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Real-time and archival data visualisation techniques in city dashboards 

Abstract 

 

City dashboards have become a common smart city technology, emerging as a key 

means of sharing and visualising urban data for the benefit of the public and city 

administrations. Operating as the front-end of many cities’ data stores, dashboards 

display and benchmark indicators relating to city operations, characteristics, and trends, 

displayed through interactive visual representations of spatial and temporal patterns. 

Many dashboards collect, archive, and present data collected in real-time, as well as 

more traditional time-sliced administrative data. In this paper, we evaluate the 

techniques that dashboards employ to present real-time data to dashboard users. Our 

analysis identifies two factors that shape and differentiate real-time visual analytic 

tools: the dynamic nature of the data, how they are refreshed, and how the realtimeness 

of the data is communicated to the user; and how the tool enables archival comparison. 

We assess dashboard design according to the strategies used to address specific 

challenges associated each factor, specifically change blindness and temporal pattern 

detection. We conclude by proposing effective techniques for city dashboard design. 

Key words: city dashboards, real-time data, visualisation, time series, real-time, urban 

analytics  

 

1. Introduction 

 

City dashboards are public-facing collections of front-end visualisations for presenting 

spatio-temporal data about the characteristics, administration, and operations of a city 

(Kitchin, et al., 2015; Mattern, 2015). Typically, dashboards employ a suite of dynamic 

and/or interactive graphics (e.g., gauges, traffic lights, meters, arrows, bar charts, graphs) and 

maps to display information about the performance, structure, pattern and trends of cities. 

The graphics are dynamic in the sense that they seek to update as new data are released, and 



2 
 

are interactive through operations such as selecting, filtering and querying data, zooming 

in/out, panning, and overlaying. The utility of the dashboard format is that it enables a user to 

gain a ‘span of control’ over a large amount of varied and quickly transitioning data (Brath & 

Peters, 2004). In particular, dashboards allow a user to track and compare over time and 

space, and in the case of real-time data, the here-and-now, of different phenomena. In some 

cases, key data are ‘consolidated and arranged on a single screen so the information can be 

monitored at a glance’ (Few, 2006, p. 36). Here, a city dashboard operates like a car 

dashboard or plane cockpit display providing critical information in a single view (Dubriwny 

& Rivards, 2004; Gray, et al., 2013). Recently, dashboards are being made accessible to the 

general public, partly as a means of enabling transparency and accountability as a component 

of an open government agenda, and partly for place promotion (Behn, 2014; Kitchin, et al., 

2015). Dashboards are frequently used toward the same goals in the context of smart cities 

for both management of city resources and public outreach (Kitchin, et al., 2015). 

A crucial element of a city dashboard is that it seeks to document change over time 

with respect to a defined geography (e.g., the city as a whole, neighbourhoods). That is, the 

underlying datasets are explicitly longitudinal in nature. To have utility, the desired temporal 

resolution of data is usually annual or sub-annual. In many instances, phenomena are tracked 

with respect to defined targets and milestones in order to be able to measure performance 

(Behn, 2014). Increasingly, city dashboards are incorporating high-velocity streaming data 

that are produced in real-time by sensors, actuators, meters, transponders, cameras, and 

computational devices, but also through crowdsourcing and locative and social media 

(Kitchin, et al., 2015). These real-time data enable a highly granular temporal view of the 

city, which is often also spatially granular, being associated with particular sites (e.g., bike 

stations, car parks, weather stations, pollution sensor stations). Being able to monitor and act 

on real-time information in the form of sensor readings and the locations of moving objects 
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such as public transit vehicles, has become critical for those charged with managing city 

systems and infrastructures (Coletta & Kitchin, 2017), but also for the public in planning their 

spatial behaviour on-the-fly in relation to present conditions (Kitchin, 2017; de Lange, 2018). 

