ((1)((20/100) ∗ 15 + (1 ∗ 85.4 ∗ 0.005) + (2 ∗ 0.01)

+ (20/100) ∗ ((10/100) ∗ 15 + 900 ∗ 0.005 + (1 ∗ 900 ∗ 0.005)))(500))

+ ((1)(1 ∗ 900 ∗ 0.005)(2 ∗ 500)) = 9276.79

E[Costs]j=2 = ((1)(900 ∗ 0.005)(500)) + ((1)(60 ∗ 60 ∗ 0.005)(2))

+ (1 ∗ (60 ∗ 60 ∗ 8 ∗ 5 ∗ 3 ∗ 0.005) ∗ 1) + ((1)(1 ∗ 900 ∗ 0.005)(2 ∗ 500)) = 8946

E[Costs]j=3 = ((1)(60 ∗ 60 ∗ 0.005)(2)) + ((1)(60 ∗ 60 ∗ 8)(0.005)(1))

+ ((0.18)((10/100) ∗ 15 + (1 ∗ 85.4 ∗ 0.005) + (15/100)((10/100) ∗ 15 + (900 ∗ 0.005)

+ (1 ∗ 900 ∗ 0.005)))(500)) + ((0.13)(1 ∗ 13.7 ∗ 0.005) ∗ 500)

+ ((1)(1 ∗ 900 ∗ 0.005)(2 ∗ 500)) = 4999.6325

E[Costs]j=4 = ((1)(60 ∗ 60 ∗ 0.005)(2)) + ((1)(60 ∗ 60 ∗ 8)(0.005)(1))

+ ((0.08)(1 ∗ 3 ∗ 0.005) ∗ 130500) + ((1)(1 ∗ 900 ∗ 0.005)(2 ∗ 500)) = 4836.6

E[Costs]j=5 = ((1)(60 ∗ 60 ∗ 8)(0.005)(1)) + ((1)(2 ∗ 0.01)(130500)) + ((0.02044)((20/100) ∗ (15)

+ (1)(85.4)(0.005) + ((2)(0.01)) + (20/100) ∗ ((10/100) ∗ 15 + 900 ∗ 0.005

+ (1 ∗ 900 ∗ 0.005)))(500)) = 2810.69034

E[Costs]j=6 = ((1)(900 ∗ 0.005)(1)) + ((1)(60 ∗ 60 ∗ 0.005)(2)) + ((1)(60 ∗ 60 ∗ 8)(0.005)(1))

+ ((0.000071576)(1 ∗ 60 ∗ 60 ∗ 12 ∗ 0.005)(500)) + ((1)(1 ∗ 900 ∗ 0.005)(2 ∗ 500))

= 6937.730208

E[Costs]j=7 = ((1)(900 ∗ 0.005)(1)) + ((1)(60 ∗ 60 ∗ 0.005)(2)) + ((1)(60 ∗ 60 ∗ 8)(0.005)(1))

= 2430

E[Costs]j=8 = ((1)(900 ∗ 0.005)(4 ∗ 500)) + ((1)(60 ∗ 60 ∗ 0.005)(2))

+ (1 ∗ (60 ∗ 60 ∗ 8 ∗ 5 ∗ 3 ∗ 0.005) ∗ 1) + (1(1 ∗ 900 ∗ 0.005) ∗ 500)

+ ((1)(1 ∗ 900 ∗ 0.005)(2 ∗ 500)) + ((1)(900 ∗ 0.005)(500)) = 20196

E[Costs]j=9 = ((0.01)(900 ∗ 0.005)(500)) + ((1)(60 ∗ 60 ∗ 0.005)(2))

+ ((1)(12.5)(500)) + ((1)(900 ∗ 0.005)(500)) + ((0.01)(1 ∗ 900 ∗ 0.005)(500))

+ ((0.1)(6.5)(500)) + ((0.01)(1 ∗ 900 ∗ 0.005)(500)) = 8636

E[Costs]j=10 = ((1)(900 ∗ 0.005)(1)) + ((1)(60 ∗ 60 ∗ 0.005)(12)) + ((1)(60 ∗ 60 ∗ 8)(0.005)(1))

+ ((1)(1 ∗ 900 ∗ 0.005)(12 ∗ 500)) = 29610

E[Costs]j=11 = ((1)(60 ∗ 60 ∗ 8)(0.005)(1)) + ((1)(1 ∗ 31.85 ∗ 0.005)(500)) = 1099.5

283

D.5. NIST 2003 Level 1 Worked example

E[Costs] =
∑
i=12
j=11

Pi,j.Ci,j.Ri,j = $99,778.94 (D.45)

D.4.4 Value of the NIST 2017 Level 1 policy

E[V alue] = E[Benefits]− E[Costs] (D.46)

E[V alue] = $81,042.19− $99,778.94 = −$18,736.75 (D.47)

D.5 NIST 2003 Level 1 Worked example
We now look at the NIST 2003 Level 1 policy and highlight the costs and
benefits of this policy. We will not repeat our explanations already described
for the NIST 2017 policy so this will be a briefer account.

One of the suggestions by the NIST 2003 policy [20] for authentication is a
challenge response protocol. This involves a subscriber creating a password
and sending it to the organization. When the subscriber wants to login the
organization sends them a challenge, for example ‘xY253N’. The subscriber
then hashes their password with this value, H[challenge, password], and sends
it back to the verifier. The verifier hashes their stored value of the password
with the same challenge. If the results match the subscriber is successfully
authenticated. This is the method we will consider when looking at their
authentication rules.

D.5.1 Policy summary

General authentication rules

• Plaintext passwords or secrets shall not be transmitted across a network.

• This level does not require cryptographic methods that block offline anal-
ysis by eavesdroppers.

• There is no requirement at this level to use approved cryptographic tech-
niques.

• Long term shared secrets may be revealed to verifiers.

284

D.5. NIST 2003 Level 1 Worked example

• There is no stipulation about the revocation or lifetime of credentials at
Level 1.

• Files of shared secrets used by verifiers shall be protected by discretionary
access controls that limit access to administrators and only those applica-
tions that require access.

Authenticator: Memorized secrets

• There are no min-entropy requirements for Level 1.

• The probability of success of a targeted online password guessing attack
by an attacker who has no a priori knowledge of the password, but knows
the user name of the target, shall not exceed 2−10 (1 in 1024), over the life
of the password.

– Lock the password for 1 minute after 3 incorrect guesses.

• Shared secret files shall not contain the plaintext password.

– Typically they contain a one-way hash or “inversion” of the password.

D.5.2 Benefits: NIST 2003 Level 1 policy
Benefits, as mentioned, are affected by the probability of successful attack.
Looking at the pieces of advice from the NIST 2003 policy we can see which
of the identified attacks the policy protects against.

D.5.2.1 Quantifying attacks: NIST 2003 Level 1

Assertion Manufacture or Modification

• Files of shared secrets used by verifiers shall be protected by discre-
tionary access controls that limit access to administrators and only those
applications that require access.

Discretionary access controls limit the number of people who have the author-
ity to manipulate assertions. If 10% of the people in an organization have
access to the authentication mechanism then we model this by taking this
fraction of the probability of a breach.

285

D.5. NIST 2003 Level 1 Worked example

P[assertion manufacture or modification] =
(

(128)(0.72)
4788

)
(0.1) (D.48)

= 0.00192481203007365

Physical theft No protection

P[theft] = (39)(0.72)
4788 = 0.00586466165413429 (D.49)

Duplication No protection

P[duplication] = P[divulge password]*P[partner exploits] (D.50)

+ P[recorded password compromised]

= (0.25)
(

(108)(0.72)
3231

)
+
(

(16)(0.72)
3231

)

= 0.00958217270195177

Eavesdropping

• Plaintext passwords or secrets shall not be transmitted across a network.

• This level does not require cryptographic methods that block offline
analysis by eavesdroppers.

• There is no requirement at this level to use approved cryptographic
techniques.

• Long term shared secrets may be revealed to verifiers.

The NIST 2003 policy recommends a challenge response protocol whereby
the challenge is sent to the subscriber, the subscriber hashes their password
with this challenge (H[secret,challenge]) and sends the hashed version back to
the verifier. The verifier/organization hashes their stored value of the users’
password with the same challenge and verifies that both hashes match. An

286

D.5. NIST 2003 Level 1 Worked example

eavesdropper on the connection can; see the plaintext password when it is sent
to the subscriber at creation, or decrypt the hash sent back to the verifier by
the user.

We were unable to find a statistic for how often eavesdropping attacks take
place. This is likely a reflection of the difficulty/impossibility of detecting an
eavesdropper. For lack of a better option we take the probability of a remote
eavesdropper attack as the statistic in the Verizon DBIR for breaches from
the vector LAN access.

To find the probability an attacker sees the plaintext password sent to the
verifier at creation we say that of the number of logins by a user in time frame
T, one is at creation. So the probability, given an eavesdropper is on a users’
connection, that they are on the creation connection is 1/#logins. For our
organization, the #logins per user in time frame T is one per working day;
#logins = 261. So the probability of an eavesdropper on the line at creation
is: P[eavesdropper sees plaintext at creation] = P[eavesdropper(stat:LAN ac-
cess)].P[connection is at creation] = P[eavesdropper(stat:LAN access)](1/261).

The probability an attacker decrypts the hash sent back to the verifier by the
user is the probability of an offline guessing attack being successful by the
probability the password was eavesdropped. We estimate that 72.07408% of
the passwords can be guessed in 1013 guesses (described further below).

A shoulder surfing eavesdropping attack is slightly more difficult for the NIST
2003 policy than the NIST 2017 policy. Because a password can not be toggled
as visible, a physical eavesdropper must be able to see and record the keys
typed by the user on their keyboard. For this reason, we include physical
access to the victim’s work area as a requirement for a physical eavesdropping
attack. Keylogger attacks are still not mitigated. A pass-the-hash attack
should still not be possible.

287

D.5. NIST 2003 Level 1 Worked example

P[eavesdropping] = (D.51)

P[eavesdropping attempted(stat:LAN access)].P[connection is at creation]

+ P[eavesdropping attempted(stat:LAN access)].P[offline guessing]

+ P[keylogger breach] + P[physical surveillance breach ∪ access to victim work area]

=
(

(118)(0.72)
3231

)(
1

261 + 0.64
)

+
(

(595)(0.72)
4788

)
+
(

(21)(0.72)
4788

)(
16

4788

)

= 0.106413954407714

(D.52)

Offline guessing attack

• Shared secret files shall not contain the plaintext password.

– Typically they contain a one-way hash or “inversion” of the pass-
word.

• There are no min-entropy requirements for Level 1.

For offline guessing to take place first a dataset of passwords must be leaked.
This time there is no requirement for a global salt so this does not also need
to have been leaked.

P[database of passwords is leaked] =(49)(0.72)
4788 = 0.00736842105258628 (D.53)

The passwords in this case are stored as a one-way hash or “inversion” and
can therefore be reversed with a key. Attackers can either steal the key with
the dataset, or brute force guess the key. Brute forcing the key should only be
possible if the key space is small. In some cases, such as the Adobe leak [40]
even when passwords are cracked, the key is never discovered. Because the
NIST policy sets no requirements on the size of the key we take the probability
it is compromised as 0.01 [64].

The passwords can be guessed directly using brute force especially since salting
is not enabled. There are no composition or minimum entropy requirements

288

D.5. NIST 2003 Level 1 Worked example

on the password. As with the no policy set up (Section D.4.2.3), we assume
passwords less than 8 characters can be brute force guesses and for those
above 8 characters, we take Kelley et al.’s value for percentage of passwords
cracked when they were made using their basic8survey password rules. This
gives 72.07408% of passwords guessed in 1013 guesses.

P[user password revealed] = (D.54)

P[key leaked] + P[key brute forced] + P[user password in 1013 guesses]

= 49
4788 + 0.01 + 0.7207408 = 0.740974718128655

Side Channel Attack No protection.

As we discussed in NIST 2017 Level 1, there are side channel attacks which
exist for compromising passwords.

P[side channel attack] =P[targeted attack].P[not detected].P[malware] (D.55)

=(0.033896)(0.8)
((33)(0.72)

3231

)
= 0.000199410451251986

Phishing or Pharming No protection

P[phishing ∪ pharming] = P[phishing] = (653)(0.72)
4788 = 0.0981954887218051

(D.56)

Social Engineering No protection

P[social engineering] = P[pretexting] = (39)(0.72)
4788 = 0.00586466165413429

(D.57)

Online guessing

• There are no min-entropy requirements for Level 1.

289

D.5. NIST 2003 Level 1 Worked example

• Lock the password for 1 minute after 3 incorrect guesses.

Locking the account for 1 minute after 3 incorrect guesses means that an
attacker can make no more than 525600 ∗ 3 = 1576800 ≈ 106 guesses in the
year time frame.

There is no minimum entropy requirement for Level 1 passwords. In the NIST
2003 policy, this means that there is no minimum length. Again, we assume
passwords less than 8 characters long can easily be brute force guessed (Sec-
tion D.4.2.3).

We use [83] to estimate the probability of guessing the users’ password eight
characters and above in length in 1576800 guesses. We take their basic8survey
composed passwords, of which 14% are guessed in 1576800 guesses. Combined
with the simplicity of guessing the shorter passwords, this gives a probability
of compromise of 0.3328808.

Because the passwords are not salted, once a password is cracked all other
users’ who have used the same password will also be compromised.

P[online guessing successful] = P[targeted attack].P[password in 1576800 guesses]

(D.58)

+ P[(username guessed in 1013 guesses]P[password guessed in 1576800]

= (0.033896)(0.3328808)(0.72) +
((73 + 631)(0.72)

4788

)
(0.7207408)(0.3328808)

= 0.0335231274432347

Endpoint Compromise No protection

P[endpoint compromise] (D.59)

= P[breach using backdoor or C2] = (678)(0.72)
4788 = 0.101954887218044

290

D.5. NIST 2003 Level 1 Worked example

Unauthorized Binding No protection

P[unauthorized binding] = (D.60)(
P[use stolen credentials] ∪ P[physical theft]

)
P[targeted attack]

=
(

(631)(0.72)
4788 + (39)(0.72)

4788

)
(0.033896) = 0.00341508571428736

D.5.2.2 Quantifying benefit of the NIST 2003 Level 1 policy

We quantify benefits by splitting the equation to look at the scenario when
the password dataset has been leaked and when it has not (Equation D.16).
For the NIST 2003 Level 1 policy this gives the following probabilities of
compromise:

pl = P[compromise|leak] = 0.823647757902002 (D.61)

pl′ = P[compromise|no leak] = 0.319169770518423 (D.62)

Now, taking the values defined in Section D.1: Lsystem = $107, L1 = $166,
and N = 500 users. We calculate the expected loss due to compromise for the
organization when the NIST 2003 Level 1 policy is in place.

E[Loss|NIST 2003 L1 policy] = (D.63)(
P

[
N
(

0.8236477579, (0.8236477579)(1− 0.8236477579)
500

)
> 0.5

]
× $107

+ (500)(0.8236477579)($166)
)
× 0.001417397660819

+
(
P

[
N
(

0.3191697705, (0.3191697705)(1− 0.3191697705)
500

)
> 0.5

]
× $107

+ (500)(0.3191697705)($166)
)
× (1− 0.001417397660819)

= $74206.1431050767 + $27246.3697187516 = $101452.512823828

Taking the value for expected losses with no policy from Section D.4.2.3, our

291

D.5. NIST 2003 Level 1 Worked example

computation of the NIST 2003 L1 benefits is:

E[Benefits] = E[Loss|No policy]− E[Loss|NIST 2003 L1 policy] (D.64)

= $105571.91− $101452.51 = $4119.39

D.5.3 Costs: NIST 2003 Level 1 policy
In this section we will quantify the costs associated with each piece of advice
in the NIST 2003 policy

Composition

• There are no min-entropy requirements for Level 1.

The NIST 2003 policy has no composition requirements and therefore incurs
no costs relating to it.

j=1: Throttling

• Lock out the claimant for a minute after three successive failed authen-
tication attempts.

One scheme suggested by the NIST 2003 Level 1 policy is to lock out the
claimant for a minute after three successive failed authentication attempts.

Brostoff and Sasse [18] show that 31% of their study participants who would
have been able to login with unlimited number of attempts, failed to login
successfully within 3 attempts.

Brostoff and Sasse also found that approximately 7% of these failed logins led
to password reminder requests: P(7,1) = 0.31 ∗ 0.07 = 0.0217

Because it only requires 3 guesses, both a brute force attacker or a peer could
also lock the account.

292

D.5. NIST 2003 Level 1 Worked example

P2,1 = P[targeted.attack] (P[brute force.attacker] + P[partner]) (D.65)

= (0.033896)
(73)(0.72)

4788 + (108)(0.72)
3231

 = 0.00118786145

The 60 second inconvenience to the user will occur whether an outsider or
the user themselves have exceeded the 3 guess limit: 0.31 + 0.00118786145 =
0.31118786145.

Administrators in our survey also indicated that it required minor held desk
time, user education and time to implement.

Password expiry

• There is no stipulation about the revocation or lifetime of credentials at
Level 1.

Not requiring expiry has no costs associated with it.

j=2: Password storage

• Shared secret files shall not contain the plaintext password.

– Typically they contain a one-way hash or “inversion” of the pass-
word.

We have assigned 1 day of organizations time to setting up a system which
will create a one-way hash or “inversion” for each user password. There is an
additional 0.5 seconds of computing time needed for the organization to store
the password “inversion” at creation.

j=3: Authenticated protected channel

• Plaintext passwords or secrets shall not be transmitted across a network.

293

D.5. NIST 2003 Level 1 Worked example

The NIST 2003 level 1 policy recommends the use of a challenge-response
protocol. The password is hashed with the challenge before being sent across
the network. This requires an additional 0.5 second of user computing time
to preform the hash on the password and challenge. It will take 1 second
of the organizations computing time to generate a unique challenge for the
authentication and hash this with their stored users’ password. We assign 1
day to the organization to set this process up and also include the need for
user education and help desk time as per the “Don’t transmit in cleartext”
advice (Table 2.5).

