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ABSTRACT 

The Phase Locked Loop (PLL) is an important component of many electronic 

devices; it can be employed as a frequency synthesizer, for clock data recovery, and 

as amplitude and frequency demodulators.  It is an inherently nonlinear closed loop 

feedback system; the nonlinearity is due mainly to the fact that the feedback loop 

comparator exhibits quantization-like effects at its output.  The consequence of this 

nonlinearity is a lack of understanding of the behaviour of the PLL loop, particularly 

the behaviour and stability of high order PLL systems. 

This thesis presents a new design technique for high order Digital PLL (DPLL) 

systems with a charge pump phase frequency detector component, offering an 

alternative to the common design practice which is to analyze the DPLL using a 

linearised model of the analogue PLL.  The linear model can only be justified for low 

order DPLL systems that are close to lock.  This is due to the fact that as the DPLL 

systems loop order and complexity increases the linear model becomes increasingly 

inaccurate, thus high orders are considered risky.  The benefit of a high order DPLL 

loop is a purer output signal with less jitter and therefore better spectral efficiency 

making them highly desirable.   

The design of high order DPLL systems is realised here by utilising three novel 

design techniques.  First, the complexity of the high order system equation is reduced 

by introducing an approximation of charge on the loop filter capacitors.  Second, the 

nonlinearity is modelled using a piecewise linear model, thus the complexity of the 

model is further reduced by determining the system stability and lock time from only 

the first few samples in state space.  Finally, to reduce the number of design variables 

that are required as the loop order is increased, filter prototypes, which only require 

one parameter, are introduced with the result of optimally placing the system poles.  

The consequence of implementing the above methodologies is that the mathematical 

restriction on the system order can be overcome and the stability of high order DPLL 

systems can be accurately determined.  
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

The Phase Locked Loop (PLL) is one of the most ubiquitous electronic components 

found in almost every electronic device from televisions to mobile phones, with a 

wide range of applications including frequency synthesis, clock data recovery, AM 

and FM demodulation, motor speed control, FSK decoders [1], and robotics to name 

but a few.  The pervasiveness and popularity of the PLL is due to the robust nature 

and spectral purity of the PLL output signal, which are impossible to realise without 

the use of the PLL loop.   

The performance of the PLL loop depends, in particular, on the loop filter 

characteristics.  If the loop filter bandwidth is designed to be too narrow, for low 

noise performance, then the PLL loop will be slow to lock.  Otherwise if the loop 

bandwidth is designed too wide for fast lock performance, then the filter may pass 

too much noise to the VCO causing the loop to become unstable.  Ideally the 

designer needs to choose a loop filter bandwidth that provides the optimum lock 

time; the noise performance is achieved by increasing the filter order, and thus 

increasing the filter roll-off characteristic by an extra 20dB/decade per order.  In 

general the most common system order is second, the reasons for this are: the relative 

simplicity of the design; the advanced field of linear PLL analysis that can be 

accurately applied to the design; and the fact that this linear analysis can be applied 

to all classes of second order PLL, including the Digital Phase Locked Loop (DPLL), 

the analogue PLL and the all-digital PLL.  As the system order is increased the linear 

methods become significantly less accurate [2, 3]; this is due to the fact that each 

class of PLL system mentioned above is in fact nonlinear.  The obvious solution to 

the design of such nonlinear PLL systems is to apply nonlinear methods to the PLL; 

however this solution is ineffective as it further complicates the analysis of an 

already complicated system, even for systems of low order.  Thus linear analysis 

methods are almost exclusively used in practice.   
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The topic of this thesis is the analysis and design of high order DPLL systems, 

something that is currently not achievable.  In order to enable the design of such high 

order DPLL systems two things need to be considered:  

1. How can the nonlinearity of the DPLL be accurately modelled using a 

mathematically tractable analysis?  

2. Is it mathematically feasible to extend this model to high order systems? 

The high order DPLL analysis methodology that is presented in this thesis accurately 

models the DPLL nonlinearity by using a piecewise linear analysis.  The 

complexities of the model equations are also reduced by introducing a novel charge 

approximation of the loop filter equations.  The resulting nonlinear design 

methodology is mathematically tractable, informative and extendable to higher 

orders. 

1.2 Structure of Thesis 

In Chapter 2 of this thesis the PLL system performance and operation is outlined in 

detail, considering each class of PLL individually.  Each component block within the 

PLL loop is presented, paying particular attention to the component blocks of the 

DPLL system.  Finally the loop noise performance and the desirable properties of 

high order systems are presented.  In Chapter 3 four different methods of modelling 

and analysing the DPLL are considered in detail, these are the linear approximation, 

nonlinear methods, circuit level simulation and finally event driven behavioural 

models.  

This thesis proposes the following novel solutions to enable the design of high order 

DPLL systems:  

1. The complexity of the DPLL system model equations is reduced by utilising 

a charge approximation of the loop filter equations.  It approximates the 

differential terms in the system equations making it mathematically feasible 

to solve for high orders in closed form.  This approximation is presented in 

Chapter 4.   

2. To further simplify the loop analysis a piecewise linear state space 

mathematical analysis is proposed in Chapter 5.  This technique determines 

the global stability boundaries for any order of DPLL. 
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3. In Chapter 6 both the charge approximation and the piecewise linear stability 

boundary analysis are used along with filter prototypes to produce a novel 

design methodology for high order DPLL systems.   

In the final chapter of this thesis, Chapter 7, the conclusions that are drawn from the 

thesis are given, these conclusions will include avenues for future work that now 

exist due to the outcomes of the research summarised by this thesis. 
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CHAPTER 2 

BACKGROUND 

2.1 Introduction 

The primary application of the Phase Locked Loop (PLL) is to generate a low noise 

signal with very precise frequency selection and stability.  It achieves this by using a 

closed loop feedback circuit where the loop error is the phase difference between a 

low noise crystal oscillator reference signal and a locally generated signal, the 

feedback loop minimises this error, this has the effect of synchronising both signals.  

The benefit of such a scheme is that the resulting PLL output signal is robust (i.e. not 

prone to frequency drift) due to the high pass nature of the PLL loop and by 

including a frequency divider on the feedback path of the loop, the output signal 

becomes some multiple of the input and can be varied by varying the feedback divide 

ratio.  Also, by utilising a PLL and in particular including a filter on the feed-forward 

section of the loop, the designer can choose the desired signal characteristics, such as 

low noise performance traded with a slow transient response.  With such beneficial 

performance characteristics it is understandable that the PLL is such a common 

electronic component. 

In this chapter an overview of the PLL system architecture and performance are 

presented, starting with a short review of the history of the PLL in Section 2.2.  In 

the following section, Section 2.3, an introduction to the operation is given, 

considering each of the PLL components individually and then briefly discussing the 

common classes of PLL system in use, i.e. the digital PLL, the analogue PLL and the 

all-digital PLL.  Arguably the most crucial component in the loop in terms of the 

system noise performance, transients and stability is the loop filter, this component is 

considered in detail in Section 2.4, paying particular attention to the loop filter 

parameters, the location of the system poles and zeros and how these may affect the 

loop performance.  The loop filter structure is restricted by a number of system 

requirements; the traditional PLL filter structure is outlined in Section 2.4.  In 

Section 2.5 the noise performance of the Digital PLL (DPLL) loop is considered, this 
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performance depends in part on the loop filter characteristics.  In terms of the PLL 

system noise, particular attention is given to sources of the noise within the loop, the 

characteristic frequency of each noise source and the optimum means of attenuating 

this noise.   

As mentioned, the loop filter is one of the more crucial PLL loop components in 

terms of the system performance.  The choice of filter bandwidth, filter order and 

system gain will ultimately define the overall performance of the PLL system.  

Ideally the loop filter should be of a high order, optimally attenuating the out of band 

noise with a high frequency roll-off factor; this however is a difficult task due to the 

stability issues that exist with these higher order systems.  In Section 2.6, 

consideration is given to the unique properties of such high order DPLL systems, 

why such systems are advantageous, why they are not currently popular and the 

issues that may arise when trying to design stable high order systems. 

2.2 History of the Phase Locked Loop 

The Phase Locked Loop (PLL) was first discussed in literature as far back as 1919 by 

Vincent [4] and Appleton [5], who experimented with the synchronization of 

oscillators.  It wasn’t until 1932 that it became a mainstream electronics device when 

it was used as part of a simpler alternative to the popular, but somewhat complicated 

superheterodyne receiver.  The alternative device became known as the homodyne or 

synchronous receiver; see Figure 2.1(a).   
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MixerRF Amp Audio Amp

Local Oscillator

f0 (drifting)

MixerRF Amp Audio Amp

Local Oscillator

f0 (drifting)

PLL

f0 (robust)

 

Figure 2.1 (a) Simple Homodyne Receiver  (b) Homodyne Receiver Incorporating a PLL 

The idea of the homodyne receiver was to tune a local oscillator signal to the desired 

input signal, and then demodulate the audio signal using a mixer and an audio 

amplifier.  This device was simpler than the superheterodyne equivalent but had the 

drawback that the oscillator frequency, f0, tended to drift in frequency and so the 

radio lost reception over a period of time.  The solution to this frequency drift, as 

proposed by de Bellescise in [6], was to use a PLL to synthesize the oscillator signal, 

see Figure 2.1(b).  This significantly reduced the frequency drift and thus improved 

the quality of the receiver output.  However at the time that this simple alternative 

was conceived (1932) the cost of including a PLL in every receiver was significant 

and so the superheterodyne receiver continued to be used commercially until the PLL 

became available as a cheaper integrated circuit in the late 1960’s. 

While including a PLL in a radio receiver was considered expensive for the masses, 

there were still many uses for PLLs.  One example, which achieved its first 

widespread commercial use was in the synchronization of the horizontal and vertical 

sweeps in television receivers [7].  Other earlier applications of the PLL was FM 

demodulation [8].  In the 1960’s interest and publications in PLLs increased 

dramatically and culminated in the development of the PLL Integrated Circuit, which 

facilitated the rapid introduction of PLLs into consumer electronic devices [1]. 

Today, PLLs play an important role in modern communication devices.  They are 

considered to be the most robust means of generating a low noise reference signal, 
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and the best means of determining the clock signal from a noisy source.  There has 

been much research in this area and new applications and architectural advances 

continue to be found.  The ubiquitousness of the PLL is due to its wide range of 

applications including frequency synthesis, phase modulation, clock data recovery, 

disk drive electronics, AM and FM demodulation, motor speed control, and FSK 

decoders [1], to name but a few.   

The original PLLs developed by Vincent, Appleton, and de Bellescise [4-6] were 

purely analogue systems synchronising two analogue signals (the analogue PLL – 

APLL), later it was found that the PLL could also be use to generate digital signals 

by replacing some of the loop components, this class of PLL is known as the digital 

PLL.  There are two types of digital PLL; these are the classical digital PLL (DPLL) 

and the all-digital PLL (ADPLL).  The DPLL is the most common class of PLL due 

to its robustness, stability performance and high frequency characteristics.  This 

thesis focuses on the classical DPLL.  Each class of PLL is considered briefly in the 

next section.   

2.3 Introduction to the Phase Locked Loop 

The primary application of a PLL is to produce a low noise robust (no frequency 

drift) signal output.  However considering that a robust signal can already be 

generated with the sole use of a crystal oscillator the question remains – why bother 

generating another signal by locking it to a noisy locally generated signal?  To 

answer this question consider the demodulation of a radio signal (Figure 2.2).  

Demodulator

Crystal Oscillator

fc

fm fo

 

Figure 2.2 Demodulation using a Crystal Oscillator 
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A crystal oscillator uses the resonance of a vibrating crystal of piezoelectric material 

to create an oscillating signal with a precise frequency.  The drawback of such a 

device is that the output frequency is fixed, so it is not possible to vary the carrier 

signal and tune in to another channel.  The alternative to this is to use a voltage 

controlled oscillator (VCO) to generate the carrier signal (Figure 2.3). 

Demodulator

Voltage 

Controlled 

Oscillator

fc

fm fo

VC
 

Figure 2.3 Demodulation using a VCO 

The VCO generates an output signal with a frequency of fc Hz; varying the VCO 

input voltage VC results in a corresponding change in the VCO output frequency (and 

therefore the carrier frequency), this allows the demodulator to tune into other 

channels.  The drawback of this setup is that the carrier signal fc is vulnerable to 

noise on the VC signal and any noise generated internally in the VCO device, thus 

this noise will be transferred discretely to the received radio signal.  The channel may 

also tune out after a period of time as the carrier frequency drifts.  The solution to 

both these issues is to use a combination of both the crystal oscillator and the VCO in 

the one feedback loop, as in Figure 2.4 below. 
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Figure 2.4 Phase Locked Loop Block Diagram 

The feedback system structure shown in Figure 2.4 is known as a phase locked loop.  

It determines the phase and frequency difference between the input reference signal 

φR, generated by the crystal oscillator (with a frequency of FR), and the VCO output 

signal φV (with a frequency of FV).  This difference, the loop error, φe, is reduced to 

zero by varying the VCO signal frequency, thus the loop error will be zero when the 

feedback and reference signals correspond in frequency and phase.  If the VCO 

output signal drifts in frequency then an error will become apparent in the loop, this 

error has the effect of changing the VC signal, driving the VCO output back to the 

desired frequency.  In this manner the PLL keeps a steady output signal with no 

frequency drift.  The VCO output frequency can also be varied by changing the 

feedback divide ratio N.  When locked the output of the system will have a frequency 

of FR×N hertz.  By varying the divide ratio N the PLL output frequency can be 

varied while still maintaining the requirement of a robust and low noise output 

signal.  

The PLL loop has stabilised, or is considered locked, when the error signal 

approaches zero or some stable equilibrium value.  The performance of the loop 

outside of lock is not important, what is important is the manner in which lock is 

attained and maintained.  This is measured using parameters such as lock time, 

capture range (also known as the acquisition or pull-in range), tracking range (or lock 

range), steady state error and stability.  The capture range is the maximum value of 

the phase error within which an unlocked PLL will eventually reach the locked state, 

outside this range the loop will never attain lock.  The tracking range, on the other 
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hand, is the maximum phase error offset for which a locked PLL loop will remain 

locked.  These concepts are illustrated graphically in Figure 2.5. 

φe

0

Tracking Range

Capture Range

 

Figure 2.5 PLL Performance parameters 

Due to control voltage noise, or frequency drift on the VCO output signal, both the 

VCO and reference signals will not always correspond exactly, but both signals will 

almost always be tracking each other.  Therefore the phase error will rarely be 

exactly zero but will oscillate around zero within the tracking region of Figure 2.5.  

Outside the tracking region the PLL is unlocked. 

2.3.1 Phase Locked Loop Components 

There are a number of different classes of PLL systems, such as the analogue PLL 

(APLL), digital PLL (DPLL), and the all-digital PLL (ADPLL).  All of these classes 

can be divided into a number of individual component blocks, these are the phase 

frequency detector (PFD), the loop filter, the voltage controlled oscillator (VCO), 

and a feedback divider (÷N).  Each of these components may vary significantly 

depending on the particular class of PLL and on the particular PLL application.  For 

example there are a large number of different types of PFD components, the designer 

selects one based on the: 

• Type of input signal – analogue or digital. 

• The output requirements of the PFD – i.e. will the loop error be represented 

by a voltage or a current value. 

• The performance requirements of the overall PLL system – pull-in range, 

phase offset, cost, etc.   
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The choice of PFD in turn determines the requirements for the loop filter and the 

VCO; for example if a charge pump PFD is used, the output is a current source so it 

makes sense to utilize either a transconductance filter with a VCO, or a current 

controlled oscillator instead of a VCO.   

2.3.1.1  Loop Filter Component 

System noise is one of the most crucial design performance parameters of the PLL.  

Any system noise that exists on the control voltage node, shown as VC in Figure 2.6 

or that is generated by the VCO will cause unwanted frequency jitter on the output 

signal FV.  For this reason, the control voltage node is the critical node in the DPLL 

in terms of the system noise performance.  The loop filter is a low pass passive filter 

and is an essential requirement for most applications to reduce the high frequency 

noise on the VC node.  The phase error signal at the output of the PFD may also 

contain noisy characteristics that are inherent to the PFD operation these are 

generally discrete-like high frequency components.   

PFD VCO
VC

FV/N

FR FV=N×FR

÷N

φe

LF

 

Figure 2.6 PLL System Block Diagram 

The simplest form of PLL is a first order system with no loop filter, as described 

earlier and plotted in Figure 2.4; these systems are globally stable but noisy, 

producing large frequency jitter on the output of the loop which is intolerable for 

most applications.  The solution to this unwanted jitter is to include a low pass loop 

filter (LF) before the VCO as in Figure 2.6.   

The loop filter is generally of low order (first or second), its prime function is to 

isolate the sensitive control voltage node by attenuating the pre-filter noise.  The loop 

filter noise performance can be enhanced by increasing the filter order; however this 

has the negative effect of increasing the loop complexity and potentially reducing the 
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stability.  High order systems are rarely used in practice due to the fact that designers 

rely on linear methods to design the PLL which are not accurate enough to enable the 

design of high order PLL systems [2]; this is discussed in more detail in Section 2.6. 

When designing the PLL loop filter, passive filters are traditionally chosen because 

active filters add excessive noise (from external power source of the op-amp) to the 

output of the filter [9, 10] and ultimately to the critical VCO control voltage node.  

This noise will be directly represented on the PLL output as frequency jitter, in some 

cases it is found to be excessive making the system unstable, and increasing the 

steady state error.  However the exclusive use of passive filters adds some restriction 

on the choice of filter transfer function, thus it is possible to include both an active 

filter (for additional harmonic filtering) and a passive filter in the one loop.  In the 

literature there are numerous papers that use only active filters in the loop; however 

it is very uncommon for these to be used in practice for the aforementioned reasons.  

The loop filter is considered in more detail in Section 2.4. 

2.3.1.2  Phase Frequency Detector Component 

The PFD block has the task of representing the phase and frequency difference 

between the two input signals FR and FV/N in voltage or current form.  The exact 

operation of the PFD differs depending on the type of PFD; it may be a mixer 

(multiplier) phase detector, an EXOR gate, a charge pump phase frequency detector 

(CP-PFD), or an edge triggered JK flip-flop [1].  The mixer phase detector is used to 

determine the phase difference between two analogue signals, while the rest are 

generally used for digital signal comparison.  The digital CP-PFD is more popular 

for a wide range of reasons including:  

1. It produces a virtually infinite pull-in range [1]. 

2. It has a theoretical zero phase offset [11]. 

3. It can be implemented at multi-gigahertz frequencies [12]. 

4. It is low cost [13, 14] – this is at the expense of additional noise relative to 

the mixer phase detector [14]). 

5. It can resolve phase differences in the ±2π [10] (unlike the mixer or EXOR 

gate that can only resolve in the ±π range). 



 

13 

6. It allows the use of a passive loop filter while still being able to match the 

performance of a mixer phase detector using an active loop filter [15].  

However no one PFD is best for all applications.  For consistency this thesis 

considers exclusively DPLLs containing the most popular PFD component, the CP-

PFD. 

2.3.1.3  Voltage Controlled Oscillator Component 

The VCO component block uses the loop filter output to generate an output signal 

with a frequency of FV, this can be realised by a number of different methods, the 

most common of these is the LC tank oscillator which provides a much purer output 

signal than other VCO architectures [16].  The ideal VCO output frequency is 

determined using equation (2.1): 

FV = KVVC +FFR (2.1) 

 where KV is the VCO gain, and FFR is the VCO free running frequency (or the output 

frequency when the input control voltage VC is zero).   

2.3.1.4  Feedback Divider Component 

As mentioned earlier the feedback frequency divider (÷N) is used in frequency 

synthesis to produce a PLL output signal frequency FV that is some multiple, N, of 

the reference signal, FR.  There are two common classes of feedback divider: the 

integer-N and fractional-N dividers.  The integer-N type divides the frequency by an 

integer divide ratio, while the fractional-N divider provides a fractional divide ratio.  

The fractional divide ratio is achieved by selecting between integer values, for 

example, if a divide ratio of 10.5 is required, then the fractional divider could divide 

by 10 for 50% of the time and by 11 for 50% of the time [17].  The variation in the 

divide ratio can be achieved by modulating the divider through the use of random 

jittering, phase interpolation, or a sigma delta modulator (SDM) [18].  The 

advantages of a finer frequency resolution with the fractional divide ratio are 

valuable in many modern applications.  In terms of the analysis of the general PLL 

loop the sole effect of the divider (other than the introduction of some noise, which 

will be considered in Section 2.5), is to scale the feedback signal frequency FV by a 
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factor of N.  In this thesis the feedback divide ratio is chosen to be equal to 1 for 

clarity, however the divide ratio will be included in the presented equations. 

2.3.2 Analogue Phase Locked Loop 

The analogue PLL (APLL) generates a sinusoidal oscillating signal from an input 

reference analogue signal.  All component blocks of the APLL are analogue as 

shown in Figure 2.7 with a PFD that is generally a mixer phase detector [19].  

φR φV
φe VC

1
N

PD

VCO

 

Figure 2.7 LPLL Block Diagram 

A frequency or phase difference between the reference and VCO signals produces a 

phase error, φe, represented as a voltage at the output of the PD.  The inherent nature 

of the feedback loop is to drive this phase error to zero.  Thus the PD not only 

minimises the phase difference between the two signals, but also minimises the 

frequency difference.  

The APLL is a non-linear device, due to the mixer PD, however it is generally 

linearised by approximating the PD to a linear subtractor, and approximating the 

VCO to some linear equivalent.  This linear model is considered in more detail in 

Chapter 3 of this thesis. 

2.3.3 Classical Digital Phase Locked Loop 

The classical DPLL system differs from the APLL in that it generates a digital output 

signal as opposed to an analogue signal, i.e. the reference and VCO output signals 

are digital.  The PFD compares these two digital signals using the CP-PFD 

component block, which has significant advantages over other possible PFD 
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implementations as discussed earlier.  The block diagram of this DPLL system is 

shown in Figure 2.8. 

IPPFD VCO
VC

FR
FVCP

 

Figure 2.8 DPLL Block Diagram 

The DPLL loop operation is similar to that of the APLL in that the information at the 

critical system nodes are the same, i.e. frequency at the PLL output and phase at the 

CP-PFD output.  The CP-PFD determines the phase difference between the two input 

signals.  If the phase and frequency of these input signals are equal then the output of 

the CP-PFD will be zero, otherwise the output will be some representation of the 

phase difference in either voltage form or, in the case of a CP-PFD, in current form.  

Thus it can be concluded that the CP-PFD operates in one of three possible states 

depending on the relationship between the two input signals, these are outlined in 

Table 2.1. 

Input Signals CP-PFD State 

Reference leads VCO Up 

VCO leads Reference Down 

Signals Correspond Null 

Table 2.1 CP-PFD Input Signals and Corresponding System State 
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The CP-PFD changes state as falling or rising edge events
i
 of the reference and VCO 

signals occur.  The occurrence of these events determines whether the reference 

signal leads, lags or corresponds to the feedback signal.  The CP-PFD state 

transitions and the events that cause these state transitions can best be described 

using the state transition diagram of Figure 2.9 below, where V� is a VCO falling 

edge event and R� is a reference signal falling edge event.  Each state of the CP-PFD 

(Up, Down, or Null) yields a corresponding charge pump output current of +IP, -IP, 

or zero amps respectively, where IP is the current gain of the charge pump and is 

equal to 2πKP.   

 

 

Figure 2.9 CP-PFD State Transition Diagram 

To explain the operation of the DPLL consider an example, if the DPLL reference 

signal leads the VCO signal, then during any one period of the reference signal, T, an 

R� event will occur followed by a V� event.  As long as this is the case the DPLL 

will oscillate between the Null and Up states and the CP-PFD will (on the average) 

output a positive current pulse during T.  This positive current pulse has the effect of 

increasing the VCO control voltage, and therefore increasing the VCO output 

                                                 

i
 Note that in this thesis the falling edge convention is used exclusively. 
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frequency (pushing the V� event closer to the R� event), pushing the DPLL towards 

lock.  Likewise if the VCO signal leads the reference signal, then the CP-PFD will 

oscillate between the Null and Down states resulting in a negative current pulse 

output, this decreases the VCO output frequency and again pushing the loop towards 

lock.  The transition between states in the DPLL results in the nonlinear quantization 

or discrete-like effects that were described earlier.  This state transition diagram will 

be used later as part of the behavioural modelling methods of Chapter 3 and 

ultimately as part of the proposed piecewise linear stability methodology of Chapter 

5.  

In addition to pre-filter noise attenuation, the DPLL with a CP-PFD also requires the 

loop filter to convert the discrete-like current output of the CP-PFD to a continuous 

voltage for operation by the VCO.  This can be achieved by including a low pass first 

order RC filter before the VCO in the loop as in Figure 2.10.   

 

Figure 2.10 DPLL System Block Diagram 

In the case of the DPLL, discrete VC voltage jumps of value IPR2, where IP is the 

current pumped into the filter and R2 is the loop filter resistor, still exist due to 

voltage jumps across R2, these are commonly attenuated by including an additional 

ripple capacitor in parallel with the loop filter, thus increasing the PLL order to third.  

As an example consider a PLL with loop component values of R2 equal to 10 kΩ, C2 

equal to 100 nF, and an IP equal to 0.1 µA, thus it is expected that the RC jumps will 

be equal to 1 mV.  Figure 2.11 graphically illustrates these inherent RC jumps for 

this second order PLL system.   

R

 C
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÷N
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Figure 2.11 Second Order PLL Output with Inherent RC Spikes 

By including an additional ripple capacitor in the loop filter it is expected that it will 

remove these RC jumps.  Therefore by including an additional 100 pF capacitor this 

produces the less jittery output signal as plotted in Figure 2.12.     
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Figure 2.12 Third Order DPLL Output with Additional Ripple Capacitor 

2.3.4 All Digital Phase Locked Loop 

The classical DPLL of the previous section is a bit of a misnomer in that it has some 

analogue components.  It is digital because it operates on a digital square wave 

signal.  The all digital phase locked loop (ADPLL) differs from the classical DPLL 
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in that it has all digital components.  The digital PFD output information is not an 

analogue voltage representation of the phase difference but is considered to be 

digital, containing either pulses or multi-bit values, as in Figure 2.13.  In recent times 

some authors in the literature have referred to the ADPLL as the DPLL.  This 

obviously leads to confusion; the traditional and the generally accepted definitions of 

the DPLL and ADPLL are as they have been described in this section. 

Digital PD
Digital

Filter

Digital 

Controlled 

Oscillator

Frequency to 

Digital Converter

101010

101010
 

Figure 2.13 ADPLL block diagram 

Though ADPLL systems are quite extensively researched and published [20-22] they 

are rarely used in practice, as serious issues still exist with their accuracy.  Process 

variations in excess of 30% [23] can exist seriously degrading the phase noise of the 

system.  Both the DPLL and ADPLL have similar applications; i.e. they both operate 

on digital signals, however the DPLL is considerably more robust, with less noise 

and can utilise more advanced analysis and design methodologies. 

2.4 DPLL Loop Filter 

The PFD and VCO components, as described in the previous sections, perform vital 

operations within the overall loop.  The ideal performance of both these components 

can be determined by considering one parameter, i.e. KP (the charge pump gain) and 

KV (the VCO gain) respectively.  These parameters are generally selected by rule of 

thumb; this is a relatively straight forward process.  In contrast the ideal loop filter 

performance is determined from a number of design parameters.  Thus selecting the 

loop filter parameters is more involved than the PFD and VCO rule-of-thumb 

methodology.  This is because the loop filter characteristics will ultimately define the 
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stability and transient performance of the loop.  More specifically the loop filter has 

two major responsibilities in the DPLL loop: 

1. It is responsible for rejecting unwanted frequency components in the PFD 

output, which insures a low noise VCO control voltage. 

2. It also converts the discrete-like output of the PFD to a continuous current 

signal.   

When selecting the loop filter parameter values the PLL loop transient performance 

needs to be considered.   

The number of loop filter parameters depends on the order and structure of the loop 

filter.  The filter is commonly of first or second order.  DPLL systems containing a 

first order filter exhibit two significant drawbacks: the RC spikes on the output that 

were discussed in Section 2.3; and the fact that the loop filter damping factor, the 

loop bandwidth, and the loop gain are all directly related.  The loop bandwidth is a 

measure of the rate of convergence of the feedback loop, it is also known as the 

natural frequency (ωn/2π) or the frequency at which the open loop gain equals unity.  

If the loop gain is increased (loop bandwidth increased), this causes an unwanted 

increase in the static phase error in the loop.  If the loop gain is decreased (to reduce 

this static phase error) then the transient response of the system degrades, resulting in 

a slower lock time or, in the worst case, instability.  Independence between these 

parameters can only be achieved by increasing the order of the filter, this means that 

the loop lock time and the loop noise or output signal jitter are related and thus a fast 

lock low noise DPLL cannot be achieved.  As both these design parameters depend 

on the choice of the loop filter cut-off frequency, ωc, and are contradictory, the 

choice of ωc becomes a difficult task for any designer.  The only guideline on the 

choice of ωc is that it should be chosen to be no greater than one tenth of the 

reference signal, based on this the DPLL is designed as follows: 

1. The loop filter parameters are selected based on the desired system 

bandwidth, ωc.  

2. The VCO and PFD gain components are selected using ‘rule of thumb’.  

3. The PLL system is simulated to check the system transients and noise band 

limit.  

4.  The loop bandwidth, ωc and the gains are reselected to vary the system 

transients and band limit as required, until the optimum system is found.   
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5. The system is simulated again (return to 3) until the desired system 

performance is achieved. 