Heim (1994, p. 49) defines real-time as ‘simultaneity in the occurrence and registering 

of an event.’ In reality, not only is there a small latency between data generation and display, 

but the data are often temporally sampled, albeit with a relatively fine temporal scale (e.g., 

the number of cars in a car park is measured every 30 seconds). The temporal rate of data 

measurement and sharing is in part chosen and in part imposed: how a system is configured 

involves making decisions about balancing data resolution and noise (data quality) with 

respect to the task requirements against system configuration and performance (e.g., life of 

batteries, costs of data transmission/storage) (Kitchin, 2017). The system components and 

architecture also affect temporality due to network capacity, memory buffering, CPU 

scheduling, and process interrupts (Mackenzie, 2007, de Lange, 2018).  

Weltevrede, Helmond, & Gerlitz (2014, p. 127) thus note that there are varying forms 

of ‘realtimeness’, which produce ‘real-time cultures’ within platforms and systems, including 

city dashboards (Kitchin, 2017). Real-time data and their usefulness in a city dashboard 

context are then highly mediated by the technologies which collect and digitise them, expose 

them to analysis, and display them graphically. Realtimeness is a property of a system which 

appears to provide feedback concurrently with the collection of new information, while 

recognising the mediation which reduces the concurrency of real-world observations.  

Techniques and issues with regards to representing both spatial and temporal variation 

are well-documented (Fabrikant, et al., 2008; Fish, et al., 2011). However, to date, there has 

been no systematic evaluation of the specific mechanisms by which spatio-realtime data are 

visualized in dashboards of city data, or of their attendant issues. Thus, there are no standards 

or guides for visualisation design or user ability considerations to help implement usable 
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dashboards, despite their widespread use in cities around the world. In this paper, we present 

a novel analysis of city dashboards and use geovisual analytics to assess the creation of 

design principles for communicating real-time data, including archived time-series real-time 

data, drawing on an analysis of bespoke city dashboards. We examine the practices of city 

dashboard development with respect to real-time data, which include two primary themes: 

dynamic data, refresh, and realtimeness; and archival real-time data.  

2. Real-time visualisation challenges 

 

Technical issues around implementation of temporal visualisations is a significant concern to 

those developing city dashboards, but except in specific circumstances concerning data 

storage, technical challenges have been little discussed to date. In this section, we identify 

and discuss two common challenges in the visualisation of spatio-temporal data that are 

crucial to address to create effective city dashboards: perceptual issues of change blindness 

and communication of spatio-temporal variability. 

2.1 Change blindness 

Small, brief, or dispersed changes to a visual display introduce opportunities for missed 

perception of the change and potentially introduce the phenomena of change blindness; that 

is, a diminishing ability of viewers to identify changes to a visualisation when there is a 

transition between states (Goldsberry & Battersby, 2009; Rensink, 2002). Change blindness 

has been measured in animated cartographic maps, where several properties of dynamic 

displays impact the perceptual ability to recognise and enumerate changes (Fish, et al., 2011). 

Specifically, dynamic displays introduce the potential for three cognitive issues of display 

interpretation: inability to recognise that changes have occurred (Simons & Chabris, 1999), 
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inability to locate the elements which have changed, and inability to recount the amount of 

change which occurred. 

Change blindness is more pronounced when the transition is not a gradual change but 

a rapid one, and when more of the visualisation changes simultaneously (Fish, et al., 2011). 

Brief periods of inconsistency or disappearance in the display is enough to disrupt the 

concentration needed to comprehend a pattern in the values as they shift between consecutive 

states of representation (Goldsberry & Battersby, 2009). Although display disruptions shift 

attention away from particular dynamic parts of the display, the absence of disruptions have 

also proven to increase change blindness in parts of the display where attention is not 

focussed (Simons, et al., 2000). This is a particularly important issue in web-based streaming 

dashboards, where browser pages refresh, creating disruption in the entire display, and parts 

of the display may change at different rates while others remain unchanged. 