Cryptographic methods

• This level does not require cryptographic methods that block offline
analysis by eavesdroppers.

• There is no requirement at this level to use approved cryptographic
techniques.

These incur no user or administrator direct costs.

Shared secrets revealed to verifier

• Long term shared secrets may be revealed to verifiers.

In the challenge-response protocol this refers to when the secret is initially
created by the user, it may be sent to the verifier for their storage. This is
a key component of the challenge-response system and while it has security
impacts it incurs no additional costs.

j=4: Access to password files

• Files of shared secrets used by verifiers shall be protected by discre-
tionary access controls that limit access to administrators and only those
applications that require access.

294

D.5. NIST 2003 Level 1 Worked example

D.5.3.1 Calculation of NIST 2003 Level 1 costs

Table D.3 shows the costs associated with pieces of advice in NIST 2003 Level
1.

295

D
.5.

N
IST

2003
Level1

W
orked

exam
ple

Figure D.3: Costs of implementing the NIST 2003 Level 1 password advice.

Organisation costs User costs

C
₁(

tₒ)
: I

n
cr

ea
se

d
he

lp

de
sk

/u
se

r
su

p
p

or
t

ti
m

e

C
₂(

tₒ,
 t
ᵤ)

: U
se

r
ed

uc
at

io
n

re

qu
ir

ed

C
₃(

rₒ
):

 A
dd

it
io

n
al

 o
rg

an
iz

at
io

n

re
so

ur
ce

s

C
₄(

tₒ)
: O

rg
an

iz
at

io
n

 t
im

e
ta

ke
n

to

 im
p

le
m

en
t

C
₅(

tc
ₒ)

: I
n

cr
ea

se
d

or
ga

n
iz

at
io

n

co
m

p
ut

in
g

p
ow

er
 n

ee
de

d

C
₆(

tᵤ
):

 M
ak

es
 it

 m
or

e
di

ff
ic

ul
t

to
 c

re
at

e
a

p
as

sw
or

d

C
₇:

 In
cr

ea
se

d
ri

sk
 o

f f
or

ge
tt

in
g

C
₈(

rᵤ
):

 A
dd

it
io

n
al

 u
se

r
re

so
ur

ce
s

n
ee

de
d

C
₉(

tᵤ
):

 N
ee

d
to

 p
ic

k
a

n
ew

p

as
sw

or
d

C
₁₀

(t
cᵤ

):
 I

n
cr

ea
se

d
us

er

co
m

p
ut

in
g

p
ow

er
 n

ee
d

C
₁₁

(t
ᵤ)

: U
se

r
ti

m
e

an
d

in
co

n
ve

n
ie

n
ce

C
₁₂

(t
ᵤ)

: U
se

r
ed

uc
at

io
n

 t
im

e
re

qu
ir

ed

j=1: Throttling p(i,1) 1 1 0.0217 0.31 1

C(i,1) C₂(1hr) C₄(1 day) C₇ C₁₁(60 secs) C₁₂(15mins)

R(i,1) 2 1 #users #logins 2*#users

j=2: Password storage p(i,2) 1 1

C(i,2) C₄(1 day) C₅(0.5 secs)

R(i,2) 1 #users

j=3: Authenticated protected channel p(i,3) 1 1 1 1 0.18 1 0.13 1

C(i,3) C₁(15mins) C₂(1hr) C₄(1 day) C₅(1 secs) C₆(85.4) C₁₀(0.5) C₁₁(13.7) C₁₂(15mins)

R(i,3) 1 2 1 #logins #users #logins #users 2*#users

j=4: Access to password files p(i,4) 1 1 1

C(i,4) C₁(15mins) C₂(1hr) C₄(1 day)

R(i,4) #users 2 1

296

D.6. NIST 2017 Level 3 Worked example

Using this table and the values defined in Section Section D.2 we have the
following results for the cost of the NIST 2003 L1 policy:

E[Costs] =
∑
i=12
j=4

Pci,j .Ci,j.Ri,j = $26,468.56 (D.66)

D.5.4 Value of the NIST 2003 Level 1 policy

E[V alue] = E[Benefits]− E[Costs] (D.67)

E[V alue] = $4,119.39− $26,468.56 = −$22,349.16 (D.68)

D.6 NIST 2017 Level 3 Worked example
Level 3 is the highest authentication assurance level in the NIST 2017 policy
[59]. It requires multi-factor authentication. To satisfy Level 3 we have chosen
to authenticate using a Single-Factor Cryptographic device plus a memorized
secret. A single factor cryptographic device is a hardware device that performs
cryptographic operations using protected cryptographic key(s) and provides
the authenticator output via direct connection with the user endpoint. NIST
describes the authenticator as operating by signing a challenge nonce presented
through a direct computer interface (e.g. a USB port). For our evaluation we
assume such a device will take the form of a USB.

The rules for using a memorized secret for authentication are the same as for
the NIST 2017 Level 1 policy (Section D.4). Therefore we will list the addi-
tional rules which apply to the use of the single-factor cryptographic device.

D.6.1 Policy summary

General authentication rules

• Periodic re-authentication of subscriber sessions SHALL be preformed after
12 hours or 15 minutes inactivity; SHALL use both authentication factors.

• Communication between the claimant and verifier SHALL be via an au-
thenticated protected channel.

297

D.6. NIST 2017 Level 3 Worked example

• Access controls in place.

– Specified by NIST 800-53 [120].

• Store the expected authenticator output in hashed form.

• A verifier impersonation resistant authentication protocol SHALL establish
an authenticated protected channel with the verifier.

• The CSP SHALL bind at least one, and SHOULD bind at least two, physi-
cal (something you have) authenticators to the subscriber’s online identity,
in addition to a memorized secret or one or more biometrics.

– Binding of multiple authenticators is preferred in order to recover from
the loss or theft of the subscriber’s primary authenticator.

– One example of a verifier impersonation resistant authentication pro-
tocol is client authenticated TLS, because the client signs the authen-
ticator output along with earlier messages from the protocol that are
unique to the particular TLS connection being negotiated.

Authenticator 1: Memorized secrets

• Same as NIST 2017 Level 1 policy (Section D.4)

Authenticator 2: Single factor cryptographic device

• The single factor cryptographic device authenticators encapsulate one or
more secret keys unique to the device that SHALL NOT be exportable
(i.e., cannot be removed from the device).

• The challenge nonce SHALL be at least 64 bits in length, and SHALL
either be unique over the authenticator’s lifetime or statistically unique.

• Tamper detection and response should be in place for covers and doors
[48].

• Single-factor cryptographic device authenticators SHOULD require a phys-
ical input (e.g., the pressing of a button) in order to operate.

• The secret key and its algorithm SHALL provide at least the minimum
security length specified in the latest revision of SP 800-131A (112 bits as
of the date of this publication).

• Use a cryptographic authenticator that requires the verifier store a public
key corresponding to a private key held by the authenticator.

298

D.6. NIST 2017 Level 3 Worked example

D.6.2 Benefits: NIST 2017 Level 3 policy
The NIST 2017 Level 3 policy requires two factor authentication and Client
authenticated TLS. Therefore the probability of successfully compromising a
user is marked by the probability of compromising the single factor crypto-
graphic device, the memorized secret and the client certificate and private key.
A compromise, for example, could result from: the password (pwd) compro-
mised via social engineering, the cryptographic device (USB) stolen and the
certificate and private key (cTLS) gained via malware. To model this, we
quantify the probabilities of compromise separately for each of the two factors
and also for the client authenticated TLS.

ppwd = 1−
∏
a

(1− Ppwd,a) (D.69)

p
USB

= 1−
∏
a

(1− PUSB,a) (D.70)

p
cTLS

= 1−
∏
a

(1− PcTLS,a) (D.71)

where p is the probability of the pwd/USB/cTLS being compromised and Pa
is the probability of compromise due to each individual attack type a.

Once we have calculated ppwd, pUSB and p
cTLS

we can calculate the probability
a user is compromised, p, by:

p = ppwd ∗ pUSB ∗ pcTLS (D.72)

As for the previous policies, we must again calculate this p when there has been
a leak of the password file and when there has not: P[compromise|no leak] and
P[compromise|database leak]

D.6.2.1 Quantifying attacks: NIST 2017 Level 3

Assertion Manufacture or Modification Assertion manufacture or mod-
ification can only for implemented by a privileged user. These, in our example,
allow access to 10% of the administrators. The risk of this attack occurring is

299

D.6. NIST 2017 Level 3 Worked example

mitigated for all three factors by having access controls in place.

Ppwd,cTLS,USB[assertion manufacture or modification] = (D.73)(
(128)(0.72)

4788

)
(0.1) = 0.00192481203007519

Theft

• Periodic re-authentication of subscriber sessions SHALL be preformed
after 12 hours or 15 minutes inactivity; SHALL use both authentication
factors.

If the computer is unlocked when it is stolen then the certificate and private key
will be compromised. Given a typical 8 hour working day and a 5 day working
week, the computer will lock at lunch time and at the end of the working day.
Meaning that the computer is locked for approximately 16.75 hours 5 days
a week and all day during the weekend. The probability that an attacker
stealing a laptap finds it unlocked is 1−

(
(5

7)(16.75
24) + 2

7

)
= 0.21577380952.

Ppwd,cTLS [theft] = (D.74)

P[stolen]∗P[tampering] + P[stolen]∗P[unlocked]

=
((39)(0.72)

4788

)(27
4788

)
+
((39)(0.72)

4788

)
(0.21577380952)

= 0.0012985117869626

The USB is susceptible to theft.

PUSB[theft] = (39)(0.72)
4788 = 0.00586466165413534 (D.75)

Duplication

The Secret key on the USB is not exportable.

PUSB[duplication] = 0 (D.76)

300

D.6. NIST 2017 Level 3 Worked example

Password is only duplicable if revealed.

Ppwd[duplication] = P[divulge password]*P[partner exploits] (D.77)

+ P[recorded password compromised]

= (0.25)
(

(108)(0.72)
3231

)
+
(

(16)(0.72)
3231

)
= 0.00958217270194984

Theft of the certificate’s private key must be a targeted attack as each individual
user will have their own stored private key and certificate. We assume that if the
private key is captured then the certificate will also be taken with little extra effort.
The value for a targeted attack comes from [128].

PcTLS [duplication] = P[targeted attack].P[private key ∩ certificate leaked]
(D.78)

= 0.033896
((49)(0.72)

4788

)
= 0.00024976

Eavesdropping

The communication of the password over the network is encrypted.

Ppwd[eavesdropping] = P[physical surveillance] + P[keylogger breach]

(D.79)

=
(

(21)(0.72)
4788

)
+
(

(595)(0.72)
4788

)

= 0.0926315789473684
The USB cryptographic device and client authenticated TLS are not susceptible to
eavesdropping attacks. They use public private key pairs and therefore the private
key is never transmitted.

PUSB,cTLS [eavesdropping] =0 (D.80)

Offline Guessing attacks The password hash and salt can be cracked of-
fline if it is leaked by the organization. The USB and client authenticated TLS
public keys stored on the organizations’ system could be leaked and a brute
force attack against the public keys to identify the private key is possible.
However, the probability of success is negligibly low for a well implemented
asymmetric cryptographic algorithm.

301

D.6. NIST 2017 Level 3 Worked example

P[database of passwords is leaked ∪ salt leaked] (D.81)

=
(

(49)(0.72)
4788

)(
49

4788

)
= 0.0000754078177900894

Ppwd[user password is guessed in 1013/#users guesses] = 0.055 (D.82)

PUSB,cTLS [brute force guess private key]=0 (D.83)

Side Channel Attack Side channel attacks are possible against all three
security methods: password, TLS and USB cryptographic device. However,
measuring the probability of them occurring is a difficult problem. We make
an attempt at rough estimates here but due to the lack of sufficient data these
numbers are not reliable.

While side channel attacks are generally designed against cryptographic keys,
there is at least one attack which will work against passwords [158]. This
attack was described in Section D.4 and applies again here.

Ppwd[side channel attack] = (D.84)

P[targeted attack].P[not detected].P[malware]

= (0.033896)(0.8)
((33)(0.72)

3231

)
= 0.000199410451253482

The NIST guidelines state that the USB device must be resistant to power and
timing analysis attacks. Other attacks are possible though, particularly those that
can be carried out with physical access [96].

PUSB[side channel attack] = (D.85)

P[targeted].P[physical access].P[exploit vulnerabilities]

= (0.033896)
((53)(0.72)

3231

)(6
4788

)
= 0.00000050166865632045

302

D.6. NIST 2017 Level 3 Worked example

Encryption for TLS using the private key is susceptible to a side channel attack
over the network [2]. Side channel attacks to determine the private key can also be
done via physical access or malware.

PcTLS [side channel attack] = (D.86)

P[targeted attack]. (P[physical access] ∪ P[malware])

∪ (P[eavesdropper(stat:LAN access)]) (P[exploit vulnerabilities])

= (0.033896)
((53)(0.72)

3231 + (33)(0.72)
3231

)
+
((118)(0.72)

3231

)(6
4788

)
= 0.000682546111239098

Phishing or Pharming A password will only be able to be phished if the
client authenticated TLS connection is compromised first.

Ppwd[phishing ∩ pharming] = (D.87)

P[phishing] = (653)(0.72)
4788 = 0.0981954887218045

PUSB[phishing ∩ pharming] = 0 (D.88)
It is not reasonable to assume that the private key of the USB or client authenti-
cated TLS can be compromised via phishing. Since it should never be transmitted.
However we do consider it to be possible to compromise it via social engineering.

PcTLS [phishing ∩ pharming] = 0 (D.89)

Social Engineering The mitigation suggested by the NIST 2017 guidelines
are to avoid using authenticators that present a risk of social engineering of
third parties. The password alone does not fall into this category.

Ppwd[social engineering] = P[pretexting] = (39)(0.72)
4788 = 0.00586466165413534

(D.90)

303

D.6. NIST 2017 Level 3 Worked example

We consider that a person masquerading as an IT assistant could relatively easily
convince a user to send them the files which include the certificate and private key.
It is slightly more difficult than revealing a password as the certificate and key
cannot be easily stated over the phone. The Verizon statistics tell us that phones
are the attack vector 5 of 3231 times.

PcTLS [social engineering] = P[pretexting]&P[not phone] (D.91)

=
(

(39)(0.72)
4788

)(
1− 5

3231

)
= 0.00585558604031134

Convincing a user to part with a USB decide would be more difficult than either
of the above. Since the user would not have the use of the device once they part
with it as it cannot be duplicated there would be an inconvenience factor for the
user in this. If we take the P [pretexting] to get someone’s password as requiring
1 minute of the users’ time. Then for a USB we set the time as 10 minutes for
someone with physical proximity to the user and 3 working days (1440 minutes) for
a remote attacker.

PUSB[social engineering] = (D.92)(P[pretexting]
10

)
(P[partner exploits]) +

(P[pretexting]
1440

)
(P[remote attacker])

=
((39)(0.72)

(4788)(10)

)(108
4788

)
+
((39)(0.72)

(4788)(1440)

)(
1− 108

4788

)
= 0.000017209376827148

Online Guessing attacks

Ppwd[online guessing successful] (D.93)

= P[targeted attack].P[password in (99*365) guesses]

+ P[brute force guessing].P[(username guessed in 1013 guesses]

∗ P[password guessed in (99*365)]

= (0.033896) (0.01)(0.72) +
((73 + 631)(0.72)

4788

)
(0.63)(0.01)

= 0.000910998568420505

PUSB,cTLS [online guessing successful] = 0 (D.94)

Endpoint compromise

Ppwd[endpoint compromise] = (678)(0.72)
4788 = 0.101954887218044 (D.95)

304

D.6. NIST 2017 Level 3 Worked example

Because the private key never leaves the USB device, a compromised endpoint
should not be able able to compromise the device.

PUSB[endpoint compromise] = 0 (D.96)

A compromised endpoint could compromise the private key and certificate.

PcTLS[endpoint compromise] = (678)(0.72)
4788 = 0.101954887218044 (D.97)

Unauthorized binding

Ppwd[unauthorized binding] = P[use stolen credentials].P[targeted attack]

(D.98)

=
(631)(0.72)

4788

 (0.033896) = 0.00321629714285714

To compromise the USB or client TLS the attacker would need access to the
database and need to have a USB, and certificate and private key created.
This would need to be a targeted attack.

PUSB,cTLS[unauthorized binding] =
(

(49)(0.72)
4788

)
(0.1)(0.033896) (D.99)

= 0.000024976

D.6.2.2 Calculation of NIST 2017 Level 3 losses

We quantify benefits by splitting the equation to look at the scenario when
the password dataset has been leaked and when it has not (Equation D.16).
For the NIST 2003 Level 3 policy this gives use the following probabilities of

305

D.6. NIST 2017 Level 3 Worked example

compromise:

Ppwd[compromise|leak] = 1−
∏
a

(1− Ppwd,a) = 0.3214100261 (D.100)

PUSB [compromise|leak] = 1−
∏
a

(1− PUSB,a) = 0.0078205399 (D.101)

PcTLS [compromise|leak] = 1−
∏
a

(1− PcTLS,a) = 0.1109406998 (D.102)

Ppwd[compromise|no leak] = 1−
∏
a

(1− Ppwd,a) = 0.2819153715 (D.103)

PUSB [compromise|no leak] = 1−
∏
a

(1− PUSB,a) = 0.00782053993 (D.104)

PcTLS [compromise|no leak] = 1−
∏
a

(1− PcTLS,a) = 0.1109406998 (D.105)

pl = P[compromise|leak] (D.106)

= Ppwd[compromise|leak] ∗ PUSB [compromise|leak] ∗ PcTLS [compromise|leak]

= 0.0002788605356

pl′ = P[compromise|no leak] (D.107)

= Ppwd[compromise|no leak] ∗ PUSB [compromise|no leak] ∗ PcTLS [compromise|no leak]

= 0.0002445943347

Now, taking the values defined in Section D.1: Lsystem = $107, L1 = $166,
and N = 500 users, we calculate the expected loss due to compromise for the
organization when the NIST 2017 Level 3 policy is in place.