It is obvious from this design methodology that the initial choice of ωc is crucial to 

the overall design process, if a bad selection of ωc is made initially then an excessive 

amount of circuit level simulations may be required. 

The DPLL loop filter transfer function generally has one zero and W-1 poles, where 

W is the DPLL system order.  An additional non-filter pole exists due to the 

integrator in the VCO; the single system zero in the filter is due to the 

transconductance nature of the filter.  All of the additional poles are due to the 

denominator of the loop filter transfer function.  In the case of the second order 

DPLL, it places the system poles in the locations as shown in Figure 2.14.   
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Figure 2.14 Plot of Second Order Poles 

No consideration is given to the pole locations at all, despite the fact that it can give a 

good indication of the response of the linear system.  The expected impulse response 

for various pole locations is shown in Figure 2.15. 
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Figure 2.15 Effects of Loop Filter Pole Location 

The pole location determines the systems transient response, while the zeros 

establish the relative weightings of the system poles.  For example, moving a zero 

closer to a specific pole will reduce the relative contribution of that pole.  The second 

order DPLL zero is generally placed close to the origin relative to the system poles.  

All higher order systems have only one zero placed in a similar location to the 

second order system, as the order is increased the system has additional poles, some 

of which become complex conjugate.  These pole locations are outlined in Figure 

2.16. 
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Figure 2.16  High Order Pole Locations 
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The traditional second and third order DPLL loop filter may include additional 

parasitic poles
ii
 to achieve a sharper cut-off characteristic.  Such high order systems 

are difficult to stabilise due mainly to the lack of an accurate analytical design 

methodology for such systems, and therefore the difficulty in determining a set of 

system parameters that will result in a stable system.  Most PLL systems are third 

order topologies with the third pole being much further from the origin than the other 

two; this provides a relatively stable system with adequate noise suppression.  A 

solution to the problem of increasing attenuation in the stop band can be provided by 

high order loop filters.  

Designing the DPLL system using pole placement, can provide good system 

performance, however traditional design methodologies stay clear of choosing 

individual pole locations and use the filter cut-off frequency design parameter ωc and 

some knowledge of the system stability boundary to design the PLL.  If ωc is chosen 

too large relative to ωR (i.e. the loop bandwidth is selected to be too wide), then this 

may result in degradation in the loop performance.  Alternatively, choosing a small 

ωc relative to ωR, will have a slower acquisition time. Obviously some trade-off is 

required so that the system produces low noise and fast acquisition time through the 

optimum choice of ωc. The traditional choice of ωc from existing examples in the 

literature [13, 24-26], are plotted in Figure 2.17 against the normalised system lock 

time (tLCKFR). 

                                                 

ii
 The parasitic poles in this case are poles that are placed significantly away from the system cut-off 

frequency ωc as in Figure 2.16. 
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Figure 2.17 Plot of Traditional DPLL ωC against Lock Time 

If the DPLL is to have both a wide bandwidth and a fast acquisition time, then it is 

necessary to choose an ωc/ωR to the right of Figure 2.17, but to the left of the 

continuous time approximation
iii

 (CTA) breakdown point [27].  For low loop noise, 

ωc is required to be small and therefore to the left in Figure 2.17.  Traditionally ωc is 

arbitrarily chosen to be far away from the breakdown point; this tends to be 

significantly to the left as shown in Figure 2.17.  It is clear that by identifying and 

designing a DPLL with a ωc at the optimum point, will produce a loop response with 

maximum phase noise attenuation for the minimum requirement of lock time.  The 

optimum choice of ωc will be considered later in Chapter 6. 

                                                 

iii
 The continuous time approximation is also known as the linear approximation which will be 

considered in detail in Section 3.2.  The breakdown point is the point where this approximation 

becomes invalid – when the filter cut-off frequency is greater than one tenth of the reference 

frequency.  This is discussed in more detail in Section 3.2.1. 



 

25 

2.4.1 Loop Filter Structure 

In Figure 2.6, shown earlier, the loop filter is represented by a modular block, this 

can be replaced by any type or order of passive loop filter.  The traditional 

component structure of a first order transconductance loop filter is as given in Figure 

2.18 below. 

R2
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Figure 2.18 First Order Filter Structure 

As discussed earlier the first order filter is the most common DPLL filter order due to 

its fast responsiveness, but this is at the expense of excessive frequency jitter on the 

DPLL output due to the inherent voltage jumps across resistor R2.  The solution to 

this jitter is to include an additional ripple suppressing capacitor in parallel with the 

RC branch, as shown in Figure 2.19, thus increasing the loop order to three. 
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Figure 2.19 Third Order DPLL Loop Filter Structure 
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The C2 capacitor of the second order filter, determines the settling time while the 

additional capacitor C3 suppresses the RC spikes discussed earlier that is generated 

by the current pumped into the RC section of the filter.  Additional spikes may arise 

due to mismatches between the width of the Up and Down pulses of the PFD, as well 

as charge injection and clock feed through.  In order to maintain stability of this third 

order system the pole added by C3 must remain below C2 by a factor of ten to avoid 

under-damped settling. 

Increasing the loop order to four is achieved by adding the additional components R4 

and C4 as shown in Figure 2.20, the additional pole further suppresses the ripple on 

the VCO control voltage however the stability of the loop becomes more of an issue.  

Normally the additional pole due to C4 is placed out of band so that it has minimal 

effect on the loop performance.  One rule-of-thumb is that C4 should be significantly 

less than 1/10
th

 of C3.  
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Figure 2.20 Fourth Order Loop Filter Structure 

The primary advantage of such a higher order filter is that it will have a steeper 

frequency roll-off than a lower order filter (20dB/decade/pole [9]), and hence further 

attenuate the out-of-band noise.   

As the order of the loop is increased the calculation of the loop filter transfer function 

becomes cumbersome.  However this can be simplified by considering the generic 

nature of high order loop filters – i.e. all loop filters of order greater than four will 
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have a structure as shown in Figure 2.20 but with additional RC sections cascaded to 

the output of the lower order structure.  Thus, using a two-port methodology the high 

order loop filter can be reduced to generic blocks.  To achieve this consider the filter 

structure shown in Figure 2.21, where Vi and Vo are the input and output voltage 

respectively, and Z1 and Z2 are the component impedances for a second order filter. 

 

Figure 2.21 Simple Low Pass Filter 

The transfer function of this generic filter system of Figure 2.21 is calculated as: 
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If Z1 is a resistor and Z2 is a capacitor, then a low pass filter is formed with the filter 

gain given by: 
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The magnitude response is given by: 

2 2
2 2 2 2 2 2

1 1 1

1 1 1 ( )

o

i c c

V

V sC R j C R C Rω ω
= = =

+ + +
 (2.4) 

The cut-off frequency where the magnitude of the gain is 0.707 is given by: 
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Determining the transfer function of high order DPLL can be simplified by using this 

two-port design methodology and the generic transfer function of Z1 and Z2, this is 

outlined in more detail in appendix A.  The transfer functions for the loop filter 

structures of Figures (2.18 – 2.20) are given in Table 2.2 below. 
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Table 2.2 Filter Transfer Function for the DPLL. 

2.4.2 Loop Filter and System Bandwidth 

As discussed earlier, the loop filter bandwidth, ωc is inversely proportional to the 

system response time and directly proportional to the noise attenuation 

characteristics, thus to reduce the jitter on the PLL output a narrow filter bandwidth 

is required which is consistent with the system response requirements.  This 

noise/response-time relationship can be illustrated by taking two second order linear 

PLL system examples, H1(s) and H2(s), where the closed loop transfer functions are 

chosen as in equations (2.6) and (2.7), respectively.  
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The coefficients of the above system transfer functions are chosen such that they are 

low pass in nature and so that they have different bandwidths, as shown in Figure 

2.22.  The exact calculation of the bandwidths of systems H1(s) and H2(s) from 

Figure 2.22 can be made by finding the frequency at which the magnitude has 



 

29 

decayed by 3dB from the maximum.  These are found to be approximately 1x10
5
 

rad/sec, and 2x10
5
 rad/sec respectively. 
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Figure 2.22 Magnitude Plots of H1(s) and H2(s) 

From the theory we would expect that wider bandwidth system H2(s), should have 

the faster response time at the expense of degraded noise performance.  This can be 

illustrated by plotting the transient response of each system to a step in the phase 

error, as shown in Figure 2.23. 
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Figure 2.23 Time Domain Response of Systems H1(s) and H2(s) 
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As expected the wider bandwidth system, H2(s), provides a faster response, however 

due to the narrower bandwidth of H1(s) it exhibits better roll-off characteristics and 

will pass significantly less noise to the VCO relative to H2(s), this illustrates the 

significance of the choice of ωc in terms of the best design of the DPLL.  The noise 

band limit is considered in more detail in the next subsection.   

It is worth noting at this point that a number of alternative DPLL stabilisation 

methods exist that achieve both fast lock and low noise by varying the loop filter 

bandwidth ωc.  These work by using advanced architecture techniques such as gear-

shifting [28, 29], and aided acquisition dual-loops [30, 31]. Gear-shifting varies ωc 

from a fast locking wide bandwidth loop when the PLL is out of lock, to a low noise 

narrow bandwidth loop when loop lock is detected.  Similarly dual-loops achieve fast 

lock and low noise using two feedback loops with contradicting bandwidths.  

Another solution suggested by Land [32] uses a sample and hold circuit that operates 

at double the input frequency.  This reduces the unwanted ripple component without 

decreasing the bandwidth of the loop filter.  

2.5 DPLL System Noise Characteristics 

One of the most crucial design parameters of the PLL is the loop noise performance.  

To explain how the loop noise on a PLL output can effect the performance of a 

system consider an example of a generic RF front-end of a GSM mobile phone, the 

block diagram is given in Figure 2.24. 
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Figure 2.24 Generic RF Front-End 
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On the receiver side of the RF transceiver the received signal is amplified, filtered 

and then passed to the mixer section for demodulation of both the in-phase (I) and 

quadrature (Q) components, in effect the PLL is generating the local oscillator (or 

carrier) signal for the demodulation process.  Likewise the PLL is used on the 

transmitter side as the local oscillator for the modulation process.  Consider the case 

where there are two signals (one of these signals is unwanted) with frequencies ω1 

and ω2 radians/second, both being received at the antenna, as in Figure 2.25.  These 

signals are again amplified, filtered and demodulated down to baseband with a noisy 

local oscillator signal generated by the PLL.  The resulting demodulated signal is 

shown in the bottom plot of Figure 2.25. 
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Figure 2.25 Reciprocal Mixing of Adjacent Channels 

The desired signal ω1 is corrupted by the unwanted signal in an adjacent channel.  

These local oscillator signal skirts affect the channel selectivity of the transceiver, 

this is known as reciprocal mixing[33].  The noise performance of the PLL as the 

local oscillator is crucial, the better the noise performance the closer the adjacent 

channels can be spaced without reciprocal mixing.  This has the benefit of better 

spectrum efficiency.  In terms of the noise skirts of Figure 2.25 the VCO is the 

biggest contributor relative to other noise sources, these undesirable noise skirts can 
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be reduced in a number of ways: using a VCO with a lower gain; designing a higher 

order loop; or adding a band-stop filter to attenuate these tones.   

For a predefined VCO component the overall PLL noise performance is essentially 

set by the loop filter characteristics; this filter is designed mainly with the purpose of 

attenuating the out-of-band noise within the loop.  To achieve this it is desirable to 

have a loop filter that is low pass in nature, as can be seen in the frequency plot of 

Figure 2.26 below.  
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Figure 2.26 Frequency plot of the Loop Filter 

Ideally the loop filter attenuates all unwanted disturbances from the control voltage 

signal that may interfere with the loop carrier signal and ultimately give a purer 

output signal.  However this is generally not always the case as some noise will 

inevitably pass through to the VCO and generate some form of jitter on the loop 

output, it is hoped that with good design practice the control voltage, VC, noise can 

be made insignificant.  The linear model is traditionally used to model this noise, 

however the linearising assumptions that are made (the DPLL linearization is 

considered in detail in Chapter 3 of this thesis) assume that the high frequency 

product terms will be attenuated by the loop filter and are therefore ignored in the 

analysis, by including these high frequency product terms the spectral purity of the 

output signal is significantly improved [34], however the system equations are no 

longer linear.   
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In conclusion, other than using high quality and low noise loop components the best 

way to minimise the loop noise is to design the filter with an optimum cut-off 

frequency, to achieve this we need to determine some knowledge of the noise 

sources within the loop.  There are four major noise sources in DPLL circuits; these 

are the crystal oscillator reference phase noise; the PFD noise; the VCO noise and 

the feedback divider noise.  Each of these sources of noise are considered in the next 

subsection.  

2.5.1 Sources of Noise within the PLL Loop 

A block diagram of the DPLL noise sources is shown in Figure 2.27 below [35].  In 

this section each of these noise sources is considered in detail. 
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Figure 2.27 DPLL Noise Sources 

As mentioned earlier the DPLL loop filter (F(s)) is low pass, therefore any noise in 

the DPLL loop with a frequency less than ωc is multiplied by a factor of K, where K 

is the system gain.  Noise with a frequency of greater than ωc is attenuated by an 

additional rate of 20dB/decade/pole, in order to minimise this noise the loop 

bandwidth must be as small as possible.  Banerjee [24] suggests that the ideal 

reference frequency should be at least 50 times that of the filter cut-off frequency ωc.  

However this excessively narrow bandwidth has the effect of increasing the lock 

time, limits the capture range, and degrades the stability of the loop.  In contrast the 

VCO has a high pass filter characteristic, it tends to contribute more noise within the 
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loop bandwidth where the loop bandwidth is narrow (less than the theoretical 

optimum loop bandwidth), these tones are attenuated in the loop filter.  In order to 

minimise the VCO phase noise contribution the loop bandwidth must be maximised, 

this creates a conflict when trying to minimise both sources of noise.   

The crystal reference phase noise and PFD noise are amplified within the loop 

bandwidth ωc, and attenuated outside this, at offsets much greater than ωc the 

dominant noise source is the VCO oscillator phase noise.  Close to ωc the noise 

contributions are a combination of all these noise sources.  Furthermore spurious 

tones occur in the DPLL output due to component leakage, divider inclusion, dead 

zone elimination circuitry, mismatch in the charge pump PFD and many other 

factors[15, 36].  PFD mismatch occurs when the charge pump sink pulse tsinkIsink is 

not equal to the charge pump source tsourceIsource, shown in Figure 2.28.  This occurs 

because the charge pump is not perfectly balanced; the NMOS transistor that sinks 

current may have half the turn on time of the PMOS transistor that sources current, in 

this case the CP-PFD tends to be the dominant noise source in the DPLL.  This noise 

level is directly proportional to the reference frequency. 

 

tsource

Isource

T

tsink

Isink

time

IP

 

Figure 2.28 Charge Pump Output Pulses 

Spurious tones are also generated by the fractional-N feedback divider component, 

these occur around the VCO output frequency at multiples of the fractional divider 

ratio N.  When multiplied by N, spurious signal levels increase by 20Log(N) [10], but 

their offset location from the reference frequency remains the same.  For example: a 
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1 kHz spurious signal on a reference of 1 MHz when multiplied by N=1000 times 

will generate a 1 kHz offset spurious signal at the 1 GHz output frequency.   

The abrupt change in phase due to N being changed on a periodic basis, as described 

earlier, will cause a spurious signal.  This spur is called a fractional spur and can be 

located close to the frequency resolution, FR/F, where F is the fractional modulus of 

the circuit, i.e. F = 8 would indicate a 1/8
th

 fractional resolution.  It must be 

suppressed in some manner other than by the loop filter [1] and is much larger than 

the typical reference spur generated by an integer-N device.  When in lock, the 

integer-N circuit’s phase detector generates fast spikes that leak and modulate the 

VCO control line, generating spurs at the reference signal.  Extra filtering reduces the 

spurious signal level, this is the main reason for the common use of third and fourth 

order loops. 

The spurious output of the divider can be significantly reduced by using a sigma-

delta modulator as a fractional-N divider.  This method enables spurious signal 

reduction by over sampling.  Over-sampling works by moving these undesirable 

components to higher frequencies and then filtering them out with the loop filter.  

The occurrence of cycle slips when the DPLL is in lock is a highly non-linear 

phenomenon caused by large offsets of the phase error generally due to the noise 

sources mentioned above [37].  The cycle slip rate is thus dependent on the signal to 

noise ratio.  Cycle slips occur when the VC offset from the equilibrium 

instantaneously becomes large, due to noise.  If the DPLL system is stable, then a 

cycle slip will not cause the DPLL to go unstable, but has the effect of reducing the 

immediate phase error and pushing the loop towards lock.  After the first slip the 

control voltage VC will have a wrong initial value, this is known as loop stress, and 

becomes more susceptible to another slip [37].  Thus for small damping factors cycle 

slips occur in bursts, clusters of cycle slips occur separated by long time intervals.  

With low noise levels the loop can only be pushed slightly away from the 

equilibrium and therefore in most cases cycle slips will not occur once the DPLL has 

locked.  

In conclusion the DPLL loop is traditionally designed with a wide bandwidth so as to 

minimise the noise due to the VCO.  The wide bandwidth also has the effect of 
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reducing the lock time of the loop; however the additional loop noise, due to the 

PFD, the loop filter, the reference source and the feedback divider components, will 

be passed by the loop filter.  This contradiction is outlined in Figure 2.29 below. 
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Figure 2.29 Transfer Function of Noise Sources  

Having a loop filter with a sharp roll-off factor can help allay the trade off between 

both requirements.  A sharp roll-off characteristic can best be achieved with a high 

order loop filter.  Such high order systems are discussed briefly in the next 

subsection. 

2.6 High Order Loops 

The benefit of high order DPLL systems is that they can provide a significantly 

better attenuation of the loop noise relative to lower orders due to the sharper roll-off 

frequency characteristics of the high order systems.  The correlation between 

increased filter order and increased noise attenuation of the loop is illustrated in 

Figure 2.30. 
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Figure 2.30 Plot of Increased Noise Attenuation as Order Increases 

Looking at the system performance in the frequency domain, as given in Figure 2.31 

below, it can be seen that as the order of the loop filter is increased the roll-off factor 

is increased, thus reducing the in-band noise.  
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Figure 2.31 High Order Roll-off Factor 

For maximum noise attenuation, it is desirable to have as sharp a roll-off factor as 

possible, it also needs to be considered whether additional poles or zeros will have a 
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desirable effect on the loop.  For example it is common practice in the literature to 

include additional parasitic poles in the DPLL loop filter, [38].  This means that the 

designer can ignore the parasitic poles and use traditional second and third order 

criteria to place the dominant poles and design what is in theory a high order system 

[38].  The additional parasitic poles are used solely to attenuate the out-of-band noise 

and have minimal effect on the DPLL response [39].  However if all the system poles 

are placed in-band (the non-parasitic poles in Figure 2.16) then this can produce a 

sharp cut off of 20dB/decade for each system pole.  However if this is the case then 

the phase margin is significantly degraded [39], stability issues ensue, and traditional 

design methods become ineffective.  This is the major drawback with high order 

system design.  Thus high order systems are considered risky and are rarely used in 

practice [13].  The lack of an accurate design method for higher order systems means 

that the design of such systems involves simulation alone.  But simulation alone can 

be an arduous task due to the long simulation time, the chaotic nature of these 

systems [39], [40] and the limited knowledge of the system’s stable regions. 

Finally it is worth considering that the choice of loop order can have a greater impact 

on the system transients than would be expected.  The loop filter always has at least 

one real pole, therefore even-order systems, for example the fourth order loop with 

four poles, has two real poles as shown in Figure 2.16 earlier, while odd order DPLL 

loops have only one real pole.  The effects of this are that the odd order loops will 

place their system poles in a more efficient arc as will be illustrated in Chapter 3 

when using a filter prototype, while the even order loops will have at least one real 

pole placed away from the arc of system poles with a less significant influence on the 

system response than would be expected.  Since phase margin is small for odd 

orders, their advantage is a rather large attenuation of high normalised frequencies, 

on the other hand even order loops have a large phase margin and are advantageous 

for band-pass properties and additional attenuation. 

2.7 Summary 

The ideal DPLL system is both fast locking and low noise.  This however is 

infeasible as both requirements are contradictory.  The fundamental problem is that 
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both requirements are defined by the system bandwidth; a wide bandwidth is 

required for fast lock and low VCO noise but a narrow bandwidth for superior pre-

filter noise characteristics.  Traditionally a DPLL is designed by choosing a wide 

bandwidth where the loop filter bandwidth is kept sufficiently small, so as to 

minimise pre-filter noise.  Increasing the order of the DPLL loop can further 

attenuate the pre-filter noise without necessarily narrowing the bandwidth. 

It has been discussed in this chapter that increasing the order of the loop filter can 

further reduce the system noise.  However designing such high order systems is an 

arduous task due to increased stability concerns and a lack of a valid design method.  

In this thesis a high order design methodology for DPLL systems using piecewise 

linear methods is proposed, this can be realised using a novel filter prototype 

methodology as a design tool for the DPLL, and a piecewise linear modelling 

methodology that exhibits increased accuracy relative to existing methods and can be 

extended to higher orders.  This means that high order DPLL systems become less 

risky and realizable.  The piecewise linear methodology is discussed in more detail in 

Chapter 5 of this thesis, while a novel high order design methodology is considered 

later in Chapter 6.  



 

40 

CHAPTER 3 

DIGITAL PHASE LOCKED LOOP SIMULATION AND 

MODELLING 

3.1 Introduction 

System modelling is an important part of any design process; it assists in system 

analysis and the determination of the expected system performance either 

analytically or through simulation, by predicting the logical behaviour of the system.  

There are four methods of analysing and modelling the Digital Phase Locked Loop 

(DPLL): the linear PLL model; circuit level simulation; nonlinear methods; and 

behavioural modelling.  Each of these techniques is assessed in detail in this chapter.   

The most common method of DPLL analysis is to use a linearization of the DPLL to 

approximate the APLL response [14].  The linearization of the DPLL and its 

limitations will be considered in detail in the next subsection, the major assumption 

made is that the APLL and DPLL can be considered similar; this assumption will 

also be examined by comparing the nonlinear DPLL with the linear PLL.  The 

second method of analysis is circuit level simulation; this considers the DPLL at the 

component level using software programs such as SPICE.  As such simulations are at 

transistor level they are accurate but extremely slow relative to the analytical linear 

model [2].  It is therefore generally the case that this type of simulation is used only 

for the final verification of the design before the DPLL system is built [41], circuit 

level simulation is discussed briefly in Section 3.3.  In Section 3.4 non-linear 

methods are discussed.  In Section 3.5 behavioural models are considered, these 

consider the input-output behaviour of each component block in the DPLL loop.  The 

major advantage of behavioural models is that they are accurate relative to the linear 

approximation [3] and fast compared to circuit level simulations.  However existing 

methods are not amenable to high order system modelling because of the increased 

complexity of the model equations due to the existence of integral and differential 

terms.   
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3.2 Linear Phase Locked Loop Approximation 

In this section the linear approximation of the APLL (also known as the linear PLL, 

LPLL) is considered in detail.  The significant advantage of the LPLL is that it 

enables the designer to utilise powerful classical linear analysis tools.  The derivation 

and limitations of this approximation will be considered in detail in this section. 

The linear approximation is derived from the APLL with a mixer PD component.  

The assumption that the LPLL can be used to model the DPLL will be considered 

later in this section.  The linearization is made by first considering the mixer phase 

detector component.  This nonlinear component multiplies two signals together as 

shown in Figure 3.1.  It is possible to linearise it by making the following set of 

assumptions.  

FR

FV
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Figure 3.1 APLL Multiplier PD 

The sinusoidal inputs of the APLL can be described as in equations (3.1) and (3.2) 

below. 

FR = ERsin(ωRt + θR) (3.1) 

FV = EVcos(ωVt + θV) (3.2) 

where ER and EV are the amplitude of the reference and VCO output signals 

respectively, and θR and θV are the phase of the reference and the VCO output signals 

respectively.  The output of the mixer PD is calculated by multiplying both input 

signals together, as in equation (3.3). 

PDOUT = KP(Sin((ωR - ωV)t+ θR - θV) + Sin((ωR + ωV)t + θR + θV)) (3.3) 

where KP is the phase detector gain.  This can be linearised as follows: 
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1. Assume that the low pass loop filter will attenuate the high frequency 

component sin((ωR + ωV)t + θR + θV). 

2. For a small phase offset the reference and VCO frequencies are 

approximately equal (ωR ≈ ωV), therefore the sin((ωR - ωV)t + θR - θV) 

component is approximately equal to sin(∆φ), where ∆φ is the phase 

difference between the reference and VCO output signals, θR and θV 

respectively. 

3. Finally for a small slowly varying signal close to lock, the remaining sin(∆φ) 

component can be approximated by ∆φ.   

With these assumptions the PD output can be approximated to the linear equivalent 

of: 

PDOUT = KP∆φ (3.4) 

This can be represented graphically by the linear PD subtractor component of Figure 

3.2. 
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Figure 3.2 Linearised PFD 

This approximation is sometimes referred to as the continuous time approximation 

(CTA) and is only valid when the loop bandwidth is small relative to the reference 

frequency [2], or more specifically no greater than one tenth of the reference 

frequency [19].   

To complete the linearization of the overall APLL loop the VCO component block 

also needs to be considered.  The VCO component generates an oscillating signal 

whose frequency is related to the input control voltage VC.  Ideally the output 

frequency of the VCO will increase linearly as the VCO input voltage is increased.  
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In reality this is not the case, the output frequency saturates as the VCO input voltage 

exceeds some threshold value, as shown in Figure 3.3.  
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Figure 3.3 VCO Non-linearity 

This saturation means that the VCO input to output relationship is non-linear.  The 

VCO can be assumed linear if the DPLL system operates away from these saturation 

regions, i.e. between VC_min and VC_max in Figure 3.4.  
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Figure 3.4 VCO Linear Approximation 

Making this assumption the VCO can be approximated to a gain and an integrator 

component where the output frequency corresponds to: 

V C
V

K V
F

s
=  

(3.5) 

where KV is the VCO gain in radian/s/V. Using the expression in equation (3.5) the 

VCO can be modelled linearly, as illustrated in the block diagram of Figure 3.5. 
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Figure 3.5 Linear Equivalent of the VCO 

Replacing the nonlinear PD and VCO components with the linear approximated 

subtractor, integrator and gain components as discussed earlier, the APLL can be 

approximated by the LPLL block diagram of Figure 3.6. 
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Figure 3.6 Linear PLL System Block Diagram 

The linear approximation is found to be reasonable when characterising the PLL 

close to lock.  In this situation the system state changes by only a small amount on 

each cycle of the reference signal.  This assumes that the detailed behaviour of the 

loop within each cycle is not important and only the average behaviour over many 

cycles is important.  By applying an averaged analysis, the time-varying operation 

can be bypassed and the linear approximation can be applied [19, 42]. 

Using the LPLL block diagram of Figure 3.6, the closed loop system transfer 

function is calculated as that of equation (3.6), where KP is the charge pump gain in 

amps, KV is the VCO gain in radians/second/volt and F(s) is the loop filter transfer 

function.  Similarly the loop error transfer function for this system can be calculated 

and is given by equation (3.7).  
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In the literature the most common PLL considered is the APLL, as it is generally 

accepted that the DPLL can be represented accurately by using the linearised APLL 

model [27].  Both the DPLL and APLL are considered similar because they both 

have the same information at the critical nodes of each loop, i.e. frequency at the PD 

input, and phase error at the loop filter output.  This assumption will be considered in 

detail later in Section 3.2.1.  The major difference between the APLL and the DPLL 

is the switching quantization-like nature of the CP-PFD; this non-linearity is inherent 

to the operation of the loop and cannot be ignored if an accurate model is required.  

Because of this the linearization is not entirely accurate [2] and does not fully capture 

the complexity of DPLL behaviour.  Thus it is generally the case that empirical 

design and simulation are used concurrently to ensure the correct transient behaviour.  

This design method is outlined graphically in the flow chart of Figure 3.7. 
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Figure 3.7 Traditional PLL Design Process 

Traditionally the designer starts with the linear model, applies rule-of-thumb guides 

to choose system parameter values.  The system transients are then approximated 
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using the linear model.  Empirical design methods are then used to redefine these 

parameter values until the desired linear transients are produced.  The final step of 

the design process is to use a circuit level simulation to verify the expected 

performance of the DPLL.  If the results of the circuit level simulation are not 

satisfactory, the parameter values are reselected and the process starts again, until 

eventually the DPLL performs as desired at circuit level.  This design methodology 

can be extremely slow depending on the accuracy of the initial linear model and 

more importantly the experience of the designer in preselecting and reselecting the 

parameter values.  The circuit level simulation is significantly slower than the 

analytical linear model and thus is only used as the final stage of the design process 

to verify the expected PLL performance.  

3.2.1 Linear and Digital Phase Locked Loop Comparison 

As discussed earlier it is common practice to use the LPLL system to approximate 

the DPLL, the significant difference between the two being the operation of the 

respective phase detectors.  The LPLL PD is a linear adder component whilst the 

DPLL PFD is a more complex non-linear state driven device.  In this section both 

systems are compared, concentrating initially on the PD blocks and then looking at 

the relative performance of both closed loop feedback systems.  The specific digital 

PFD component that is considered is the CP-PFD as described earlier. 

A comparison of the output of the linear PD and CP-PFD for a phase offset of π/2 

can be achieved by considering the output of both blocks to two typical input signals.  