Some strategies have been proposed to counteract the multiple types of change 

blindness in digital displays. Some initial strategies propose changes to the representation of 

dynamic data within displays, such as time-series glyphs (Thakur & Hanson, 2010). Time 

series symbology can make streaming data prominent, while including previous 

measurements, making change detectable from a static representation. However, time series 

visualisation introduces additional visual clutter, especially to a spatial map. Cybulski and 

Medyńska-Gulij (2018) tested the effect of using redundant cartographic principles to 

represent dynamic data, showing that multiple visual indicators of weight can improve 

change perception. Many have suggested that interactivity in the form of control over the 

temporality of data allows a user to explore change at a pace which removes 

imperceptiveness to visual changes and enables multiple attempts to perceive specific 

changes (Fabrikant, et al., 2008; Harrower, 2007). DuBois and Battersby (2012) suggest a 

raster-based approach has advantages over vector representations for the perceptiveness of 
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change. The latter methods require a conceptual redesign of what the dashboard and its real-

time components do, so may not be effective solutions within that environment.  

Change blindness has been measured in animated displays, which is a property of 

real-time dashboards. However, real-time visual change requires new ways of reducing 

change blindness given the ways that real-time dashboards are used. The replacement of old 

values with new, current ones means that a review of previous measurements is not possible. 

The animations used to test change blindness assume rapid transition between temporal states 

of the display, which may be true of some dashboards, but many operate with long latency 

between new real-time measurements on the order of minutes. The challenge of change 

blindness cannot be completely overcome, but strategies common to some dashboard designs, 

as we will explore, reduce its negative effect on the ability to observe important temporal 

patterns in city data. 

2.2 Variability in time and space 

As historical data is integrated into spatial displays, representation becomes a greater 

challenge. Historical time series data, or longitudinal compilations of measurements collected 

from a single source at regular intervals between measurements, is important for representing 

urban patterns (Monmonier, 1990; Silva & Catarci, 2000) measured and regulated constantly 

and over the long term by Internet of Things (IoT) sensors and their accompanying 

governance structures (Batty, et al., 2012; Coletta & Kitchin, 2017). Representing time series 

information on spatial maps is an ongoing challenge, with solutions including small multiples 

of time sliced data (Fabrikant, et al., 2008), animations (Harrower, 2007; Robertson, et al., 

2008), flow maps (Andrienko, et al., 2009), radial/polar plots (Draper, et al., 2009), and the 

3D space-time cube (Bach, et al., 2014). Many types of patterns are relevant for urban and 

smart city analysis, and so visual analytics is frequently used to facilitate new pattern 

discovery through interactivity and question-based exploration of big temporal data (Dykes & 
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Mountain, 2003; Guo, et al, 2006). Still, visualisation may present only part of a 

comprehensive effort to understand temporal dynamics, as Peuquet et al (2015) state by 

integrating computational pattern discovery with interactive visual analysis.  

In city dashboard applications, time series data serves primarily to provide a historical 

record of evolution and change with regards to a specific phenomenon. Temporal data is 

maintained and compared against present data in order to track variation and progress toward 

future goals (Kitchin, et al., 2015). Benchmarking is a common city strategy for comparing 

against other cities while tracking statistics within a single city, partly for city transparency, 

but primarily for competitive reasons and for monitoring policy performance (Huggins, 

2010).  

Geovisual analytics methodologies have rarely been used to assess the design function 

of interfaces to streaming smart city data. Social media has been one target of such research 

(Pezanowski, et al., 2018). Highly interactive spatio-temporal interfaces must balance the 

complexity of the data being explored and the needs and abilities of users (Wisniewski, et al., 

2009). The use of high-velocity data in many formats including text, imagery, time series, 

and others means that data complexity is already a barrier to novice use of dashboards. Such 

properties of big data require new forms of visual exploration (MacEachren, 2017), but 

complexity remains a barrier to novice users. The methods explored in the following section 

add minimal visual complexity to the interface while reducing barriers to the usability of real-

time data.  