E[Loss|NIST 2003 L1 policy] = (D.108)(
P

[
N
(

0.0002788605356, (0.0002788605356)(1− 0.0002788605356)
500

)
> 0.5

]
× $107

+ (500)(0.0002788605356)($166)
)
× 0.0000754078177900894

+
(
P

[
N
(

0.0002445943347, (0.0002445943347)(1− 0.0002445943347)
500

)
> 0.5

]
× $107

+ (500)(0.0002445943347)($166)
)
× (1− 0.0000754078177900894)

= $0.00180843073953175 + $21.0335265280851 = $21.0353349588246

306

D.6. NIST 2017 Level 3 Worked example

D.6.2.3 Quantifying benefit of the NIST 2017 Level 3 policy

Taking the value for expected losses with no policy from Section D.4.2.3, our
computation of the NIST 2017 L3 benefits is:

E[Benefits] = E[Loss|No policy]− E[Loss|NIST 2017 L3 policy] (D.109)

= $105571.91− $21.04 = $105550.87

D.6.3 Costs: NIST 2017 Level 3 policy
In this section we will quantify the costs associated with the pieces of advice
in the NIST 2017 policy. Because the advice relating to Memorized Secrets
is the same as for the Level 1 policy we will not repeat the details of the
calculations here. They are included in Table D.2 as j = 1 . . . 5. The advice
relating to Rate limiting, j = 6, Access controls, j = 7 & j = 8, are also the
same as for NIST 2017 Level 1. Therefore, these will also not be re-discussed.

j=9: Client authenticated protected channel

• A verifier impersonation resistant authentication protocol SHALL es-
tablish an authenticated protected channel with the verifier.

– One example of a verifier impersonation resistant authentication
protocol is client authenticated TLS, because the client signs the
authenticator output along with earlier messages from the protocol
that are unique to the particular TLS connection being negotiated.

The organization must set up a system to allow Client authenticated TLS
to be used by all of it’s users. We suggest that this is a major implemen-
tation cost: 3 working weeks of the organisation’s time. The organization
will need to distribute a certificate to each of it’s users. Options for this in-
clude physically handing certificates out, posting them, or allowing them to be
downloaded from a website. Because we have decided the users in this com-
pany are external, we opt for the latter option. This can be done using open
source certificate software. The user has the non trivial task of downloading
and setting up the certificate. We estimate that on average 15 minutes help

307

D.6. NIST 2017 Level 3 Worked example

desk time will be required for users to help them if they run into difficulties
with this task. Major user education will also be required.

The user needs 30 minutes to set up the certificate when they create an ac-
count. They will also need to set up a new certificate every time it expires.
We say that in our year long time frame a user will need to install a certificate
twice.

It will take 3 seconds for the organization to generate a public private key pair
for the user’s certificate. It will also take approximately 0.1 seconds extra to
authenticate each user at login.

If the user’s computer is lost, broken or stolen they will need to authenticate
themselves in another way and generate a new certificate. We estimate that
this process would take an hour for the user and will require another 15 minutes
help desk time. It will happen with the Verizon probability of a physical theft
P9,9 = 39

4788 = 0.081453634.

An inconvenience of the client authentication is that it is linked to a device.
Google has reported that 6 in 10 users switch between devices while online
shopping [159]. This statistic could be applied to tell us that each user will
be inconvenienced by this lack of portability with a probability of 0.6. We
estimate the inconvenience as 10 second per login.

In Table D.4 we reference this information using a second set of rows as we
have multiple inputs to some cost categories.

j=10: Reauthentication

• Periodic re-authentication of subscriber sessions SHALL be preformed
after 12 hours or 15 minutes inactivity; SHALL use both authentication
factors.

Komanduri’s statistics [85] tell us that with this password policy a user will
take 31.85 seconds to authenticate. We double this when a USB must be used
as well.

If we estimate that a user moves away from their computer, for more than 15
minutes, three times per day. Then, given 261 working days in a year, each

308

D.6. NIST 2017 Level 3 Worked example

user will need to authenticate 783 times in time frame T .

j=11: Single factor cryptographic device

• The single factor cryptographic device authenticators encapsulate one or
more secret keys unique to the device that SHALL NOT be exportable
(i.e., cannot be removed from the device).

• The challenge nonce SHALL be at least 64 bits in length, and SHALL
either be unique over the authenticator’s lifetime or statistically unique.

• Tamper detection and response should be in place for covers and doors
[48].

• Single-factor cryptographic device authenticators SHOULD require a
physical input (e.g., the pressing of a button) in order to operate.

• The secret key and its algorithm SHALL provide at least the minimum
security length specified in the latest revision of SP 800-131A (112 bits
as of the date of this publication).

• Use a cryptographic authenticator that requires the verifier store a public
key corresponding to a private key held by the authenticator.

• A CSP SHOULD bind at least two physical authenticators (something
you have) to the subscriber’s credentials.

– Binding of multiple authenticators is preferred in order to recover
from the loss or theft of the subscriber’s primary authenticator.

The different pieces of advice relating to the use of single factor cryptographic
devices overlap largely with each other. Therefore we will discuss them all
together. This means that in Table D.4 we will have multiple costs in each
category under j = 11.

The type of single factor cryptographic device we are considering is a dedicated
USB authenticator. We allow three working weeks of organization time to set
up this method of authentication. This allows for finding a supplier, briefing
customers and integrating the protocols into their software. We assign 15
minutes of the organization’s time per user for distribution of the USBs. Also

309

D.6. NIST 2017 Level 3 Worked example

if a user loses the device the organization will need to have an alternative
method for identifying and authenticating the user and distribute a new USB
to them. Mozy.ie in 2012 [107] found that 70% of people have lost a data
storage device. They also found that the average person loses 1.24 items a
year and that the more frequently you carry an item, the more likely you
are to lose it. We will say that 2.5% of users will lose their USB device in
the year long time frame. The probability that they lose the second physical
authenticator bound to their account is: 0.01. So losing either of these will
be is: 0.01 + 0.025 = 0.035. This is the probability that the organization will
need to send a replacement.

The user will need to wait approximately 15 working hours for their device
to arrive when they create their account. If they lose their two physical au-
thentication devices they will also need to wait for a replacement to arrive;
probability is 0.01 × 0.025 = 0.00025. To demonstrate this the probability
value is 1 for the certainty that at creation they will need to have the device
sent to them, plus 0.00025 to represent the probability of being locked out
while a replacement device is issued. P11,11 = 1 + 0.00025. At each login the
user will need to take the time to press a button or insert the USB in order to
authenticate. We assign an average of 31.85 seconds to this; the same amount
of time as to enter the password. An inconvenience for the user is that it
is now necessary to carry this authenticator around with them. Pixie Tech-
nology Inc. [131] found that 28% of people misplace their car keys at least
once a week. Since car keys are another form of physical authenticator we can
equate the likelihood of misplacing them to the likelihood of misplacing the
USB device. So with P11,11 = 0.28, it will take 10 minutes for the user to find
their USB, C11,11 = C11(10mins), R11,11 = #logins/#weeks = #logins/52.

The organization will use additional computing power. For each login, they
will need to create a statistically random 64 bit nonce, they will also then need
to verify that the signature did originate from the user matching the saved
public key. C5,11 = C5(3secs)

We presume that the organization purchases the USB devices from a dedicated
supplier before distributing them to their users. We estimate each device
costing $6 and the organization will need to purchase two of them per user
to satisfy the advice to distribute backup authenticators. If a user loses their

310

Mozy.ie

D.6. NIST 2017 Level 3 Worked example

USB device, it will need to be replaced. We use the same probability of loss of
0.035% as before. We also assign $0.50 per user for the cost of delivery each
time a USB needs to be posted.

Administrators also assigned major user education and help desk costs to this
advice.

D.6.3.1 Calculation of NIST 2017 Level 3 costs

Table D.4 shows the costs associated with the NIST 2017 Level 3 advice. Note
that because j = 1, . . . , 8 are included in Table D.2 under the NIST 2017 Level
1 advice, we do not repeat them here.

311

D
.6.

N
IST

2017
Level3

W
orked

exam
ple

Figure D.4: Costs of implementing the NIST 2017 Level 3 password advice.

Organisation costs User costs

C
₁(

tₒ)
: I

n
cr

ea
se

d
he

lp

de
sk

/u
se

r
su

p
p

or
t

ti
m

e

C
₂(

tₒ,
 t
ᵤ)

: U
se

r
ed

uc
at

io
n

re

qu
ir

ed

C
₃(

rₒ
):

 A
dd

it
io

n
al

or

ga
n

iz
at

io
n

 r
es

ou
rc

es

C
₄(

tₒ)
: O

rg
an

iz
at

io
n

 t
im

e
ta

ke
n

 t
o

im
p

le
m

en
t

C
₅(

tc
ₒ)

: I
n

cr
ea

se
d

or
ga

n
iz

at
io

n
 c

om
p

ut
in

g
p

ow
er

 n
ee

de
d

C
₆(

tᵤ
):

 M
ak

es
 it

 m
or

e
di

ff
ic

ul
t

to
 c

re
at

e
a

p
as

sw
or

d

C
₇:

 In
cr

ea
se

d
ri

sk
 o

f
fo

rg
et

ti
n

g

C
₈(

rᵤ
):

 A
dd

it
io

n
al

 u
se

r
re

so
ur

ce
s

n
ee

de
d

C
₉(

tᵤ
):

 N
ee

d
to

 p
ic

k
a

n
ew

p

as
sw

or
d

C
₁₀

(t
cᵤ

):
 I

n
cr

ea
se

d
us

er

co
m

p
ut

in
g

p
ow

er
 n

ee
d

C
₁₁

(t
ᵤ)

: U
se

r
ti

m
e

an
d

in
co

n
ve

n
ie

n
ce

C
₁₂

(t
ᵤ)

: U
se

r
ed

uc
at

io
n

ti

m
e

re
qu

ir
ed

j=9: Client authenticated
protected channel p(i,9) 1 1 1 1 1 1 1

C(i,9) C₁(15 mins) C₂(1hr) C₄(3 weeks) C₅(3 secs) C₁₀(0.5 sec) C₁₁(30mins) C₁₂(15mins)

R(i,9) 2*#users 12 1 2*#users #logins 2*#users 12*#users

j=9 continued p(i,9) 0.081453634 1 0.6

C(i,9) C₁(15 mins) C₅(0.5 sec) C₁₁(10 secs)

R(i,9) #users #logins #logins

j=9 continued p(i,9) 0.081453634

C(i,9) C₉(1hr)

R(i,9) #users

j=10: Reauthentication p(i,10) 1 1

C(i,10) C₄(1 day) C₁₁(63.7)

R(i,10) 1 783*#users

j=11: Single factor
cryptographic device p(i,11) 1 1 1 1 1 1.00025 1

C(i,11) C₁(15mins) C₂(1hr) $12.50 C₄(3 weeks) C₅(3 secs) C₁₁(15hrs) C₁₂(15mins)

R(i,11) 4*#users 12 #users 1 #logins #users 12*#users

j=11 continued p(i,11) 0.035 1 0.28

C(i,11) $6.50 C₄(15 mins) C₁₁(10mins)

R(i,11) #users #users #login/52

j=11 continued p(i,11) 1

C(i,11) C₁₁(31.85 secs)

R(i,11) #logins

312

D.7. NIST 2003 Level 4 Worked example

Using this table and the values defined in Section D.2 we have the following
results for the cost of the NIST 2017 L3 policy:

E[Costs] =
∑
i=12
j=11

Pci,j .Ci,j.Ri,j = $438,787.67 (D.110)

D.6.4 Value of the NIST 2017 Level 3 policy

E[V alue] = E[Benefits]− E[Costs] (D.111)

E[V alue] = $105,550.87− $438,787.67 = −$333,236.80 (D.112)

D.7 NIST 2003 Level 4 Worked example
Level 4 is the highest authentication policy in the NIST 2003 standards. It
requires authentication using a hard cryptographic token and a password.

The NIST 2017 Level 3 policy gave the option of using a password to “unlock”
the hard cryptographic token and then authenticating with the verifier using
the cryptographic key. Or using a password and also the cryptographic key
to authenticate with the verifier. These are similar to the two authentication
options described in NIST 2017 Level 4: A multi-factor cryptographic device,
or a single factor cryptographic device used in conjunction with a memorized
secret. To maintain consistency with the resources used in our NIST 2017
Level 3 analysis, we will assume both the hard cryptographic device and the
password are communicated to the verifier during authentication.

The language used in the two standards documents differ, but we consider the
“hard cryptographic token” in NIST 2003 to be identical to the “cryptographic
devices” described in NIST 2017.

D.7.1 Policy summary

General authentication rules

• Remote registration is limited to Levels 1 through 3.

313

D.7. NIST 2003 Level 4 Worked example

• At this level sensitive data transfers shall be cryptographically authenti-
cated using keys bound to the authentication process.

– Either public key or symmetric key technology may be used.
– Example implementation: Client authenticated TLS.

• Re-authentication shall be required after not more than 24 hours from the
initial authentication.

• Files of shared authentication secrets shall be protected by discretionary
access controls that limit access to administrators and only those applica-
tions that require access.

Authenticator 1: NIST 2003 Level 2 requirements for Memorized secrets

• Shared secret files shall not contain the plaintext passwords or secret; two
alternative methods may be used to protect the shared secret:

1. Passwords may be concatenated to a salt and/or username and then
hashed with an Approved algorithm.

2. Store shared secrets in encrypted form using Approved encryption al-
gorithms and modes and decrypt the needed secret only when imme-
diately required for authentication.

– To contrast the NIST 2017 policy, we choose the encryption option.

• Password authentication systems can make targeted password guessing
impractical by:

– Requiring use of high-entropy passwords. NIST offers a number of
examples to satisfy the Level 2 password requirements. The most
familiar one to us is:
∗ Require a minimum of 8 character passwords, selected by sub-

scribers from an alphabet of 94 printable characters,
∗ Require subscribers to include at least one upper case letter, one

lower case letter, one number and one special character, and;
∗ Use a dictionary to prevent subscribers from including common

words and prevented permutations of the username as a password.
– Limiting the number of unsuccessful authentication attempts, or by

controlling the rate at which attempts can be carried out.

314

D.7. NIST 2003 Level 4 Worked example

∗ Consider a system that required passwords to be changed every
two years and limited trials by locking an account for 24 hours
after 6 successive failed authentication attempts.

Authenticator 2: Hard token - a hardware device that contains a protected
cryptographic key.

• Authentication is accomplished by proving possession of the device and
control of the key. Hard tokens shall:

– require the entry of a password or a biometric to activate the authen-
tication key; or must also use a password in a secure authentication
protocol, to establish two factor authentication.

– Authentication keys may not be exportable.
– Tamper detection and response should be in place for covers and doors

[48].

D.7.2 Benefits: NIST 2003 Level 4 policy
The NIST 2003 Level 4 policy recommends two factor authentication and
Client authentication TLS. Therefore, similar to the NIST 2017 Level 3 policy,
the probability of successfully compromising a user is marked by the proba-
bility of compromising the single factor cryptographic device, the memorized
secret and the client certificate and private key.

Therefore, we will require this computation again:

ppwd = 1−
∏
a

(1− Ppwd,a) (D.113)

p
USB

= 1−
∏
a

(1− PUSB,a) (D.114)

p
cTLS

= 1−
∏
a

(1− PcTLS,a) (D.115)

where p is the probability of the pwd/USB/cTLS being compromised. Pa

is the probability of compromise due to each individual attack type a. As
for all other policies, we must again calculate this p when there has been a
leak of the password file and when there has not:P[compromise|no leak] and
P[compromise|database leak]

315

D.7. NIST 2003 Level 4 Worked example

D.7.2.1 Quantifying attacks: NIST 2003 Level 4

Assertion Manufacture or Modification The risk of this attack occur-
ring is mitigated for all three factors by having access controls in place.

Ppwd,cTLS,USB[assertion manufacture or modification] (D.116)

=
(

(128)(0.72)
4788

)
(0.1) = 0.00192481203007519

Theft

• Re-authentication shall be required after not more than 24 hours from
the initial authentication.

The password and the certificate and private key will be compromised if the
computer is unlocked when it is stolen.

Given a user logs in each day, working a 5 day working week, there is a(
6
7

)
= 0.85714285714 probability that the computer is unlocked when it is

stolen.

Ppwd,cTLS [theft] (D.117)

= P[stolen]∗P[tampering] + P[stolen]∗P[unlocked]

=
((39)(0.72)

4788

)(27
4788

)
+
((39)(0.72)

4788

)
(0.85714285714)

= 0.00505992424668823

The USB is susceptible to theft.

PUSB[theft] = (39)(0.72)
4788 = 0.00586466165413534 (D.118)

Duplication

The Secret key on the USB is not exportable and we assume the issuer of the USBs
is trustworthy.

PUSB[duplication] = 0 (D.119)

316

D.7. NIST 2003 Level 4 Worked example

Password is only duplicable if revealed.

Ppwd[duplication] (D.120)

= P[divulge password].P[partner exploits] + P[recorded password compromised]

= (0.25)
((108)(0.72)

3231

)
+
(

(16)(0.72)
3231

)
= 0.00958217270195177

PcTLS [duplication] (D.121)

= P[targeted attack].P[private key ∩ certificate leaked]

= 0.033896
((49)(0.72)

4788

)
= 0.000249759999999422

D.7.2.2 Eavesdropping

• At this level sensitive data transfers shall be cryptographically authen-
ticated using keys bound to the authentication process

The communication of the password over the network is encrypted.