However it must first be considered that both components are operating on different 

signal types, i.e. the CP-PFD inputs digital signals, while the linear PD has sinusoidal 

signals at its inputs, as shown in the top two plots of Figure 3.8.  The PD output of 

both systems is shown in the bottom plot of Figure 3.8.  A simple comparison can be 

made between the two systems by calculating the phase offset between the two input 

signals, as plotted in Figure 3.9.   
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Figure 3.8 Plot of PD Inputs (feedback – dashed line; reference – continuous) for the 

LPLL and DPLL, and the DPLL CP-PFD output (continuous), and the LPLL 

PD output (dashed) for a small phase offset. 
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Figure 3.9 Plot of PD Inputs (feedback – dashed line; reference – continuous) for the 

LPLL and DPLL, and the DPLL CP-PFD output (continuous), and the LPLL 

PD output (dashed) for a small frequency offset. 

As both systems approach zero phase offset at time 0.5µs, both outputs approach 

zero, when the reference signal (continuous line) leads the VCO signal (dashed line) 

the PD outputs are some positive value.  Likewise, as the VCO begins to lead the 

reference (after 0.5µs) on average both PD outputs become increasingly negative. 
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If one considers the average phase error over each cycle for both systems it can be 

seen that as the phase error increases, the difference between the linear and digital 

systems becomes more pronounced, as illustrated in Figure 3.10.  This verifies the 

linear approximation requirement discussed earlier, illustrating that the 

approximation is only valid for a small phase error, i.e. when the loop is close to 

lock. 
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Figure 3.10 Average Error over each Cycle of the Reference Signal 

The second requirement of the linear model is that of the continuous time 

approximation, this states that the loop filter bandwidth should be chosen to be no 

greater than 1/10
th

 of the reference frequency.  In Figure 3.11 a plot of the filtered 

output of the PD is shown, the filter bandwidth is chosen to be 1/10
th

, 1/5
th

 and ½ 

that of the reference frequency. 
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Figure 3.11 Filtered Outputs of both the Linear and Digital PLL 

From Figure 3.11 it can be seen that as the loop filter bandwidth is reduced and 

brought closer to the reference frequency, the filtered CP-PFD output begins to 

degrade.  This degradation of the CP-PFD output removes important frequency 

components from the control voltage signal, which are necessary to drive the VCO.  

Therefore for the continuous time approximation to remain valid it is prudent design 

to choose a loop bandwidth no greater than 1/10
th

 that of the reference signal. 

From the above analysis it is reasonable to assume that the linear PD is a good 

approximation of the digital CP-PFD when the phase error is small and when the 

system bandwidth is much less than the reference frequency.  In terms of the overall 

closed loop LPLL and DPLL systems, they can be compared by looking at the 

transient response of both loops to a step in the reference phase φR, and a step in the 

reference frequency FR. 

With the LPLL the phase error is a continuous time representation of the phase 

difference between the reference and VCO signals.  The CP-PFD output signal 

shown earlier in Figure 3.8 is not a continuous time signal, therefore in order to 

compare the linear and digital PLL a continuous time representation of the above 

DPLL phase difference must be found.  To find the continuous time phase error 
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between the reference and VCO signals of the DPLL, consider the two square wave 

signals in Figure 3.12, the top one representing the reference and the bottom one 

representing the VCO or feedback signal.  

T

τ
R

V

 

Figure 3.12 CP-PFD Input Signals 

The frequency of the reference and VCO signals are equal to 1/T.  If we consider the 

falling edges of both signals, then the time difference from the falling edge of one 

signal to the other is τ.  The continuous time phase difference between these two 

signals is equal to:  

2
e

T

πτ
φ =  radians/s 

(3.8) 

From the system transfer function given earlier in (3.6) the transient response of this 

linear transfer function should ideally equate to that of the DPLL phase error 

response.  Using linear theory the phase and frequency step input responses of the 

LPLL are estimated as follows. 

For a phase step the LPLL phase error is calculated as:  

( )e eH s
s

φ
φ

∆
=  

(3.9) 

where ∆φ is the change in phase, and He(s) is as given in equation (3.7).  Therefore 

the phase step response of the LPLL is: 

( )
( )2e

V P

Ns
s

Ns K K F s s

φ
φ

∆
=

+
 

(3.10) 
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where F(s) is the loop filter transfer function as given in Table 2.2 earlier.  Similarly 

the phase error response of the LPLL for a frequency step of ∆ω is: 

( )
( )3 2e

V P

Ns
s

Ns K K F s s

ω
φ

∆
=

+
 

(3.11) 

The step response of the DPLL is determined using a circuit level simulation; this is 

achieved by locking the DPLL and then varying the input reference phase or 

frequency with a step in the input signal.  Consider the following example, the LPLL 

and DPLL are modelled and simulated respectively and the response of both systems 

are compared, the system component values for this example are filter capacitor C2 = 

20pF, filter resistor R2 = 9kΩ, VCO gain KV = 1 MHz/V, and charge pump gain KP = 

10
-6

A/(2π rad).  In Figure 3.13 a plot of the DPLL and LPLL phase step responses 

for a phase step of π is shown.  
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Figure 3.13 Phase Error Responses of LPLL(--) and DPLL(..) 

It can be seen that the difference between the two is inconsequential.  However as is 

expected the two phase error responses do not match exactly, this difference is 

plotted in Figure 3.14.   
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Figure 3.14 LPLL and DPLL Phase Error Difference 

The difference in the phase error responses of both systems are minimised as both 

loops approach the locked state.  The non-linear nature of the DPLL loop results in a 

difference between the linear and nonlinear responses, this difference is due to the 

inaccuracy in the linear approximation and because the non-linearity in the CP-PFD 

is minimal in the locked state but becomes more pronounced when the DPLL is out 

of lock.  The comparison is carried out for a range of phase step sizes, Figure 3.15 

shows the difference between both system responses for the various phase step inputs 

from π/12 to π.  As expected the difference between the LPLL and DPLL increases 

as the phase step is increased.  
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Figure 3.15 Linear and Digital PLL Difference for a Range of Phase Steps 

The difference between the DPLL and LPLL phase error response increases as the 

phase step size is increased.  So the DPLL is more linear if it operates within a small 

region, close to lock and does not deviate outside this region.  In the case of a 

frequency step input we expect to find similar results, i.e. an increase in difference 

between the phase errors of both systems as the input frequency step size is 

increased.  This is shown in Figure 3.16.   
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Figure 3.16 Linear and Digital Difference for a Range of Frequency Steps 

3.2.2 Linear Stability Boundary 

One of the simplest and most utilised linear analysis tools is the stability boundary of 

the DPLL system.  Once the boundary is determined for a particular system, it is 

used as the starting point of the design methodology outlined in Figure 3.7 earlier.  

An example of a second order linear stability boundary is the linear boundary defined 

by Gardner [27], this identifies the stability boundary using the system transfer 

function of equation (3.6) and is calculated as shown in equation (3.12) below. 

2 2

1

1
R R

K
π π

ω τ ω τ

′ =
 

+ 
 

 
(3.12) 

where K′ is equal to Kτ2, and where K is the system gain KPKV and τ2  is the second 

order DPLL loop filter time constant.  Utilising equation (3.12) and choosing a filter 

time constant τ2, and a range of reference frequencies (ωR radians/second), a plot of 

the linear stability boundary for this particular system can be determined.  This 

boundary is shown in Figure 3.17.  
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Figure 3.17 Second Order Linear Stability Boundary 

With this plot it can be seen that there are a range of values of the system gain 

parameter (K′ ) and of ωRτ2 that are stable, by choosing parameters within this region 

it is expected that a stable DPLL system can be designed.  Similarly for the third 

order system Gardner [27] offers a stability boundary as defined by (3.13), where, b 

= 1+(C2/C3) and a = exp(-2πb/ωRτ2). 

2 2

4(1 )

2 ( 1) 2 (1 ) 2(1 )( 1)

R R

a
K

b a a b

b b

π π
ω τ ω τ

+
′ <

 − + − −
+ 

 

 

(3.13) 

Finally consider, as an example, Gardner’s linear stability criterion, this linear 

boundary is plotted again in Figure 3.18 for a particular set of DPLL system 

parameters.  The parameters chosen in this example are FR=12MHz, R2 = 10kΩ, C2 

= 32.5nF, KP = 1mA and KV = 160 Hz/V.  
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Figure 3.18  Linear Stability Limit 

The line represents the stable limit for this particular system, while the star 

represents the chosen set of parameter values for the particular DPLL system.  

Gardner states that in order to be stable the system must be below this line, so 

accordingly this particular system should be unstable.  However the actual response 

of this system as plotted in Figure 3.19 shows that the system is in fact stable.  
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Figure 3.19 System Response 
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This particular example illustrates the known inaccuracies when applying linear 

theory to the DPLL.  However despite the inaccuracies of the linear methods, they 

do provide a starting point from which empirical design methods are used to 

eventually choose the optimum system parameter values.  These design methods are 

generally complemented with a circuit level simulation, to ensure that the DPLL 

operates as expected.  Alternative design techniques to those described above 

include circuit level simulation, nonlinear methods and behavioural methods, each of 

these are discussed in detail later in this chapter. 

3.2.3 Existing Linear DPLL Design Methodologies 

In this section alternative DPLL design methodologies that are derived from the 

LPLL are considered.  In contrast to the linear stability criteria of the previous 

section the methods discussed in this section do not provide a global prediction of the 

DPLL stability boundary.  Instead they offer estimates of specific system parameter 

values for a chosen loop performance, such as the settling time [26], the undamped 

natural frequency and damping factor [43] or the phase margin [13].   

The first criterion to be considered is that of Mirabbasi [26]. This method uses the 

Bessel filter prototype to determine the system parameter values for the third order 

DPLL.  The component values are defined as in equations (3.14-3.18) given below. 
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Using the parameter values as calculated above, the designer expects to produce a 

DPLL system with a settling time of ts and a noise bandlimit of BL.  In general 

though, this is not the case and so the parameter values are varied slightly until the 

correct system performance is verified using a circuit level simulation. 

The second design method derived by Williamson [43] determines the parameter 

values of a stable fourth order DPLL from a predefined choice of undamped natural 

frequency, ωn, and the damping factor, ζ, using the set of equations given in  (3.19-

3.23) below.  

2 2

V P

n

K I
C

Nω
=  

(3.19) 

2

2

2
V P
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R

K I C
ζ=  

(3.20) 
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(3.21) 

24 3RR =  (3.22) 
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22
4

20R

CR
C =

 

(3.23) 

For best performance it is suggested that the closed loop system phase margin, φp, 

should be chosen between 30° and 70°, but generally should be chosen to be 45° 

[10].  In the above set of equations ωn is chosen to be 5π /tLCK, and for an optimum 

phase margin of 45°, ζ is chosen to be equal to 0.707.  

The final design methodology as proposed by O’Keese [13] also considers the phase 

margin, The filter component values of this fourth order DPLL are determined from 

(3.24-3.30) below.  O’Keese also suggests, as a rule of thumb, that the filter capacitor 

C4 should be chosen no greater than one tenth of C3, this insures that the additional 

pole will add a phase shift of no more than 4-5º [10]. If this rule is not adhered to the 

pole due to C4 will interact with the dominant system poles possibly causing 

instability.  This requirement was discussed earlier in Section 2.4, where additional 

high order poles are recommended to be placed out-of-band so that they do not 
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interact with the PLL systems dominant poles, thus second and third order stability 

methods can be used to design stable high order systems. 
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Each of the design methodologies outlined above are found to assign parameter 

values that do produce stable DPLL response, as long as certain rules of thumb are 

utilised.  However, similar to Gardner’s model, all of the above methods do not 

guarantee the system stability; this is to be expected as all of these models are 

derived from the same linear transfer function.   

3.2.4 Discrete Z-Domain Analysis of the Digital Phase Locked Loop 

To complete this section on linear modelling methods it is necessary to consider the 

discrete z-domain analysis methodology.  This method is a discrete sampling domain 

analysis approach.  Considering the discrete nature of the DPLL the z-domain is 

expected to offer a more accurate approach to the analysis of the discrete system 

compared to the continuous linear approach considered thus far [44-46].  This 

increased accuracy is at the expense of an increased model complexity.  
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The z-Domain model is determined from the continuous linear transfer function 

given earlier in equation (3.6) using the bilinear transform expression given in 

equation (3.31) below.   

( )
( )

2 1

1

( ) ( ) z
s

T z

H z H s −
=

+

=  
(3.31) 

The main advantage of the bilinear transformation over other transformation methods 

is that it maintains the magnitude characteristics of the original transfer function [47].  

The system transfer function determined from this transformation is used as an 

alternative to equation (3.6) to model the DPLL and in particular the discrete nature 

of the DPLL system.   

This z-domain model is not commonly used in practice because it exhibits the same 

drawbacks as the continuous method.  This is because it is derived from the linear 

approximation of the APLL (using continuous time assumptions) thus removing the 

most significant discrete components of the loop.  Therefore it cannot accurately 

model the discrete nature of the DPLL, but only the discrete nature of the linearised 

PLL model.  It can be concluded that the z-domain model does not remove the 

inaccuracies that exist in the case of the continuous linear model.  Also in the case of 

high order DPLL systems it has been concluded in [27, 44] that the z-domain model 

becomes incrementally more cumbersome as the system order increases.  For all of 

these reasons the z-domain model is not a viable alternative to the continuous model. 

In the best case scenario it offers only a slight improvement in accuracy for low order 

DPLLs relative to the continuous model, but with an increase in the model 

complexity. 
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3.3 Circuit Level Simulation 

Circuit level simulators are a fundamental part of the design process of highly 

complex or mixed signal systems where an accurate analytical or linear system 

model does not exist.  It is crucial for the designer to be confident of system 

performance before the expense of building the device is carried out.  In particular it 

is necessary to determine the effects of noise on the system performance by adding 

models of all possible DPLL loop noise sources.  Such noise sources can best be 

modelled using a circuit level simulator [41].  However using a circuit level 

simulator such as SPICE results in sampling at the highest frequency; this is at a rate 

of 5-6 times the Nyquist rate [48], thus many signals within the system will be 

excessively oversampled.  As the simulation accuracy is indirectly proportional to 

the simulation sample time, it is well documented that circuit level simulators are up 

to four orders of magnitude slower than equivalent behavioural models [2].  For 

example a full SPICE circuit simulation of a DPLL for 20 µs response, requires up to 

24 hours of CPU processing time, a major drawback.   

A typical example of a mixed signal system is the DPLL which is a highly nonlinear 

and complex system.  Despite this there is a large body of work on the linear analysis 

of DPLL systems.  However linear methods are generally employed in conjunction 

with circuit level simulation, as outlined earlier in Figure 3.7.  This is essentially due 

to the fact that the exclusive use of circuit level simulation is inefficient in terms of 

time, while at the same time the exclusive use of linear methods cannot guarantee the 

accuracy of the analysis [3].  A solution to this lengthy empirical design process is to 

replace the relatively inaccurate linear model with behavioural models [3, 13, 26, 49, 

50]; these are fast and accurate, with the benefit of considerably reducing the design 

time.  The existing behavioural models are considered in Section 3.5.  

There is a large body of work on the circuit level design of each component block of 

the DPLL however a good reference and starting point is given in Razavi [15].  The 

exact design and performance of a DPLL circuit level model is beyond the scope of 

this thesis; however throughout this thesis circuit level simulations, along with other 
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published behavioural and event driven DPLL models, have been used as a reference 

and guide to ensure the accuracy of the results attained in this thesis. 

3.4 Nonlinear PLL Design Methods 

Traditional linear design methodologies as discussed in Section 3.2 are preferred due 

to the simple, powerful and advanced mathematical analysis.  However as the DPLL 

is a nonlinear device, applying nonlinear analysis methods to the DPLL system will 

result in increased accuracy of the model, thus increasing the speed of the design 

process.  While a large number of different nonlinear modelling techniques exist; 

these have only rarely been applied to the analysis of PLL systems [12, 42, 51-53].  

This is because these techniques, by their very nature, complicate the design of an 

already complex system.  In most cases they do not offer any practical solution to the 

design of high order DPLLs.  This subsection will briefly review the existing 

nonlinear methods that have been applied to the DPLL in the literature.  One such 

piecewise linear method, behavioural modelling, will be considered in the next 

subsection and will be the basis for the nonlinear design methodology proposed in 

this thesis. 

The most commonly applied nonlinear analysis methodologies are Lyapunov’s 

methods.  These methods allow the stability of a system to be verified without having 

to explicitly solve the system equations.  There are two methods of stability analysis 

introduced by Lyapunov: the indirect and direct methods.  The indirect method states 

that if a nonlinear system operates within the vicinity of an equilibrium point, then 

the stability properties of that system are the same as its linearised approximation 

(note that this is the same assumption that was made earlier to validate the 

linearization of the APLL).  The direct method on the other hand is a more powerful 

nonlinear analysis tool; it states that if the total energy in a system is decreasing for 

all time, then this system is globally asymptotically stable.  The direct method of 

Lyapunov is the most general approach to the theory of stability of dynamical 

systems [54], and is considered here.  The basic idea of the second method is to 

construct a scalar energy-like function of the system (a Lyapunov function) and 

assess whether it decreases over time.  If it decreases then this suggests that the PLL 
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system is a stable system.  The major disadvantage of Lyapunov’s direct method is 

the need to find a suitable Lyapunov function for a particular system.  If no 

Lyapunov function can be found for this system then no conclusions can be drawn 

about stability.  This is a complicated task even for the simplest of systems.  The 

problem becomes even more complicated as the DPLL order increases.  This is due 

to the exponentially increasing complexity – thus finding a Lyapunov function 

becomes very challenging.  Both Abramovitch [14] and Wu [53] concede that the 

Lyapunov method is not suitable for high order PLL system design (i.e. greater than 

second order).  However a low order implementation of Lyapunov’s direct method, 

known as Lyapunov redesign, has been applied in the literature to the design of 

second and third order APLL systems in [42], and [52]. 

The difficulty with applying Lyapunov and Lyapunov derived methods to high order 

PLL systems has led to the exploration of other nonlinear analysis tools suitable for 

numerical techniques.  Abramovitch [12] and Wu [53] state that the Circle and 

Popov Criteria may be a viable alternative to Lyapunov.  They are derived from two 

particular types of Lyapunov function candidates, shown below respectively
iv

: 

PxxxV
T=)(  
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∫ −+=
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(3.33) 

The methodology used is to combine one of these criteria with a search over a 

prescribed set in the filter parameter space.  The standard approach is to use the 

Circle Criterion first and if this fails to use the Popov Criterion.  In order for this 

approach to work a computationally expensive simulation is required, for this reason 

                                                 

iv
 Note: The Popov Criteria is the same as the circle Criterion when η=0 
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the circle criterion is not used for PLL design.  A more detailed application of this 

nonlinear methodology to the PLL is given in [53].  

LaSalle’s theorem [55] is another extension of the Lyapunov method.  The major 

difference between LaSalle’s theorem and theorems such as Lyapunov, Circle, or 

Popov is that while these theorems extend to time-varying systems, LaSalle’s 

theorem requires time-invariance.  The PLL is a time varying system, however when 

in a locked state the system can be viewed as time invariant.  This again is similar to 

the assumption of time invariance made during the linearization of the DPLL.  

Considering that the same assumption is being made in both cases and that the linear 

analysis is a simpler and more powerful tool it is understandable that LaSalles 

nonlinear method has not been applied to the DPLL in the literature.  

As an alternative Rantzer [51] introduces another method similar to Lyapunov’s 

direct criterion, known as the “almost global stability criterion” (AGSC).  The basic 

difference between the Lyapunov method and the AGSC is that the latter uses a 

weaker notion of stability.  For example in [51] an example of a system that is not 

globally stable is given, and therefore not stable in the sense of Lyapunov.  The 

AGSC is applied and receives results that reflect the ‘almost global stability’ nature 

of that system.  This concept of ‘weakness’ is achieved by using a ‘density function’ 

that is derived from a Lyapunov function.  This density function may exist even if 

the system is not globally asymptotically stable, in which case the system can be said 

to have almost global stability.  The problem again however is the difficulty in 

finding a unique density function for the system – this is not a simple task. 

A common theme is evident in all of the nonlinear methods mentioned here; this is 

the complexity of the analysis, in particular with the application of such methods to 

the DPLL system.  The DPLL with a CP-PFD is a highly complex system, 

attempting to apply complex nonlinear methods to this system has proven to be a 

difficult task.  If the analysis of high order DPLL systems is to be achieved then the 

analysis technique needs to be simplified and not complicated.  For this reason alone 

the nonlinear methods mentioned have proven to be unpopular with designers and 

linear methods are used exclusively.  Second, any attempt at applying these nonlinear 

methods to the DPLL or APLL always start by assuming that the PD can be replaced 
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by a linear subtractor component.  This is also the result of the APLL linearization of 

Section 3.2.  Applying a nonlinear analysis technique to what is essentially a linearly 

approximated system is not very informative. 

Behavioural models are a viable an accurate alternative to the traditional nonlinear 

and linear methods described thus far.  They provide an efficient, workable and 

accurate nonlinear solution to the analysis of DPLL systems, these essentially model 

the nonlinear PFD component using a state transition diagram to track the changing 

states of the DPLL loop in a piecewise linear fashion.  Behavioural methods as they 

are applied to the DPLL are considered in detail in the next section.   

3.5 Behavioural Modelling of the DPLL 

All of the DPLL design and modelling methods (linear and nonlinear) described up 

to now have been applied to the DPLL either in theory or in practice.  However 

because of the complexity of the DPLL system it is more common in practice that 

simpler linear model analysis tools are utilised.  This simplicity must be traded with 

the lack of accuracy of the linear model.  For this reason the linear predictions of the 

system performance are always validated using a slow circuit level simulation as a 

final step in the design process.  Behavioural models are found to be considerably 

more effective; modelling the CP-PFD nonlinearity without the unwieldiness of the 

Lyapunov derived nonlinear methods or the slowness of the circuit level solution, 

and are more accurate than the linear approximated model.  Behavioural modelling 

techniques are discussed in detail in this subsection.   

The complexity of the DPLL is due mainly to the fact that the CP-PFD is a time 

varying system exhibiting a quantization-like effect.  The DPLL analysis is further 

complicated by the fact that the variable of interest around the loop changes from 

phase to voltage, which produces a large number of harmonics that are required to 

accurately model the digital nature of the waveforms [56].  Linear stability criteria 

such as [13, 26, 43] do not provide a definitive prediction of stability for the DPLL; 

in particular they ignore these nonlinearities which are crucial to the operation of the 

DPLL, however as mentioned earlier they can provide a starting point for the 

empirical design process illustrated in Figure 3.7 earlier.   
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The empirical nature of the DPLL design process means that more than one 

simulation will ultimately be required to determine the system performance.  

Replacing the circuit level simulations with behavioural models can significantly 

reduce the design time.  Such behavioural models [3, 49, 50] consider the 

performance of the individual DPLL blocks, as opposed to every individual 

component in the case of a circuit level simulation.  To explain this further consider 

the CP-PFD component block, behavioural models consider the expected behaviour 

of the CP-PFD output for all possible inputs, this can be extremely advantageous for 

systems that only have a small number of possible inputs.  This is the case with the 

CP-PFD which has three possible input states and thus three possible corresponding 

outputs.  These are outlined in the table below. 

Input CP-PFD Output  CP-PFD State 

FR Leads FV +IP Amps UP 

FR Lags FV -IP Amps DOWN 

FR and FV  Correspond 0 Amps Null 

Table 3.1 CP-PFD Input/Output States 

Behavioural modelling techniques as applied to the DPLL work on the basis that the 

CP-PFD component operates in one of three possible states.  The loop response is 

linear between these nonlinear state transitions.  Thus the current output of the CP-

PFD can be determined if the present CP-PFD state is known.  The CP-PFD state 

changes depending on certain events occurring in the DPLL loop, it will depend on 

the occurrence of falling edges of the FR and FV digital signals.  The next event is 

determined by monitoring the current phase of FR and FV, with the knowledge that 

the next falling edge event of the relevant signal will occur at a phase of 2π radians.  

If the falling edge R↓ leads that of V↓ then the PFD will move into the up state (U), 

if R↓ lags V↓ then the PFD state will be down (D), and finally if both signals 

correspond then the PFD state will be null (N).  These state transitions were 

discussed earlier in Chapter 2 and are illustrated in the state transition diagram of 

Figure 2.9. 
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Using this state transition diagram the behavioural models use a set of difference 

equations to model the expected behaviour of the overall DPLL system, including the 

non-linear quantization like effect of the CP-PFD.  Due to the fact that the DPLL 

system performance is linear between the nonlinear transitions of the CP-PFD, the 

system can be modelled using a set of linear difference equations describing the 

response of the system between each transition.  Thus behavioural models change 

between three sets of difference equations depending on the present state of the PFD.  

These difference equations can be derived in a number of ways, two of which are 

presented in following subsections.   

This behavioural modelling methodology of the PFD accurately models the response 

of the system without the need for a slow circuit level simulation.  The state 

transition diagram is piecewise linear in nature and will be used in Chapter 5 to 

develop a novel design methodology for the DPLL.  The significant advantage of 

behavioural models over linear theory is the accuracy of the model, while the 

advantage over a circuit level simulation is the speed of simulation.  However the 

one drawback of the behavioural model is the complexity of the model equations.  

This is due to the existence of high order differential terms, thus it becomes 

mathematically infeasible to determine the system equations in closed form.  This is 

found to be the case for loop orders of greater than four.  In Chapter 4 a solution to 

this is proposed in the form of a charge approximation model.  This model offers a 

simple approximation of the charge on the loop filter capacitors, which simplifies the 

difference equations, and removes the differential terms.  

The behavioural model takes two significant forms, either a uniform or non-uniform 

sampling model, a seminal example of each of these methods Van Paemel [3] and 

Hedayat [50] are presented in the next two subsections and are then compared 

against a reference circuit level simulation to prove their accuracy.  

3.5.1 Van Paemel Event Driven Model 

The falling edge events of the VCO output signal described in the previous 

subsection occur at non-uniform time intervals due to the varying frequency of the 

VCO signal.  In contrast to this characteristic, Van Paemel’s model [3] is a discrete 
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time uniformly sampled model.  The model samples independently of the DPLL 

events, while still using the state transition model of Figure 2.9.  Uniform sampling 

simplifies the analysis of the second order model; however this increases the 

modelling time while reducing the accuracy relative to a non-uniform equivalent.  

The inaccuracy of the uniform approach is due to the fact that the time between 

events in the PLL loop is non-uniform.  Therefore a variable sampling time is 

required which is much less than 1/FR.  

The Van Paemel model considers the second order DPLL and therefore uses two 

state variables, τ the pulse width of the phase detector output pulse (which is directly 

related to the phase error), and VC the voltage stored across the loop filter capacitor 

and resistor, as in Figure 2.18 earlier.  The model equations describe the system state 

variables at the current time period from previous values of the state variables.  This 

is carried out either from a set of difference equations, if they can be derived in 

closed form, or by numerical iteration.  Van Paemel models the pulses of the PFD 

output – the behaviour of the system.  These pulses are directly related to the value of 

VC, so VC can be estimated if the current state, next event and pulse width are all 

known.  The shape of VC is illustrated in Figure 3.20, an estimate of VC(k+1) can be 

determined using integration, or by determining the area under the VC line in Figure 

3.20. 
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Figure 3.20 Plot of the CP-PFD Output Pulses and the Control Voltage Inputs 
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Van Paemel uses a prediction of the VC pulse shape to determine the integral, there 

are four different possible pulse width shapes, these are the four cases outlined 

below.   

1. Case 1 - τ(k)>0 and τ(k+1)>0 
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2. Case 2 - τ(k)<0 and τ(k+1)<0 
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3. Case 3 - τ(k)>0 and τ(k+1)<0 
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4. Case 4 - τ(k)<0 and τ(k+1)>0 
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For each of the above cases two difference equations are used to calculate the next 

set of values of VC(k+1) and τ(k+1).  For example, for each iteration VC(k+1) can be 

calculated by determining which of these four cases has occurred and estimating 

VC(k+1) from the difference equation associated with that particular case.  The final 

set of difference equations for τ(k+1) are given in equations (3.34-3.37).  The second 

state variable VC(k+1) is determined from the calculated values of τ(k+1) as given in 

equation (3.38). 
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1 1

1

( 1) ( ) ( 1)P
C C
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V k V k k

C
τ+ = + +  (3.38) 

There are two additional cases possible that need to be considered, these help to 

simulate the out-of-lock behaviour of the loop.  These two additional cases are 

outlined in [3]. 

Using the stability limit equations as defined in [27], Van Paemel calculates a 

linearised stability limit which places a restriction on the gain of the system.  It is 

suggested that if this restriction is adhered to, then the stability of the system is 

guaranteed.  This however is not the case.  As we would expect from the 

observations of Section 3.2.2, the linear model cannot guarantee the stability of the 

nonlinear DPLL.  Nevertheless the stability restriction as defined by Van Paemel is 

given in equation (3.39) 

N

K N

22

1
1

2

τ
+

=  

(3.39) 

where KN is the normalised loop gain and is equal to IPR2KVT.  This boundary gives 

similar results to that of equation (3.12) earlier.  This is to be expected as they are 

both derived from the same linear PLL model equations.  

3.5.2 Hedayat et al. Event Driven Model 

The second and third order event driven models of Hedayat et al [49, 50] also utilise 

the event driven behavioural modelling technique.  However unlike the Van Paemel 

model, the time period t is a non-uniform sampling time and represents the time until 

the next falling edge event occurs.  