Ppwd[eavesdropping] = P[physical surveillance] + P[keylogger breach] (D.122)

=
(

(21)(0.72)
4788

)
+
(

(595)(0.72)
4788

)
= 0.0926315789473664

The USB cryptographic device and client authenticated TLS are not susceptible to
eavesdropping attacks. They use public private key pairs and therefore the private
key is never transmitted.

PUSB,cTLS [eavesdropping] = 0 (D.123)

D.7.2.3 Offline Guessing attacks

• Store shared secrets in encrypted form using approved encryption algo-
rithms and modes and decrypt the needed secret only when immediately
required for authentication.

• Require a minimum of 8 character passwords, selected by subscribers
from an alphabet of 94 printable characters,

• Require subscribers to include at least one upper case letter, one lower
case letter, one number and one special character, and;

317

D.7. NIST 2003 Level 4 Worked example

• Use a dictionary to prevent subscribers from including common words
and prevented permutations of the username as a password.

First we have the probability of a leak:

P[database of passwords is leaked] = (49)(0.72)
4788 = 0.00736842105263307 (D.124)

Attackers can either steal the key with the dataset, or brute force guess the
key.

Because of the complex password composition requirements we take Kelley et
al.’s value for percentage of passwords cracked when they were made using their
comprehensive8 password rules (22% of passwords guessed in 1013 guesses).
This asked for passwords with “at least 8 characters including an uppercase
and lowercase letter, a symbol, and a digit. It may not contain a dictionary
word”.

Ppwd[user password revealed|leak] (D.125)

= P[key leaked] + P[key brute forced] + P[user password in 1013 guesses]

= 49
4788 + 0.01 + 0.22 = 0.240233918128655

The USB and client authenticated TLS public key stored on the organizations’
system could be leaked and a brute force attack against the public keys to
identify the private key is possible. However the probability of success is
negligibly low for a well implemented asymmetric cryptographic algorithm.

PUSB,cTLS [brute force guess private key]=0 (D.126)

Side Channel Attack

• No protection

318

D.7. NIST 2003 Level 4 Worked example

Side channel attacks are possible against all three security methods; password,
TLS and USB cryptographic device.

Ppwd[side channel attack] = P[targeted attack].P[not detected].P[malware]

(D.127)

= (0.033896)(0.8)
((33)(0.72)

3231

)
= 0.000199410451251986

There is no stipulation in the NIST 2003 guidelines for protection against power or
timing analysis attacks. Side channel attacks can be carried out either with physical
access or via malware. We still assume that a side channel attack is going to be
targeted.

PUSB[side channel attack] (D.128)

= P[targeted]. (P[physical access] ∪ P[malware])

= (0.033896)
((53)(0.72)

3231 + (33)(0.72)
3231

)
= 0.000649594651809964

Encryption for TLS using the private key is susceptible to a side channel attack
over the network [2]. Side channel attacks to determine the private key can also be
done via physical access or malware.

PcTLS [side channel attack] (D.129)

= P[targeted attack]. (P[physical access] ∪ P[malware])

∪ (P[eavesdropper(stat:LAN.access)]) (P[exploit vulnerabilities])

= (0.033896)
((53)(0.72)

3231 + (33)(0.72)
3231

)
+
((118)(0.72)

3231

)(6
4788

)
= 0.000682546111241588

Phishing or Pharming A password will only be able to be phished if the
client authenticated TLS connection is compromised first.

Ppwd[phishing ∩ pharming] = (D.130)

P[phishing] = (653)(0.72)
4788 = 0.0981954887218051

PUSB,cTLS [phishing ∩ pharming] = 0 (D.131)

319

D.7. NIST 2003 Level 4 Worked example

Social Engineering

Ppwd[social engineering] (D.132)

= P[pretexting] = (39)(0.72)
4788 = 0.00586466165413429

We consider that a person masquerading as an IT assistant could relatively easily
convince a user to send them the files which include the certificate and private key.

PcTLS [social engineering] = P[pretexting]&P[not phone] (D.133)

=
(

(39)(0.72)
4788

)(
1− 5

3231

)
= 0.00585558604031134

As with NIST 2017 Level 3, we set the time a USB needs to be taken from the user
for 10 minutes for someone with physical proximity to the user and 3 working days
(1440 minutes) for a remote attacker.

PUSB[social engineering] (D.134)

=
(P[pretexting]

10

)
(P[partner exploits]) +

(P[pretexting]
1440

)
(P[remote attacker])

(D.135)

=
((39)(0.72)

(4788)(10)

)(108
4788

)
+
((39)(0.72)

(4788)(1440)

)(
1− 108

4788

)
= 0.000017209376827148

(D.136)

Online Guessing attacks

• Require a minimum of 8 character passwords, selected by subscribers
from an alphabet of 94 printable characters,

• Require subscribers to include at least one upper case letter, one lower
case letter, one number and one special character, and;

• Use a dictionary to prevent subscribers from including common words
and prevented permutations of the username as a password.

• Limit trials by locking an account for 24 hours after 6 successive failed
authentication attempts.

An attacker can make 6 guesses every 24 hours. Therefore in a year, the
attacker can make 2190 guesses against each valid account in the year time
frame. According to Kelley et al., because of the complex password compo-

320

D.7. NIST 2003 Level 4 Worked example

sition restrictions none of the users’ passwords are successfully cracked with
this number of guesses [83].

Ppwd, USB, cTLS[online guessing successful] = 0 (D.137)

Endpoint compromise

Ppwd[endpoint compromise] = (678)(0.72)
4788 = 0.101954887218044 (D.138)

Because the private key never leaves the USB device, a compromised endpoint
should not be able to compromise the device.

PUSB[endpoint compromise] = 0 (D.139)

A compromised endpoint could compromise the private key and certificate.

PcTLS [endpoint compromise] = 0.101954887218044 (D.140)

(D.141)

Unauthorized binding The unauthorized binding of the authenticator to
an attacker could take the form of an unauthorized password reset. In order
for an attacker to successful reset a subscribers password they would need to
already have access to their email account and be interested in targeting that
individual since it is a time consuming attack.

Ppwd[unauthorized binding] = P[use stolen credentials].P[targeted attack]

(D.142)

=
(

(631)(0.72)
4788

)
(0.033896) = 0.00321629714285458

(D.143)
To compromise the USB or client TLS the attacker would need access to the
database and need to have a USB, and certificate and private key created. This
would need to be a targeted attack.

PUSB,cTLS [unauthorized binding] =
((49)(0.72)

4788

)
(0.1)(0.033896)

= 0.0000249759999994224

321

D.7. NIST 2003 Level 4 Worked example

D.7.2.4 Calculation of NIST 2003 Level 4 losses

We quantify benefits by splitting the equation to look at the scenario when
the password dataset has been leaked and when it has not (Equation D.16).
For the NIST 2003 Level 3 policy we have the following probabilities of com-
promise:

Ppwd[compromise|leak] = 1−
∏
a

(1− Ppwd,a) = 0.4559828624 (D.144)

PUSB [compromise|leak] = 1−
∏
a

(1− PUSB,a) = 0.0084645569 (D.145)

PcTLS [compromise|leak] = 1−
∏
a

(1− PcTLS,a) = 0.1142891665 (D.146)

Ppwd[compromise|no leak] = 1−
∏
a

(1− Ppwd,a) = 0.2839675914 (D.147)

PUSB [compromise|no leak] = 1−
∏
a

(1− PUSB,a) = 0.0084645569 (D.148)

PcTLS [compromise|no leak] = 1−
∏
a

(1− PcTLS,a) = 0.1142891665 (D.149)

pl = P[compromise|leak] (D.150)

= Ppwd[compromise|leak] ∗ PUSB [compromise|leak] ∗ PcTLS [compromise|leak]

= 0.0004411210827

pl′ = P[compromise|no leak] (D.151)

= Ppwd[compromise|no leak] ∗ PUSB [compromise|no leak] ∗ PcTLS [compromise|no leak]

= 0.0002747122791

Now, taking the values defined in Section D.1: Lsystem = $107, L1 = $166,
and N = 500 users, we calculate the expected loss due to compromise for the
organization when the NIST 2017 Level 3 policy is in place.

322

D.7. NIST 2003 Level 4 Worked example

E[Loss|NIST 2003 L1 policy] = (D.152)(
P

[
N
(

0.00044112108, (0.00044112108)(1− 0.00044112108)
500

)
> 0.5

]
× $107

+ (500)(0.00044112108)($166)
)
× 0.00736842105263307

+
(
P

[
N
(

0.0002747122791, (0.0002747122791)(1− 0.0002747122791)
500

)
> 0.5

]
× $107

+ (500)(0.0002747122791)($166)
)
× (1− 0.00736842105263307)

= $0.279531466191297 + $23.4511752646053 = $23.7307067307966

D.7.2.5 Quantifying benefit of the NIST 2003 Level 4 policy

Taking the value for expected losses with no policy from Section D.4.2.3, our
computation of the NIST 2017 L3 benefits is:

E[Benefits] = E[Loss|No policy]− E[Loss|NIST 2017 L3 policy] (D.153)

= $20993.78− $0.18 = $20993.60

D.7.3 Costs: NIST 2003 Level 4 policy
In this section we will quantify the cost associated with the pieces of advice
in the NIST 2003 Level 4 policy.

j=1: In-person registration

• Remote registration is limited to Levels 1 through 3.

At creation, a user must bring two IDs and proof of address to the organization
in person. We assign 15 minutes per user for the organization help desk and
6 hours for the user. We also assign organisation resources for the storage of
this information as 20 cent per user.

j=2: Client authenticated protected channel

• At this level sensitive data transfers shall be cryptographically authen-
ticated using keys bound to the authentication process.

323

D.7. NIST 2003 Level 4 Worked example

– Either public key or symmetric key technology may be used.

– Example implementation: Client authenticated TLS.

This has very similar costs to NIST 2017 Level 3. The difference is that the
user can be handed a physical certificate when they register in person. So
this will not be an addition cost at creation for the user. However certificates
expire so the user will need to return to the organization to update it or update
it themselves at least once a year. We assume the update is done remotely by
the users. We assign 30 minutes for an average user to update their certificate
and 15 minutes organization help desk time to guide the user through the
process.

The organization of course also has the time it will take to set up the client
authenticated procedures in the first place, C4,2 = C4(43200)

If the user loses their computer/laptop, P[computer lost] = 39
4788 = 0.081453634,

they will need to return to the organization to get a new certificate. This will
take 6 hours of the user’s time and another 15 minutes of the organization’s
time.

It will take 3 seconds for the organization to generate a public private key pair
for the user’s certificate; at creation and at expiry P5,2 = 1, R5,2 = 2∗#users.It
will also take approximately 0.1 seconds extra to authenticate each user at
login. As before, there is a cost for the user associated with needing to always
use the same device at login.

j=3: Reauthentication

• Reauthentication shall be required after not more than 24 hours from
the initial authentication.

Komanduri’s statistics [85] tells us that with the comprehensive8 password
policy a user will take 104.86 seconds to authenticate. We add on 31.85
seconds when a USB must be used as well. A user will need to authenticate
each working day during the year.

j=4: Access to password file

324

D.7. NIST 2003 Level 4 Worked example

• Files of shared secrets used by verifiers shall be protected by discre-
tionary access controls that limit access to administrators and only those
applications that require access.

This advice incurs minor help desk costs periodically, a small amount of user
education periodically and it is a minor cost to implement.

j=5: Password storage

• Shared secret files shall not contain the plaintext passwords or secret

– Store shared secrets in encrypted form using Approved encryption
algorithms and modes and decrypt the needed secret only when
immediately required for authentication.

We have assigned 1 day of organizations time to setting up a system which
will encrypt the passwords. There is an additional 1 second of computing time
needed for the organization to decrypt and re-encrypt the password at each
user login.

j=6: Composition

• Require a minimum of 8 character passwords, selected by subscribers
from an alphabet of 94 printable characters,

• Require subscribers to include at least one upper case letter, one lower
case letter, one number and one special character, and;

• Use a dictionary to prevent subscribers from including common words
and prevented permutations of the username as a password.

Setting up the composition rules is a minor implementation cost to the orgnai-
sation. Kelley et al. recorded that users will take 242.56 seconds to create
passwords of this type [85].

Kelley et al. also provide statistics that allowed us the calculate the probability
of forgetting this type of password as: P7,5 = 0.02834645669. The ‘Probability’

325

D.7. NIST 2003 Level 4 Worked example

that this advice makes it more difficult to create a password can also be taken
from these statistics ‘P ′7,6 = 2.12.

We assign 1 hour every 6 months to the organisation for user education and
similarly on the User side, we assign 15 minutes every 6 months for the users.
The help desk cost of a user forgetting their password is covered under the
cost of forgetting function.

j=7: Rate limiting

• Limit trials by locking an account for 24 hours after 6 successive failed
authentication attempts.

Brostoff and Sasse [18] show that 31% of their study participants failed to login
successfully within 3 attempts whereas only 7% failed within 10 attempts.

If we assume there is a linear relationship between the number of attempts
allowed and the failure rate then we can extrapolate that 6 attempts will result
in a failure rate of 21%.

Brostoff and Sasse also found that approximately 7% of these failed logins led
to password reminder requests: P(7,1) = 0.21 ∗ 0.07 = 0.0147

We calculate the probability and cost of an attacker targeting a user to lock
their account the same as we did for the NIST 2003 Level 1 policy.

P[malicious lockout] = P[targeted.attack] (P[brute force.attacker] + P[partner])

(D.154)

= (0.033896)
(73)(0.72)

4788 + (108)(0.72)
3231

 = 0.00118786145

Therefore, the total probability that the user’s account is locked for 24 hours
is: 0.21 + 0.00118786145 = 0.21118786145.

There is no stipulation in the advice that an administrator can unlock the
account.

j=8: Password expiry

326

D.7. NIST 2003 Level 4 Worked example

• Requires passwords to be changed every two years

This means that within our time frame approximately half the users’ pass-
words will expire. It is a minor cost for organisations to implement. It involved
major user education and major help desk time. The help desk time will be
linked to users not changing passwords on-time and becoming locked out of
systems and difficulties involved with password changes. This is in additional
to the inevitable help desk time needed when users forget their new password
which is covered under the cost Increased risk of forgetting. The additional
help desk time will occur with each password expiry deadline within timeframe
T.

With each password expiration, a user is unable to do their work until the
have reset their password. A 2014 study by NIST [26] estimated that, they
can spend up to 12.4 hours per year changing passwords on a 90-day expiration
schedule, or 18.6 hours changing passwords on a 60-day expiration schedule.
If we take these statistics and assume they are linear, then for expiry every
two year, this will take 1hr 33 minutes out of a work day for 9 accounts. If
we assume this policy applies to just one account rather than nine, then this
tells us that it can take 10 minutes in our time frame T for users to reset their
password.

The other inconvenience for the user is the repetition of the password creation
policy and the increased risk of forgetting a newly created passwords. In this
way we take the user costs identified as part of the composition requirement
and reapply them here.

j=9: Single factor cryptographic device

• Require the entry of a password or a biometric to activate the authen-
tication key; or must also use a password in a secure authentication
protocol, to establish two factor authentication.

• Authentication keys may not be exportable.

• Tamper detection and response should be in place for covers and doors
[48].

327

D.7. NIST 2003 Level 4 Worked example

The type of single factor cryptographic device we are considering is a dedi-
cated USB authenticator. We allow 3 weeks for the organization to set up
the method of authentication. This allows for finding a supplier, briefing cus-
tomers and integrating the protocols into their software. Users may collect
the USBs at registration.

Also if a user loses the device (P = 0.025) they need to return to the organi-
zation, identify themselves and receive a new authenticator. We set this as 15
minutes of the organizations time and 6 hours of the user’s time.

At each login the user will need to take the time to press a button or insert
the USB in order to authenticate. We assign 31.85 seconds to this; the same
amount of time as to enter a basic password. An inconvenience for the user is
that it is now necessary to carry this authenticator around with them. Pixie
Technology Inc. [131] found that 28% of their study participants admitted to
misplacing their carkeys at least once a week. We equate this to the likelihood
of misplacing the USB device. So with P11,9 = 0.28, C11,9 = C2(10mins),
R11,9 = #logins/#weeks = #logins/52.

The organization will use additional computing power. Though there is no
requirement for the security length of the nonce or keys C5,9 = C5(2)

A USB device will need to be purchased for each user at creation and also if
the user loses the device. We estimate each device costing $6.

Administrators also assigned major user education and help desk costs to this
advice.

D.7.3.1 Calculation of NIST 2003 Level 4 costs

Table D.5 shows the costs associated with the NIST 2003 Level 4 advice.

328

D
.7.

N
IST

2003
Level4

W
orked

exam
ple

Figure D.5: Costs of implementing the NIST 2003 Level 4 password advice.