The phase of the reference and VCO signals play an important role in the operation 

of this model.  The loop is considered to be locked when the time difference between 

the reference and VCO signals is zero.  This is the case when R� and V� occur 

sequentially or when the phase of both signals correspond.  
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If the phase of both these signals is known at some time t, then it is possible to 

determine the phase of these signals at time t+τ by integration.  The falling edges R� 

and V� both occur when the reference is equal to 2π.  Therefore it is possible to find 

the event times tR and tV when R� and V� occur respectively.  Knowing the current 

DPLL state, the time of the next event and using the state transition diagram of 

Figure 2.9 it is possible to determine the value of VC and therefore the VCO output 

signal from its characteristic equation (3.40), where FFR is the VCO free running 

frequency and KV is the VCO gain component. 

V V C FR
F K V F= +  (3.40) 

The next PFD state and the control voltage VC of the second order loop at time tn+ 

can be determined from Table 3.2, depending on the previous PFD state and the 

current event. 

PFD @ tn- Event at tn PFD @ tn+ VC(tn+) 

Null R↓ Up VC(tn-)+R2*IP 

Up R↓ Up VC(tn-) 

Up V↓ Null VC(tn-)-R2*IP 

Null V↓ Down VC(tn-)-R2*IP 

Down V↓ Down VC(tn-) 

Down R↓ Null VC(tn-)+R2*IP 

Table 3.2 Determination of VCO control voltage 

The phase signals for this second order model are calculated as shown in equations 

(3.41) and (3.42). 
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In a similar manner to Van Paemel the determination of the next event in the case of 

a third or higher order model is not a straight-forward mathematical solution; a 

closed form solution to the calculation of tv is not possible, so numerical iteration is 

used.  This is achieved by numerical integration using the Newton-Cotes trapezium 

rule.  The third order model uses a derived difference equation to define the value of 

VC(tn+).  These equations are as shown in equations (3.43-3.45) in the order they need 

to be solved for each iteration. 
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Hedayat et al. do not go as far as to develop the fourth order system equations.  

However using a similar technique to [49] and [50] it is possible to derive the fourth 

order equations using the filter structure of Figure 2.20.  These equations, derived 

here and given in equations (3.46 – 3.48), replace the equivalent ones in [50] to 

increment the model to fourth order.  To generate this model, first consider the 

current through each capacitor in the circuit, i2, i3, and i4: 
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where, 
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Once each of the currents is known, the voltage across each capacitor is calculated as 

in equations (3.49-3.51).  It can be seen from Figure 2.20 that the control voltage VC 

is equivalent to the voltage across capacitor C4.  
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Finally the phase error φe(tn+1) is calculated from φR(tn+1) - φV(tn+1), where φR(tn+1) is 

the phase of FR and φV(tn+1) is the phase of signal FV and is calculated as in equation 

(3.52). 
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(3.52) 

Now that we can accurately model fourth order it is possible to revisit the rule-of-

thumb for fourth order systems that was suggested in Section 2.4.1 earlier.  This 
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stated that the choice of C4 should be no greater than 1/10
th

 of C3.  This can be 

validated by plotting the transient response of the fourth order model as the capacitor 

C4 is varied.  Figure 3.21 illustrates that as the value of capacitor C4 approaches C3 

the system lock time is steadily reduced, however a threshold is reached at C3/C4 is 

approximately equal to 10.  Beyond this threshold the lock time increases 

dramatically causing the system to become unstable.  This is due to the additional 

fourth order pole component encroaching on the third order system poles.  This is to 

be expected because with the fourth order pole placed out-of-band, it has minimal 

effect on the overall transients and therefore stability of the DPLL system.  However 

as the additional fourth order pole encroaches on the other system poles, it effects the 

system transients and therefore needs to be considered in terms of the loop stability. 

1000 200 100 50 20 10 5

C3/C4

 

Figure 3.21 Plot of Steady State Error as C4 Approaches C3 

Thus the rule-of-thumb that C4 should be chosen no greater than 1/10
th

 the value of 

C3, proves reasonable in light of the above result.  If this rule-of-thumb is ignored 

and the value of C4 is chosen too close to the value of C3, then the traditional third 

order linear stability criterion cannot be safely applied to this fourth order system. 

Finally it is worth pointing out that even though the Hedayat model has been 

extended to fourth order here; it is mathematically infeasible to increment the model 

to orders higher than fourth.  The model equations cannot be found in closed form 

due to the existence of high order differential terms.  
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3.6 Summary 

In this chapter the simulation, modelling and analysis of the DPLL was considered in 

detail.  It was discussed that the DPLL system performance can be determined by 

using a number of methods; these are a linear approximation, circuit level simulation, 

nonlinear prediction or using a behavioural model.   

The linear approximation of the DPLL was derived in Section 3.2; it was shown that 

this approximation is actually an approximation of the APLL with a mixer PD.  The 

application of this same approximation to the DPLL can be justified if the CP-PFD 

behaviour is ignored and the state variables (control voltage and phase error) are 

considered equivalent in both systems.  The limitations of the linear approximation 

are that it is only valid for a small phase error when the DPLL is close to lock, and 

when the loop filter bandwidth is chosen to be less then one tenth of the reference 

signal frequency.  This means that there will always be some error in the linear 

approximation of the DPLL due to the fact that the nonlinear CP-PFD behaviour is 

not considered.  The significant advantage of the linear method is due to the 

analytical nature of the analysis and the advanced and powerful nature of linear 

analysis tools – this alone explains its continued popularity. 

In Section 3.3 circuit level simulations were discussed, it was concluded that these 

methods, while accurate, are extremely slow and can only be used empirically to 

determine the desired DPLL performance.  Thus circuit level simulators are 

generally used only as a final step in the design process to validate the system 

performance. 

Alternative methods to the linear approximation are nonlinear techniques which are 

found to unnecessarily complicate the analysis of the DPLL.  It was discussed that 

the application of such nonlinear methods to the DPLL were rare in the literature for 

this reason; instead such methods were applied only to the APLL, which were 

subsequently linearised to simplify the analysis.  Despite the less complex nature of 

the APLL relative to the DPLL, these analyses were still complex. 
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The final DPLL analysis method discussed in this chapter was behavioural or event 

driven modelling methods.  Such methods offer advantages over other methods in 

that they accurately model the behaviour of the DPLL system – including the 

behaviour of the nonlinear CP-PFD component block, they are significantly faster 

than the circuit level simulation, and they model the DPLL behaviour on a 

component block level as opposed to transistor level.  Finally they do not 

overcomplicate the system equations as in the case of existing nonlinear methods, 

allowing insight into their behaviour to be gained.  

Two existing behavioural models were considered in detail, the first is proposed by 

Van Paemel.  This model graphically determines the control voltage of a second 

order DPLL from the integral of the output response of the loop filter; the second 

state variable is the uniform sampling timeτ.  This technique has two drawbacks:   

1. It estimates the time of the next event.  However as the frequency of the VCO 

output signal varies between these events this estimation becomes less 

accurate.  To improve the accuracy of the model the time of the next event 

needs to be recalculated at each sample point.  

2. Van Paemel considers only the second order case as this is a simple system 

using a first order filter; this filter response can be solved using first order 

linear equations.  Higher order system equations become impossible to solve 

in closed form due to the presence of high order differential terms.   

The second behavioural model considered is Hedayat; this model improves on the 

first drawback of Van Paemel by using a non-uniform sampling time, which 

corresponds to the time until the next event, increasing the model accuracy 

significantly.  In the case of high order DPLL modelling the same drawback as 

outlined for Van Paemel also exists with this method. 

Thus in conclusion behavioural modelling techniques offer the fastest and most 

accurate method of analysing the DPLL.  However the disadvantage of existing 

behavioural models is that they become increasingly complex as the loop order is 

increased.  In fact it is found that for orders greater than four, the system model 

equations cannot be determined in closed form.  A solution to this issue is proposed 

in the next chapter.    
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CHAPTER 4 

A NON-LINEAR ANALYSIS TECHNIQUE FOR 

MODELLING HIGH ORDER DIGITAL PHASE 

LOCKED LOOPS 

4.1 Introduction 

Mixed signal systems such as the DPLL, by definition, contain both analogue and 

digital elements.  Trying to model mixed signal systems analytically presents a 

significant challenge due to the differences between digital and analogue signal 

representations [57], i.e. the digital part of the circuit uses discrete variables, while 

the analogue part uses continuous variables.  Thus there is a requirement to convert 

the discrete signal into a continuous signal, within the loop, and then back to digital 

[3, 49, 50, 58, 59].  This is due to the transition between states as discrete events 

occur within the loop, this signal transformation means that these mixed signal 

devices exhibit quantization-like effects which are inherently nonlinear.  This, in 

essence, means that these systems cannot be accurately analysed using traditional 

linear methods because they do not consider the quantization effects of the DPLL.   

In recent years behavioural models, as outlined in the previous chapter, have become 

increasingly popular because of the inaccuracies and impracticalities associated with 

the linear and circuit level simulation methods.  These behavioural methods can 

accurately model the nonlinearities in a significantly shorter computation time.  They 

work by modelling, at a high level, the behaviour of each individual component 

block within the system.  Such mixed signal behavioural analysis methods work well 

for low orders, the difficulty occurs when higher orders are considered.  It is found 

that for high orders, it is mathematically infeasible to determine closed form model 

equations due to the existence of high order differential terms. 

The differential terms, which are due to the parasitic elements in the loop, need to be 

solved in order to determine the systems difference or behavioural equations either in 
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closed form or in to some numerically simple form.  In this chapter a novel approach 

to the derivation of the system equations is presented, this method approximates the 

loop filter capacitor charge which results in system equations that do not contain 

differential terms, thus making it possible to derive the behavioural equations in 

closed form.  Without such an approximation it would not be possible to determine 

the high order DPLL behavioural equations.  This charge approximation 

methodology is presented in the next section, using a simple first and second order 

RC filter as an example.  While the application of the proposed charge 

approximation to such RC filters is not particularly beneficial (due to the fact that the 

filter is analogue and its behavioural equations can easily be found in closed from 

without the need of any approximation) the RC filter is used purely as an example to 

explain the basic principles of the charge approximation.  Once some understanding 

of the charge approximation methodology is gained, it can then be applied to more 

complex mixed signal systems such as the DPLL, this is carried out in Section 4.3, 

where the behavioural equations are determined for orders of two up to five  

It is worth pointing out that the charge approximation methodology that is presented 

in this chapter is applicable to all mixed signal systems.  Along with the DPLL 

another example of mixed signal systems is the sigma delta modulator (SDM).  The 

SDM is used in devices such as analogue to digital convertors (ADC) and digital to 

analogue convertors (DAC).  Both the SDM and the DPLL are feedback loops 

containing both discrete time and continuous time signals.  The major difference 

between the two systems is that the SDM has a fixed discrete signal sample rate, 

whilst the DPLL has a variable sample rate.  This means that the analysis of the 

DPLL is slightly more complex then that of the SDM.  This chapter only considers 

the application of this methodology to the DPLL system.  The application of the 

charge approximation to other mixed signal systems is beyond the scope of this 

thesis. 

The introduction of such a simplifying approximation inevitably results in the 

introduction of an additional amount of error.  It is expected however, due to the fact 

that the error is bounded by the reference frequency, that this error will be small 

relative to the continuous time approximation of the linear model, and that it will be 

minimised as the time between samples decreases.  This error and the limitations that 
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it imposes on the model are considered in detail in Section 4.4.  The charge 

approximation model is also compared to existing behavioural methods and a circuit 

level simulation to show that any introduced error can be minimised.   

4.2 The Charge Approximation Methodology 

As discussed the existence of high order differential terms in high order DPLL 

system equations means that it is not mathematically feasible to determine these 

equations in closed form.  The numerical resolution of such high order polynomials 

is difficult.  To help explain the proposed approach we initially take as an example a 

simple first order RC transconductance filter shown in Figure 4.1 below.  

R2

C2

Iin

VC

 

Figure 4.1 First Order RC Transconductance Filter Structure 

This filter structure is similar to the traditional passive loop filter structure of the 

second order DPLL with a charge pump PFD component.  It is transconductance in 

nature because there is a requirement within the DPLL loop to convert the current 

output of the charge pump PFD to a voltage, for operation by the VCO.  The system 

equation for this filter is calculated using equation (4.1) below. 

 

1 2

2

1
( )     C k in inV t R I I dt

C
+ = + ∫  (4.1) 

Voltage across Resistor Voltage across Capacitor 
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As mentioned earlier the input current to the filter, Iin, varies in a discrete-like 

manner as the system state changes (Table 3.1).  Thus for any one period of time, ∆t, 

the input will be a constant value, either +IP, -IP, or 0 amps.  Thus if Iin is a constant 

current source, and assuming zero initial conditions, then equation (4.1) can be 

solved by using the trapezium rule of Newton-Cotes numerical integration formulas 

and thus be rewritten as in equation (4.2), without the integral term: 

1 2

2

( ) in
C k in

tI
V t R I

C
+

∆
= +  (4.2) 

where ∆t is the length of time that the current is pumped into the filter.  In this 

example the solution is straight forward, as there are no differential terms.  The 

control voltage can be solved in closed form for a given Iin, which varies depending 

on the DPLL loop state. 

In the case of a second order loop filter, the order is increased by including an 

additional capacitor as in Figure 4.2.  Again this filter is a passive transconductance 

filter structure similar to the loop filter of a third order DPLL.  

R2

C2

Iin

VC

C3

 

Figure 4.2 Second Order Filter 

The system equation for this second order filter contains both an integral and a 

differential term as shown in equation (4.3) below. 
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3
1 2 2 3 1

2 2

1
( ) ( )C

C k in in C k

dV C
V t I dt I R R C V t

C dt C
+ += + − −∫  

(4.3) 

Again Iin is constant within any time period ∆t, thus the integral of Iin can be solved 

as in the first order case earlier (i.e. it is equal to ∆tIin).  In this case it is not quite as 

straight forward to solve equation (4.3) in closed form, due to the presence of the 

differential term which needs to be solved.  As the filter orders are increased so do 

the differential orders, these high order differentials cannot be solved into closed 

form, this will become evident later when the fourth order DPLL is considered.   

However in the case of equation (4.3) the first order differential can be resolved into 

closed form, this solution is derived as follows.   

The differential term in equation (4.3) can be calculated from the knowledge of the 

slope of the output voltage VC, i.e. 1( ) ( )
C C k C k

dV V t V t

dt t

+ −
=

∆
.  Thus equation (4.3) can 

be rewritten as in equation (4.4) 

( )2 3 3
1 2 1 1

2 2

( ) ( ) ( ) ( )in
C k in C k C k C k

I t R C C
V t I R V t V t V t

C t C
+ + +

∆
= + − − −

∆
 

(4.4) 

Moving all the VC(tk+1) terms to the left hand side and solving, the control voltage 

behavioural equations can be found in closed from as given in equation (4.5).   

2 2 3
2 2

1
2 2 3

2 3

( )

( )
in in C k

C k

R C C
I t I R C V t

tV t
R C C

C C
t

+

∆ + −
∆=

+ +
∆

 (4.5) 

The above derivation of equation (4.5) is carried out in a similar manner to that of the 

two behavioural models described in Chapter 3 [3, 49], i.e. replace the first order 

differential term with the slope of the control voltage and solve the resulting 

expression for VC(tk+1).   

As mentioned earlier, an increase in the order of the system means a growth in the 

number of differential terms, for example expect that a third order transconductance 

filter will have a number of differential terms with orders up two.  In other words the 
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third order equivalent of equation (4.3) will have a d
2
VC/dt

2
 term that will need to be 

solved.  Likewise for a fourth order transconductance filter we expect to find a third 

order differential term.  To numerically solve these equations an approximation is 

required for high orders which removes or in some way approximates these 

differential terms, thus making it possible to increment the model to high orders.  

The solution proposed here is that these high order differential terms can be removed 

using a charge approximation, thus simplifying the behavioural equation analysis.  

This charge approximation technique simplifies the derivation of the system 

behavioural equations by approximating and removing the differential terms.  This is 

achieved by initially calculating the voltage across the capacitor C2 using the charge 

expression of equation (4.6), rather than the integral expression of the voltage on the 

capacitor as in equation (4.7)  

2

2 1

2

( )
( )

C k

C k

Q t Q
V t

C
+

+ ∆
=  (4.6) 

1

2 1 2

2

1
( )

k

k

t

C k

t

V t I dt
C

+

+ = ∫  
(4.7) 

To solve equation (4.6) a determination of the change in the loop filter capacitor 

charge, ∆Q, over a given time period ∆t is required.  But ∆Q = QC2(tk+1)-QC2(tk), thus 

to determine VC2(tk+1) we need to know QC2(tk+1), which we do not know at this 

stage.  However VC2(tk+1) can be approximated by making the following 

approximation of ∆Q: 

1 1 1 1( ) ( )k kQ I t I t t I t t+∆ = ∆ ≈ ∆ ≈ ∆  (4.8) 

where 1I  is the mean current through C1 during the time period ∆t.  This charge 

approximation is illustrated in Figure 4.3 below. 
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Figure 4.3 Current Approximation that Leads to the Charge Approximation 

Thus equation (4.6) given above can now be approximated by equation (4.9). 

1

1

1

1

1

( ) ( )
( )

C k k

C k

Q t I t t
V t

C
+

+ ∆
=  (4.9) 

Using this approach, the system’s behavioural equations no longer contain 

differential or integral terms, and only contain terms that are known at time tk.  

Consider again the first order filter with the structure of Figure 4.1 and the system 

equation as given in equation (4.1).  This filter may be charge approximated as 

follows: first, equation (4.1) is rewritten with the charge on the capacitor expressions, 

as in equation (4.10). 

1

( )
( ) k

C k in

Q t Q
V t RI

C
+

+ ∆
= +  (4.10) 

Assuming we start with an initial charge Q(tk) equal to zero, then the voltage at the 

next time period VC(tk+1) can be rewritten as: 

1( )C k in

Q
V t RI

C
+

∆
= +  (4.11) 

So to determine VC(tk+1) it is necessary to calculate the change of capacitor charge 

∆Q during the time period ∆t.  For a first order filter this is a simple linear 

calculation, as the average current, 
in

I , flowing into the capacitor during the time 
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period ∆t is constant.  Thus the charge approximated output voltage of the filter is as 

given in equation (4.12) given below. 

1 2( ) in
C k in

I t
V t R I

C
+

∆
= +  (4.12) 

Both the integral filter equation, approximated earlier in equation (4.2) using 

Newton-Cotes and the charge approximated filter of equation (4.12) are the same.  

This is to be expected in this case for two reasons:  

1. Because we are using a first order filter, the Newton-Cotes solution to the 

integral in equation (4.2) is an accurate linear estimate of the integral.  

2. In terms of the charge approximation made in equation (4.12), the input 

current Iin is constant, therefore the average current through the capacitor is 

in fact equal to the initial current.  

4.2.1 Behavioural Equation Derivation using the Charge Approximation 

The effects of including a charge approximation and derivation of the system 

behavioural equations can be better illustrated by considering again the second order 

filter of Figure 4.2 with the system equation as given in equation (4.3).  In this case 

the second order filter equation includes both an integral and a differential term.  To 

derive the behavioural equations using the charge approximation carry out the 

following steps: 

1. Assign values to all the input system nodes (VA, VB, VD
v
 etc) in the filter as in 

Figure 4.4, and determine the voltages across each section in terms of the 

capacitor charge as in equation (4.13 – 4.14). 

                                                 

v
 Note that the voltage expression VC has not been used here intentionally because VC is generally the 

voltage at the filter output node. 
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2 2
1 2 2 1

2

( )
( ) ( ) k

A k k

Q t I t
V t R I t

C
+ +

+ ∆
= +  (4.13) 

3 3
1 1

3

( )
( ) ( ) k

B k C k

Q t I t
V t V t

C
+ +

+ ∆
= =  (4.14) 

R2

C2

Iin VC

C3

VA VB

 

Figure 4.4 Assignment of Nodes 

2. Equate each of the node voltages as in equation (4.15) below.   

2 2 3 3
2 1 2

2 3

( ) ( )
( ) k k

k

Q t I t Q t I t
I t R

C C
+

+ ∆ + ∆
+ =  (4.15) 

Note that in this case there is just one resulting equation (i.e. VA = VB).  In the 

case of higher order filters there will be more expressions, these will come 

from the extra voltage nodes, i.e. in the case of the fourth order by equating 

nodes VA=VB VA=VD and VD=VB. 

3. Including the input current expression given in equation (4.16), and 

approximating the average currents in equation (4.15) to I(tk+1), (the current 

at time tk+1), we are left with two simultaneous equations (equations (4.15 –

4.16)) and two unknowns (I2(tk+1) and I3(tk+1)).   

2 1 3 1( ) ( )in k kI I t I t+ += +  (4.16) 

4. Solve these simultaneous equations for each current expression as follows:  
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2 1 2 3
2 1 2

2 3 3 2 3

( ) ( ) ( )
( ) in k k k

k

I t I t t Q t Q tt
I t R

C C C C C

+
+

   ∆ ∆∆
+ = − − −  

   
 (4.17) 

2 1 2

2 3 3

( ) in
k

I tt t
I t R

C C C
ρ+

  ∆∆ ∆
+ + = − 

 
 (4.18) 

( )
2 2 3

2 1

2 2 3 2 3

( ) in
k

I tC C C
I t

R C C t C C

ρ
+

∆ −
=

+ ∆ +
 

(4.19) 

5. Finally now that we know I2(tk+1), it is possible to calculate I3(tk+1), the 

charge on each filter capacitor, and the filter output voltage using equations 

(4.20 – 4.23) as given below. 

3 1 2 1( ) ( )k in kI t I I t+ += −  (4.20) 

2 1 2 2 1( ) ( ) ( )k k kQ t Q t tI t+ += + ∆  (4.21) 

3 1 3 3 1( ) ( ) ( )k k kQ t Q t tI t+ += + ∆  (4.22) 

3 1
1

3

( )
( ) k

C k

Q t
V t

C

+
+ =  

(4.23) 

Thus equations (4.19 – 4.23) are the charge approximated behavioural equations for 

the second order filter.  Though this solution is more expansive than the solution of 

equation (4.5) earlier, it has no differential terms.  The system behavioural equation 

derivation can also be applied, as it stands, to all orders of transconductance filters 

and DPLL systems, i.e. by using the five steps outlined above.  

 The charge approximation has been used so far to determine the behavioural 

equations for first and second order transconductance filters, and it has been shown 

that these behavioural equations can be derived without the use of the charge 

approximation.  The second order filter was derived here for two reasons: first, as a 

simple example to introduce the charge approximation; and second, as a reference to 

Let this be equal to ρ 
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compare the accuracy of the charge approximated equations.  This comparison will 

be used in the next subsection to investigate the approximation error.   

4.2.2 Charge Approximation Error of a Second Order Filter 

In the previous section it was seen that by deriving the filter behavioural equations 

using the charge on the loop filter capacitors rather than the voltage at the nodes, a 

simplification can be made that approximates the change in charge ∆Q by assuming 

that the average current through a capacitor during time period ∆t is approximately 

equal to the current at time tk+1, see equation (4.24).  

1 1 1 1( ) ( )k kI t I t t I t t+∆ ≈ ∆ ≈ ∆  (4.24) 

The advantage of making this approximation is that differential terms are removed 

from the system model equations thus the model behavioural equations can be 

determined in closed form.  This approximation is at the expense of some additional 

modelling error which we have already mentioned is directly proportional to the time 

interval ∆t.  This error is now considered in detail. 

First consider the charge approximation on the current flowing into one capacitor C1 

using equation (4.24), the error that is introduced is equal to the difference between 

the average current into capacitor C1 and the current at time tk, see Figure 4.5. 

tk tk+1∆∆∆∆t

I1

1I

1( )
k

I t

error

 

Figure 4.5 Estimate of the Charge Approximation Error 
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The approximated control voltage in terms of the additional approximation error can 

be calculated as follows: 

2 2

C C
C

Q Q Q I t
V

C C

+ ∆ + ∆
= =  

(4.25) 

where VC is the actual control voltage.  Utilising the charge approximation in 

equation (4.25) means that the average current, I  , is replaced with the current at the 

end of the time period I(tk+1).  This results in: 

( )1

_

2

C k

C Approx

Q I t t
V

C

++ ∆
=  (4.26) 

Since I(tk+1) is equal to I  + Ierror, where Ierror is the additional error due to the 

approximation, then: 

( )
_

2 2 2

C error C error
C Approx

Q I I t Q I t I t
V

C C C

+ + ∆ + ∆ ∆
= = +  (4.27) 

  
_

2

error
C Approx C

I t
V V

C

∆
⇒ = +  

(4.28) 

Therefore the approximated control voltage VC_Approx is equal to the actual control 

voltage VC plus some small amount.  This results in the approximated control voltage 

always being something greater than the actual control voltage.  This fact will be 

used later in section 5.3.5 to show that the prediction of the stability boundary is 

more conservative than that of the actual boundary.  This guarantees that any set of 

parameter values chosen within the piecewise linear boundary will be stable; this is 

in contrast to the linear prediction.   

It can also be seen from equation (4.28) that the introduced error not only depends on 

the additional error current due to the approximation, Ierror, but also depends on the 

time period ∆t.  So for low error ∆t needs to be small compared to the loop filter time 

constant.  The last term given in equation (4.28) is the approximation error due to 

one capacitor.  More complex systems will have an approximation error that depends 

on the number of capacitors.  Consider again the second order filter from earlier.  In 
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Figure 4.6 the output voltage of a second order transconductance filter is plotted for a 

step in the input current.  The filter output is determined using both the filter system 

equations (equation (4.5)) and the charge approximated equations (equations (4.19) 

up to (4.23)), as in Figure 4.6, it can be seen that the approximated response is less 

accurate as time step increases. 
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Figure 4.6 Second Order Filter Response 

As is to be expected, Figure 4.6 shows that the difference between the voltage 

outputs of the actual and the approximated capacitor, to a constant current input, 

increases with time (∆t).  This difference is the approximation error and is plotted in 

Figure 4.7, for three different capacitor input voltages and for a range of step sizes 

∆t.  It can be seen that the error introduced due to the charge approximation on the 

RC filter reduces to zero as the time interval ∆t is reduced. 
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Figure 4.7 Increasing Error with Increasing Step Size at Three different Voltages 

Thus the error is found to be bounded by the time interval ∆t, as illustrated in Figure 

4.8 below.  Therefore the charge approximation methodology is only beneficial to 

systems that have a short ∆t (Note that in this case ∆t is not specifically the time 

period of the sampled system but the maximum length of time that the system pumps 

current into the capacitor).   

Small ∆t

Reduced ErrorZero Order Hold 

Approx

Error

∆t

Ideal Response

 

Figure 4.8 Zero Order Hold Approximation (a) with Large ∆t, (b) Smaller ∆t 

Smaller Error 

It has already been discussed that the charge approximation provides little benefit to 

filter analysis; the major benefit of this approach is when it is applied to more 

complex mixed signal devices.  One specific example of a system that will benefit 

from this approximation is the DPLL; this is because the DPLL, with a charge pump 
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PFD, pumps a constant current into the loop filter for only a fraction of the sample 

time.  Thus the expected error due to the charge approximation is small.  The charge 

approximation is applied to this DPLL system in the next section (orders of four and 

five) with a resulting reduction in the complexity of the system equations and a 

closed form expression for the behavioural equations. 

4.3 Application of the Charge Approximation to High Order 

Digital Phase Locked Loops 

As discussed previously existing mixed signal behavioural models [3, 49] are 

restricted mathematically to low orders. As the order is increased it becomes 

mathematically infeasible to determine the system equations in closed form due to 

the existence of high order differential terms.  In this section a practical application 

of the charge approximation technique is applied to various DPLL systems.  It will 

be shown that the charge approximation approach will reduce the complexity of the 

fourth and fifth order DPLL model equations and from this the system behavioural 

equations can be found in closed form.  It is mathematically infeasible to determine 

the analogous behavioural model equations [3, 49, 58, 59] in closed form.  This 

solution will be at an added cost of some bounded error which will be considered in 

Section 4.3.5.   

4.3.1 Second Order DPLL Charge Approximation 

Behavioural models, to summarise Section 3.5, model the mixed signal nature of a 

system by employing a state transition diagram to monitor the changing states of the 

system.  This is due to the occurrence of discrete events within the loop.  Take as an 

example the second order DPLL system with the structure as in Figure 4.9 below, 

with a first order loop filter similar to the filter of Figure 4.1, and a feedback divide 

ratio (÷N) of one.  
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Figure 4.9 DPLL Loop Structure 

Such a feedback system uses the state transition diagram of Figure 2.9, to track the 

state transitions of the PFD component, and thus determine the CP output current IP.  

The PFD block starts in a predefined state (normally the Null state), the model tracks 

the state transitions of the loop as events occur.  The events in question are the falling 

edges of the reference and VCO digital signals.  To track these events some 

knowledge of the phase of the reference and VCO signals is required.  The phase of 

each signal will cycle from zero up to 2π radians, when the phase of the relevant 

signal reaches 2π then a falling edge event of the respective signal has occurred.  The 

phase of each signal can be monitored by using the following phase equations: 

1( ) ( ) 2
R k R k R

t t F Tφ φ π+ = +  (4.29) 

( )1

2
( ) ( )

V k V k V C FR
t t K V dt F T

N

π
φ φ+ = + +∫  (4.30) 

where φR and φV are the phase of the reference and VCO signals respectively, N is the 

divide ratio and T is the sampling period.  The integral of VC in equation (4.30) is 

calculated using first order numerical integration as in equation (4.31). 

1( ) ( )
( ) 2 C k C k

C C k

V t V t
V dt TV t

T

+ −
≈ +∫  (4.31) 

The behavioural equation that is required to model the system depends on the present 

state of the loop.  Within this state (i.e. between the occurrences of falling edge 

events) the mixed signal system is analogue only and thus a closed form analogue 

behavioural equation is used to model the system response.  The occurrence of 
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events (this being the digital part) results in a change in the system state and thus a 

change in the analogue behavioural equation that is required to determine the 

systems response.  Thus it is necessary to use a set of unique behavioural equations 

to model the system, one for each possible state.  These behavioural equations 

contain differential terms which increase in order as the order of the loop filter 

increases.  For high order systems there is no closed form solution for the 

behavioural equations and thus the behavioural model equations cannot be 

determined.  Again taking the DPLL system model as an example, such a system has 

three states and a state transition diagram as in Figure 2.9.  It will require three 

behavioural equations to model the system response.  In the case of the DPLL these 

behavioural equations will only vary depending on the value of the PFD output 

current, i.e. +IP, -IP, or 0. 

Equation (4.30) above determines the phase of the VCO output signal, this is 

dependant on the loop filter output.  Thus the overall second order DPLL system can 

be modelled using the two phase equations (4.29 – 4.30) and the first order loop filter 

behavioural equation, which has already been calculated earlier in equation (4.12).  

The charge approximated set of equations are as given below: 

2 1
1 2

2

( )
( ) k

C k in

Q t
V t I R

C

+
+ = +  (4.32) 

2 2( 1) ( )
in

Q t Q t I T+ = +  (4.33) 

where VC(t+1) and Iin are the VCO control voltage and the loop filter input current 

respectively, as shown in Figure 4.9 earlier.  The loop filter input Iin depends on the 

charge pump current output thus it is one of +IP, -IP, or 0 amps. 

4.3.2 Third Order DPLL Charge Approximation 

The third order DPLL contains a second order loop filter.  Thus the third order DPLL 

charge approximation can be implemented using the second order filter order 

equations derived earlier.  The control voltage VC is determined using the charge 

approximated second order filter equations, rewritten in equations (4.34)-(4.36) 

below.  The same state machine model and phase equations as in equations (4.29) 
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and (4.30) may be used.  Note that using equation (4.31) to determine the integral of 

VC for the third order system is not completely accurate because unlike the second 

order DPLL case the integral of VC is not a straight linear solution.  This can be 

overcome by using a piecewise linear solution, which is achieved by reducing the 

sample time to some integer fraction of T, i.e. the new sample time T′ is equal to T/η 

where η is some integer.  From this point forward it will be assumed that T=T′, 

which means that the model sample period used below is no longer the reference 

signal period, but some predefined sample time that is equal to the reference period 

divided by η. 
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(4.35) 
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Q t
V t

C

+
+ =  (4.36) 

Again it is important to emphasise that while the above equations are involved, the 

derivation contained no differential or integral terms.  Thus, they are solvable.  The 

error introduced due to the charge approximation is directly proportional to T and is 

considered in more detail in Section 4.3.5.   

4.3.3 Fourth Order DPLL Charge Approximation 

To derive the fourth order DPLL charge approximation the same steps as used in 

Section 4.2.1 earlier will be used.  The derivation is as follows: 

1. Assign values to all the positive system nodes (VA, VB, and VD) in the third 

order filter as in Figure 4.10 below. 
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Figure 4.10 Assignment of Third Order Filter Nodes 

Next determine the voltage across each section in terms of the capacitor 

charge as in equation (4.37 – 4.39). 
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2. Equate each of the node voltages VA=VB, VA=VD and VB=VD as in 

equations (4.40, 4.41, and 4.42) respectively and add the current into the 

node expression as in equation (4.43). 
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2 1 3 1 4 1( ) ( ) ( )in k k kI I t I t I t+ + += + +  (4.43) 
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3. Approximating the average currents in equations (4.40 – 4.43) to I(tk+1) 

the current at time tk+1, we are left with four simultaneous equations and 

three unknowns (I2(tk+1), I3(tk+1) and I4(tk+1)).  Again remember that Iin is 

the current into the filter which may be +Ip, -Ip or 0, depending on the 

PFD state. 

4. The next step is to solve these simultaneous equations for each current 

expression as in equations (4.44 – 4.46) below.  
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2 2 4 4
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where 2 3
1

2 3

( ) ( )k kQ t Q t

C C
ρ = − , 2 4

2

2 4

( ) ( )k kQ t Q t

C C
ρ = −  and 3 4

3

3 4

( ) ( )k kQ t Q t

C C
ρ = − . 

5 Now that I3(tk+1) is expressed in terms of known values, it is possible to calculate 

all the current values, the charge on each filter capacitor, and the filter output 

voltage using equations (4.47 – 4.51) as given below. 
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(4.47) 

4 1 2 1 3 1( ) ( ) ( )k in k kI t I I t I t+ + += − −  (4.48) 
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(Note that in equations (4.49 – 4.51) ∆Q is calculated without the use of the charge 

approximation as the currents at time (tk+1) are known in this case).  Finally VC can 

be estimated using: 

4 1
1

4

( )
( ) k

C k

Q t
V t

C

+
+ =  

(4.52) 

The above set of equations from (4.47) up to (4.52) can be reduced to the set of 

equations (4.53 – 4.56), these are the charge approximated equations for the fourth 

order DPLL. 
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where I3 is the current through C3 and is calculated as in equation (4.57), and TP is 

the period of the current state, i.e. it is equal to TB in the boost state
vi

 and TC in the 

coast state. 

                                                 

vi
 Note that the boost and coast state terminology is being introduced here.  The boost state 

corresponds to either the Up or Down state of the CP-PFD where there is a constant current being 
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(4.57) 

Using these equations and the phase signals in equations (4.29) and (4.30) from 

earlier, the fourth order DPLL system can be modelled.   

4.3.4 Fifth Order DPLL Charge Approximation 

The fifth order DPLL behavioural equations are derived using the same approach as 

applied to the previous orders.  The derivation in this case is not included here but 

the resulting fifth order charge approximated system model equations are as given in 

equations (4.58 – 4.65) below. 
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+
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where I2 and D1 to D4 are defined as given in equations (4.61 – 4.65). 

                                                                                                                                          

pumped into the loop filter (either +Ip or –Ip A).  The coast state corresponds to the Null state of the 

CP-PFD where no current is being pumped into the loop filter.  
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ρ
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 

.   

Again similar to the previous cases, by using these set of equations and the phase 

equations in (4.29) and (4.30), the fifth order DPLL system can be modelled.  It is 

worth noting here that the fifth order DPLL behavioural equations can only be 

determined by making this charge approximation, and cannot be derived using 

existing methods. 

4.3.5 DPLL Charge Approximation Limitations and Error 

The major benefit of the charge approximation is that behavioural equations for high 

order DPLL systems can be derived.  This is not achievable using existing 

behavioural methods.  In theory there is no restriction on the order of the DPLL 

system that can be modelled.  

The error introduced by the charge approximation has already been discussed in the 

case of a single capacitor and a second order filter.  In terms of the second order filter 

it was concluded that the approximation error can be justified if the current source 

supplied to the filter is for only a short period of the filter time constant.  This is the 

case for high frequency mixed signal devices.  Consider a DPLL system, if the 

reference signal has a frequency, FR, of 200MHz then the sample time T is equal to 
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5ns, this means that the loop filter will only charge continuously for a fraction of this 

time period, TB, when the PFD is in the Up or Down states (boost state).  The length 

of time that the PFD is in the boost state, TB, can be calculated from the absolute 

value of the feedback loop phase error signal
vii

 φe which is equal to φR - φV from 

equations (4.29) and (4.30).  The exact calculation of the boost period is given in 

below. 

( )

2

e k
B

t T
T

φ
π

=  (4.66) 

Thus the boost period (and therefore the charge approximation error) is going to vary 

depending on φe and the reference frequency (as T = 1/FR).  The relationship between 

the approximation error and φe is important.  As φe approaches zero (as the loop 

approaches lock), the approximation error approaches zero.  This is significant as the 

approximation error is a reducing error that is already bounded by a small time 

period TB.  This is illustrated in Figure 4.11 below, which shows that the accuracy 

improves as we approach lock and as the reference frequency is increased. 

                                                 

vii
 The absolute value of the phase error is used because the sign of φe corresponds to the state of the 

PFD (i.e. positive in the Up state and negative in the Down state), the sign is not important if a 

measure of the sample time is required.  What is important is the absolute magnitude of φe. 
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Figure 4.11 Estimation of the Boost Period for a Typical DPLL system 

Thus the error is inversely proportional to the reference frequency FR, directly 

proportional to the time interval T, and directly proportional to the loop phase error 

(or the closeness to loop lock). 

Finally to compare the charge approximated behavioural equations of the DPLL 

relative to existing behavioural methods [50], consider as an example a third order 

DPLL system with a set of system parameters given as R2 = 16kΩ; C2 = 200pF; C3 = 

100pF; IP = 10µA; KV = 30x10
6 

Hz/V; T = 0.3ns; N = 1.  The transient response of 

the behavioural model for this system is plotted in Figure 4.12 below and the system 

response of the proposed charge approximated model is plotted in Figure 4.13. 
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Figure 4.12 Frequency Response of  an Existing Behavioural DPLL System Model [50] 
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Figure 4.13 Frequency Response of the Equivalent Charge Approximation Model  

The error between these two signals, for a range of T, is given in Figure 4.14.  It can 

be seen that the error introduced by the charge approximation, is reduced as value of 

the time step is decreased. 
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Figure 4.14 Plot Showing Decreasing Error as T is Reduced 

The selection of T introduces a trade off between the error and the simulation time.  

As T reduces, the error reduces correspondingly, with an increase in the simulation 

time as shown in Figure 4.15. 

0

20

40

60

80

100

120

140

30 50 100 200 300

 

Figure 4.15 Plot of Decreasing Simulation Time as the Step Size is Increased 

4.4 Conclusion 

The charge approximation methodology proposed in this chapter is a significant 

improvement over existing mixed signal behavioural modelling methods in that it 

results in less complex system model equations, with no differential terms.  To 

illustrate this, a simple RC transconductance filter was used.  It was shown that by 

employing this approximation the differential terms in the filter equations can be 
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removed, with the significant benefit that the complexity of high order system 

equations is reduced, thus the restriction on the system order is removed. 

The charge approximation, however, is introduced at the expense of some additional 

modelling error that is directly proportional to the simulation time interval.  It was 

found that the error introduced by the approximations made in this model are 

bounded by the choice of ∆t, the period, hence it introduces a trade off between 

simulation time and accuracy.  The approximation error can be justified for high 

order systems by considering that if a constant current Iin is applied to the filter input 

for a short period of time, i.e. a fraction of ∆t, then the filter capacitor will charge 

slowly, thus changing by only a small amount.  In the case of high frequency DPLL 

systems, the filter input is a narrow current pulse, thus the change in the filter 

capacitor charge is minimal and the response can be accurately modelled with the 

first order linear charge approximation as described.  It was also found that the 

charge approximation reduces as the feedback loop phase error approaches zero and 

as the loop approaches lock.  

As a particular design example the third order DPLL system was considered in detail 

in Section 4.3.  It was shown that the system could be accurately modelled using the 

charge approximation methodology.  The charge approximation methodology was 

used here to accurately model fourth and fifth order DPLL systems, something that is 

not possible with existing behavioural models.  However in theory there is no 

restriction on the model order.  While the application of the charge approximation 

methodology to the DPLL system is considered in detail in this thesis, the charge 

approximation also offers significant potential to the high order behavioural 

modelling of other mixed signal devices, however this is beyond the scope of this 

thesis. 
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CHAPTER 5 

STABILITY BOUNDARIES OF HIGH ORDER DPLL 

SYSTEMS USING PIECEWISE LINEAR METHODS 

5.1 Introduction 

Stability boundaries are commonly used as an initial step in the PLL design process.  

An example of a stability boundary (for the second order PLL) is given in Figure 

3.17 earlier.  This plot defines the stability of the PLL of a range of system gains and 

loop filter time constants.  By choosing a set of system parameters with a system 

gain and a loop filter time constant within the stable region of Figure 3.17 a stable 

system can be designed.  This initial design step is still used to good effect today.  In 

the case of high order DPLL systems the system model equations become 

increasingly complex.  As a result the linear prediction of the system boundaries can 

not be determined.  Thus high order stability boundaries are unusable which means 

there is no linear design start point as in the case of low orders.  As a result of this 

high order DPLL design is particularly time consuming and is considered 

comparatively risky due to the increased loop complexity. 

In this chapter the high order DPLL stability boundaries restriction is overcome by 

using a novel piecewise linear methodology.  This methodology utilises the charge 

approximation presented in the previous chapter thereby removing the high order 

restriction and enables the determination of high order stability boundaries without 

mathematical restrictions.  The proposed piecewise linear stability methodology 

starts with the charge approximated equations from the previous chapter.  Using 

these, the response of the DPLL state variables are determined over a short period of 

time, using a small number of piecewise linear steps.  From this prediction of the 

state space response it is possible to make an early prediction of the loop stability and 

lock time.  This stability methodology is presented in more detail in the next 

subsection. 
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There are currently two ways to determine the DPLL stability boundary: the first 

method is to use the linear PLL approximation (as in Figure 3.17); and the second 

method is to simulate a set of points in the stability plane using a circuit level 

simulation, from the simulation results the boundary can be plotted as a line between 

stable and unstable simulation points.  In this chapter both boundaries will be used as 

a reference for the results of the new proposed methodology; the linear boundary is 

the reference to existing methods; the circuit level method being the ‘real’ stability 

boundary of the system.  The stability boundary methodology is presented in Section 

5.2; it is shown to significantly improve the accuracy of the stability prediction (with 

the additional benefit of reducing the simulation time relative to the circuit level 

prediction).  

In Section 5.3 the proposed piecewise linear method is applied to the second order 

DPLL system.  The stability boundary for this system is found using a closed form 

solution which is then used to determine the global stability boundary of the second 

order system.  The new stability boundary is then compared to the linear boundary 

and the circuit level simulation derived boundary.  The closed form solution to the 

second order stability boundary is made possible because of the new piecewise linear 

technique proposed in this section.  However higher order stability boundaries cannot 

be determined in closed form but can be determined by iterating over the equivalent 

high order piecewise linear system equations.  The determination of such high order 

stability boundaries is considered in Section 5.4. 
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5.2 Piecewise Linear model 

The definition of stability for a feedback system is that for any bounded input to this 

system, for any period of time, the output will also be bounded.  To a classical 

control theorist this means that a feedback system is stable if the feedback loop error 

signal approaches and settles to some equilibrium point within a predefined period of 

time.  To a PLL designer on the other hand, stability is when the system loop error 

approaches an equilibrium point and stays within a predefined region (i.e. the 

tracking region plotted in Figure 2.5 earlier) about the equilibrium for a period of 

time.  In other words the PLL can oscillate about the equilibrium and not settle to it, 

as is required for classical stability, see Figure 5.1 below.  This definition of PLL 

stability is known as ‘loop lock’.  

Loop Error

Time

Time

A classical Stable System

A Stable PLL System

 

Figure 5.1 Stability Definitions 

If the classical definition of stability was applied to the DPLL, then it would be an 

arduous task to design a stable DPLL.  The reason for this is to do with the nature of 

the DPLL, the loop in reality can never be phase and frequency locked with zero 

phase error.  When locked even the most optimally designed DPLL systems will 

have some phase error offset due to jitter in the reference and VCO signals; loop 

component noise and/or intrinsic changes in loop parameters (such as the feedback 

divide ratio).  When the loop loses lock, for whatever reason, it is designed to restore 
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lock as quickly as possible.  Fast lock is achieved by two specific means: the choice 

of PD (a charge pump PFD has a faster lock performance then the mixing PD); or the 

choice of loop bandwidth.  A wide bandwidth system will lock faster but this is at the 

expense of a greater phase error offset. 

A more intuitive way of considering the system stability is in state space [60, 61]. If 

all state variables are decreasing overtime, i.e. approaching some equilibrium, then 

the stability of the system can be determined by viewing the response of each state 

variable to a small offset for a short period of time.  This approach is similar to that 

of Lyapunov’s direct method described earlier in Chapter 3, which states that state 

variables in a stable system which start close to an equilibrium will remain close to 

the equilibrium, and eventually converging to the equilibrium.  In this chapter a 

novel means of determining the system stability by monitoring the trajectory of the 

state variables in state space is presented.   

Consider a second order DPLL system, such a system has two dependent state 

variables, the phase error φe and the VCO control voltage VC.  If a stable system is 

initialised with a phase error of zero radians, a small control voltage offset of V0 volts 

and a VCO free running frequency FFR equal to the reference frequency, then the 

expected response is that the state space trajectory would be in an anti-clockwise 

direction spiralling into the origin.  This state space response is plotted in Figure 5.2 

below. 
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Figure 5.2 State Space Trajectory of Stable System 
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Looking at the system trajectory of Figure 5.2 it can be concluded that this particular 

DPLL system is stable.  By plotting the trajectory of any DPLL system it can be seen 

whether that particular system is stable or unstable (i.e. if the trajectory converges or 

diverges respectively).  The determination of the system stability from the state space 

trajectory can be further simplified by just considering left hand segment of the state 

space trajectory, i.e. the solid line in Figure 5.3. 
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Figure 5.3 Left Hand Segment of the State Space Trajectory  

The solid line in Figure 5.3 is a piecewise linear curve where the dots correspond to 

samples of the VCO control voltage.  In the case of the second order DPLL, the 

system is linear between these sample points, allowing the piecewise linear method 

to give an exact calculation of this state space curve.  This method assumes a small 

initial VCO control voltage offset V0 and determines the system stability from the 

state space response to this offset.  This offset voltage V0 is chosen to be small for 

two reasons:  

1. It has already been stated that this technique utilizes that charge approximated 

DPLL behavioural equations.  From the analysis in the previous chapter it is 

known that the charge approximation error is proportional to the phase error 

offset, this phase error is directly related to V0, so to minimise the error a 

small V0 is required. 
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2. Second a small V0 ensures that the maximum phase offset remains within the 

+/- 2π region, avoiding cycle slip events.  As discussed in Section 2.5 earlier, 

cycle slips occur when the feedback signal, to which the reference signal is 

being compared, changes instantaneously by a large amount (due to noise) 

incurring an immediate shift in the phase error of greater than 2π radians.  

Cycle slip events can be explained by this analysis but are beyond the scope 

of this thesis.   

It will be shown in section 5.3.2 that the stability boundary is independent of the 

initial control voltage offset V0, this is significant for the following reason.  When the 

system trajectory crosses the phase error zero crossing (i.e. φe goes from negative to 

positive) the PFD inputs have changed from the VCO signal leading the reference 

signal to lagging it.  If it can proven that this trajectory is independent of the initial 

control voltage offset V0, then it can be concluded that this half segment accurately 

represents any other half segment of this system in state space.  In other words, if this 

segment is converging to the zero equilibrium, then all other segments are.  Thus the 

overall system is converging and is therefore stable.  This proof will be considered in 

section 5.3.2 later when the piecewise linear system equations have been derived.  

The state trajectory of Figure 5.3 can be used to define the system stability by 

considering the transition values of Vm and V0.  If Vm, which is the first zero crossing 

of φe, can be calculated, then the system stability can be determined as follows: if 

|Vm| < V0
viii

 then the trajectory is converging and is stable, see Table 5.1; otherwise if 

|Vm| > V0 then the system trajectory is diverging and is therefore unstable, as in 

Figure 5.4 below. 

 

                                                 

viii
 Assuming a positive V0 value 
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System 

Performance 
Condition 

Unstable |Vm| ≥ V0 

Stable |Vm| < V0 

Table 5.1 Stability Criterion 
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Figure 5.4 State Space Trajectory of an Unstable System 

The above stability criterion will only be accurate if a good approximation of Vm can 

be found.  The more piecewise linear state space sample points that exist in the left 

half plane the more accurate the prediction of Vm will be.  If too few sample points 

exist, let’s say one sample point, then the system trajectory will not be accurately 

determined, see Figure 5.5 below.   
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Figure 5.5 Plot of System Trajectory with too few Sample Points 

In the example of Figure 5.5 the estimation of Vm is inaccurate because there is only 

one state space sample point in the left hand segment of the state space plane, and 

therefore does not accurately interpret the system trajectory.  The number of state 

space sample points in one segment of the trajectory is directly proportional to the 

reference frequency.  Thus the accuracy of this piecewise linear methodology 

increases with increasing reference frequency.  An estimate of the number of sample 

points on this trajectory, m, is determined in section 5.3.3. 

In the next section the piecewise linear methodology will be used to derive the 

second order DPLL stability boundary in closed form.  This second order solution is 

then compared to the linear and circuit level derived boundaries.  Finally in Section 

5.2 the proposed methodology is applied to the third and fourth order DPLL systems.  

From these results the benefits and limitations of the proposed technique are 

considered. 
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5.3 Second Order Closed Form DPLL Stability Boundary 

Estimation 

In this section the stability boundary of the second order DPLL system is determined 

using the piecewise linear method as introduced in the previous section.  This 

stability methodology determines the control voltage VC after a number of periods of 

the reference signal.  The plot of the state space system trajectory (given in Figure 

5.3) can be determined by plotting the two state variables, VC and φe, against each 

other.  For a stable system with a reference frequency equal to the VCO free running 

frequency FFR, and an initial control voltage offset of V0 volts, the system will settle 

to the equilibrium of the origin as shown earlier in Figure 5.3.  If the value of Vm can 

be estimated, which is the control voltage when the phase error reaches zero for the 

first time after time tk = 0, then the system stability can be determined using the 

criteria of Table 5.1.  

In this section the second order DPLL control voltage after m periods of the 

reference signal, Vm, as defined in Figure 5.3, is determined.  The control voltage 

expression, Vm, is then used to define a closed form solution of the DPLL stability 

boundary for the second order system.  To determine Vm two things need to be 

considered: first, the n
th

 period of the control voltage Vn needs to be calculated in 

closed form; and second the number of periods m needs to be calculated where Vm is 

the control voltage at the first zero crossing of the phase error as shown in Figure 5.3.  

The first requirement is to enable the calculation of any of the state space sample 

points in Figure 5.3; the second requirement is to enable the approximation of Vm, 

which may lie between two sample points.  The calculation of both parameters is 

considered in the following section and later in Section 5.3.3. 

5.3.1 Calculation of the Control Voltage Sample Point Vn 

Using the charge approximate DPLL behavioural equations derived in Chapter 4, an 

estimate of the two state variables φe(tk) and VC(tk) can be determined, where tk is the 

time at the k
th

 period of the reference signal.  Note that the sample period is equal to 

one period of the reference signal, i.e. 1/FR.  However in the case of high order 
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systems the accuracy of the model can be increased by reducing this sample period to 

some fraction of the reference signal period, this is discussed in more detail section 

5.4.  In the case of the second order DPLL system response, the state variables can be 

described using the set of behavioural equations (5.1) and (5.2) given below.  

1

2

( ) ( ) B in
C k C k

T I
V t V t

C
+ = −  (5.1) 

( )1( ) ( ) 2
e k e k R FR V C

t t F F T K V dtφ φ π+
 = + − − ∫  (5.2) 

where 

2

2

2

( )
2

B in

C C k B in

T I
V dt TV t T I R

C
= − −∫  (5.3) 

The control voltage behavioural equation (5.1) can be explained by considering one 

time period, T, of the DPLL loop as in Figure 5.6.   

tk+1

TBTC

T

tk

VC

-IPR2

2

P BI T

C
−

 

Figure 5.6 One Period of Control Voltage  for the Second Order DPLL 

The DPLL loop operates in two of the system states during the time period, T, these 

states are: the coast state, where no current is output from the CP-PFD component, 

for a period of time, TC; and in boost state for a period of TB.   

If a positive initial control voltage offset of V0 is applied, the VCO signal will 

initially lead the reference, thus the PFD output is expected to be a negative current 
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pulse of –IP amps.  This negative current pulse will persist in the loop while the 

system state trajectory remains in the left half hemisphere of state space.  Once the 

trajectory moves into the right half plane, the CP-PFD will output a positive current 

pulse during the boost period.  This methodology only requires the determination of 

the system trajectory in the left half plane of state space, and thus the simplification 

is that the output of the CP-PFD is 0 amps for TC seconds and –IP amps for TB 

seconds.  From this equations (5.1) and (5.3) can be rewritten as in equations (5.4 – 

5.5) below. 

1

2

( ) ( ) B P
C k C k

T I
V t V t

C
+ = −  (5.4) 

2

2

2

( )
2

B P
C C k B P

T I
V dt TV t T I R

C
= − −∫  (5.5) 

To calculate TB, consider that TB is some fraction of the total time period T. This 

fraction is defined by the phase error divided by the total maximum possible error.  

Thus TB can be expressed by equation (5.6).  

( )
2

e k

B

t
T T

φ

π
=

 

(5.6) 

If the state space origin (i.e. zero phase error and zero control voltage) is defined as 

the equilibrium, then we require that the reference frequency FR be equal to the free 

running frequency FFR.  Substituting equation (5.5) into (5.2) we can rewrite the 

phase error at period tk as: 

2

1 2

2

( ) ( ) 2 ( )
2

B P
e k e k V C k B P

T I
t t K TV t T I R

C
φ φ π+

 
= − − − 

 
 (5.7) 

Given that the boost time TB is given in equation (5.6), and substituting it into (5.7), 

we get the phase error behavioural equation as in equation (5.8). 

2 2
2

1 2

2

( ) ( )
( ) ( ) 2 ( )

2 8

P e k P e k
e k e k V C k

TI R t T I t
t t K TV t

C

φ φ
φ φ π

π π+

 
= − − − 

 

 

(5.8) 

As both T
2
 and φe

2
(tk) are small numbers equation (5.8) can be approximated by 

equation (5.9).  The error introduced is directly related to the square of the time 
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period T and the square of the phase error.  Both of these parameters have already 

been kept small, by choosing a small V0 and considering only high frequency 

systems.  

2

1

( )
( ) ( ) 2 ( )

2

P e k

e k e k V C k

TI R t
t t K TV t

φ
φ φ π

π+

 
≈ − − 

 

 

(5.9) 

As the phase error φe is always negative, for the state space trajectory segment under 

analysis, then it is the case that |φe| is equal to -φe and therefore equation (5.9) can be 

simplified as: 

[ ]1 2( ) ( ) 1 2 ( )e k e k V P V C kt t K TI R K TV tφ φ π+ ≈ − −

 

(5.10) 

Finally by examination of the first few iterations of equation (5.10), it is possible to 

determine the feedback loop phase error at sample time j in terms of the control 

voltage.  The first four iterations are given in Table 5.2 below, where B = 1-KVTIPR2, 

D = -2πKVT, and V1 corresponds to VC(1). 

Iteration Phase Error 

1 0(1)
e

DVφ =
 

2 0 1(2)
e

BDV DVφ = +
 

3 
2

0 1 2(3)
e

B DV BDV DVφ = + +
 

4 
3 2

0 1 2 3(4)
e

B DV B DV BDV DVφ = + + +
 

Table 5.2 First Four Iterations of the Phase Error 

By inspection of the first four iterations of φe it can be concluded that equation (5.10) 

can be solved using equation (5.11), this is the feedback loop phase error at sample 

point j. 

( )
11

2

0

( ) 2 1 ( )

j ij

e V V P C

i

j K T TK I R V iφ π
− −−

=

= − −∑

 

(5.11) 
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In a similar manner the control voltage at sample point j can also be found by taking 

the charge approximated control voltage behavioural equation, (5.4) and substituting 

in TB from equation (5.6), the control voltage can be rewritten as: 

1

2

( ) ( ) ( )
2

P
C k C k e k

I T
V t V t t

C
φ

π+ = −  (5.12) 

Again let |φe| equal to -φe, therefore the control voltage becomes: 

1

2

( )
( ) ( )

2

P e k
C k C k

TI t
V t V t

C

φ
π+ = +  (5.13) 

Finally by looking at the first few iterations of equation (5.13), see Table 5.3 (where 

F = IPT/2πC2), the control voltage at sample point j can be expressed as in equation 

(5.14). 

Iteration Control Voltage 

1 0 0 0(1)
C

V V F Vφ= + =  

2 0 1(2)
C

V V Fφ= +  

3 0 1 2(3)
C

V V F Fφ φ= + +  

4 0 1 2 3(4)
C

V V F F Fφ φ φ= + + +  

Table 5.3 First Four Iterations of the Control Voltage 

1

0

02

( ) ( )
2

j

P
C e

i

I T
V j V i

C
φ

π

−

=

= + ∑

 

(5.14) 

Equations (5.11) and (5.14) can both be used to determine the response of the system 

state variables to a small control voltage offset V0, with an initial φe offset of zero, 

and are valid while the phase error remains negative (i.e. while the system trajectory 

remains in the left hemisphere of state space as in Figure 5.3). 

Equations (5.11) and (5.14) can be reduced to one expression by substituting 

equation (5.11) into (5.14).  The resulting double summation expression in equation 

(5.15) is an estimate of the control voltage Vn and is independent of the phase.   
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( ) ( )
2 1 1

1

0 2

0 02

1
n i

i jV P
n V P C

i k

K I T
V V K I R T V k

C

− −
− −

= =

= − −∑∑  (5.15) 

where Vn is equivalent to VC(n) and is an estimate of the control voltage after n 

periods of the reference signal.   

This estimate of Vn will be valuable in the determination of the stability of the DPLL 

system as it is required to estimate the control voltage at the phase error zero crossing 

(Vm in Figure 5.3).  In the remainder of this section equation (5.15) will be used to 

prove that the stability boundary is independent of the initial control voltage offset 

V0. 

5.3.2 Proof that the Stability Boundary is Independent of Initial 

Conditions 

In this section it is shown that the piecewise linear stability criterion defined earlier is 

independent of the initial control voltage offset V0.  If the defined stability prediction 

is independent of V0, then the stability prediction is a global prediction of the 

particular system for all possible voltage offsets; thus the system is stable for all 

voltage offsets regardless of the source (due to noise or changing system parameters). 