Organisation costs User costs

C
₁(

tₒ)
: I

n
cr

ea
se

d
he

lp
 d

es
k/

us
er

su

p
p

or
t

ti
m

e

C
₂(

tₒ,
 t
ᵤ)

: U
se

r
ed

uc
at

io
n

 r
eq

ui
re

d

C
₃(

rₒ
):

 A
dd

it
io

n
al

or

ga
n

iz
at

io
n

re

so
ur

ce
s

C
₄(

tₒ)
: O

rg
an

iz
at

io
n

ti

m
e

ta
ke

n
 t

o
im

p
le

m
en

t

C
₅(

tc
ₒ)

: I
n

cr
ea

se
d

or
ga

n
iz

at
io

n

co
m

p
ut

in
g

p
ow

er

n
ee

de
d

C
₆(

tᵤ
):

 M
ak

es
 it

m

or
e

di
ff

ic
ul

t
to

cr

ea
te

 a
 p

as
sw

or
d

C
₇:

 In
cr

ea
se

d
ri

sk

of
 fo

rg
et

ti
n

g

C
₈(

rᵤ
):

 A
dd

it
io

n
al

us

er
 r

es
ou

rc
es

n

ee
de

d

C
₉(

tᵤ
):

 N
ee

d
to

 p
ic

k
a

n
ew

 p
as

sw
or

d

C
₁₀

(t
cᵤ

):
 I

n
cr

ea
se

d
us

er
 c

om
p

ut
in

g
p

ow
er

 n
ee

d

C
₁₁

(t
ᵤ)

: U
se

r
ti

m
e

an
d

in
co

n
ve

n
ie

n
ce

C
₁₂

(t
ᵤ)

: U
se

r
ed

uc
at

io
n

 t
im

e
re

qu
ir

ed

j=1: In-person registration p(i,1) 1 1 1

C(i,1) C₁(15mins) C₃($0.20) C₁₁(6hrs)

R(i,1) #users #users #users

j=2: Client authenticated
protected channel p(i,9) 1 1 1 1 1 1 1

C(i,9) C₁(15 mins) C₂(1hr) C₄(3 weeks) C₅(3 secs) C₁₀(0.5 sec) C₁₁(30mins) C₁₂(15mins)

R(i,9) #users 12 1 2*#users #logins #users 12*#users

j=2 continued p(i,9) 0.081453634 1 0.6

C(i,9) C₁(15 mins) C₅(0.5 sec) C₁₁(10 secs)

R(i,9) #users #logins #logins

j=2 continued p(i,9) 0.081453634

C(i,9) C₉(1hr)

R(i,9) #users

j=3: Reauthentication p(i,3) 1 1

C(i,3) C₄(1 day) C₁₁(136.71 secs)

R(i,3) 1 261*(#users)

j=4: Access to password
files p(i,4) 1 1 1

C(i,4) C₁(15mins) C₂(1hr) C₄(1 day)

R(i,4) #users 2 1

j=5: Password storage p(i,5) 1 1

C(i,5) C₄(1 day) C₅(1 sec)

R(i,5) 1 #logins

j=6: Composition p(i,6) 1 1 2.12 0.0283465 1 1

C(i,6) C₂(1hr) C₄(1 day) C₆(242.56 secs) C₇ C₉(242.56 secs) C₁₂(15 mins)

R(i,6) 2 1 #users #users #users 2*#users

j=7: Rate limiting p(i,7) 1 1 0.0147 0.21 1

C(i,7) C₂(1hr) C₄(1 day) C₇ C₁₁(24 hours) C₁₂(15mins)

R(i,7) 2 1 #users #logins 2*#users

j=8: Password expiry p(i,8) 1 1 1 2.12 0.0283465 1 1 1

C(i,8) C₁(15mins) C₂(1hr) C₄(1 day) C₆(242.56 secs) C₇ C₉(242.56 secs) C₁₁(10mins) C₁₂(15mins)

R(i,8) #users 12 1 0.5*#users 0.5*#users 0.5*#users #users 12*#users

j=9: Single factor
cryptographic device p(i,9) 0.025 1 1 1 1 0.025 1

C(i,9) C₁(15mins) C₂(1hr) $6 C₄(3 weeks) C₅(2 secs) C₁₁(6hrs) C₁₂(15mins)

R(i,9) #users 12 #users 1 #logins #users 12*#users

j=9 continued p(i,9) 1 0.025 1

C(i,9) C₁(15mins) $6 C₁₁(31.85 secs)

R(i,9) 4*#users #users #logins

j=9 continued p(i,10) 0.28

C(i,10) C₁₁(10mins)

R(i,10) #login/52

329

D.8. NIST 2007 policy Worked example

Using this table and the values defined in Section D.2 we have the following
results for the cost of the NIST 2003 L4 policy:

E[Costs] =
∑
i=12
j=9

Pci,j .Ci,j.Ri,j = $12,155,278.21 (D.155)

D.7.4 Value of the NIST 2003 Level 4 policy

E[V alue] = E[Benefits]− E[Costs] (D.156)

E[V alue] = $105,548.18− $12,155,278.21 = −$12,049,730.03 (D.157)

D.8 NIST 2007 policy Worked example
The 2003 NIST policy is the beginning of the password security craze which
introduced complex composition restrictions and short validity periods for
user-chosen passwords.

The 2003 Level 2 guidelines contain recommendations that will be familiar to
most web users:

• Require a minimum of 8 character passwords, selected by subscribers
from an alphabet of 94 printable characters,

• Require subscribers to include at least one upper case letter, one lower
case letter, one number and one special character, and;

• Use a dictionary to prevent subscribers from including common words
and prevented permutations of the username as a password.

However, regarding the expiration of the password, it simply recommends
that the password is changed every two years [20]. It is in the 2007 NIST
“Guidelines on Securing Public Web Servers” and the 2007 NIST “Guidelines
on Electronic Mail Security ” that we see the first NIST documentation spec-
ifying very short password validity periods [121, 122], though it was used in
practice much earlier [151, 125].

330

D.8. NIST 2007 policy Worked example

Both NIST documents give the following advice:

• Administrator or root level passwords should be changed every 30 to 120
days. User level passwords should also be changed periodically, with
the period determined by the enforced length and complexity of the
password combined with the sensitivity of the information protected.
When considering the appropriate aging duration, the exposure level of
user passwords should also be taken into account

This advice was rapidly taken on board by most organizations and was gen-
erally applied to the passwords of anyone in the organisation [49, 82].

In this section we will show the workings for the costs and benefits associated
with this typical authentication policy. We will take the same general authen-
tication rules as for the NIST 2003 Level 2 policy with the addition of the
strict expiration requirement.

D.8.1 Policy summary

General authentication rules

• Files of shared authentication secrets shall be protected by discretionary
access controls that limit access to administrators and only those applica-
tions that require access.

• Approved cryptography is required to prevent eavesdroppers.

Authenticator: Memorized secrets

• Shared secret files shall not contain the plaintext passwords or secret; two
alternative methods may be used to protect the shared secret:

1. Passwords may be concatenated to a salt and/or username and then
hashed with an Approved algorithm.

2. Store shared secrets in encrypted form using approved encryption al-
gorithms and modes and decrypt the needed secret only when imme-
diately required for authentication.

– To contrast the NIST 2017 policy, we choose the encryption option.

331

D.8. NIST 2007 policy Worked example

• Password authentication systems can make targeted password guessing
impractical by:
– Requiring use of high-entropy passwords. NIST offers a number of

examples to satisfy the Level 2 password requirements. The most
familiar one to us is:
∗ Require a minimum of 8 character passwords, selected by sub-

scribers from an alphabet of 94 printable characters,
∗ Require subscribers to include at least one upper case letter, one

lower case letter, one number and one special character, and;
∗ Use a dictionary to prevent subscribers from including common

words and prevented permutations of the username as a password.
– Limiting the number of unsuccessful authentication attempts, or by

controlling the rate at which attempts can be carried out.
∗ Limit trials by locking an account for 24 hours after 6 successive

failed authentication attempts.
• Ageing - Passwords should be changed every 90 days.

– If possible, ensure that users cannot change their password by merely
appending characters to the beginning or end of their original password
(e.g., original password was “mysecret” and is changed to “1mysecret”
or “mysecret1”).

D.8.2 Benefits: NIST 2007 policy
D.8.2.1 Quantifying attacks: NIST 2007

Assertion Manufacture or Modification The risk of this attack occur-
ring is mitigated for all three factors by having access controls in place.

P[assertion manufacture or modification] (D.158)

=
(

(128)(0.72)
4788

)
(0.1) = 0.00192481203007365

Theft

• Re-authentication shall be required after not more than 24 hours from
the initial authentication.

332

D.8. NIST 2007 policy Worked example

The password and the certificate and private key will be compromised if the
computer is unlocked when it is stolen.

Given a user logs in each day, working a 5 day working week, there is a(
6
7

)
= 0.85714285714 probability that the computer is unlocked when it is

stolen.

P[theft] (D.159)

= P[stolen]∗P[tampering] + P[stolen]∗P[unlocked]

=
((39)(0.72)

4788

)(27
4788

)
+
((39)(0.72)

4788

)
(0.85714285714)

= 0.00505992424668823

Duplication

Password is only duplicable if revealed.

P[duplication] = (D.160)

P[divulge password].P[partner exploits] + P[recorded password compromised]

= (0.25)
((108)(0.72)

3231

)
+
(

(16)(0.72)
3231

)
= 0.00958217270195177

Eavesdropping

• Approved cryptography is required to prevent eavesdroppers.

The communication of the password over the network is encrypted.

P[eavesdropping] = P[physical surveillance] + P[keylogger breach] (D.161)

=
(

(21)(0.72)
4788

)
+
(

(595)(0.72)
4788

)
= 0.0926315789473664

Offline Guessing attacks

• Store shared secrets in encrypted form using approved encryption algo-
rithms and modes and decrypt the needed secret only when immediately

333

D.8. NIST 2007 policy Worked example

required for authentication.

• Require a minimum of 8 character passwords, selected by subscribers
from an alphabet of 94 printable characters,

• Require subscribers to include at least one upper case letter, one lower
case letter, one number and one special character, and;

• Use a dictionary to prevent subscribers from including common words
and prevented permutations of the username as a password.

• Passwords should be changed every 90 days.

First we have the probability of a leak:

P[database of passwords is leaked] = (49)(0.72)
4788 = 0.00736842105258628 (D.162)

Attackers can either steal the key with the dataset, or brute force guess the
key.

In all policies, we have assumed an attacker will make 1013 guesses against a
users’ password. Each guess takes an attacker approximately 10−11 seconds.
Therefore, with no slow hash function in place, it will take an attacker guessing
offline less than 2 minutes to make 1013 guesses. Therefore, inline with current
literature, we conclude that for offline attacks there is little to no security
advantage of password expiry [24].

Because of the complex password composition requirements we take Kelley et
al.’s value for percentage of passwords cracked when they were made using their
comprehensive8 password rules (22% of passwords guessed in 1013 guesses).
This asked for passwords with “at least 8 characters including an uppercase
and lowercase letter, a symbol, and a digit. It may not contain a dictionary
word”.

P[user password revealed|leak] (D.163)

= P[key leaked] + P[key brute forced] + P[user password in 1013 guesses]

= 49
4788 + 0.01 + 0.22 = 0.240233918128655

334

D.8. NIST 2007 policy Worked example

Side Channel Attack No protection.

As we discussed in NIST 2017 Level 1, there are side channel attacks which
exist for compromising passwords.

P[side channel attack] =P[targeted attack].P[not detected].P[malware] (D.164)

=(0.033896)(0.8)
((33)(0.72)

3231

)
= 0.000199410451251986

Phishing or Pharming No protection.

P[phishing ∪ pharming] = P[phishing] = (653)(0.72)
4788 = 0.0981954887218051

(D.165)

Social Engineering No protection

P[social engineering] = P[pretexting] = (39)(0.72)
4788 = 0.00586466165413429

(D.166)

Online Guessing attacks

• Require a minimum of 8 character passwords, selected by subscribers
from an alphabet of 94 printable characters,

• Require subscribers to include at least one upper case letter, one lower
case letter, one number and one special character, and;

• Use a dictionary to prevent subscribers from including common words
and prevented permutations of the username as a password.

• Limit trials by locking an account for 24 hours after 6 successive failed
authentication attempts.

• Passwords should be changed every 90 days.

335

D.8. NIST 2007 policy Worked example

An attacker can make 6 guesses every 24 hours. Therefore in a year, the
attacker can make 2190 guesses against each valid account in the year time
frame. According to Kelley et al., because of the complex password compo-
sition restrictions none of the users’ passwords are successfully cracked with
this number of guesses [83].

P[online guessing successful] = 0 (D.167)

Endpoint Compromise No protection

P[endpoint compromise] (D.168)

= P[breach using backdoor or C2] = (678)(0.72)
4788 = 0.101954887218044

Unauthorized Binding No protection

P[unauthorized binding] = (D.169)(
P[use stolen credentials] ∪ P[physical theft]

)
P[targeted attack]

=
(

(631)(0.72)
4788 + (39)(0.72)

4788

)
(0.033896) = 0.00341508571428736

D.8.2.2 Calculation of NIST 2007 losses

We quantify benefits by splitting the equation to look at the scenario when the
password dataset has been leaked and when it has not (Equation D.16). For
the NIST 2007 policy this gives use the following probabilities of compromise:

pl = P[compromise|leak] = 0.456091355733257 (D.170)

pl′ = P[compromise|no leak] = 0.284110389704333 (D.171)

Now, taking the values defined in Section D.1: Lsystem = $107, L1 = $166,
and N = 500 users. We calculate the expected loss due to compromise for the
organization when the NIST 2007 policy is in place.

336

D.8. NIST 2007 policy Worked example

E[Loss|NIST 2007 policy] = (D.172)(
P

[
N
(

0.4560913557, (0.4560913557)(1− 0.4560913557)
500

)
> 0.5

]
× $107

+ (500)(0.4560913557)($166)
)
× 0.00736842105258628

+
(
P

[
N
(

0.2841103897, (0.2841103897)(1− 0.2841103897)
500

)
> 0.5

]
× $107

+ (500)(0.2841103897)($166)
)
× (1− 0.00736842105258628)

= $2068.25138396931 + $24253.4581390645 = $26321.7095230338

D.8.2.3 Quantifying benefit of the NIST 2007 policy

Taking the value for expected losses with no policy from Section D.4.2.3, our
computation of the NIST 2007 benefits is:

E[Benefits] = E[Loss|No policy]− E[Loss|NIST 2003 L1 policy] (D.173)

= $105571.91− $26321.71 = $79250.20

D.8.3 Costs: NIST 2007 policy
In this section we will quantify the costs associated with each piece of advice
in the NIST 2007 policy.

j=1: Access to password files should be restricted Same as for other
policies this incurs help desk, implementation and user education costs.

j=2: Authenticated protected channel

• Approved cryptography is required to prevent eavesdroppers.

This advice requires sending passwords over a protected channel. This should
be set up by the organisation as part of the authentication platform. Admin-
istrators marked this as a minor task.

j=3: Password storage

337

D.8. NIST 2007 policy Worked example

• Shared secret files shall not contain the plaintext passwords or secret;
two alternative methods may be used to protect the shared secret:

1. Passwords may be concatenated to a salt and/or username and
then hashed with an Approved algorithm.

2. Store shared secrets in encrypted form using approved encryption
algorithms and modes and decrypt the needed secret only when
immediately required for authentication.

– To contrast the NIST 2017 policy, we choose the encryption option.

Administrators assigned a minor organisation cost to setting up a system
which will encrypt the passwords. There is an additional 1 second of comput-
ing time needed for the organization to decrypt and re-encrypt the password
at each user login.

j=4: Composition

• Requiring use of high-entropy passwords. NIST offers a number of ex-
amples to satisfy the Level 2 password requirements. The most familiar
one to us is:

– Require a minimum of 8 character passwords, selected by sub-
scribers from an alphabet of 94 printable characters,

– Require subscribers to include at least one upper case letter, one
lower case letter, one number and one special character, and,

– Use a dictionary to prevent subscribers from including common
words and prevented permutations of the username as a password.

The costs for this are the same as for the NIST 2003 Level 4 composition rules.

j=5: Rate limiting

• Limit trials by locking an account for 24 hours after 6 successive failed
authentication attempts.

Same as for NIST 2003 Level 4 rate limiting costs.

338

D.8. NIST 2007 policy Worked example

j=6: Password expiry

• Passwords should be changed every 90 days.

– If possible, ensure that users cannot change their password by
merely appending characters to the beginning or end of their origi-
nal password(e.g., original password was “mysecret” and is changed
to “1mysecret” or “mysecret1”).

This means that with our time frame of one year users will need to change
their password approximately four times. We assign minor organization time
to set up the expiry system.

The inconvenience for the user lies in the repetition of the password creation
policy and the increased risk of forgetting a newly crafted passwords. In this
way we take the user costs identified as part of the composition requirement
and reapply them here.

Choong et al.’s 2014 NIST study [26] estimated that, users can spend up to
12.4 hours per year changing passwords on a 90-day expiration schedule. This
was for 9 accounts. For one account, this equates to 1.38 hours a year.

D.8.3.1 Calculation of NIST 2007 costs

Table D.6 shows the costs associated with pieces of advice in NIST 2007.

339

D
.8.

N
IST

2007
policy

W
orked

exam
ple

Figure D.6: Costs of implementing the NIST 2007 password advice.