It has already been discussed that the system stability can be determined by the value 

of Vm from Table 5.1; i.e. if the absolute value of Vm is less than V0 the system is 

stable, otherwise the system is unstable.  Thus it can be concluded that the system is 

stable where: 

0 m
V V>  (5.16) 

0 0
m

V V⇒ − >  (5.17) 

Using this definition of stability and letting the solution to the control voltage Vn in 

equation (5.15), equal to Vm and substituting into equation (5.17) yields: 

( ) ( )
2 1 1

1

0 0 2

0 02

1 0
n i

i jV P
V P C

i k

K I T
V V K I R T V k

C

− −
− −

= =

− − − >∑∑  (5.18) 
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Let Y equal the large double summation expression of equation (5.18), as in equation 

(5.19). 

0 0 0V V Y− − >  (5.19) 

By making the following set of observations, it can be concluded that Y is some 

positive value:  

1 The initial control voltage offset V0 is always selected to be some small 

positive value. 

2 The parameters KV, IP, T, C2 and R2 are always positive. 

3 The expression KVIPTR2 is << 1 (This will always be the case for any realistic 

set of system parameter values). 

Thus the only inequality of Y where the expression in equation (5.19) holds is: 

02Y V<
 (5.20) 

This solution can be graphically illustrated by plotting (5.19) for a range of Y values 

and a V0 randomly chosen to be equal to 6.  Using equation (5.20) it is expected that 

in this case equation (5.19) will only be positive when Y is greater than 2V0, or 12.  

This is found to be the case, see Figure 5.7. 
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Figure 5.7 Plot of Equation (5.19) for V0 = 6 and a Range of Y 

Substituting the double summation expression of Equation (5.18) into Y of (5.20), 

then the DPLL system is stable when:  
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 ( )
2 1 1

1

0

0 0

1 ( ) 2
m i

i kV P
V P C

i k

K I T
K I RT V k V

C

− −
− −

= =

− <∑∑  (5.21) 

To prove that the stability criteria in equation (5.21) is independent of the initial 

control voltage V0, consider the first four iterations of the left hand side of equation 

(5.21) from zero up to three, where A = KVIPT
2
/C, and B = 1-KVIPRT, as in Table 5.4. 

Iteration Control Voltage 

0 V0=V0 

1 V1 = V0 

2 V2 = V0+AV0 

3 V3= V0+A(V0(B+1)+V1)=V0(1+A(B+1)+A) 

Table 5.4 First Four Iterations of Control Voltage 

As illustrated by the first few iterations in Table 5.4, it can be seen that all samples of 

the control voltage (including samples from 4 → ∞) comprise of previous Vm.  In fact 

any Vm can be reduced to V0 times a set of A and B equations.  The left hand side 

(LHS) of equation (5.21) can be simplified to the expression: 

( )0 0(1 , )LHS V f A B V X= + + =�  (5.22) 

where f(A,b) is some function containing only A and B terms.  Substituting the result 

of equation (5.22) back into the LHS of equation (5.21) it can be deduced that the 

stability criteria is: 

0 02V X V<  (5.23) 

Therefore the boundary is X=2 and is independent of V0, the initial control voltage 

offset.  
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5.3.3 Calculation of Number of State Space Points for One Half Segment 

of the System Trajectory. 

In Section 5.3.1 it was found that the value of the control voltage at any sample 

point, Vn, could be estimated using equation (5.15).  In order to find the control 

voltage at the phase error zero crossing, Vm (see Figure 5.3), it is necessary to 

determine the number of periods, m, required to reach the zero crossing.  The 

simplest and most effective way of estimating m is with the linear approximation 

model
ix

.  To estimate m the linear error transfer function given in equation (5.24) is 

utilised. 

2

2

2

2 2 2

( )e

V P V P

C s
H s

C s K I R C s K I
=

+ +
 (5.24) 

To determine the phase error zero crossings the response of the DPLL system in the 

time domain,  the inverse Laplace transform of frequency step response of the phase 

error transfer function is calculated, as shown in (5.25).  To estimate the zero 

crossings, the phase response is equated to zero and solved.  

1

2

2
( ) 0F

eL H s
s

π− ∆ 
= 

   
(5.25) 

where ∆F is the frequency step size.  Solving (5.25) gives equation (5.26): 

( )24
( )sin 0

2

V P V P
K I K I R Ct

g t
C

 −
  =
  
 

 (5.26) 

where g(t) is a function of time.  As the left hand side of equation (5.26) is of the 

form g(t)Sin(x(t)), which is zero when x(t)=0,π,2π,3π,… , then the first zero crossing 

                                                 

ix
 It is worth noting at this point that using the linear model to determine m in what has heretofore 

been a piecewise linear analysis does not reduce the accuracy of this technique.  This is because we 

only require an approximate value of m and then round it up to the next integer.    
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after t = 0 occurs when x(t)=π.  Solving this gives equation (5.27), the time of the 

first zero crossing.   

2

2 2 2

2

( (4 )) /
m

V P V P

t
K I K I R C C

π
=

−
 

(5.27) 

It is possible to estimate the number of samples m, (the solid arc of the system 

trajectory in Figure 5.3), by considering that if tm is the time taken to reach the first 

zero crossing and T, the period, is the time of one sample then the number of periods 

to reach tm is equal to tm/T which is equal to tmFR.  This solution however is not an 

integer, thus it is required to round tmFR up.  Finally the solution may fall either side 

of the phase error zero crossing, so to ensure that the state space sample point steps 

over the zero crossing (this will benefit the analysis at a later stage) an extra 1 is 

added to the number of samples.  The final solution to m is given in equation (5.28) 

below. 

1m Rm t F= +    (5.28) 

Finally, substituting the solution to equation (5.27) into (5.28) gives the solution to 

the number of samples required to reach the phase error zero crossing. 

2

2 2 2

2
1

( (4 )) /

R

V P V P

F
m

K I K I R C C

π 
 = +
 − 

 (5.29) 

Thus the value of the control voltage at the zero crossing of the phase error, Vm, can 

be determined by using equation (5.29) and solving equation (5.15) for n = m.   

Earlier in this section it was discussed that the accuracy of this piecewise linear 

method depended on an accurate estimate of Vm (and thus the value of m).  If m is too 

small (less than 4) then the trajectory will be inaccurate.  In equation (5.29) FR is the 

largest parameter thus for high frequency systems this is not an issue.  This is 

illustrated in Figure 5.8 below for a second order PLL system.  For a range of 

reasonable filter time constant values, τ, the number of state space sample points of 

one half segment of the system trajectory becomes small for reference frequencies of 

less than 15 MHz.  
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Figure 5.8 Plot of Number of State Space Sample Points for Varying Reference 

Frequency and Range of Filter Time Constants τ 

5.3.4 Closed Form Solution of the Phase Error Zero Crossing Control 

Voltage 

In the previous sections an estimate of the control voltage at the phase error zero 

crossing was found.  This solution is found by evaluating equation (5.15) for m 

iterations where m is defined by equation (5.29).  In this section a closed form 

solution to the control voltage at the phase error zero crossing (5.15) is presented.  

This is achieved by rewriting equation (5.15) where A= -KVIP T
2
/C2 and B = 1-

(KVR2IPT)). 

( )
1 1

1

0

0 0

m i
i j

m C

i k

V V A B V k
− −

− −

= =

= + ∑∑  (5.30) 

By looking at the first few iterations of this equation, using the same procedure as 

was used earlier to break-down the phase error equation in Table 5.2, it can be 

deduced that this double summation equation can be replaced with equation (5.31).  

Note that the derivation of equation (5.31) is involved so it is not included here but is 

derived in Appendix B. 
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A

V V A

A

 
 
 

 
  

 
 

+ Λ 
 + Λ
 
 = + Λ
 
 
 
 + Λ
 
 

�
 (5.31) 

where ΛΛΛΛ1 up to ΛΛΛΛm/2 
x
 are a set of parameters defined as equations (C.1-C.5) in 

appendix C.  Since parameter |A| is always << 1 (since the parameter FR
2 

is a large 

number and therefore T2 is small), |A| becomes less significant as the exponent of A 

is increased.  In fact it is found that terms with exponents of A greater than four are 

insignificant and have negligible influence on the final value of Vm.  So equation 

(5.31) can be simplified to: 

( )2 3 4

0 1 2 3 41mV V A A A A= + Λ + Λ + Λ + Λ  (5.32) 

Equation (5.32) is the closed form solution of the control voltage after m samples.   

5.3.5 Stability Boundaries of the Second Order DPLL 

In this section the stability boundary of the second order DPLL is considered.  Now 

that the control voltage at the phase error zero crossing, Vm, can be estimated (using 

either numerical iteration as in Section 5.3.1 or using the closed form solution of the 

previous subsection) it is possible to determine the stability of the DPLL using Vm 

and the set of stability criteria given in Table 5.1 earlier.  From these results the 

                                                 

x
 Note that the partial square brackets x   is the ‘ceiling’ of the value x.  That is x rounded up to the 

nearest integer. 
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system stability boundary can be plotted.  The stability boundary is considered in due 

course; however first consider the stability performance parameter Pin, this 

percentage pull-in rate, in terms of Vm as given in equation (5.33).  

0

0

100 %m
in

V V
P

V

+
=  (5.33) 

If the pull-in percentage is negative, the system is unstable otherwise the system is 

stable.  Combining equations (5.32) and (5.33) the stability criterion can be rewritten 

as:  

2 3 4

1 2 3 42 0inP A A A A= + Λ + Λ + Λ + Λ >  (5.34) 

Note that this is independent of the initial VCO control voltage offset V0.  As 

expected from the results of Section 5.3.3; the initial condition has no affect on the 

stability boundary. 

The stability boundary can be drawn by equating equation (5.34) to zero and can then 

be compared to the traditional linear stability boundary.  It is also possible to tailor 

the stability boundary to any desired system requirements by choosing a Pin value of 

greater than zero, and therefore it is possible to find a stability boundary with a faster 

pull in rate.  This is illustrated in Figure 5.9, the stability boundaries of the proposed 

second order technique are determined for a pull-in rate of 1%, 20% and 40% and are 

shown along with linear PLL boundary [27] and a stability boundary defined by a 

number of circuit level simulations.   
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Figure 5.9 Stability Boundaries of 1 GHz Second Order DPLL According to the Linear 

and the Proposed Method 

It can be seen in Figure 5.9 that the circuit level model of the DPLL system suggests 

that Gardner’s prediction is not conservative enough and does not guarantee stability, 

as we expect from the results of Section 3.3.2 and is suggested by Van Paemel [3].  

In fact there is a significant stable region defined by Gardner, where the circuit level 

model predicts instability.  This discrepancy is the reason why DPLL designers need 

to complement linear design methods with rule of thumb, circuit level simulations 

and empirical design.   

The circuit level boundary also verifies that the proposed piecewise linear technique 

is more accurate, producing more conservative results than the linear boundary 

which are inside the stability region of the DPLL system.  The conservatism of the 

piecewise linear method can be verified by considering that the piecewise linear 

boundaries of Figure 5.9 were determined by utilising the charge approximation.  

The error introduced by this approximation was explained in section 4.2.2 and is 

given in equation (4.28).  It resulted in the approximated control voltage being 

slightly greater than the actual control voltage.  If this is considered in terms of the 

percentage pull-in rate given in equation (5.33), assuming that Vm is the actual 

control voltage and that it is negative, then the approximated percentage pull-in rate 

is: 
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From equation (5.37) it can be seen that the approximated pull-in rate is equal to the 

actual pull-in rate minus some small error.  So, for example, if a marginally stable 

system is considered (Pin = 0%) then the approximated pull-in rate will be some 

negative value, i.e. the piecewise linear prediction is unstable.  Likewise if the actual 

pull-in rate of a particular system is 20%, then the approximated value will be 

something less than this.  Thus the charge approximation has a stabilising effect on 

the model keeping the predicted stability boundary on the conservative side of the 

actual DPLL stability boundary.  Any DPLL system designed with parameters 

chosen from within this predicted boundary will be stable.  This is a significant 

advantage over the linear boundary and further illustrates the inaccuracies of 

applying the linear model to the DPLL system.   

While comparing the proposed technique to additional stability methods such as [13, 

26, 43] is desirable, it is not possible due to the nature of these methods, and the 

difficulty in plotting any global stability boundary with such methods.  This is due to 

the dependency that exists between the defined parameters, i.e. changing one 

parameter has an effect on others, thus a point on the stability plane of Figure 5.9 can 

not be easily selected, as is the case with the circuit level simulation. 

Finally consider the following design example, where the proposed piecewise linear 

stability criterion is used to define the stability boundary and pull-in rates of a 100 

MHz second order DPLL.  The predicted stability plane for this system is plotted in 

Figure 5.10, where the three axes are Kτ2 and ωRτ2, similar to Figure 5.9, and the 

third axis is the percentage pull-in rate. 
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Figure 5.10 Stability Boundary for 100 MHz system 
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Figure 5.11 Plan View of Figure 5.9 

Figure 5.11 is a plan view of Figure 5.9.  The bluer the region the less stable the 

DPLL is.  The best choice of Kτ2 and ωRτ2 for a stable system are, 0.25 and 150 

respectively.  Using these values we can simulate the response of a stable 100 MHz 

CP-PLL with rounded component values of KV = 66 Mrad/s/V; IP = 10x10
-6

A; R2 = 

10 kΩ; C2 = 24pF; Figure 5.12 shows that as expected the DPLL response is stable.  

The voltage jumps inherent to the second order DPLL can also be seen in Figure 5.12 

these have an expected value of IPR2. 
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Figure 5.12 Transient Response of the 2
nd

 Order System 

5.3.6 Calculation of the Control Voltage on the Phase Error Zero 

Crossing 

The control voltage Vm has already been calculated, however it has already been 

stated that this value of Vm at sample point m is unlikely to fall on the phase error 

zero crossing.  In other words Vm will not correspond with Vx, as shown in Figure 

5.13, because the last sample m will not fall exactly on the phase error zero crossing, 

but will cross that line by some value d.  In this section a linear interpolation 

methodology is used to calculate the value of the control voltage on the zero crossing 

from the knowledge of the last two sample values.  
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Figure 5.13 State Space Samples 

The estimation of Vx is achieved by utilising equation (5.15) and solving for m 

samples, i.e.  If the control voltage values at sample points m-1 and m are both 

known then it is possible to calculate the value of Vx by using a linear interpolation, 

see equation (5.38). 
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1 1
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m m

x m m
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V V
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φ φ
−

− −
−

−
= −

+
 

(5.38) 

where (Vm, φm) and (Vm-1, φm-1)  are the co-ordinates of the samples m and m-1 

respectively in Figure 5.13.  However despite the obvious benefits of using equation 

(5.38) it is not used in this model as the additional model complexity exceeds the 

benefit of reduced error.  The existing error is minimal and reduces as the reference 

frequency is increased. 

5.3.7 Estimation of System Settling Time 

In this section an estimate of tLCK, the system lock time or settling time is determined.  

This is achieved by utilising the estimate of tm, the time of one half cycle of the 

system trajectory, as derived earlier in equation (5.27) and from the system pull-in 

rate given in equation (5.33).   
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To determine the lock time, a new parameter κ is introduced, this is the number of 

half cycles of the state space trajectory in Figure 5.3, required to reach lock.  Thus 

the system lock time can be estimated as: 

LCK

x

t
κ
ω

=
 

(5.39) 

where ωx is the natural frequency of the system, and ωx is equal to 1/tm where tm is as 

given in equation (5.27).  Using the definition of stability of a DPLL given at the 

start of this chapter, tLCK can be defined as the time it takes the system to settle to less 

than some value of VLCK away from the equilibrium (or until VC settles within the 

predefined VLCK boundary).  Using this definition of stability the system is 

considered locked when: 

0 1
100
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in
LCK

P
V V
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 
 (5.40) 

where m is as defined earlier (the number of state space sample points in the left half 

segment of the state space trajectory).  The exponent m is due to the fact that the 

control voltage starts at an offset of V0 and is pulled in by a factor of Pin/100 every 

sample m
xi
.  Solving equation (5.40) for m gives: 
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 (5.41) 

Since m is a calculation of the number of half cycles required to reach lock, κ is 

equal to m: 

                                                 

xi
 Note that because equation (5.36) assumes that the system is pulling towards the equilibrium, and 

not away from it, this solution is only valid when the system is stable. 
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From equations (5.27, 5.39, and 5.42) the lock time tLCK can be estimated as: 
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 (5.43) 

Finally consider the design example that was given at the end of Section 5.3.5, using 

equation (5.43) the lock time is estimated to be approximately 1.6µs, where VLCK is 

chosen to be ±1x10
-4

V.  Looking at the circuit level response of the DPLL system in 

Figure 5.12, and ignoring the inherent RC jumps, a lock time of 1.6µs is a reasonable 

estimate. 

5.4 High Order Stability Boundaries 

In the previous section a second order stability boundary solution was proposed 

using a piecewise linear method, this was a closed form solution allowing for the 

calculation of the boundary without the need for a large number of iterations.  This 

stability methodology can also be used to model higher orders.  As mentioned 

previously the charge approximated behavioural equations are beneficial because 

they remove the high order differential terms from the filter equations, making the 

solution of higher order equations mathematically feasible.  In this section the high 

order piecewise linear model is derived and used to determine the stability boundary 

of high order systems, something that is not possible with existing behavioural 

models.   

Similar to the second order piecewise linear model equations derived in the previous 

section, the third order stability boundaries can be derived by starting with the charge 

approximated second order filter behavioural equations, given in equations (4.19 – 

4.23), and making the following observations: 

1 In the case of higher order systems the model is solved using a piecewise 

linear solution.  In the second order case sampling the model every T seconds 
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was sufficiently accurate; this is not the case with higher order systems.  

Considering that the loop filter is now of second order, the straight line 

solution to the integral of VC is not accurate.  However this is overcome by 

iterating the system behavioural equations between samples in a piecewise 

linear fashion, as shown in Figure 5.14.  

VC

First Order 

Linear Integration

Piecewise

Linear Integration

T T

4

Time

 

Figure 5.14 Piecewise Linear Integration 

 The model is now sampled every T′ seconds, where T′ is the sample time T 

divided by g, and g is the number of piecewise linear iterations.  The choice 

of g will define the accuracy of the integration; however this needs to be 

traded with the expected increase in simulation time.  Note that from this 

point forward it is assumed that T is the time period of one piecewise linear 

iteration.  i.e. T = T′. 

2 With higher order systems the state transitions need to be considered.  This is 

because each capacitor in the loop will charge up during the boost period TB 

and discharge during the coast period TC.  Therefore the current into the loop 

filter will be –IP for time period TB and 0 for the remainder of the period TC, 

where TB is given in equation (5.6), and TC = T-TB.  Therefore the integral of 

VC depends on which time period is being iterated (TB or TC).  The integral of 

VC can be calculated as given in equation (5.44). 
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where I3(tk) is calculated using equation (4.21), and TP is either TB or TC 

depending on the loop state, as defined earlier. 

The third order phase error signal is calculated using equation (5.45). 

1( ) ( ) 2
e k e k V C

t t K V dtφ φ π+ = − ∫  (5.45) 

3 In the case of the third order DPLL the control voltage VC is the voltage 

across capacitor C3, as in Figure 2.19.  VC is given in equation (5.46). 
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 where Q3(tk+1) is calculated using equation (4.22). 

Using the methodology described above the third order state trajectory can be 

estimated by iterating the determined behavioural equations and plotting the system 

state variables against each other.  Note that the second order DPLL has two state 

variables; these are the phase error φe and the control voltage VC.  However high 

order DPLL systems have additional state variables that need to be considered, 

specifically the charge on each additional filter capacitor.  However if VC reaches a 

stable equilibrium point then the filter capacitor state variables have also reached an 

equilibrium point.  Therefore when considering the stability of a high order system, 

we need only monitor φe and VC.  Unlike the second order DPLL, the relevant high 

order DPLL stability boundary equations cannot be solved into a closed form 

solution as it is not mathematically tractable.  However the relevant equations can be 

easily solved using numerical iteration of the model equations given in Appendix D.  

Thus the first zero crossing of the control voltage Vm for the third order system can 

be estimated as in Figure 5.3 by using equations (5.44 – 5.46), equations (4.19 – 

4.23) and numerical iteration. 

From the solution to Vm the stability boundary is found for the third order DPLL and 

these boundaries can now be compared to the traditional linear boundaries that were 
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plotted in Section 3.2.2 earlier.  In Figure 5.15, the stability boundaries for the third 

order system are plotted for b =8, where b = 1+C2/C3.  This definition of b is 

originally given in [27].   Similarly the third order boundary is plotted for a value of 

b =16. 
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Figure 5.15 Third Order Stability Boundaries for b = 8 
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Figure 5.16 Third Order Stability Boundaries for b = 16 
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Similar to the second order case, both Figure 5.15 and Figure 5.16 illustrate the 

weakness of the linear approximated boundaries.  To further illustrate this consider 

an example using the proposed technique to define the stability boundary of a third 

order DPLL with a 1 GHz reference signal, a divide ratio of 1 and a value of b equal 

to 8.  The predicted boundary is plotted in Figure 5.17, along with a linear stability 

boundary.  
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Figure 5.17 Predicted Stability Boundary for 1 GHz System 

The shaded section in Figure 5.17 is the unstable region of the DPLL as defined by 

the proposed methodology.  Using this prediction of the boundary, two systems are 

considered, system A and B.  The location of system A in Figure 5.17 (where Kτ2 

and ωRτ2 are equal to 0.025 and 1.75 respectively) will define its gains and loop filter 

parameter values.  Note that system A lies in the region between the predicted 

piecewise linear boundary and the linear prediction, therefore it is being predicted as 

unstable by the piecewise linear method but stable by the traditional linear method.  

The response of system A is determined using a circuit level simulation and is 

plotted in Figure 5.18. 
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Figure 5.18 Response of System A 

We can see that as predicted by the piecewise linear method the response of system 

A is unstable, this is counter to the stable prediction of the linear method.  In contrast 

System B is well within the stable region of both predictions with a choice of Kτ2 

and ωRτ2 of 0.03 and 5 respectively and should therefore be stable.  The response of 

system B is again determined using a circuit level simulation and is plotted in Figure 

5.19 below. 
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Figure 5.19 Response of System B 
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In the case of system B the system is found to be stable (Figure 5.19).  These results 

show that, similar to the second order system, the third order piecewise linear 

stability boundary technique provides a much better prediction of the stability 

boundary than linear methods.  

In this chapter second and third order stability boundaries were estimated and 

compared with existing stability boundary.  It is also possible to increment this 

stability boundary to higher orders.  Fourth and fifth order piecewise linear stability 

equations are given in Appendix D, unlike the case of the second and third order 

systems there are no references to compare the results with.  The fourth order system 

boundary can be determined using the same methodology as the third order earlier.  

However as the system order is increased there are an increasing number of system 

parameters that need to be considered, thus it is not possible to plot the boundaries 

without defining some relationship between some of these parameters and thus 

reducing the number of variables to a manageable amount.  The solution to the 

increasing number of design parameters is to describe the loop filter performance 

using just one parameter, the filter cut-off frequency.  This can be achieved by using 

filter prototypes to place the filter poles, thus the whole DPLL system can be defined 

by only three parameters regardless of the loop order; these are the two gain 

components KV and KP and the filter prototype cut-off frequency ωc, this design 

methodology is considered in detail in Chapter 6. 

5.5 Conclusion 

The piecewise linear and charge approximation methodologies that are proposed in 

this thesis are both used in this chapter to accurately determine the stability 

boundaries of arbitrary order DPLL systems.  This methodology offers advantages 

over circuit level simulation and existing linear DPLL models in terms of simulation 

time and accuracy respectively.  The other advantages of this methodology lie in the 

fact that the stability boundary determined for a particular order of system is 

independent of any initial conditions, and unlike the existing linear boundaries it 

accurately models the inherent DPLL nonlinearities.  The fact the stability 

boundaries are found to be independent of initial conditions, proves that if any 



 

140 

trajectory is determined for a particular system then this will accurately represent the 

response of the system for any set of initial conditions or subsequent path through 

state space. 

The stability design methodology proposed in this section is utilised to derive a 

closed form stability boundary of the second order DPLL system.  Though this 

solution is expansive, it is mathematically tractable and is found to better define the 

stability region of the second order DPLL than existing methods.  The stability 

boundaries that are determined using the piecewise linear method proposed in this 

section are a significant improvement on the linear equivalent boundaries.  Such 

boundaries are still used today as a start point in the design of stable DPLL systems.  

The improvements that are achieved using the piecewise linear boundary will make 

the current design process significantly faster, more efficient and reliable. 

Another advantage of the proposed piecewise linear method is that it can be extended 

to higher orders.  This means that accurate high order stability boundaries can be 

determined and used to design stable high order DPLL systems.  Using this method a 

greater understanding of high order DPLL stability and performance can be 

determined. 
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CHAPTER 6 

DESIGN OF HIGH ORDER DIGITAL PHASE-LOCK 

LOOPS 

6.1 Introduction 

The most common DPLL systems designed today have loop orders of two and three.  

Higher loop orders are considered unreliable due to the increased complexity of 

model equations; loop stability issues; inaccuracy with the linear model; and lack of 

a viable and accurate analysis technique.  In the preceding chapters the DPLL model 

complexity and inaccuracy were overcome by utilising a charge approximation of the 

loop filter equations and a piecewise linear modelling methodology.  As a result it is 

possible to model the DPLL loop with increased accuracy over existing linear 

methods and without the low loop order restriction that exists with existing methods.  

In this section the design of high order DPLL systems using the proposed charge 

approximated piecewise linear model is considered.  This is not a simple task due to 

the large number of loop parameters, and therefore the large number of possible 

design combinations.  For example consider a fifth order DPLL, to design this loop 

two gain components (KV and IP), and seven loop filter parameters (three resistors 

and four capacitors) need to be selected.  Without any knowledge of the fifth order 

DPLL stability it would be an arduous task to select stable loop parameters.  

Utilizing the methodologies proposed in the preceding chapters it is possible to 

determine stable regions for this fifth order system.  However, in the case of the fifth 

order DPLL, this would involve plotting all nine parameters against each other.  

Ideally the designer requires a two dimensional plot of the stability boundaries (as in 

the example of Figure 3.17).  To achieve this the number of design parameters needs 
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to be minimised to a manageable level.  One solution is to relate variables to each 

other, for example let one resistor be some fraction of another.  This is desirable to 

some degree because there are a number of rules-of-thumb for the relationship 

between different parameter values (pole locations) to ensure stability
xii

.  While this 

approach has the desired effect of reducing the number of design parameters it also 

has the undesirable effect of tying loop poles together.  As the poles are rigidly 

related, this has the effect of significantly reducing the flexibility and scope of the 

design process.  This design method depends on rule-of-thumb knowledge, which is 

not ideal.  In this chapter an alternative methodology is presented which places all 

system poles simultaneously by utilising existing filter prototypes; such as Bessel, 

Butterworth, and Chebyshev.  Using filter prototypes means that the loop filter 

performance can be defined by the filter prototype cut-off frequency, ωp, thus having 

the desired effect of reducing the number of design parameters to two (ωp and the 

loop gain KVIP), regardless of the system order.   

This design methodology presented in this section equates the DPLL loop system 

transfer function with the relevant order transfer function of the filter prototype.  This 

results in a set of equations which define the loop filter parameters in terms of the 

normalised filter prototype coefficients.  Thus the filter performance can be 

described by the prototype cut-off frequency ωp. 

It will also be demonstrated in this section that by using the above approach the 

system transfer function (and therefore the overall loop performance) is independent 

of the loop gain KVIP.  This is an important finding as it means that the only design 

parameter that is critical to the loop performance is ωp.  Finally by combining this 

filter prototype methodology with the piecewise linear method of the previous 

                                                 

xii
 There are many rules-of-thumb for the optimum choice of loop filter parameter values, these were 

discussed in chapter 2.4.   
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chapter, it is possible to accurately determine the system lock time for a range of ωp.  

From this stability boundary the design parameter ωp is chosen and then the DPLL 

loop parameter values can be calculated.  This design technique is beneficial to high 

order systems for a number of reasons:  

1. High order filter prototype parameters are known and thus can easily be 

equated to the relevant order of DPLL;  

2. Regardless of the DPLL system order the loop filter performance can be 

described by one parameter, the filter prototype cut-off frequency of ωp.   

3. The system analysis is simplified, by the need to only consider a limited 

number of parameters regardless of the system order.   

The inaccuracies of applying linear methods to the DPLL have already been 

discussed in Chapter 3 of this thesis; these are the inaccuracies of the linear 

approximation.  However the design methodology presented in this chapter does use 

some linear approaches, namely it equates the linear PLL transfer function with the 

linear filter prototype.  This linear section is used solely to reduce the number of 

design parameters that the designer needs to consider, see Figure 6.1.   
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Figure 6.1 Overall Design Procedure 
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The loop parameter values resulting from the linear section are then used by the 

nonlinear section as a starting point from which the overall system stability boundary 

is determined using nonlinear means.  In other words, the linear section of this design 

methodology only selects ωp for a desired system performance; the nonlinear section 

determines the actual system performance of the DPLL for parameter values 

determined by that particular prototype.   