Organisation costs User costs

₁
ₒ

₂
ₒ
ᵤ

₃
ₒ

₄
ₒ

₅
ₒ

₆
ᵤ

₇ ₈
ᵤ

₉
ᵤ

₁₀
ᵤ

₁₁
ᵤ

₁₂
ᵤ

₁ ₂ ₄ ₁₂

₄

₄ ₅ ₁₂

₂ ₄ ₆ ₇ ₉ ₁₂

₂ ₄ C₇ ₁₁ ₁₂

₁ ₂ ₄ ₆ ₇ ₉ ₁₁ ₁₂

340

D.8. NIST 2007 policy Worked example

Using this table and the values defined in Section Section D.2 we have the
following results for the cost of the NIST 2007 policy:

E[Costs] =
∑
i=12
j=6

Pci,j .Ci,j.Ri,j = $11,931,636.61 (D.174)

D.8.4 Value of the NIST 2007 policy

E[V alue] = E[Benefits]− E[Costs] (D.175)

E[V alue] = $79,250.20− $11,931,636.61 = −$11,852,386.41 (D.176)

341

Bibliography

[1] Anne Adams and Martina Angela Sasse. Users are not the enemy. Com-
munications of the ACM, 42(12):40–46, 1999. 12, 16, 32, 33, 47, 156,
157

[2] Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds:
A timing attack on amazon’s s2n implementation of tls. Cryptology
ePrint Archive, Report 2015/1129, 2015. https://eprint.iacr.org/
2015/1129, Accessed: 2019-01-31. 303, 319

[3] Mashael AlSabah, Gabriele Oligeri, and Ryan Riley. Your culture is
in your password: An analysis of a demographically-diverse password
dataset. Computers & security, 77:427–441, 2018. 142

[4] Kemal Altinkemer and Tawei Wang. Cost and benefit analysis of au-
thentication systems. Decision Support Systems, 51(3):394–404, 2011.
160

[5] APWG. Phishing activity trends report 1st quarter 2018. Technical re-
port, APWG, 2018. https://docs.apwg.org/reports/apwg_trends_
report_q1_2018.pdf, Accessed=2019-10-31. 57, 71

[6] Simon Arnell, Adam Beautement, Philip Inglesant, Brian Monahan,
David Pym, and Angela Sasse. Systematic decision making in security
management modelling password usage and support. In International
Workshop on Quantitative Aspects in Security Assurance. Pisa, Italy.
Citeseer, 2012. 16, 55, 160

[7] Sacha B. Let them paste passwords. https://www.ncsc.gov.uk/blog-
post/let-them-paste-passwords, 2017. Accessed: 2017-01-20. 248

342

https://eprint.iacr.org/2015/1129
https://eprint.iacr.org/2015/1129
https://docs.apwg.org/reports/apwg_trends_report_q1_2018.pdf
https://docs.apwg.org/reports/apwg_trends_report_q1_2018.pdf
https://www.ncsc.gov.uk/blog-post/let-them-paste-passwords
https://www.ncsc.gov.uk/blog-post/let-them-paste-passwords

Bibliography

[8] Claudine Beaumont. Microsoft hotmail leak blamed on phish-
ing attack, 2009. https://www.telegraph.co.uk/technology/
microsoft/6264539/Microsoft-Hotmail-leak-blamed-on-
phishing-attack.html, Accessed: 2020-03-22. 87

[9] Adam Beautement, M Angela Sasse, and Mike Wonham. The compli-
ance budget: managing security behaviour in organisations. In Pro-
ceedings of the 2008 workshop on New security paradigms, pages 47–58.
ACM, 2009. 13, 16

[10] Matt Bishop and Daniel V Klein. Improving system security via proac-
tive password checking. Computers & Security, 14(3):233–249, 1995.
31

[11] Rainer Böhme and Tyler Moore. How do consumers react to cybercrime?
In 2012 eCrime researchers summit, pages 1–12. IEEE, 2012. 27, 67, 219

[12] Joseph Bonneau. Guessing human-chosen secrets. PhD thesis, Univer-
sity of Cambridge, 2012. 80

[13] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Sta-
jano. The quest to replace passwords: A framework for comparative
evaluation of web authentication schemes. In Security and Privacy (SP),
2012 IEEE Symposium on, pages 553–567. IEEE, 2012. 14, 15, 160

[14] Boston University. How to choose a strong password. http://
www.bu.edu/tech/support/information-security/security-for-
everyone/how-to-choose-a-strong-password/. Accessed: 2016-12-
05. 31

[15] Anna Brading. Yahoo voices hacked, nearly half a million emails
and passwords stolen. july 2012. http://nakedsecurity.sophos.com/
2012/07/12/yahoo-voices-hacked. 147, 271

[16] Charles Henry Brase and Corrinne Pellillo Brase. Understanding basic
statistics. Nelson Education, 2013. 180

[17] Christina Braz, Ahmed Seffah, and David M’Raihi. Designing a trade-
off between usability and security: a metrics based-model. In IFIP
Conference on Human-Computer Interaction, pages 114–126. Springer,
2007. 16, 159

343

https://www.telegraph.co.uk/technology/microsoft/6264539/Microsoft-Hotmail-leak-blamed-on-phishing-attack.html
https://www.telegraph.co.uk/technology/microsoft/6264539/Microsoft-Hotmail-leak-blamed-on-phishing-attack.html
https://www.telegraph.co.uk/technology/microsoft/6264539/Microsoft-Hotmail-leak-blamed-on-phishing-attack.html
http://www.bu.edu/tech/support/information-security/security-for-everyone/how-to-choose-a-strong-password/
http://www.bu.edu/tech/support/information-security/security-for-everyone/how-to-choose-a-strong-password/
http://www.bu.edu/tech/support/information-security/security-for-everyone/how-to-choose-a-strong-password/
http://nakedsecurity. sophos.com/2012/07/12/yahoo-voices-hacked
http://nakedsecurity. sophos.com/2012/07/12/yahoo-voices-hacked

Bibliography

[18] Sacha Brostoff and M Angela Sasse. “Ten strikes and you’re out”: In-
creasing the number of login attempts can improve password usability.
Presented at: CHI 2003 Workshop on Human-Computer Interaction and
Security Systems, Fort Lauderdale, Florida., 2003. 37, 234, 292, 326

[19] Schneier Bruce. Beyond fear: thinking sensibly about security in an
uncertain world. Springer-Verlag New York, Inc, 2003. 42

[20] Dodson Burr and Polk. NIST special publication 800-63: Elec-
tronic authentication guidelines. https://csrc.nist.gov/csrc/
media/publications/sp/800-63/ver-10/archive/2004-06-30/
documents/sp800-63-v1-0.pdf, 2003. Accessed: 2017-08-25. 68, 79,
178, 263, 284, 330

[21] Claude Castelluccia, Abdelberi Chaabane, Markus Dürmuth, and
Daniele Perito. When privacy meets security: Leveraging personal in-
formation for password cracking. arXiv preprint arXiv:1304.6584, 2013.
31, 78, 114

[22] Junaid Ahsenali Chaudhry, Shafique Ahmad Chaudhry, and Robert G
Rittenhouse. Phishing attacks and defenses. International Journal of
Security and Its Applications, 10(1):247–256, 2016. 57

[23] William Cheswick. Rethinking passwords. Communications of the ACM,
56(2):40–44, 2013. 240

[24] Sonia Chiasson and Paul C Van Oorschot. Quantifying the security
advantage of password expiration policies. Designs, Codes and Cryptog-
raphy, 77(2-3):401–408, 2015. 25, 68, 73, 334

[25] Yee-Yin Choong and Mary Theofanos. What 4,500+ people can tell you–
employees’ attitudes toward organizational password policy do matter.
In International Conference on Human Aspects of Information Security,
Privacy, and Trust, pages 299–310. Springer, 2015. 156

[26] Yee-Yin Choong, Mary Theofanos, and Hung-Kung Liu. United States
Federal Employees’ Password Management Behaviors: A Department of
Commerce Case Study. US Department of Commerce, National Institute
of Standards and Technology, 2014. 327, 339

344

https://csrc.nist.gov/csrc/media/publications/sp/800-63/ver-10/archive/2004-06-30/documents/sp800-63-v1-0.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-63/ver-10/archive/2004-06-30/documents/sp800-63-v1-0.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-63/ver-10/archive/2004-06-30/documents/sp800-63-v1-0.pdf

Bibliography

[27] Hsien-Cheng Chou, Hung-Chang Lee, Hwan-Jeu Yu, Fei-Pei Lai, Kuo-
Hsuan Huang, Chih-Wen Hsueh, et al. Password cracking based on
learned patterns from disclosed passwords. IJICIC, 9(2):821–839, 2013.
114

[28] Mark M Christiansen and Ken R Duffy. Guesswork, large deviations, and
shannon entropy. IEEE transactions on information theory, 59(2):796–
802, 2012. 79

[29] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse Swoopes, Lujo
Bauer, Lorrie Cranor, and Nicolas Christin. “it’s not actually that hor-
rible” exploring adoption of two-factor authentication at a university. In
Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–11, 2018. 225

[30] Data Protection Commission. Guidance for controllers on
data security. Technical report, An Coimisiún um Chosaint
Sonraí (Irish Data Protection Commission), 2020. https://
www.dataprotection.ie/sites/default/files/uploads/2020-
02/Data%20Security%20Guidance_Feb20.pdf, Accessed: 2020-03-20.
108

[31] M Cover Thomas and A Thomas Joy. Elements of information theory.
New York: Wiley, 3:37–38, 1991. 83

[32] Philip Cox. Password sanity: Thank you NIST. https://
www.linkedin.com/pulse/password-sanity-thank-you-nist-
philip-cox, 2016. Accessed: 2016-12-15. 24, 55, 190

[33] Lorrie Faith Cranor and Simson Garfinkel. Security and usability: de-
signing secure systems that people can use. O’Reilly Media Sebastopol,
CA, 2005. 39, 157, 189

[34] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and
XiaoFeng Wang. The tangled web of password reuse. In NDSS, vol-
ume 14, pages 23–26, 2014. 15, 34, 38, 240, 242, 244

[35] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. Password
strength: An empirical analysis. In INFOCOM, 2010 Proceedings IEEE,
pages 1–9. IEEE, 2010. 114

345

https://www.dataprotection.ie/sites/default/files/uploads/2020-02/Data%20Security%20Guidance_Feb20.pdf
https://www.dataprotection.ie/sites/default/files/uploads/2020-02/Data%20Security%20Guidance_Feb20.pdf
https://www.dataprotection.ie/sites/default/files/uploads/2020-02/Data%20Security%20Guidance_Feb20.pdf
https://www.linkedin.com/pulse/password-sanity-thank-you-nist-philip-cox
https://www.linkedin.com/pulse/password-sanity-thank-you-nist-philip-cox
https://www.linkedin.com/pulse/password-sanity-thank-you-nist-philip-cox

Bibliography

[36] Paul Dixon, 2002. https://www.pastebin.com. 87

[37] Yadolah Dodge. Central Limit Theorem. Springer New York, New York,
NY, 2008. 165

[38] Vincent Drury and Ulrike Meyer. Certified phishing: taking a look at
public key certificates of phishing websites. In 15th Symposium on Usable
Privacy and Security (SOUPS’19). USENIX Association, Berkeley, CA,
USA, pages 211–223, 2019. 27, 238

[39] Dublin City University. Baseline password policy. https://
www4.dcu.ie/sites/default/files/policy/83%20%20password_
policy_iss_v1.pdf. Accessed: 2016-12-02. 31

[40] Paul Ducklin. Anatomy of a password disaster - Adobe’s giant-sized
cryptographic blunder. https://nakedsecurity.sophos.com/2013/
11/04/anatomy-of-a-password-disaster-adobes-giant-sized-
cryptographic-blunder/, 2013. Accessed: 2018-08-16. 262, 288

[41] John E Dunn. Why NIST’s Bill Burr shouldn’t regret his 2003 password
advice, 2017. https://nakedsecurity.sophos.com/2017/08/11/why-
nists-bill-burr-shouldnt-regret-his-2003-password-advice/,
Accessed: 2019-02-19. 156, 170

[42] Markus Dürmuth, Fabian Angelstorf, Claude Castelluccia, Daniele Per-
ito, and Abdelberi Chaabane. Omen: Faster password guessing using an
ordered markov enumerator. In International Symposium on Engineer-
ing Secure Software and Systems, pages 119–132. Springer, 2015. 80,
114

[43] Malin Eiband, Mohamed Khamis, Emanuel Von Zezschwitz, Heinrich
Hussmann, and Florian Alt. Understanding shoulder surfing in the wild:
Stories from users and observers. In Proceedings of the 2017 CHI Confer-
ence on Human Factors in Computing Systems, pages 4254–4265. ACM,
2017. 35

[44] Scott R Eliason. Maximum likelihood estimation: Logic and practice.
Number 96 in Quantitative Applications in the Social Sciences. Sage,
1993. 119

346

https://www.pastebin.com
https://www4.dcu.ie/sites/default/files/policy/83%20%20password_policy_iss_v1.pdf
https://www4.dcu.ie/sites/default/files/policy/83%20%20password_policy_iss_v1.pdf
https://www4.dcu.ie/sites/default/files/policy/83%20%20password_policy_iss_v1.pdf
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2017/08/11/why-nists-bill-burr-shouldnt-regret-his-2003-password-advice/
https://nakedsecurity.sophos.com/2017/08/11/why-nists-bill-burr-shouldnt-regret-his-2003-password-advice/

Bibliography

[45] Larry D Evans. A two-score composite program for combining stan-
dard scores. Behavior Research Methods, Instruments, & Computers,
28(2):209–213, 1996. 181

[46] Sascha Fahl, Marian Harbach, Yasemin Acar, and Matthew Smith. On
the ecological validity of a password study. In Proceedings of the Ninth
Symposium on Usable Privacy and Security, page 13. ACM, 2013. 8

[47] Mohammed Farik and AS Ali. Analysis of default passwords in routers
against brute-force attack. International Journal of Technology En-
hancements and Emerging Engineering Research, 4(9):341–345, 2015.
24

[48] PUB FIPS. Federal information processing standard publication 140-
2. Security Requirements for Cryptographic Modules, 25, 2001. (with
Change Notices through December 3, 2002), Accessed: 2018-11-12. 298,
309, 315, 327

[49] Dinei Florêncio and Cormac Herley. Where do security policies come
from? In Proceedings of the Sixth Symposium on Usable Privacy and
Security, page 10. ACM, 2010. 55, 178, 331

[50] Dinei Florêncio, Cormac Herley, and Baris Coskun. Do strong web
passwords accomplish anything? HotSec, 7(6), 2007. 35, 38, 67, 242

[51] Dinei Florêncio, Cormac Herley, and Paul C Van Oorschot. An admin-
istrator’s guide to internet password research. In LISA, pages 35–52,
2014. 35, 36, 77, 277

[52] Dinei Florêncio, Cormac Herley, and Paul C Van Oorschot. Password
portfolios and the finite-effort user: Sustainably managing large numbers
of accounts. In USENIX Security, pages 575–590, 2014. vi, 34, 46

[53] Dinei Florêncio, Cormac Herley, and Paul C Van Oorschot. Pushing on
string: The’don’t care’region of password strength. Communications of
the ACM, 59(11):66–74, 2016. 32, 109, 164

[54] Steven Furnell. An assessment of website password practices. Computers
& Security, 26(7-8):445–451, 2007. 73

347

Bibliography

[55] Get Safe Online. Passwords. https://www.getsafeonline.org/
protecting-yourself/passwords/. Accessed: 2016-12-01. 31

[56] Maximilian Golla and Markus Dürmuth. On the accuracy of password
strength meters. In CCS ’18, pages 1567–1582, 2018. 89, 123, 129

[57] Maximilian Golla, Miranda Wei, Juliette Hainline, Lydia Filipe, Markus
Dürmuth, Elissa Redmiles, and Blase Ur. What was that site doing
with my facebook password?: Designing password-reuse notifications.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1549–1566. ACM, 2018. 14, 15

[58] Google. Creating a strong password. https://support.google.com/
accounts/answer/32040?hl=en. Accessed: 2016-12-17. 34

[59] Paul A Grassi, Michael E Garcia, and James L Fenton. SP-800-63 Digital
identity guidelines. NIST special publication, 800:63–3, 2017. https://
pages.nist.gov/800-63-3/. 23, 29, 55, 69, 77, 108, 171, 254, 256, 275,
297

[60] Jeffrey Grobaski. You hate changing your password and it doesn’t
help. https://epicriver.com/you-hate-changing-your-password-
and-it-doesnt-help/, 2016. Accessed: 2016-03-06. 25

[61] Kimmo Halunen, Juha Häikiö, and Visa Vallivaara. Evaluation of user
authentication methods in the gadget-free world. Pervasive and Mobile
Computing, 40:220–241, 2017. 15

[62] Weili Han, Zhigong Li, Lang Yuan, and Wenyuan Xu. Regional patterns
and vulnerability analysis of chinese web passwords. IEEE Transactions
on Information Forensics and Security, 11(2):258–272, 2015. 142

[63] Hashcat. https://hashcat.net. Accessed: 2020-06-09. 14, 113, 116

[64] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halder-
man. Mining your Ps and Qs: detection of widespread weak keys in
network devices. In USENIX Security Symposium, volume 8, page 1,
2012. 288

348

https://www.getsafeonline.org/protecting-yourself/passwords/
https://www.getsafeonline.org/protecting-yourself/passwords/
https://support.google.com/accounts/answer/32040?hl=en
https://support.google.com/accounts/answer/32040?hl=en
https://pages.nist.gov/800-63-3/
https://pages.nist.gov/800-63-3/
https://epicriver.com/you-hate-changing-your-password-and-it-doesnt-help/
https://epicriver.com/you-hate-changing-your-password-and-it-doesnt-help/
https://hashcat.net

Bibliography

[65] Maria Henriquez, 2019. https://www.securitymagazine.com/
articles/91366-the-top-12-data-breaches-of-2019, Accessed:
2020-03-20. 77

[66] Cormac Herley. So long, and no thanks for the externalities: the rational
rejection of security advice by users. In Proceedings of the 2009 workshop
on New security paradigms workshop, pages 133–144. ACM, 2009. 16,
23, 28, 55, 160, 240

[67] Cormac Herley and Paul Van Oorschot. A research agenda acknowledg-
ing the persistence of passwords. IEEE Security & Privacy, 10(1):28–36,
2012. 172, 256

[68] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando Perez-
Cruz. Passgan: A deep learning approach for password guessing. In
International Conference on Applied Cryptography and Network Secu-
rity, pages 217–237. Springer, 2019. 80, 115

[69] Roger A Horn and Charles R Johnson. Matrix analysis, 1985. 85

[70] S Houshmand and S Aggarwal. Using personal information in targeted
grammar-based probabilistic password attacks. In IFIP Int. Conf. on
Digital Forensics, pages 285–303. Springer, 2017. 79, 115

[71] Hang Hu and Gang Wang. End-to-end measurements of email spoofing
attacks. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1095–1112, 2018. 27

[72] Troy Hunt. Have I Been Pwned. https://haveibeenpwned.com/. 228

[73] Troy Hunt. The “cobra effect” that is disabling paste on pass-
word fields. https://www.troyhunt.com/the-cobra-effect-that-
is-disabling/, 2014. 17, 74