As a final design consideration Section 6.3 considers the robustness of the proposed 

high order design methodology.  The design methodology presented in this chapter 

determines system parameters and performance without any noise considerations, 

however in any real DPLL system, as discussed in Section 2.5; there are many 

sources of noise.  Thus, it is necessary to consider the effects that these noise sources 

have on the system performance.  While a full noise analysis of the DPLL system is 

beyond the scope of this thesis, Section 6.3 considers the effects on the system 

performance due to noise, or slight variations of the linear parameter values.  The 

robustness of the DPLL system will determine how tolerant the system is to such 

variations. 

6.2 High Order DPLL Design Using Filter Prototypes 

The choice of loop filter cut-off frequency is the most crucial choice the designer 

makes in terms of stability and system performance when designing the DPLL.  An 

incorrect choice of ωc and the system may operate with too much noise, causing 

instability or bad performance, or the system may over-attenuate the loop signal 

causing slow lock time and instability.  The traditional design techniques outlined in 

Section 3.2 earlier, do not put forward any explicit recommendation for the choice of 

ωc, suggesting only that ωc should be chosen to be no greater than 1/10
th

 of the 

reference signal frequency ωR for any system regardless of design specification or 

filter order.  It is left to the designer to use rule of thumb and/or empirical design to 

make the critical choice of ωc.  In this section, the optimum value of ωc is determined 

using filter prototypes, i.e. the linear PLL transfer function is equated with a filter 

prototype transfer function (effectively letting ωc equal to the prototype cut-off 

frequency, ωp), from this the DPLL parameter values are determined.  Finally, by 
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utilising the piecewise linear methodology of the previous section, the performance 

of the DPLL, with that particular choice of ωc, is determined.  By plotting the 

stability plane for a range of ωc, the optimum system parameters can be selected. 

In Section 3.2 earlier the third order DPLL design methodology proposed by 

Mirabbasi [26] was discussed.  This design methodology uses the Bessel filter 

prototype to optimally place the system poles, and thus optimally design the loop 

performance.  This is a completely linear process which includes the inaccuracies of 

the linear approximation, however because Mirabbasi only considers the third order 

loop and uses rule-of-thumb to chose the additional ripple capacitor (C3 = C2/5), the 

linear approach in this case is accurate.  Also because of the low order of the system 

and the rule-of-thumb choice of C3, the prototype is not applied as effectively as it 

could be.  Mirabbasi specifically chooses the Bessel class of filter prototype due to 

its property of a linear phase offset in the filter pass-band.  This property, however, is 

an unnecessary requirement as the DPLL reference frequency is constant, and any 

phase offset is corrected in the normal operation of the DPLL.  This can be verified 

by comparing the phase offset of the traditional DPLL to filter prototype phase 

offsets in the pass-band, as in illustrated in Figure 6.2 below for a cut-off frequency 

of 10 MHz.   
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Figure 6.2 Phase Offset for Traditional DPLL and Filter Prototypes 
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The traditional DPLL phase offset is considerably less linear in the pass-band than 

any of the selected prototypes.  For this reason, the design method need not be 

restricted to the Bessel prototype but may also include frequency selective 

prototypes, such as Butterworth and Chebyshev.  This is considered in detail in the 

following section.  

6.2.1 PLL Pole Placement using Filter Prototypes 

The DPLL filter prototype design methodology determines component values of the 

filter by equating the filter prototype denominator with the denominator of the PLL 

loop transfer function H(s) as in equation (6.1). 

( )
( )

( )

P V

P V

K K NF s
H s

Ns K K F s
=

+
 

(6.1) 

where F(s) is the relevant loop filter transfer function as described in Section 2.4.1 of 

this thesis.   

The fourth order DPLL transfer function can be determined by substituting the 

relevant loop filter transfer function from Table 2.2 into equation 6.1: 

( )
( )

2 2

4 3

2 3 4 2 4 2 3 2 2 4 4 3 4 4 2 4 2

2

2 3 4 2 2

( ) P V P V

P V P V

K K NC R s K K N
H s

NC C C R R s N C C R C C R C C R C C R s

N C C C s K K C R s K K

+
=
 + + + + +
 
 + + + + + 

 
(6.2) 

Note that the fourth order DPLL has only one zero
xiii

 located at s = −1/R2C2 and four 

poles.  As the design methodology used here equates the filter prototype and the 

transfer function denominator only, and not the numerators, the filter prototype is 

                                                 

xiii
 The single zero is due to the structure of the DPLL loop filter and due to the fact that the filter must 

be transconductance in nature. 
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required to be an all pole system with no zeros.  The classes of filter prototype that 

satisfy this requirement are the Bessel, Butterworth and Chebyshev (type 1) filter 

prototypes.  Each prototype needs to be considered individually to determine the 

most effective prototype in terms of placing the DPLL system poles; this is 

considered later in Section 6.2.4.  However for the moment, a generic fourth order 

filter prototype transfer function is used, as given in equation (6.3) below, where the 

parameters α, β, δ, ε and χ are the normalised coefficients, given in Table 6.1, and ωc 

is the DPLL bandwidth. 

4

Pr 4 3 2 2 3 4
( ) C

ototype

C C C C

H s
s s s s

χω
αω βω δω εω

=
+ + + +

 (6.3) 

  

Prototype Bessel Butterworth Chebychev 

(R=0.1) 

Chebychev 

(R=0.5) 

Chebychev 

(R=0.969) 

α 3.124 2.6131 1.804 1.197 0.9637 

β 4.392 3.4142 2.627 1.717 1.464 

δ 3.201 2.6131 2.026 1.025 0.7541 

ε 1 1 0.8285 0.3791 0.2795 

χ 1 1 0.819 0.3578 0.25 

Table 6.1 Normalised Filter Prototype Coefficients 

Equating the denominator of equation (6.2) with that of equation (6.3) results in the 

following set of expressions given in equations (6.4 – 6.7). 

2 3 2 2 4 4 3 4 4 2 4 2

2 3 4 2 4

C

C C R C C R C C R C C R

C C C R R
αω

+ + +
=  (6.4) 

Where K is the system gain KVKP.  

2 2 3 4

2 3 4 2 4

C

C C C

C C C R R
βω

+ +
=  (6.5) 
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3

3 4 2

C

K

NC C R
δω =  (6.6) 

4

2 3 4 2 4

C

K

NC C C R R
εω =  (6.7) 

By inspection of equations (6.6) and (6.7) it can be seen that: 

4 3

3 4 4 2 2 2 2

1 1
C C

K

NC C R R C R C
εω δω

 
= = 
 

 (6.8) 

2 2

C
R C

δ
εω⇒ =  (6.9) 

2

2C

R
C

δ
εω

⇒ =  (6.10) 

Because there are five unknown parameter values and only four simultaneous 

equations, it is necessary to define two new ratios, M1 and M2 as in equations (6.11) 

and (6.12) below. 

2
3

1

C
C

M
=  (6.11) 

2
4

2

R
R

M
=  (6.12) 

The effects of the ratios M1 and M2, and the optimum choice of these ratios are 

considered in Section 6.2.3 below.   

Using equations (6.4), (6.11), and (6.12), it is possible to determine C4 in terms of C2 

as follows.  Rewrite equation (6.4) as: 

( )2 3 4 2 4 2 3 2 2 4 4 3 4 4 2 4 2C C C C R R C C R C C R C C R C C Rαω = + + +  (6.13) 

From (6.7) C2C3C4R2R4  is equal to 
4

C

K

Nεω
 and (6.13) can be rewritten as: 
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2 3 2 2 4 4 3 4 4 2 4 23

C

K
C C R C C R C C R C C R

N

α
εω

= + + +  (6.14) 

Substituting equations (6.11) and (6.12) into equation (6.14) gives:  

2

2 2 2 4 2 2 4 2
2 4 23

1 2 1 2C

C R C C R C C RK
C C R

N M M M M

α
εω

= + + +  (6.15) 

Dividing both sides by R2 and substituting in equation (6.10) leaves: 

2

2 2 2 4 2 4
2 42

1 2 1 2C

KC C C C C C
C C

N M M M M

α
δω

= + + +  (6.16) 

Finally divide both sides by C2 and solve for C4. 

2

2

1
4

2 1 2

1 1
1

C

CK

N M
C

M M M

α
δω

−

=
 

+ + 
 

 (6.17) 

All the loop filter parameter values have been determined in terms of C2 (except C2), 

see equations (6.10 – 6.12) and equation (6.17).  The final task is to determine an 

expression for C2 that is independent of the other system parameters.  This is derived 

below by starting with equation (6.5), replacing C2C3C4R2R4 with 
4

C

K

Nεω
(from 

equation (6.7)), and subbing in the known values of C3 and C4 from equations (6.11) 

and (6.17): 

2

2

12
22

1

2 1 2

1 1
1

C

C

CK

N MCK
C

N M

M M M

α
δωβ

εω

−

= + +
 

+ + 
 

 (6.18) 

The above expression has only one unknown parameter, C2, so solving this 

expression for C2 and simplifying leaves: 
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1 2 1 2
2

2

1 2

1

( 1)

1
( )

C

K M M M M K
C

N M M
M

βδ αε

δεω

+ −
=

+
 

(6.19) 

Thus, the fourth order DPLL parameter values can be determined from the filter 

prototype using equations (6.10 – 6.12), (6.17) and equation (6.19).  Using this set of 

parameters, there are four unknown parameters the gain K, the filter cut-off ωc and 

the parameter ratios, M1, M2.  This has been reduced down from the original six 

unknown component values.  In the next subsection it will be shown that the DPLL 

transfer function that is derived by employing the set of filter prototype parameters 

above, are independent of the system gain K, thus reducing the number of design 

parameters to three.   

6.2.2  Proof that the Filter Prototype Derived DPLL is Independent of 

the System Gain 

In this section, it is shown that if the PLL system transfer function is determined 

using the parameter values derived by the filter prototype values given in equations 

(6.10 – 6.12), (6.17) and equation (6.19), then the closed loop transfer function is 

independent of the choice of system gain K.  First, consider equation (6.19) in terms 

of K, (6.20) shows that C2 is some scalar product of K. 

1 2 1 2
2

2

1 2

1

( 1)

1
( )C

M M M M
C K aK

N M M
M

βδ αε

δεω

 
 + −
 = =
 + 
 

 (6.20) 

where a is some unknown constant value.  Also rewriting the other parameter values 

in terms of K and unknowns gives: 

2

2

1 b
R b

C aK
⇒ = =  (6.21) 

3C caK=  (6.22) 

4

bd
R

aK
=  (6.23) 
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2
4

eK fC e fa
C K hK

g g

+ +
= = =  (6.24) 

where a, b, c, d, e, f, and g are also unknown constant values.  Substituting all these 

parameter values back into the system transfer function of equation (6.2), and solving 

H(s) in terms of K gives: 

( )
( )

( )

4 3

2

( )
K Nbs N

H s
NKbchs NK bca bdh cdbh bh s

NK a ca h s Kbs K

+
=
 + + + +
 
 + + + + + 

 

(6.25) 

By inspection of equation (6.25) it can be seen that K above the line cancels with the 

K values below the line, thus H(s) does not depend on the system gain K, i.e. any 

change in K is reflected by a proportionate change in the derived system component 

values.   

This is an important finding and is a consequence of the filter prototype derivation 

methodology given above.  It means that in theory the system gain does not affect the 

system stability and performance, i.e. that as expected, the system bandwidth is set 

by the filter prototype (and the choice of ωc) and does not depend on the gain K.  

However, it cannot be forgotten that the choice of KV and KP will have an effect on 

the performance of the VCO and PFD components, in particular in terms of noise 

suppression and the PFD tracking performance and dc offset.  Thus the choice of KV 

and KP still needs to be reasonable, but importantly, will not affect the loop stability.  

6.2.3 Determination of the Optimum Filter Prototype 

In Section 6.2.1 the DPLL parameter values were determined using filter prototypes 

to place the loop poles.  The prototype transfer function is given in equation (6.3), 

this is a generic solution where the constant values α, β, δ, ε and χ are selected for 

the particular class of prototype using Table 6.1 from earlier.  In this section each 

filter prototype is used to determine the DPLL parameter values and the best 

performing prototype for the DPLL is found. 
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The DPLL system lock time tLCK for each class of filter prototype is plotted using the 

piecewise linear stability methodology (using the piecewise linear methodology 

equation (5.41)).  This is shown in Figure 6.3 below (blue line), the system steady 

state error is also included (red line).   
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Figure 6.3 Lock Time and Steady State Error for Filter Prototypes 

By inspection of the two plots in Figure 6.3 it can be seen that the Chebyshev filter 

returns the best results for both lock time and steady state error for all considered 

Chebyshev ripple parameters, Rs.   

As an example, consider a DPLL system with gain parameters chosen as KV = 

62.8MHz/V and IP = 10µA.  The value of Rs allows the designer to trade-off between 

faster lock time and better steady state error.  As Rs is increased ωc approaches ωR, 

this is illustrated in Figure 6.4 below.   
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Figure 6.4 ωC/ωR for Range of Rs Parameter 

The lock time and steady state error can be varied by optimally choosing Rs.  Figure 

6.5 again shows the lock time (blue line) and steady state error (red line) for a range 

L
o
ck

 T
im

e (µ
s) 

S
te

ad
y
 S

ta
te

 E
rr

o
r 

(1
0

-1
3
 V

) 

ω
c/

ω
R
 

Ripple Parameter Rs 



 

153 

of Rs.  The minimum lock time and steady state error is found to occur at a value of 

Rs equal to 0.707. 
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Figure 6.5 Lock Time (blue line, diamonds) and Steady State Error (red line, squares)  for 

Chebyshev Filters 

Thus by inspection of the results illustrated in Figure 6.5, and the results shown 

earlier in Figure 6.3, it can be concluded that the optimum filter prototype to 

determine the DPLL filter parameters is the Chebyshev type 1 class of prototype with 

a ripple parameter chosen to be 0.707.  This prototype is applied exclusively from 

this point forward. 

6.2.4 Placing the Fourth Order Pole 

In Section 6.3.1 the two ratios M1 and M2 were introduced to help solve the fourth 

order prototype parameters.  The parameters M1 and M2 both define the location of 

the fourth order filter pole P4 in Figure 6.6.     
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Figure 6.6 Pole Locations for Range of M1 and M2 

It is desirable that all the loop poles are located in the optimum location as defined 

by the filter prototype poles; this was the purpose of equating both transfer functions 

earlier.  However this is not feasible for the passive transconductance class of filter 

that is employed in the DPLL.  This is because there is an inherent requirement for at 

least one real pole.  The fourth order filter prototype has two complex conjugate pairs 

of poles and no real pole; this cannot be the case with the transconductance filter.  

The poles however can be placed as close to the ideal location by optimally choosing 

the parameter values M1 and M2. 

The root locus plot of Figure 6.6 also shows that increasing M1 and M2 causes pole 

P4 to move and P1, P2 and P3 to remain relatively constant.  Similarly Figure 6.7 

shows that varying M1 and M2 affects the roll-off of the system magnitude.  Ideally 

we require a value of M1 and M2 that will produce the sharpest roll-off, and therefore 

best filter cut-off characteristics.  This occurs at the inflection point of P4 where it is 

closest to the imaginary axis.   
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Figure 6.7 Bode Magnitude Plot for Range of M1 and M2 

The trajectory of P4 as M1 and M2 change is irregular, it initially moves closer to P1 

for increasing M1 and M2.  When P4 reaches the inflection point X, in Figure 6.6, the 

pole turns and moves away from P1.  The optimum choice of M1 and M2 is the point 

where P4 lies at X – the pole location closest to the imaginary axis.  To determine this 

inflection point exactly it is necessary to determine the roots of the system transfer 

function denominator.  The denominator is a quartic equation and is therefore not 

easily solved; however the inflection point can be estimated using the following 

optimisation technique.  The quartic PLL transfer function denominator can be 

expressed in terms of the individual poles as in equation (6.26) below;  i.e. it has four 

poles placed in the left half plane with locations defined by the parameters a, b, c, 

and d.  

( )( )( )( )( )D s s a s b s c s d= − − − −  (6.26) 

The fourth order pole P4 reaches inflection point X when the parameters a, b, c, and d 

are at a minimum.  Multiplying these poles together the denominator can be 

determined in polynomial form as:  



 

156 

( ) ( )
( ) ( )

4 3 2( )

          

D s s a b c d s ab ac ad bc bd cd s

abc abd acd bcd s abcd

= − + + + + + + + + +

− + + + +
 (6.27) 

If equation (6.27) is expressed as in (6.28) then the minimum values of a, b, c, and d 

occur when the parameters A, B, C and D are minimised. In other words the 

inflection point of A, B, C and D corresponds to the inflection point of pole P4. 

4 3 2( )D s s As Bs Cs D= + + + +  (6.28) 

The values of A, B, C, and D can be determined in terms of M1, M2 and the filter 

prototype parameters, by equating (6.28) with the denominator of the PLL transfer 

function in equation (6.2) and substituting in the loop filter component values, as 

defined in equations (6.10 – 6.12), (6.17) and (6.19).  Thus the transfer function 

denominator coefficients are given in Table 6.2 below. 

A 
( ) ( )

( ) ( )
1 1 2 1 2 1 2

2

1 2 1 2 1 2

1 1
1

1 1

c
M M M M M M M

M M M M M M

εω βδ αε

δ αε βδ αε

 + + + −
 +

+ − + +  
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( )
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1 2 22 2
11 2

2 2 2

1 2 2

2

1 2 1 2

1
1 2

1

1

c

M M M
MM M

M M M
M

M M M M

ε ω
δ αε

βδ αε

  
 + + + +  
   + +
 −
 + − 

 

C ( )
( )

1 1 2

1 2 1 2

3 2 3 2

1 2

1

1

1c c

M M M

M M M M

M M

βδ αεα
εω ε ω

+ +
+ −

−
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D 

( )
( )

( )

2 2

1 1 2

2

1 2 1 2

2 2 2

1 2

1

1

1

c

c c

M M M

M M M M

M M

ε ω

βδ αδεαδ
ω εω

+ +

+ −
−
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Table 6.2 PLL Transfer Function Denominator Polynomial Coefficients 

Using these parameters it is possible to approximate the inflection point of P4 and 

thus choose the optimum values for M1 and M2.  The inflection point is the same for 
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each of these parameters (A, B, C, and D); thus any one of the above parameters may 

be used to determine X. 

As an example, consider a 1 GHz system with charge pump and VCO gains of 10µA 

and 125 Mrad/s/V respectively.  The loop filter parameters are chosen using the filter 

prototype equations given in (6.10 – 6.12), (6.17) and (6.19).  The optimum choice of 

M1 and M2 can be determined by substituting all known values into the four 

parameters in Table 6.2 and plotting any one of these for a range of M1 and M2.  The 

A parameter is used to plot Figure 6.8 below. 
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Figure 6.8 Determination of M1 and M2 Parameters for Optimum Pole Location. Plot of A 

Parameter. 

The inflection point occurs at the minimum of A (or of any of the parameters in 

Table 6.2); resulting in the optimum values of M1 and M2.  From the plot the 

optimum choice for M1 and M2 are found to be approximately 10 and 0.2 

respectively.  Finally, using the values of M1 and M2, loop filter parameter values can 

again be determined using (6.10 – 6.12), (6.17) and (6.19).  The pole/zero plot and 

the frequency response are shown in Figure 6.9 and Figure 6.10.  
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Figure 6.9  Pole/Zero Plot for a Range M1 and M2    
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Figure 6.10 Frequency Response for a Range M1 and M2    
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In Figure 6.9 the ‘stars’ are the expected pole locations for the system with an M1 

equal to 10 and an M2 equal to 0.2, as determined above.  The ‘dots’ are the pole 

locations for systems with all other values of M1 and M2.  As expected the selected 

system has the optimum fourth order pole location placed closest to the imaginary 

axis.  This system is also expected to produce the best possible frequency cut-off 

characteristics; Figure 6.10 shows that this is the case.  The frequency response for 

the designed system is the continuous line.  The dashed lines are the responses for 

systems designed with a range of M1 and M2.   

6.2.5 Determination of the Optimum Loop Bandwidth using the 

Piecewise Linear Stability Methodology 

In this section, the piecewise linear stability methodology of the previous section is 

used to plot the system performance for a range of system bandwidths ωc, where the 

bandwidth is chosen using the parameter values as defined by the filter prototype 

above.  In other words by choosing ωc, the DPLL parameters are calculated using 

equations (6.10 – 6.12), (6.17) and equation (6.19), then these parameter values are 

substituted into the piecewise linear equations as given in Appendix D.  By iterating 

the piecewise linear stability equation the lock time of the DPLL can be determined 

for a range of system bandwidths ωc as shown in Figure 6.11.  
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Figure 6.11 Plot of Traditional DPLL ωC against Lock Time 
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In Figure 6.11 the system bandwidth is increasing from left to right on the plot.  The 

continuous time approximation breakdown point (discussed earlier in Chapter 3) is to 

the right hand side of the plot.  This is the point where ωc is equal one tenth of ωR 

and beyond this point the loop bandwidth becomes too small with the undesired 

affect of attenuating the information signal of the loop.  From the earlier discussion 

on this topic, the suggestion that ωc should be no greater than one tenth of ωR, seems 

reasonable in light of the above observations.   

The plot given in Figure 6.11 can be used to design the DPLL using the following 

steps:   

1. Determine the DPLL system parameters using the prototype equations 

derived above ((6.10 – 6.12), (6.17) and equation (6.19)) for a range of 

ωc.  

2. The expected system lock time can then be plotted using the piecewise 

linear methodology of the previous section, as in Figure 6.11.   

3. Finally, by choosing the optimum ωc for the minimum lock time, using 

Figure 6.11, and choosing optimum M1 and M2 for the sharpest roll-off, a 

stable, and realizable fourth order DPLL can be designed.   

Figure 6.11 also shows the normalised locations of traditionally designed systems 

using the design techniques of [13, 24-26, 43].  As can be seen, these methods 

provide slower lock time compared to the piecewise linear method for a similar 

choice of ωc.   

As a design example consider the design of 1 GHz fourth order DPLL system using 

the proposed methodology.  This system has a feedback divide ratio of 1, and gains 

KV = 377 MHz/V and IP = 1mA.  The optimum choice of M1 and M2 are found by 

plotting parameter A from Table 6.2 for a range of M1 and M2 and then choosing the 

values that produce the smallest output, see Figure 6.12. 
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Figure 6.12 Plot of the Transfer Function Denominator Parameter for a Range of M1 and 

M2. 

From the plot the minimum point (and therefore then inflection point of pole P4) 

occurs at values of M1 equal to 10 and M2 equal to 0.2.  Using these values of M1 and 

M2 and the piecewise linear methodology it is possible to plot the system lock time 

for a range of filter cut-off frequencies as in Figure 6.13. 
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Figure 6.13 Plot of the the Piecewise Linear Model Lock Time for a Range of Filter Cut-

off Frequencies 
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From Figure 6.13 the ωC/ωR is arbitrarily chosen to be 0.06.  This results in the 

following set of loop filter parameter values: C2 =2.4pF, C3 = 0.24pF, C4 = 40fF, R2 = 

2.9kΩ and R4 = 14.6kΩ.  Finally the circuit level simulated response of this system is 

plotted in Figure 6.14.  
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Figure 6.14 System Response of a 20MHz 4
th
 Order DPLL 

 

6.2.6 System Parameter Robustness 

The filter prototype design technique outlined in the previous section determines 

realizable values for each of the DPLL loop filter components.  However the 

necessary component values may need to be rounded or may suffer inaccuracies due 

to manufacturing.  In this section the robustness of the system is considered as the 

component values are varied from their ideal value.  To determine robustness, the 

filter component values are varied randomly by ±30% from the ideal values defined 

by equations (6.10 – 6.12), (6.17) and equation (6.19), and the outcome is 

considered.  Consider a 1 GHz system, with such a large deviation (±30%. ), the 

system poles are expected to move significantly, as shown in Figure 6.15 below. 
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Figure 6.15 Pole Locations for Varying Component Offset. 

There are three dominant poles affecting the system response, these are poles P1 

from Figure 6.15, and the two complex conjugate pair of poles P2 and P3.  It is 

reasonable to conclude that any variation in the component values results in a 

corresponding movement of the system pole.  The area of each ellipse in Figure 6.15 

increase in size as the component percentage variations are increased.  Stability, in 

the classical linear sense, means that all poles must lie to the left of the imaginary 

axis as illustrated in Figure 6.16 below.  However, stability can be defined as low 

oscillatory response and rapid transient response, as described earlier at the 

beginning of Section 5.2.  
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Figure 6.16 Combined Requirements for Continuous Systems 

No single pole has a dominant effect on the system response; it is shared by the three 

poles, not including P4.  The system becomes less stable as the system poles 

approach the shaded area of Figure 6.16.  The angle of the diagonal boundary in 

Figure 6.16 is typically chosen to be 45°, which gives a damping ratio of 0.707 [62, 

63].  If we consider the system response in the frequency domain, Figure 6.17, rather 

than the pole movement, we should get a linear relationship between the cut off 

frequency offset from the ideal and the component variations.  
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Figure 6.17 Plot of Frequency Response for a Range of Component Percentage Offsets 

Figure 6.17 considers the –3db cut off frequency for positive and negative variations 
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off frequency and plotting them against the loop filter parameter error, as in Figure 

6.18, it can be seen that the system is stable to the left hand side of the dashed line 

and unstable otherwise.   
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Figure 6.18 Plot of Cut-off Frequency Offset for a Range of Component Offsets. 

From Figure 6.18 we can see that the system produces no unstable results for values 

of component offsets of less than 10%.  In other words if all the components differ 

from the ideal by less than 10% the system will still be stable, but any further 

deviation may cause an unstable response.  For a component variation of 9% the cut 

off frequency varies from –6.4 to +3.4 MHz.  This is a cut-off frequency deviation 

range of 9.8MHz around the ideal frequency.  Considering the reference signal 

operates at a frequency of 1 GHz this deviation is relatively small.   

6.3 Design Methodology for the Fifth order DPLL 

In this section, the same filter prototype procedure that was used in the previous 

section to determine optimum fourth order DPLL parameters is employed in order to 

determine the fifth order equivalent.  As in the previous case, the filter prototype of 
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choice is the Chebyshev type 1 prototype (with a ripple parameter of 0.707), the fifth 

order Chebyshev transfer function is given in equation (6.29) below. 

5

Pr 5 4 2 3 3 2 4 5
( ) C

ototype

C C C C C

H s
s s s s s

χω
αω βω δω εω χω

=
+ + + + +

 (6.29) 

where the parameter values are as given in Table 6.3 below. 

Parameter αααα ββββ δδδδ εεεε χχχχ 

Value 1.054 1.805 1.134 0.6594 0.1486 

Table 6.3 Fifth Order Chebyshev Type 1 Parameter Values 

The fifth order transfer function is of the form given in equation (6.1) with the 

relevant fourth order loop filter transfer function F(s) (equation (6.30)).   

5
5 4 3 2

( ) V P V P
th

V P V P

K K bs K K a
H s

K K b K K a
fs es ds cs s

N N

+
=

+ + + + +
 

(6.30) 

where the parameter values a, b, c, d, e, and f are given in Table 6.4 and KP = IP/2π. 

Parameter Value 

a 1 

b 2 2
R C  

c 2 3 4 5
C C C C+ + +  

d 
5 2 5 4 2 4 5 4 5 2 2 4 5 3 5

2 2 3 4 3 4 4 2 5 4 3 5 2 2 5

R C C R C C R C C R C C R C C

R C C R C C R C C R C C R C C

+ + + + +

+ + + + +
 

e 
4 5 2 4 5 2 5 2 4 5 2 4 2 3 4

2 5 2 3 5 4 5 3 4 5 2 4 2 3 5

R R C C C R R C C C R R C C C

R R C C C R R C C C R R C C C

+ + +

+ + +
 

f 2 4 5 2 3 4 5
R R R C C C C  

Table 6.4 Fifth Order DPLL Transfer Function Parameters 
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The derivation of the fifth order DPLL prototype parameters is expansive and for that 

reason it is included in Appendix E.  The derivation is carried out in the same manner 

as the fourth order DPLL in Section 6.2.1, except that in this case it is necessary to 

define four ratio parameters as given in equations (6.31 – 6.34). 
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C
M

C
=  

(6.31) 
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5
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C
=  

(6.32) 

2
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(6.33) 

2
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5

R
N

R
=  

(6.34) 

Using these parameters and equating the fifth order prototype function of equation 

(6.29) with the fifth order PLL transfer function of equation (6.30), the DPLL 

parameters can be determined using the follow set of equations: 
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(6.39) 

4 2 1C C µ=  (6.40) 
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 (6.41) 
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where 
2

1 1 2 2
1 2 3

V P

C

K K M N M N χ
µ

ω ε
= and 

3

2 3

1 2 1 2M M N N

δε
µ

χ
=  

Using the above set of DPLL system parameters, it is possible to place the loop poles 

in the optimum location as defined by the filter prototype.  In the case of the fifth 

order it is possible to have two complex conjugate pairs of poles and one real pole, 

thus placing all the system poles in the desired filter prototype arc. 

Finally, by calculating the fifth order system parameters with the above equations for 

a range of loop bandwidths and then determining the system lock time using the 

piecewise linear stability methodology, it is possible to design stable fifth order 

DPLL systems with the desired lock time and an optimum loop bandwidth. 

For example consider a fifth order 1GHz DPLL system, with a charge pump current 

gain IP = 1mA, and a feedback divide ratio N = 4.  Using the set of equations (6.35 – 

6.41) and the piecewise linear stability methodology the expected system lock time 

for a range system bandwidths can be determine (Figure 6.19). 
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Figure 6.19 Plot of Expected System Lock Time for a Range of Bandwidths 

From Figure 6.19 the loop filter bandwidth is chosen to be 200 MHz (ωc/ωR=0.2).  