[74] Troy Hunt. The 773 million record “collection #1” data breach.
2019. https://www.troyhunt.com/the-773-million-record-
collection-1-data-reach, 2019. Accessed: 2020-09-09. 142

[75] Philip G Inglesant and M Angela Sasse. The true cost of unusable pass-
word policies: password use in the wild. In Proceedings of the SIGCHI

349

https://www.securitymagazine.com/articles/91366-the-top-12-data-breaches-of-2019
https://www.securitymagazine.com/articles/91366-the-top-12-data-breaches-of-2019
https://haveibeenpwned.com/
https://www.troyhunt.com/the-cobra-effect-that-is-disabling/
https://www.troyhunt.com/the-cobra-effect-that-is-disabling/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach

Bibliography

Conference on Human Factors in Computing Systems, pages 383–392.
ACM, 2010. 16, 33

[76] Intel. Password rules. https://ssl.intel.com/reg-app/popup.aspx?
Popuptype=PWD-RULES-CONF. Accessed: 2016-12-02. 29

[77] Interactive brokers. Tips for creating a secure password. https://
gdcdyn.interactivebrokers.com/Universal/Application. Ac-
cessed: 2016-12-02. 29

[78] Joe account dictionary definition | joe account defined. https://www.
yourdictionary.com/joe-account. 31

[79] Audun Jøsang, Bander AlFayyadh, Tyrone Grandison, Mohammed Al-
Zomai, and Judith McNamara. Security usability principles for vul-
nerability analysis and risk assessment. In Twenty-Third Annual Com-
puter Security Applications Conference (ACSAC 2007), pages 269–278.
IEEE, 2007. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=4412995. 158

[80] John the ripper password cracking. https://www.openwall.com/
john/. Accessed: 2020-06-09. 14, 101, 113, 116

[81] Joseph ‘Jofish’ Kaye. Self-reported password sharing strategies. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 2619–2622. ACM, 2011. 34

[82] Sarah Keller. Password changes to be required every 120 days.
https://thesimpsonian.com/13442/uncategorized/password-
changes-to-be-required-every-120-days/, 2008. Accessed: 2020-
10-08. 331

[83] Patrick Gage Kelley, Saranga Komanduri, Michelle L Mazurek, Richard
Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cra-
nor, and Julio Lopez. Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms. In Secu-
rity and Privacy (SP), 2012 IEEE Symposium on, pages 523–537. IEEE,
2012. 14, 24, 79, 114, 237, 238, 263, 266, 271, 290, 321, 336

350

https://ssl.intel.com/reg-app/popup.aspx?Popuptype=PWD-RULES-CONF
https://ssl.intel.com/reg-app/popup.aspx?Popuptype=PWD-RULES-CONF
https://gdcdyn.interactivebrokers.com/Universal/Application
https://gdcdyn.interactivebrokers.com/Universal/Application
https://www.yourdictionary.com/joe-account
https://www.yourdictionary.com/joe-account
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4412995
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4412995
https://www.openwall.com/john/
https://www.openwall.com/john/
https://thesimpsonian.com/13442/uncategorized/password-changes-to-be-required-every-120-days/
https://thesimpsonian.com/13442/uncategorized/password-changes-to-be-required-every-120-days/

Bibliography

[84] Daniel V Klein. Foiling the cracker: A survey of, and improvements to,
password security. In Proceedings of the 2nd USENIX Security Work-
shop, pages 5–14, 1990. 30

[85] Saranga Komanduri. personal communication. 256, 274, 276, 308, 324,
325

[86] Saranga Komanduri. Modeling the adversary to evaluate password
strength with limited samples. PhD thesis, Carnegie Mellon University,
2016. 274

[87] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L
Mazurek, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge
Egelman. Of passwords and people: measuring the effect of password-
composition policies. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 2595–2604. ACM, 2011. 24,
32, 240, 256, 274

[88] KoreLogic. Crack Me If You Can (CMIYC), 2020. https://contest-
2020.korelogic.com/. 116

[89] Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar
Weippl. “I have no idea what I’m doing”-on the usability of deploying
https. In Proceedings of the 26th USENIX Security Symposium, ser.
USENIX Security, volume 17, pages 1339–1356, 2017. 37, 261

[90] Manu Kumar, Tal Garfinkel, Dan Boneh, and Terry Winograd. Reduc-
ing shoulder-surfing by using gaze-based password entry. In Proceedings
of the 3rd symposium on Usable privacy and security, pages 13–19. ACM,
2007. 35

[91] Butler Lampson. Privacy and security usable security: how to get it.
Communications of the ACM, 52(11):25–27, 2009. 157

[92] Let’s encrypt. https://letsencrypt.org/. 37, 261

[93] John Leyden. Write down your password today. http://www.
theregister.co.uk/2005/07/19/password_schneier/, 2005. Ac-
cessed: 2017-01-20. 32, 240

351

https://contest-2020.korelogic.com/
https://contest-2020.korelogic.com/
https://letsencrypt.org/
http://www.theregister.co.uk/2005/07/19/password_schneier/
http://www.theregister.co.uk/2005/07/19/password_schneier/

Bibliography

[94] Yue Li, Haining Wang, and Kun Sun. A study of personal informa-
tion in human-chosen passwords and its security implications. In IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications, pages 1–9. IEEE, 2016. 114

[95] Holly Lockhart, Drew Nicholas, and Sarah Roberts. Demystifying pass-
word hash sync. https://www.microsoft.com/security/blog/2019/
05/30/demystifying-password-hash-sync/, 2019. 234

[96] Victor Lomne and Thomas Roche. A Side Journey to Titan: Side-
Channel Attack on the Google Titan Security Key (Revealing and Break-
ing NXPâĂŹs P5x ECDSA Implementation on the Way). NinjaLab,
2021. 302

[97] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. A study of prob-
abilistic password models. In 2014 IEEE Symposium on Security and
Privacy, pages 689–704. IEEE, 2014. 114

[98] David Malone and Kevin Maher. Investigating the distribution of pass-
word choices. In Proceedings of the 21st international conference on
World Wide Web, pages 301–310. ACM, 2012. 7, 14, 37, 79, 88, 108,
112, 142, 244, 247, 263

[99] Udi Manber. A simple scheme to make passwords based on one-way
functions much harder to crack. Computers & Security, 15(2):171–176,
1996. 172, 262

[100] James L Massey. Guessing and entropy. In Information Theory, 1994.
Proceedings., 1994 IEEE International Symposium on, page 204. IEEE,
1994. 79, 81

[101] Robert McMillan. The Man Who Wrote Those Password Rules Has
a New Tip: N3v$r M1ˆd! . https://nakedsecurity.sophos.com/
2017/08/11/why-nists-bill-burr-shouldnt-regret-his-2003-
password-advice/, 2017. Accessed: 2020-10-12. 170, 171, 190

[102] William Melicher, Blase Ur, Sean M Segreti, Saranga Komanduri, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. Fast, lean, and ac-
curate: Modeling password guessability using neural networks. In 25th

352

https://www.microsoft.com/security/blog/2019/05/30/demystifying-password-hash-sync/
https://www.microsoft.com/security/blog/2019/05/30/demystifying-password-hash-sync/
https://nakedsecurity.sophos.com/2017/08/11/why-nists-bill-burr-shouldnt-regret-his-2003-password-advice/
https://nakedsecurity.sophos.com/2017/08/11/why-nists-bill-burr-shouldnt-regret-his-2003-password-advice/
https://nakedsecurity.sophos.com/2017/08/11/why-nists-bill-burr-shouldnt-regret-his-2003-password-advice/

Bibliography

USENIX Security Symposium (USENIX Security 16), pages 175–191,
2016. 80, 114

[103] Microsoft TechNet Magazine. Best practices for enforcing password poli-
cies. https://technet.microsoft.com/en-us/library/ff741764.
aspx. Accessed: 2016-12-06. 25

[104] Martin Mihajlov, Borka Jerman Blazic, and Saso Josimovski. Quantify-
ing usability and security in authentication. In 2011 IEEE 35th Annual
Computer Software and Applications Conference, pages 626–629. IEEE,
2011. 159

[105] Martin Mihajlov, Borka Jerman-Blazič, and Saso Josimovski. A con-
ceptual framework for evaluating usable security in authentication
mechanisms-usability perspectives. In 2011 5th international conference
on network and system security, pages 332–336. IEEE, 2011. 159

[106] Robert Morris and Ken Thompson. Password security: A case history.
Communications of the ACM, 22(11):594–597, 1979. 14, 36, 79, 113

[107] Mozy.ie. Lost & found - data loss research. https://mozy.ie/about/
news/reports/lost-and-found/, 2012. Accessed: 2019-02-02. 256,
310

[108] David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell.
TOTP: time-based one-time password algorithm. https://tools.
ietf.org/html/rfc6238, 2011. 225

[109] Alec Muffet. Cracklib: a proactive password sanity library. Dec, 14:1–5,
1997. 222

[110] Alec Muffett. “Crack Version 4.1”: A sensible password checker for
Unix. disponible par ftp à l’adresse ftp. cert. org, 1992. 30

[111] Hazel Murray. Password advice analysis. https://github.com/
HazelMurray/password_advice_analysis, 2019. 6, 193

[112] Hazel Murray. Authentication costs administrator study. https://
github.com/HazelMurray/authentication_costs_admin_study,
2020. 6, 45, 193

353

https://technet.microsoft.com/en-us/library/ff741764.aspx
https://technet.microsoft.com/en-us/library/ff741764.aspx
https://mozy.ie/about/news/reports/lost-and-found/
https://mozy.ie/about/news/reports/lost-and-found/
https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
https://github.com/HazelMurray/password_advice_analysis
https://github.com/HazelMurray/password_advice_analysis
https://github.com/HazelMurray/authentication_costs_admin_study
https://github.com/HazelMurray/authentication_costs_admin_study

Bibliography

[113] Hazel Murray. Authentication costs user study. https://github.com/
HazelMurray/authentication_costs_user_study, 2020. 6, 45, 193

[114] Hazel Murray and David Malone. Evaluating password advice. In 2017
28th Irish Signals and Systems Conference (ISSC), pages 1–6. IEEE,
2017. 12, 13, 40

[115] Hazel Murray and David Malone. Exploring the impact of password
dataset distribution on guessing. In 2018 16th Annual Conference on
Privacy, Security and Trust (PST), pages 1–8. IEEE, 2018. 37, 76, 109,
244, 247

[116] Hazel Murray and David Malone. Convergence of password guessing to
optimal success rates. Entropy, 22(4):378, 2020. 76, 112, 123, 263

[117] Hazel Murray and David Malone. Multi-Armed Bandit Approach to
Password Guessing. In Who Are You?! Adventures in Authentication
Workshop, WAY ’20, pages 1–6, Virtual Conference, August 2020. 111

[118] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on
passwords using time-space tradeoff. In Proceedings of the 12th ACM
conference on Computer and communications security, pages 364–372.
ACM, 2005. 78, 113

[119] Jakob Nielsen. Let’s encrypt. https://www.nngroup.com/articles/
stop-password-masking/, 2009. 35

[120] NIST Joint Task Force Transformation Initiative Interagency Work-
ing Group. Security and privacy controls for federal information
systems and organizations. NIST Special Publication, 800(53):8–13,
2013. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-53r4.pdf. Accessed 2019-02-22. 256, 259, 298

[121] NIST, SP. 800-44 version 2. Guidelines on Securing Public Web Servers,
2007. 170, 330

[122] NIST, SP. 800-45 version 2. Guidelines on Electronic Mail Security,
2007. 170, 330

[123] Rishab Nithyanand and Rob Johnson. The password allocation problem:
Strategies for reusing passwords effectively. In Proceedings of the 12th

354

https://github.com/HazelMurray/authentication_costs_user_study
https://github.com/HazelMurray/authentication_costs_user_study
https://www.nngroup.com/articles/stop-password-masking/
https://www.nngroup.com/articles/stop-password-masking/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

Bibliography

ACM workshop on Workshop on privacy in the electronic society, pages
255–260, 2013. 14

[124] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-
off. In Annual International Cryptology Conference, pages 617–630.
Springer, 2003. 77

[125] OSSG Documentation. OpenVMS System Manager’s Manual. https://
www0.mi.infn.it/~calcolo/OpenVMS/ssb71/6015/6017p035.htm,
1996. Accessed: 2020-10-08. 330

[126] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas Ristenpart. Be-
yond credential stuffing: Password similarity models using neural net-
works. In 2019 IEEE Symposium on Security and Privacy (SP), pages
417–434. IEEE, 2019. 115

[127] Dario Pasquini, Ankit Gangwal, Giuseppe Ateniese, Massimo Bernaschi,
and Mauro Conti. Improving password guessing via representation learn-
ing. arXiv preprint arXiv:1910.04232, 2019. 115

[128] Paolo Passeri. 2017 cyber attacks statistics, 2018. http://www.
hackmageddon.com/2018/01/17/2017-cyber-attacks-statistics/.
Accessed: 2019-02-20. 264, 266, 277, 301

[129] Paypal. Tips for creating a secure password. https://www.paypal.com/
ie/selfhelp/article/tips-for-creating-a-secure-password-
faq3152. Accessed: 2016-12-02. 29, 73

[130] Roel Peeters, Jens Hermans, Pieter Maene, Katri Grenman, Kimmo
Halunen, and Juha Häikiö. n-auth: Mobile authentication done right.
In Proceedings of the 33rd Annual Computer Security Applications Con-
ference, pages 1–15, 2017. 15, 38

[131] Pixie Technology Inc. Lost and found: The average american
spends 2.5 days each year looking for lost items collectively cost-
ing u.s. households $2.7 billion annually in replacement costs.
https://www.prnewswire.com/news-releases/lost-and-found-
the-average-american-spends-25-days-each-year-looking-for-
lost-items-collectively-costing-us-households-27-billion-

355

https://www0.mi.infn.it/~calcolo/OpenVMS/ssb71/6015/6017p035.htm
https://www0.mi.infn.it/~calcolo/OpenVMS/ssb71/6015/6017p035.htm
http://www.hackmageddon.com/2018/01/17/2017-cyber-attacks-statistics/
http://www.hackmageddon.com/2018/01/17/2017-cyber-attacks-statistics/
https://www.paypal.com/ie/selfhelp/article/tips-for-creating-a-secure-password-faq3152
https://www.paypal.com/ie/selfhelp/article/tips-for-creating-a-secure-password-faq3152
https://www.paypal.com/ie/selfhelp/article/tips-for-creating-a-secure-password-faq3152
https://www.prnewswire.com/news-releases/lost-and-found-the-average-american-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billion-annually-in-replacement-costs-300449305.html
https://www.prnewswire.com/news-releases/lost-and-found-the-average-american-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billion-annually-in-replacement-costs-300449305.html
https://www.prnewswire.com/news-releases/lost-and-found-the-average-american-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billion-annually-in-replacement-costs-300449305.html
https://www.prnewswire.com/news-releases/lost-and-found-the-average-american-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billion-annually-in-replacement-costs-300449305.html

Bibliography

annually-in-replacement-costs-300449305.html, 2017. Accessed:
2019-02-02. 256, 310, 328

[132] Ponemon Institute LLC. 2018 cost of a data breach study. Tech-
nical report, Ponemon Institute LLC, 2018. https://www.ibm.com/
downloads/cas/861MNWN2. Accessed 2018-07-25. 173, 251

[133] Paulo C Realpe, Cesar A Collazos, Julio Hurtado, and Antoni Gra-
nollers. A set of heuristics for usable security and user authentication.
In Proceedings of the XVII International Conference on Human Com-
puter Interaction, pages 1–8, 2016. 160

[134] Elissa M Redmiles, Michelle L Mazurek, and John P Dickerson. Dancing
pigs or externalities? measuring the rationality of security decisions. In
Proceedings of the 2018 ACM Conference on Economics and Computa-
tion, pages 215–232, 2018. 16

[135] Elissa M Redmiles, Noel Warford, Amritha Jayanti, Aravind Koneru,
Sean Kross, Miraida Morales, Rock Stevens, and Michelle L Mazurek.
A comprehensive quality evaluation of security and privacy advice on
the web. In 29th {USENIX} Security Symposium ({USENIX} Security
20), pages 89–108, 2020. 16

[136] General Data Protection Regulation. Regulation (EU) 2016/679 of the
european parliament and of the council of 27 april 2016 on the protection
of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing directive 95/46. Official
Journal of the European Union (OJ), 59(1-88):294, 2016. 184

[137] Karen Renaud. Quantifying the quality of web authentication mecha-
nisms: a usability perspective. Journal of Web Engineering, 3(2):95–123,
2004. 157, 159

[138] Karen Renaud. Evaluating authentication mechanisms. Security and
usability, pages 103–128, 2005. 157

[139] Karen Renaud. A process for supporting risk-aware web authentication
mechanism choice. Reliability Engineering & System Safety, 92(9):1204–
1217, 2007. 158

356

https://www.prnewswire.com/news-releases/lost-and-found-the-average-american-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billion-annually-in-replacement-costs-300449305.html
https://www.prnewswire.com/news-releases/lost-and-found-the-average-american-spends-25-days-each-year-looking-for-lost-items-collectively-costing-us-households-27-billion-annually-in-replacement-costs-300449305.html
https://www.ibm.com/downloads/cas/861MNWN2
https://www.ibm.com/downloads/cas/861MNWN2

Bibliography

[140] Volker Roth, Kai Richter, and Rene Freidinger. A pin-entry method re-
silient against shoulder surfing. In Proceedings of the 11th ACM confer-
ence on Computer and communications security, pages 236–245. ACM,
2004. 35

[141] Von Christiane RÃĳtten. Passwortdaten von flirtlife.de kompromittiert,
2006. https://www.heise.de/security/meldung/Passwortdaten-
von-Flirtlife-de-kompromittiert-126608.html, Accessed: 2019-
12-04. 88

[142] Software as a service (SaaS). https://en.wikipedia.org/wiki/
Software_as_a_service. 220

[143] Cem S Sahin, Robert Lychev, and Neal Wagner. General frame-
work for evaluating password complexity and strength. arXiv preprint
arXiv:1512.05814, 2015. 263

[144] Stuart Schechter, AJ Bernheim Brush, and Serge Egelman. It’s no se-
cret. measuring the security and reliability of authentication via “secret”
questions. In 2009 30th IEEE Symposium on Security and Privacy, pages
375–390. IEEE, 2009. 22

[145] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Pop-
ularity is everything: A new approach to protecting passwords from
statistical-guessing attacks. In Proceedings of the 5th USENIX confer-
ence on Hot topics in security, pages 1–8, 2010. 79

[146] Stuart E Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer.
The emperor’s new security indicators. In 2007 IEEE Symposium on
Security and Privacy (SP’07), pages 51–65. IEEE, 2007. 27

[147] Bruce Schneier. The pros and cons of password mask-
ing. https://www.schneier.com/blog/archives/2009/07/
the_pros_and_co.html, 2009. 35

[148] Richard Shay and Elisa Bertino. A comprehensive simulation tool for
the analysis of password policies. International Journal of Information
Security, 8(4):275–289, 2009. 16, 55, 159, 160, 274

357

https://www.heise.de/security/meldung/Passwortdaten-von-Flirtlife-de-kompromittiert-126608.html
https://www.heise.de/security/meldung/Passwortdaten-von-Flirtlife-de-kompromittiert-126608.html
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://www.schneier.com/blog/archives/2009/07/the_pros_and_co.html
https://www.schneier.com/blog/archives/2009/07/the_pros_and_co.html

Bibliography

[149] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Gio-
vanni Leon, Michelle L Mazurek, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Encountering stronger password requirements: user
attitudes and behaviors. In Proceedings of the Sixth Symposium on Us-
able Privacy and Security, page 2. ACM, 2010. 25, 32, 243, 260

[150] David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson.
Password managers: Attacks and defenses. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 449–464, 2014. 30, 239

[151] Randy Franklin Smith. Controlling user account logons.
https://www.itprotoday.com/windows-78/controlling-user-
account-logons, 2003. Accessed: 2020-10-08. 330

[152] Simple Network Management Protocol (SNMP). https://csrc.nist.
gov/glossary/term/simple_network_management_protocol. 29

[153] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann,
and Meiko Jensen. On breaking SAML: Be whoever you want to be. In
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12), pages 397–412, 2012. 57

[154] Frank Stajano. Pico: No more passwords! In International Workshop
on Security Protocols, pages 49–81. Springer, 2011. 14, 15

[155] Nick Statt. Best practices for passwords updated after original author
regrets his advice. https://www.theverge.com/2017/8/7/16107966/
password-tips-bill-burr-regrets-advice-nits-cybersecurity,
2017. Accessed: 2020-10-12. 170, 171, 190

[156] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018. 117

[157] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Fel-
egyhazi, and Chris Kanich. The long “taile” of typosquatting domain
names. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 191–206, 2014. 238

[158] Albert Tannous, Jonathan Trostle, Mohamed Hassan, Stephen E
McLaughlin, and Trent Jaeger. New side channels targeted at pass-

358

https://www.itprotoday.com/windows-78/controlling-user-account-logons
https://www.itprotoday.com/windows-78/controlling-user-account-logons
https://csrc.nist.gov/glossary/term/simple_network_management_protocol
https://csrc.nist.gov/glossary/term/simple_network_management_protocol
https://www.theverge.com/2017/8/7/16107966/password-tips-bill-burr-regrets-advice-nits-cybersecurity
https://www.theverge.com/2017/8/7/16107966/password-tips-bill-burr-regrets-advice-nits-cybersecurity

Bibliography

words. In Computer Security Applications Conference, 2008. ACSAC
2008. Annual, pages 45–54. IEEE, 2008. 264, 302

[159] Think with Google. How mobile has redefined the consumer deci-
sion journey for shoppers. https://www.thinkwithgoogle.com/
marketing-resources/micro-moments/mobile-shoppers-
consumer-decision-journey/, 2016. Accessed: 2019-02-01. 256,
308

[160] Daniel R Thomas, Sergio Pastrana, Alice Hutchings, Richard Clayton,
and Alastair R Beresford. Ethical issues in research using datasets of
illicit origin. In Proceedings of the 2017 Internet Measurement Confer-
ence, pages 445–462. ACM, 2017. 7

[161] Marc Toussaint. Lecture notes: Some notes on gradient de-
scent. https://ipvs.informatik.uni-stuttgart.de/mlr/marc/
notes/gradientDescent.pdf, 2012. Accessed=2020-10-20. 138

[162] Alexandre B Tsybakov. Introduction to nonparametric estimation.
Springer Science & Business Media, 2008. 83

[163] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael
Maass, Michelle L Mazurek, Timothy Passaro, Richard Shay, Timothy
Vidas, Lujo Bauer, et al. How does your password measure up? the
effect of strength meters on password creation. In USENIX Security
Symposium, pages 65–80, 2012. 14, 79, 256, 276

[164] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M Segreti, Richard Shay,
Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. “I added ‘!’ at
the end to make it secure”: observing password creation in the lab. In
Proceedings of SOUPS, 2015. 24, 256, 274

[165] Blase Ur, Sean M Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Saranga Komanduri, Darya Kurilova, Michelle L Mazurek,
William Melicher, and Richard Shay. Measuring real-world accuracies
and biases in modeling password guessability. In 24th USENIX Security
Symposium (USENIX Security 15), pages 463–481, 2015. 80

359

https://www.thinkwithgoogle.com/marketing-resources/micro-moments/mobile-shoppers-consumer-decision-journey/
https://www.thinkwithgoogle.com/marketing-resources/micro-moments/mobile-shoppers-consumer-decision-journey/
https://www.thinkwithgoogle.com/marketing-resources/micro-moments/mobile-shoppers-consumer-decision-journey/
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gradientDescent.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gradientDescent.pdf

Bibliography

[166] USENIX Security ’17 Poster Session. https://www.usenix.org/
conference/usenixsecurity17/poster-session, 2017. Accessed:
2020-10-13. 12

[167] Rishi Vaidya. Cyber security breaches survey 2018. https://
assets.publishing.service.gov.uk/government/uploads/
system/uploads/attachment_data/file/702074/Cyber_Security_
Breaches_Survey_2018_-_Main_Report.pdf, 2018. 174, 252

[168] Kami Vaniea and Yasmeen Rashidi. Tales of software updates: The
process of updating software. In Proceedings of the 2016 CHI conference
on human factors in computing systems, pages 3215–3226. ACM, 2016.
28

[169] Verizon. 2017 data breach investigations report. Technical report, Veri-
zon, 2017. http://www.verizonenterprise.com/verizon-insights-
lab/dbir/2017/. Accessed: 2018-01-25. 173, 253, 259, 261, 262, 269,
277

[170] ChunWang, Steve TK Jan, Hang Hu, Douglas Bossart, and Gang Wang.
The next domino to fall: Empirical analysis of user passwords across
online services. In Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy, pages 196–203. ACM, 2018. 14,
15

[171] Ding Wang, Haibo Cheng, Ping Wang, Xinyi Huang, and Gaopeng Jian.
Zipf’s law in passwords. IEEE Transactions on Information Forensics
and Security, 12(11):2776–2791, 2017. 263

[172] Ding Wang and Ping Wang. On the implications of zipf’s law in pass-
words. In European Symposium on Research in Computer Security,
pages 111–131. Springer, 2016. 7

[173] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. Tar-
geted online password guessing: An underestimated threat. In Proceed-
ings of the 2016 ACM SIGSAC conference on computer and communi-
cations security, pages 1242–1254, 2016. 89, 114

360

https://www.usenix.org/conference/usenixsecurity17/poster-session
https://www.usenix.org/conference/usenixsecurity17/poster-session
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/702074/Cyber_Security_Breaches_Survey_2018_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/702074/Cyber_Security_Breaches_Survey_2018_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/702074/Cyber_Security_Breaches_Survey_2018_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/702074/Cyber_Security_Breaches_Survey_2018_-_Main_Report.pdf
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/

Bibliography

[174] C. Warner. Passwords with simple character substitution are weak.
https://optimwise.com/passwords-with-simple-character-
substitution-are-weak/, 2010. Accessed: 2017-02-15. 33

[175] Miranda Wei, Maximilian Golla, and Blase Ur. The password doesn’t
fall far: How service influences password choice. Who Are You, 2018.
87, 108, 112

[176] M. Weir. The rockyou 32 million password list top 100.
reusablesec.blogspot.com/2009/12/rockyou-32-million-
password-list-top.htmls, 2009. Accessed: 2017-02-14. 32

[177] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing
metrics for password creation policies by attacking large sets of revealed
passwords. In Proceedings of the 17th ACM conference on Computer
and communications security, pages 162–175. ACM, 2010. 79

[178] Matt Weir, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek. Pass-
word cracking using probabilistic context-free grammars. In Security and
Privacy, 2009 30th IEEE Symposium on, pages 391–405. IEEE, 2009.
78, 80, 114, 263

[179] Dirk Weirich and Martina Angela Sasse. Persuasive password security.
In CHI’01 Extended Abstracts on Human Factors in Computing Systems,
pages 139–140. ACM, 2001. 34

[180] Zhiyang Xia, Ping Yi, Yunyu Liu, Bo Jiang, Wei Wang, and Ting Zhu.
Genpass: a multi-source deep learning model for password guessing.
IEEE Transactions on Multimedia, 22(5):1323–1332, 2019. 115

[181] XKCD. Password strength. https://xkcd.com/936/. 13

[182] Jianxin Jeff Yan. A note on proactive password checking. In Proceedings
of the 2001 workshop on New security paradigms, pages 127–135. ACM,
2001. 30

[183] Targeted bruteforcing - mining patterns in passwords to make brute-
forcing easy. https://www.reddit.com/r/netsec/comments/5asjeu/
targeted_bruteforcing_mining_patterns_in/, Accessed: 2020-03-
22. 89

361

https://optimwise.com/passwords-with-simple-character-substitution-are-weak/
https://optimwise.com/passwords-with-simple-character-substitution-are-weak/
reusablesec.blogspot.com/2009/12/rockyou-32- million-password-list-top.htmls
reusablesec.blogspot.com/2009/12/rockyou-32- million-password-list-top.htmls
https://xkcd.com/936/
https://www.reddit.com/r/netsec/comments/5asjeu/targeted_bruteforcing_mining_patterns_in/
https://www.reddit.com/r/netsec/comments/5asjeu/targeted_bruteforcing_mining_patterns_in/

Bibliography

[184] Shuo Zhang, Jianping Zeng, and Zewen Zhang. Password guessing time
based on guessing entropy and long-tailed password distribution in the
large-scale password dataset. In Anti-counterfeiting, Security, and Iden-
tification (ASID), 2017 11th IEEE International Conference on, pages
6–10. IEEE, 2017. 7

[185] Yinqian Zhang, Fabian Monrose, and Michael K Reiter. The security of
modern password expiration: An algorithmic framework and empirical
analysis. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 176–186. ACM, 2010. 25, 68, 243, 244

[186] Leah Zhang-Kennedy, Sonia Chiasson, and Paul van Oorschot. Revis-
iting password rules: facilitating human management of passwords. In
Electronic Crime Research (eCrime), 2016 APWG Symposium on, pages
1–10. IEEE, 2016. 32

[187] Moshe Zviran and William J. Haga. A comparison of password tech-
niques for multilevel authentication mechanisms. The Computer Jour-
nal, 36(3):227–237, 1993. 25

[188] Daniel Zwillinger. Standard mathematical tables and formulae. CRC
press, 2002. 85

362

	Introduction
	Overview
	Dissemination
	Publications
	Conferences and talks
	Additional outputs
	Funding

	Ethics
	Ethics of collecting and using leaked password datasets
	Ethics of authentication costs survey

	Conclusion

	Evaluating Password Advice
	Introduction
	Related Work
	Collection of password advice
	Categorization of password advice
	Method of categorization
	Classification into statements

	Discussion of advice collected
	Administrator Accounts
	Backup password options
	Backup work
	Composition
	Default Passwords
	Expiry
	Generated Passwords
	Individual Accounts
	Input
	Keeping system safe
	Keep your account safe
	Length
	Network: SNMP community strings
	Password auditing
	Password managers
	Personal information
	Personal password storage
	Phrases
	Policies
	Reuse
	Sharing
	Shoulder surfing
	Storage
	Throttling
	Transmitting passwords
	Two factor authentication
	Username
	Summary

	Costs Model
	Identification of Cost Categories
	Refining cost categories

	User study of costs
	User and administrator surveys
	Feedback on user cost categories
	Feedback on organisation cost categories
	Visualisation of survey responses

	Benefits Model
	Defining Benefit Categories
	Identifying Benefits of password advice
	Representation of password advice benefits in tables

	Discussion
	Costs discussion
	Approval of advice
	Costly advice
	Benefits discussion
	Costs versus benefits trade-off

	Conclusion

	Convergence of Password Guessing to Optimal Success Rates
	Introduction
	Related work
	Model
	Optimal Guessing
	Guessing With a Sample
	Guessing Loss

	Proof of Convergence of Password Guessing
	Test on Real-World Leaked Password Datasets
	Datasets
	Demonstration of Guessing Function

	Empirical Evidence of Convergence
	Spread of Results
	When Does Loss Reach Zero?

	Improvements to Models
	Cut-Off Point to Allow Loss
	Blocking Method to Allow Loss

	The Threat of Compromise from a Leaked Sample of Passwords
	Methodology
	Guessing Results: With Replacement
	Guessing Results: Without Replacement

	Discussion
	Conclusion

	Multi-armed bandit approach to password guessing
	Introduction
	Related work
	The multi-armed bandit problem
	Password guessing problem set up
	Maximum likelihood estimation
	Likelihood estimator
	Maximising the likelihood function
	Maximising within a constrained environment
	Gradient descent validation

	Variables in the multi-armed bandit model
	Gradient descent initialization variables
	Informing our guess choices
	Gradient descent step size

	Multi-armed bandit Validation
	Password set 1: 60% Flirtlife, 30% Hotmail, 10% Computerbits
	Password set 2: 60% 000webhost, 30% Hotmail, 10% Computerbits
	Password set 3: 60% Hotmail, 30% Flirtlife, 10% Computerbits
	Password set 4: 55% hotmail, 30% flirtlife, 10% 000webhost, 5% Computerbits

	Discussion of results for simulated password sets
	Choosing variables in the multi-armed bandit model
	Variables for optimising success
	Variables for estimating the characteristics of the password set
	Variables for Gradient descent step size

	Demographics
	Matching nationality characteristics
	Password nationality to inform guessing

	Improving password guessing
	Rockyou.com password set
	Yahoo.com password set

	Discussion of Results
	Conclusion

	Quantifying the costs and benefits of authentication policies
	Introduction
	Related work
	Cost and benefit categories
	Model
	Benefits
	Costs

	NIST authentication policies
	NIST 2003
	NIST 2017

	Value of the NIST 2017 policy
	Single result for a fictional company
	Do the benefits outweigh the costs?

	General analysis of security policies
	Number of users
	Changing saturation point
	Weight on user satisfaction
	General analysis summary

	Conclusion

	Conclusions
	Summary
	Challenges and Future Work

	Advice Statements
	Administrator Accounts
	Backup Password Options
	Backup work
	Composition
	Default Passwords
	Expiry
	Generated Passwords
	Individual Accounts
	Input
	Keeping system safe
	Keep your account safe
	Length
	Network: SNMP Community strings
	Password Auditing
	Password Managers
	Personal information
	Personal Password Storage
	Phrases
	Policies
	Reuse
	Sharing
	Shoulder surfing
	Storage
	Throttling
	Transmitting passwords
	Two factor Authentication
	Username

	Password Advice Costs
	User advice
	Backup password options
	Composition
	Keep your account safe
	Length
	Password managers
	Personal Information
	Personal Password Storage
	Phrases
	Reuse
	Sharing
	Two-factor authentication
	Username

	Organization advice
	Administrator Accounts
	Backup work
	Default passwords
	Expiry
	Generated passwords
	Distributed in a sealed envelope
	Individual accounts
	Input
	Keep accounts safe
	Network: SNMP community strings
	Password auditing
	Establish clear policies
	Shoulder surfing
	Storage
	Throttling
	Transmitting passwords
	Additional advice

	Password Advice Benefits
	User advice
	Back up password options
	Composition
	Keep your account safe
	Length
	Password managers
	Personal password storage
	Reuse
	Sharing
	Two-factor authentication
	Username

	Organization advice
	Administrator accounts
	Backup work
	Expiry
	Generated passwords
	Individual accounts
	Input
	Keep accounts safe
	Policies
	Storage
	Throttling
	Additional advice

	NIST Calculations
	Introduction
	Fictional company
	Statistics needed for policy analysis
	NIST 2017 Level 1 Worked example
	Policy summary
	Benefits: NIST 2017 Level 1 policy
	Costs: NIST 2017 Level 1 policy
	Value of the NIST 2017 Level 1 policy

	NIST 2003 Level 1 Worked example
	Policy summary
	Benefits: NIST 2003 Level 1 policy
	Costs: NIST 2003 Level 1 policy
	Value of the NIST 2003 Level 1 policy

	NIST 2017 Level 3 Worked example
	Policy summary
	Benefits: NIST 2017 Level 3 policy
	Costs: NIST 2017 Level 3 policy
	Value of the NIST 2017 Level 3 policy

	NIST 2003 Level 4 Worked example
	Policy summary
	Benefits: NIST 2003 Level 4 policy
	Costs: NIST 2003 Level 4 policy
	Value of the NIST 2003 Level 4 policy

	NIST 2007 policy Worked example
	Policy summary
	Benefits: NIST 2007 policy
	Costs: NIST 2007 policy
	Value of the NIST 2007 policy

	Bibliography