Thus the system parameter values are KV = 314 MHz/V, R2 = 6.5kΩ, R4 = 1kΩ, R5 = 

10kΩ, C2 = 539fF, C3 = 135fF, C4 = 234fF, and C5 = 58fF.  A plot of the state space 
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response of this system using the piecewise linear methodology is as given in Figure 

6.20.  The expected pole locations for this system are given in Figure 6.21. 
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Figure 6.20 Plot of One Segment of the Fifth Order DPLL State Space Trajectory. 

-14 -12 -10 -8 -6 -4 -2 0

x 10
9

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

8

Real Axis

Im
ag

in
ar

y
 A

x
is

-14 -12 -10 -8 -6 -4 -2 0

x 10
9

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

8

Real Axis

Im
ag

in
ar

y
 A

x
is

 

Figure 6.21 Plot of the Fifth Order System Pole Locations.  

From the results of the piecewise linear state space plot this system is expected to be 

stable.  This can be confirmed by simulating the above DPLL loop with the 

determined set of component values using a circuit level simulation.  As expected it 
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is found that the system response is stable, see the transient response plot in Figure 

6.22.  The DPLL output frequency is 4GHZ, this is expected because the reference 

frequency is 1GHz and the feedback divide ratio is 4. 
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Figure 6.22 Circuit Level Simulation of the System Transient Response 
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6.4 Conclusion 

In this chapter a high order DPLL design methodology was presented.  This 

methodology combines filter prototype design methodologies and the piecewise 

linear methodology of Chapter 5 into one design technique.  The former technique 

determines the loop filter parameter values by equating the denominator of the DPLL 

transfer function with that of the filter prototype; and the latter determines the 

stability boundary for this DPLL system for a predefined reference frequency and 

lock time.  This design methodology is beneficial and desirable for the following 

reasons: 

1. It reduces the number of system design parameters that need to be considered.   

2. The result is a design methodology for high order DPLL systems where all 

the system poles are optimally placed, something that is not currently 

possible with existing methods.   

3. The system transfer function was found to be independent of the VCO and 

CP gain parameters.  The loop gain is set solely by the filter prototype and the 

choice of filter cut-off frequency. 

4. The presented design methodology is not restricted to low orders, as is the 

case with existing methods.   

It was found that although there are a number of different classes of filter prototypes, 

the best prototype for DPLL design is the Chebyshev (type 1) filter prototype with a 

choice of ripple parameter equal to 0.707.   

Using the proposed methodology it is possible to plot the system lock time for a 

range of loop filter cut-off frequencies (loop bandwidth).  This introduced a novel 

means of viewing the system stability.  From these results it was shown that the 

continuous time approximation restriction (i.e. the reference frequency should be no 

greater than one tenth of the loop bandwidth) is a reasonable constraint.  If this 

constraint is not adhered to the system would be highly unstable.  In most cases in 

the literature this design constraint is taken literally, resulting in an excessively 

narrow loop bandwidth being placed excessively far away from the continuous time 
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approximation boundary.  However by utilising the proposed design methodology 

this continuous time approximation boundary can be determined, thus enabling the 

designer to better choose the loop bandwidth, as close to the boundary as desired.   

In traditional DPLL design methods the system poles are generally placed well away 

from the imaginary axis, this is more by accident (due to the rule-of-thumb process) 

than design.  However the design method proposed in this chapter places the two 

most dominant poles quite close to the imaginary axis.  This makes it necessary to 

test the design robustness to small variations in loop parameter values.  Any 

parameter variations may cause the pole to move in to the right half plane, causing 

instability.  The final system parameter values will not exactly match the desired 

values that were initially selected by the designer; this is due to slight inaccuracies in 

component values.  However it was found in this section that for large deviations of 

parameter values the dominant poles did not move significantly and the stability of 

the DPLL system was maintained.  

Finally, as an example a high order (fifth order) DPLL system was designed using 

the presented methodology.  The lock time for this system was determined for a 

range of system bandwidths using the piecewise linear methodology.  Choosing the 

optimum bandwidth the system parameters was then selected by the filter prototype 

methodology.  Using traditional design methods stable high order DPLL design is a 

laborious task; in contrast the presented methodology designs stable systems using 

design methodologies that require only seconds to design and model.   
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

The DPLL system is traditionally analysed and designed using classical linear 

theory.  The advantages of the linear approach are the modelling speed and 

availability of powerful analytical tools.  Linear methods are found to give a good 

approximation of low order DPLL systems, however it is well documented [3, 14, 

51], and has been illustrated in this thesis, that the linear approximation can not 

guarantee a globally stable prediction.  This is due to the differences between the 

DPLL and the linear approximation, as the order is increased this inaccuracy 

becomes more substantial.  For this reason, and the fact that the system analysis 

becomes more complex, high order DPLL systems are rarely used in practice.  

However the benefit of high order loops are improved out-of-band noise performance 

and therefore less frequency jitter on the DPLL output signal.  These advantages 

cannot be ignored. 

This thesis considers the issue of such high order DPLL systems and in particular 

their loop stability.  The aim of this thesis is to enable high order system design.  To 

achieve this, a number of issues needed to be addressed: the nonlinear nature of the 

DPLL loop; the complexity of the high order analysis; and the lack of a viable high 

order DPLL analysis tool.  Each of these issues has been addressed in this thesis as 

follows:   

1. The inherently nonlinear nature of the DPLL loop can be modelled using 

a piecewise linear approach to model the DPLL loop state transitions.  

This is achieved using behavioural modelling methods. 

2. The complexity of the DPLL analysis is reduced by implementing a novel 

charge approximation of the loop filter equations.  This has the beneficial 

effect of removing the high order system equation differential terms, thus 

a closed form model of the loop can be determined.  This approach eases 

the high order loop restriction that would otherwise exist.  
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3. A novel piecewise linear stability methodology was presented; this 

simplified the DPLL analysis by considering the loops transient behaviour 

in state space.  An early prediction of the system stability can be made by 

looking at the first few state space samples, this is achieved by 

determining whether the system state variables are converging to or 

diverging from the equilibrium that is phase lock. 

4. For high order DPLL systems there are a large number of design 

parameters that need to be considered (seven in the case of the fourth 

order DPLL loop) – this is cumbersome.  This can be improved by using 

filter prototypes and the new piecewise design methodology to select the 

DPLL parameter values, thus reducing the number of design parameters 

(for example three parameters are  required to define the fourth order 

DPLL performance).  

The resulting analysis and design methodology presented in this thesis is not 

mathematically restricted and can be implemented to arbitrarily high orders.  An 

example of a fifth order design is given, this illustrates that the piecewise linear 

methodology can be used to accurately determine the response of the fifth order 

DPLL, something that is not feasible with existing methods.   

The high order DPLL design and modelling methodology proposed in this thesis 

could be applied to other mixed signal systems such as the continuous time sigma-

delta modulator (SDM).  Both the DPLL and SDM are feedback loops containing 

both analogue and digital signals.  This, however, has not been investigated in this 

thesis and has been left as future work. 

There is currently a significant amount of research being carried out into the design 

of advanced architectures for DPLLs; some of these have already been discussed.  

One of these is a technique called ‘gear-shifting’; this is essentially the reducing of 

the DPLL loop bandwidth (in steps) as it approaches lock and increasing it if lock is 

lost.  This results in a dynamic DPLL loop that is both fast locking and low noise.  

The bandwidth can be varied in a number of ways:  

1. By varying the system gain; varying the loop filter bandwidth.  
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2. By changing the loop filter order.   

In the case of ‘gear-shifting’ through loop orders, it is necessary to be able to 

determine stable high order system parameters; this is not currently achievable with 

existing design methods.  However by utilising the design methodology proposed in 

this thesis, stable high order DPLL systems can be determined.  When unlocked the 

loop filter will be of low order, once locked the loop will be ‘gear-shifted’ up to high 

order.  In the case of the high order loop it will only be active when the loop is 

locked (phase error is small).  The high order loop will only operate with a small 

phase error.  For this reason any analysis of the system that is made using the 

proposed design methodology is expected to be accurate (as the model error is 

proportional to the phase error).  While this presents another good application for the 

piecewise linear stability methodology, it has not been investigated as part of this 

thesis and has been left as future work. 

In conclusion this thesis set out to accurately and efficiently model and analyse high 

order DPLL systems.  This is a laborious and sometimes impossible task to achieve 

using traditional linear and nonlinear methods.  It was found that high order DPLL 

modelling and analysis could be achieved by utilising three novel approaches: first 

by using a loop filter charge approximation to simplify the system equations; second, 

by taking a piecewise linear approach to the system model – accurately determining 

the system response; and finally by using filter prototypes to place the system poles – 

further simplifying the high order design procedure. 
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APPENDIX A 

DESIGN OF HIGH ORDER DPLL FILTERS USING 

TWO-PORT METHODOLOGY 

In this appendix arbitrary order DPLL filters are designed using two different low 

order Filter architectures.  These are cascaded together to produce a single filter of 

high order.  Using two ports circuit design theory, the DPLL system transfer function 

can be derived by multiplying the two filter transfer functions together.  By 

cascading additional filters, and multiplying additional two port equations to the 

original, the filter equations can be efficiently increased to arbitrary order. 

DPLL Filter Structure 

A third order DPLL filter architecture is generally of the format shown in Figure A.1 

below.  This is a transconductance passive low pass filter that converts the incoming 

current information to a voltage output for operation by the VCO. 

 

Figure A.1 Third Order Filter Structure 

This can be split into two different filters, one of second order, Figure A.2 and one of 

first order, Figure A.3.  By cascading additional filters similar in architecture to 

Figure A.3, filters of any order can be designed. 
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Figure A.2 Second Order Filter Structure 

 

Figure A.3 High Order Filter Cascade 

For this to work we need a two port mathematical model to represent each of these 

models.  This enables the multiplication of each filters two port transfer function to 

give an overall transfer function for both filters. 

• System 1 

The system in Figure A.2 has the following two port equation: 
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(A.1) 

• System 2 

Similarly for the system of Figure A.3 has the two port equation: 
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(A.2) 

To calculate the transfer function of the overall system, as shown in Figure A.1, the 

two port matrices in equation (A.1) and (A.2) are multiplied together.  

To create a higher order DPLL additional filters are cascaded, so the transfer 

function can be calculated by multiplying equation (A.1) by the required amount of 

equation (A.2). 

Example 

The transfer function of Figure A.1 is calculated using equations (A.1) and (A.2).  

This is equal to: 
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(A.3) 

When this matrix equation is solved we find that: 
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(A.4) 

 This is the transfer function of the filter structure of Figure A.1.  

Conclusion 

Filters can be cascaded to create high order filters, the transfer function of this 

system is found by multiplying the relevant two port equations together.  Finally the 

PLL linear transfer function is found by multiplying the filter transfer function F(s) 

into:  
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(A.5) 

where KV is the VCO gain, IP is the PFD charge pump gain, and N is the DPLL loop 

feedback divide ratio.  
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APPENDIX B  

DERIVATION OF THE PHASE ERROR ZERO 

CROSSING CONTROL VOLTAGE 

In this appendix the derivation of the second order DPLL control voltage in closed 

from is derived from equation (B.1). 

( )
1 1

1

0

0 0

m i
i j

m C

i k

V V A B V k
− −

− −

= =

= + ∑∑  (B.1) 

where A= -KVIP T
2
/C2 and B = 1-(KVR2IPT)).  First consider the first few iterations of 

this equation as given in Table (B.1) below. 

Iteration Control Voltage 
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5 0 0 02 3 4 2 3V V AV B B B A V B= + + + + + +  

6 ( ) ( )4 3 2 2 2 3

6 0 0 0 02 3 4 5 3 6 6V V AV B B B B A V B B A V= + + + + + + + + +  

7 
( )

( ) ( )

5 4 3 2

7 0 0

2 3 2 3

0 0

2 3 4 5 6

      4 9 12 10 3 4

V V AV B B B B B

A V B B B A V B

= + + + + + +

+ + + + + +
 

8 

( )
( )
( )

6 5 4 3 2

8 0 0

2 4 3 2

0

3 2 4

0 0

2 3 4 5 6 7

      5 12 18 20 15

      6 12 10

V V AV B B B B B B

A V B B B B

A V B B A V

= + + + + + + +

+ + + + +

+ + + +

 

Table B.1 First Eight Iterations of the Control Voltage. 
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By looking at these first few iterations, it can be deduced that the double summation 

equation (B.1) can be replaced with equation (B.2).   

( )
( )
( )

1

2

2

3

0 3

2

2

1

m

m

m

A

A

V V A

A

 
  

 
 
 

 
 

+ Λ 
 

+ Λ 
 = + Λ
 
 
 

  
+ Λ    

  

�
 (B.2) 

where Λ is a function of B and is defined as in Appendix C.  For example to 

determine the 8
th

 period of the control voltage V8 it is necessary to determine all Λ 

parameters up to 
8

2

 
  

 (i.e. Λ1, Λ2, Λ3, and Λ4).  These are determined using the 

definitions of Λ given in Appendix C as follows: 

1. The parameter Λ1 can be calculated using equation (C.1), for a value of n = 8. 

2

2 3

1

2 3 4

2 3 4 5

2 3 4 5 6

1 11 0 0 0 0 0 0

1 11 0 0 0 0 0

1 11 0 0 0 0

1 11 0 0 0

1 11 0 0

1 11 0

1 11

T

B

B B

B B B

B B B B

B B B B B

B B B B B B

    
    
    
    
    

Λ =     
    
    
    
    

    

 

(B.3) 

6 5 4 3 2

1 2 3 4 5 6 7B B B B B B⇒ Λ = + + + + + +

 

(B.4) 

2. Similarly using equation (C.2) Λ2 can be determined: 
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4 3 2

3 2

2 2

2

2 3

2 3 4

2 3 4 5 11 0 0 0 0

2 3 4 11 0 0 0

2 3 11 0 0

2 11 0

1 11

T

B B B B

B B B B

B B B B

B B B B

B B B B

 + + + +   
    + + +    
    Λ = + + ×
    
 +   
         

 

(B.5) 

4 3 2

2 5 12 18 20 15B B B B⇒ Λ = + + + +

 

(B.6) 

3. Using (C.3) and noting that Λ3 = Γ6, then Λ3 can be calculated as: 

2

3 6

2

2

2

1 0 0
2 3 1 0 0 1

1
2 1 0 1 0 1

1 1 1
1 1

1

T

B B
B

B B
B

B B
B B B

B B

 
 

 + +     
+      Λ = Γ = + ×      

           + + + 
  

 

(B.7) 

2

3 6 12 10B B⇒ Λ = + +

 

(B.8) 

4. Λ3 is calculated using (C.4): 

[ ] [ ][ ]4 1 1 1 1
T

Λ = =  (B.9) 

5. Finally substituting all these Λ values back into to (B.3) the control voltage at 

the 8
th

 period of the reference signal is estimated as:  

( )
( )
( )

6 5 4 3 2

8 0 0

2 4 3 2

0

3 2 4

0 0

2 3 4 5 6 7

      5 12 18 20 15

      6 12 10

V V AV B B B B B B

A V B B B B

A V B B A V

= + + + + + + +

+ + + + +

+ + + +

 

(B.10) 

Note that equation (B.10) is the same results as determined in table B.1. 
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APPENDIX C  

CLOSED FORM SOLUTION OF THE CONTROL 

VOLTAGE 

This Section defines the parameters of Λ as used earlier in equations (5.31), (5.32) 

and (5.34), and in Appendix B. 

2

1

2 2

1 11 0 0 0 0

1 11 0 0 0

1 11 0 0

0

1 11

T

n

B

B B

B B B −

    
    
    
    Λ =
    
    
        

� �� � � �

�

 

(C.1) 

4 5

5 6

2

2

2 4

2 ( 4) ( 3)

2 ( 5) ( 4)

2

1

11 0 0 0 0

11 0 0 0

     11 0 0

0

11

T
n n

n n

n

B B n B n

B B n B n

B

B

B B

B B B

− −

− −

−

 + + + − + −
 

+ + + − + − 
 Λ =
 

+ 
 
  

  
  
  
  ×
  
  
     

�

�

�

�� � � �

�
 

(C.2) 

If we consider ΛΛΛΛ3 to be equal to the function ΓΓΓΓk given in equation (C.3), where k = 6, 

then ΛΛΛΛ4 can be calculated using equation (C.4). 
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1

1 2

2
2

2

2

2

2

2 ( ) ( 1)

2 ( 1) ( )

2

1

1 0 0 0 0

11 0 0 0 0 1 0 0 0

1 0 0 0
1 1

1 0 0 1 0 0

0
0

1
1 1 1

1

T
n k n k

n k n k

k

n k

n k

n k

B B n k B n k

B B n k B n k

B

B

B
B

B B B
B B

B B

B B B
B B B B B

B B B

− − −

− − − −

−
−

−

 + + + − + − +
 

+ + + − − + − 
 Γ =
 

+ 
 
  


 +  

  
  + + +
 ×
 
 
   + + + + + +



�

�

�

� � � �
� � � �

�
�

�

1

1

1

1



 
 
  
  
  
  
    

 
 

�

 

(C.3) 

8

9

4 10 2

2 8

1 0 0 0 0 1

1 0 0 0 1

1 0 0 1

1 1

T

nn

B

B B

B B B −

Γ     
     Γ     
     Λ = Γ
     
     
     Γ     

� � � � � ��

�

 (C.4) 

It is possible to calculate all ΛΛΛΛ up to m/2 by using the same process between 

equations (C.2) and (C.4), i.e. define ΓΓΓΓ′′′′k as in equation (C.5).  Then ΛΛΛΛ5 can be 

calculated as in (C.6), and so on up to ΛΛΛΛm/2. 

1

2 2

2

1 0 0 0 0 1

1 0 0 0 1

1 0 0 1

1 1

T

k

k

k k

n kn

B

B B

B B B

+

+

−

Γ     
     Γ     
 ′    Γ = Γ
     
     
     Γ     

� � � � � ��

�

 

(C.5) 
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10

11

5 12 2

2 10

1 0 0 0 0 1

1 0 0 0 1

1 0 0 1

1 1

T

nn

B

B B

B B B −

′Γ     
     ′Γ     
 ′    Λ = Γ
     
     
     ′Γ     

� � � � � ��

�

 

(C.6) 
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APPENDIX D  

PIECEWISE LINEAR DPLL MODEL EQUATIONS 

The third through fifth order piecewise linear model equations are outlined in the 

subsections below.  In each of these cases, the control voltage VC is determined from 

the charge on the filter capacitors, where W is the system order. 

1
1

( )
( ) W k

C k

W

Q t
V t

C

+
+ =

 

(D.1) 

The integral of VC, to replace the second order calculation in equation (5.3), is 

calculated from the knowledge of VC as shown in equation (D.2). 

2

1( )
( )

2

W k P
C P C k

Z

I t T
V dt T V t

C

+= +∫

 

(D.2) 

where TP is the length of time that the DPLL will remain in the present state (either 

TB or TC depending on whether the DPLL loop is in the Up or Null state 

respectively), and TB is equal to |φe(k)/2πFR| and TC = T-TB. 

Third Order DPLL Behavioural Equations 

Q2 and Q3, the charges on the loop filter capacitors, C2 and C3 respectively, are 

calculated as follows: 

2 1 2 3 1( ) ( ) ( ( ))k k P P kQ t Q t T I I t+ += − −

 

(D.3) 

3 1 3 3 1( ) ( ) ( )k k P kQ t Q t T I t+ += +

 

(D.4) 

where I3 is calculated as: 
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2 2 3
2 2 3

2 3
3 1

2 3 2 2 3

( ) ( )
( )

( )
( )

k k
P P B

k P

B

Q t Q t
T I C T C C

C C
I t I

T C C R C C
+

+ −

= −
+ +

 

(D.5) 

 

Fourth Order DPLL Behavioural Equations 

For the fourth order system the charge on the loop filter capacitors are calculated as 

in equation (D.6 – D.8). 

2 1 2

2 2 3
3 2 2 3

2 3

3 2 2 3

( ) ( )

( ) ( )
( )

               

k k

k k
P P

P

Q t Q t

Q t Q t
T I C T C C

C C

T C R C C

+ =

− −

+
+

 

(D.6) 

3 1 3 3( ) ( )
k k P

Q t Q t T I+ = +

 

(D.7) 

4 1 4

2 2 3
3 2 2 3

2 3

3 2 2 3

3

( ) ( )

( ) ( )
( )

               

               

k k

k k
P P

P

P P P

Q t Q t

Q t Q t
T I C T C C

C C

T C R C C

T I T I

+ =

− −

+
+

+ −

 

(D.8) 

where I3 and I4 are the current through C3 and C4 and are calculated as in equations 

(D.9) and (D.10). 
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2 3 3 4

2 3 3 4

2 4

2 4
3

2 4

3 2 3 2 3 3 4 4

( ) ( ) ( ) ( )

1

k k k k

P
P P

P P

P P

Q t Q t Q t Q t

C C C C
I

T T
R R

C C
I

C T C T

C T C C R C T C C R

   
− −   

   − +
+ +

=
+ +

+ +

 

(D.9) 

( )

( ) ( )

2 3
3 2 2 3

2 3

4 3

3 2 3 2

( ) ( )k k
P

p

P

Q t Q t
I C T C C

C C
I I I

C T C C R

  
− −   

  = − −
+

 

(D.10) 

 

Fifth Order DPLL Behavioural Equations 

The fifth order loop filter capacitor charges are calculated as shown in equations 

(D.11 – D.14) given below. 

2 1 2 2( ) ( )k k PQ t Q t I T+ = +

 

(D.11) 

2 3 2 2 3 2 2 3
3 1 3

2

( ) ( ) ( )
( ) ( ) k k

k k

I C R C T C Q t C Q t
Q t Q t

C T
+

+ + −
= +

 

(D.12) 

1
4 1 4

2

2 3
5 5 2 2 2 2

2 3

2 2

( ) ( )

( ) ( )
( ) ( )

             

k k

k k

D
Q t Q t

D

Q t Q t
T R C T I R C T C T

C C

C TD

+ = −

  
+ + + −   

  +

 

(D.13) 

5 1 5 5( ) ( )k k PQ t Q t I T+ = +

 

(D.14) 

where I2, I5 and D1 to D4 are defined as in equations (D.15 – D.20). 



 

189 

2 3
3 4

2 3

2
4

2 2

2

( ) ( )

1 ( )

k kQ t Q t
D D

C C
I

D
R C T

C

 
− − 

 =
+ +

 
(D.15) 

2 2 3
5 5 5 2 2 2 2

2 3

2

2 5 1 2 5 2 4 2 4 2 5

5

2 4 2 5 5

( ) ( )
( ) ( )

( ) ( )

( )

k k

k k

Q t Q t
C T R C T I R C T C T

C C

C C T D C C TD Q t C C TD Q t
I

C C TD R C T

   
+ + + −    

   
 − + − =

+
 

(D.16) 

3 3 4 4 4 3
2

3

( )( )R C T R C T C R T
D

C

+ + +
=  

(D.17) 

3 2 3 4
1 4 4 4 3

3 2 3 4

( ) ( ) ( ) ( )
( )k k k kQ t Q t Q t Q t

D R C T C R
C C C C

   
= − + + −   
   

 
(D.18) 

3 2
4

3 21 3 4 4 4
3

2 3 4 4 4 4

( ) ( )

( ( ) )

( )

k k

P

Q t Q t
C

C CD C R C T C T
D I

D C R C T R C T

 
− 

+ +  = − −
+ +

 (D.19) 

2

2 3 3 4 4 4
4

3 2

( )C C T TC R C T C T
D

C TD

+ + +
=  

(D.20) 
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APPENDIX E  

DERIVATION OF FIFTH ORDER FILTER 

PROTOTYPE EQUATIONS  

In this appendix the derivation of the fifth order DPLL design equations using filter 

prototypes is given. This derivation starts by equating the denominator of the fifth 

order DPLL transfer function given in equation (E.1), with the denominator of the 

fifth order normalised and generic prototype filter given in (E.2). 

5
5 4 3 2

( ) V P V P
th

V P V P

K I bs K I a
H s

K I b K I a
fs es ds cs s

N N

+
=

+ + + + +
 

(E.1) 

5

Pr 5 4 2 3 3 2 4 5
( ) c

ototype

c c c c c

H s
s s s s s

χω
αω βω δω εω χω

=
+ + + + +

 (E.2) 

where the parameter values a, b, c, d, e, and f are given in Table E.1. 

Parameter Value 

a 1 

b 2 2
R C  

c 2 3 4 5
C C C C+ + +  

d 
5 2 5 4 2 4 5 4 5 2 2 4 5 3 5

2 2 3 4 3 4 4 2 5 4 3 5 2 2 5

R C C R C C R C C R C C R C C

R C C R C C R C C R C C R C C

+ + + + +

+ + + + +
 

e 
4 5 2 4 5 2 5 2 4 5 2 4 2 3 4

2 5 2 3 5 4 5 3 4 5 2 4 2 3 5

R R C C C R R C C C R R C C C

R R C C C R R C C C R R C C C

+ + +

+ + +
 

f 2 4 5 2 3 4 5
R R R C C C C  

Table E.1 Fifth Order DPLL Transfer Function Parameters 
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By equating both parameters the following set of simultaneous equations (E.3 – E.7) 

are determined: 

5

2 3 4 5 2 4 5

sys sys

c

K K

C C C C R R R f
χω = =  (E.3) 

where Ksys is the system gain and is equal to KVKP. 

4

3 4 5 4 5

sys sys

c

K bK

C C C R R f
εω = =  (E.4) 

3 2 3 4 5

2 3 4 5 2 4 5

c

C C C C c

C C C C R R R f
δω

+ + +
= =  (E.5) 

2

c

d

f
βω =  (E.6) 

c

e

f
αω =  (E.7) 

There are seven unknown parameters but only five simultaneous equations, thus it is 

necessary to define a number of additional ratio parameters as given in equations 

(6.30 – 6.33). 

2
1

3

C
M

C
=  

(E.8) 

4
2

5

C
M

C
=  

(E.9) 

2
1

4

R
N

R
=  

(E.10) 
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2
2

5

R
N

R
=  

(E.11) 

Using the nine simultaneous equations given above it is possible to determine the 

loop filter parameter values in terms of the filter prototype coefficients as follows: 

1. Equation (E.4) can be rewritten as: 

4
sysc

K

a f

εω
=  (E.12) 

Using (E.5) the left hand side of (E.12) is equal to: 

4
5sysc
c

K

b f

εω
χω= =  (E.13) 

Since b = R2C2 this can be solved for R2: 

2

2c

R
C

ε
χω

=  (E.14) 

2. To calculate the parameter C3 consider equation (E.3) above.  Using the 

definitions given in equations (E.8 – E.11) this can be rewritten as: 

5

2 2 3

2 4 22 3 4 5 2 4 5

1 2 1 2

sys sys

c

K K

C C RC C C C R R R

M M N N

χω = =
 

(E.15) 

This can be reduced to: 
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5 2 2 3

2 4 2 1 2 1 2c sysC C R K M M N Nχω =  (E.16) 

Substituting in the calculation of R2 given in equation (E.14):  

5 2 2 3 2 2 3

2 4 4
1 2 1 23 3 3 2

2 2

c c
sys

c

C C C
K M M N N

C C

χω ε ω ε
χ ω χ

= �  (E.17) 

This can be solved for C4 as follows: 

2

2 1 2 1 2

4 2 3

sys

c

K C M M N N
C

χ

ω ε
=  (E.18) 

Letting 
2

1 1 2 2
1 2 3

C

KM N M N χ
µ

ω ε
=  then (E.18) can be rewritten as: 

4 2 1C C µ=  (E.19) 

3. All of the loop filter parameters have been determined in terms of the filter 

prototype coefficients and the filter capacitor C2.  The last step in this 

derivation is to determine C2 in terms of the prototype coefficients but 

independent of the loop filter parameters.  This can be achieved as follows. 

Using equation (E.3) Ksys can be calculated as: 

5

sys cK fχω=  (E.20) 

Substituting this in to (E.4) and solving for ωc gives: 
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c
b

ε
ω

χ
=  (E.21) 

Substituting this into (E.5) gives: 

3

3 3

f
c

b

δε
χ

=  (E.22) 

Substituting in the values of b, c  and f from Table E.1 we get: 

3

2 3 4 5 2 4 5
2 3 4 53 3 3

2 2

C C C C R R R
C C C C

R C

δε
χ

= + + +  (E.23) 

Again substituting in the known values for C3, C5, R2, R4 and R5 using (E.8 – 

E.11) and (E.14): 

3 2 2 3

4 2 1 2 1 2

1

3

2 4 1 2 1 2

2

1
1

1
            1

C C M M N N
M

C C M M N N
M

δε χ

χ

 
= + 

 

 
+ + 

 

 (E.24) 

Solving for C2 gives the quadratic equation: 

2 2

2 2 4 2 4

1 2

1 1
1 1 0C C C C

M M
µ

    
+ + + − =     

    
 (E.25) 

where 
3

2 3

1 2 1 2M M N N

δε
µ

χ
= . 

Using the quadratic formula this can be solved by: 
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2

2 2

4 3 2 4

2 2 1

2

1

1 1 1
1 1 4 1

1
2 1

C C C
M M M

C

M

µ
     

− + ± + + +     
     =

 
+ 

 

 (E.26) 

Substituting in C4 from equation (E.19) and solving gives: 

2
2

1 2

2 1 2

2 2

1

1 1 1
1 4 1 1

1
4 1

M M M

C

M

µ µ
       + + + − +            =

 
+ 

 

 (E.27) 

Thus the fifth order DPLL system loop filter parameters can be selected using the 

filter prototype coefficients and equations (E.8 – E.11), (E.14), (E.19) and (E.27). 
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