3. Real-time practices in city dashboards 

 

These two challenges to temporal visualisation play a role in city dashboard design, but no 

standardised strategies have been established to counteract the negative effects in temporal 

visualisation design. To examine the strategies used to date to resolve these challenges, we 
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conducted a survey of techniques used in public, real-time dashboards and similar real-time 

tools. We used targeted web searches, browsing of known research groups, and institutional 

knowledge to survey dashboard tools and their techniques of visual presentation. Our survey 

was not designed to be an exhaustive evaluation of every city dashboard created to date, nor 

does it intend to assess individual dashboards for any particular purpose besides documenting 

their various visualisation techniques used for displaying real-time data. Our analysis 

consisted of systematically examining and deciphering real-time tools with regards to their 

objectives, underlying data, mode of presentation, and specific techniques for minimising the 

challenges identified in Section 2. In every example from which the strategies in table 1 are 

derived, the data used are real-time and the visualisation is dynamic and interactive; that is, 

the visualisation updates as new data are parsed in and users can click on or hover over the 

graphic to gain more information, zoom in/out, pan, etc. From our analysis, we identified 

several strategies which respond to real-time visual challenges, and have provided an 

example of a dashboard which implements the strategy (see Table 1). The examples given are 

illustrative of the strategy, but other dashboards may exist which do the same, and many of 

the examples here use more than one technique. 
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3.1 Refresh and indicators of realtimeness 

Real-time data visualisation methods necessitate dynamic displays in dashboards. A dynamic 

display reflects the evolving nature of urban data and social structure through continuous 

updating, something a static display does not do or only does periodically. An overly 

dynamic display might reduce the capacity to observe meaningful change if new data 

replaces old data at undesirable times and change over time is not displayed. Most 

importantly, dynamic displays leave users vulnerable to change blindness. Here, we are 

concerned with strategies for reducing the effect of change blindness in dynamic displays 

(see Table 2), as well as the positives and potential negative implications of each strategy.  

 

Method Pros Cons 

Manual refresh New data on demand Lack of realtimeness 

Automatic refresh No user input necessary Change blindness 

Indicator of refresh type No unnecessary interaction Display clutter 

Time since last update Data currency No indication of next data 

Time until next update Preparedness for data replacement Depends on server structure 

Indicator of refresh rate Data frequency Display clutter 

Updates in clock time No data translation necessary No indication of ‘now’ 

Updates in local time Coincides with local function Sourced external to browser 

 

Table 2. Visual strategies of display refresh and indicators of refresh.  

3.1.1 Manual vs automatic refresh 

The dynamic nature of the data, and particularly its presentation, can be controlled through 

refresh, and its realtimeness communicated to users. In rare cases, real-time data integration 
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is implemented such that real-time data is compiled external to the display and only 

integrated at the command of a manual refresh action taken by the user (See Figure 1). Here, 

data is only updated at the instigation of the user, enabling them to control the replacement of 

data on the display and to concentrate their perception to detect changes. However, 

preliminary conversations with users of several dashboard designs indicates that users prefer 

updating to occur passively and automatically, despite the heightened risk of change 

blindness inherent in automatically refreshing displays. The effect of change blindness cannot 

be removed from a dynamic display, but strategies can be used to increase the comprehension 

of changing visual presentation. Manual incorporation of new real-time updates is not 

necessarily a solution to change blindness, since display effects persist regardless of how new 

data is integrated as a result, for example, of a temporarily blank display and the overwriting 

of outdated data. Manual refresh does, however, allow for a degree of preparation prior to an 

interruption to the viewing process and provides a user-defined amount of time by which to 

observe the current state of the display. Additional control over the temporal aspect of the 

display would provide greater comprehension of change through non-linear navigation of the 

temporality of the data (Harrower & Fabrikant, 2008), although importantly, the sense of 

real-time presence may be lost.  
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Figure 1: Screen capture from Best et al’s dashboard built for the city of 

Seattle. Manual update is implemented via clickable text next to the current 

time display. Original image from (Best, et al., 2012). 

 

Automatically-refreshing displays, on the other hand, are less predictable, not 

containing an interactive component to initialise a refresh. Automatic updates are a function 

of timed information flows, sensor calibration, and time required for visual comprehension of 

the display, which restrict a fully on-demand data integration strategy. The city dashboard has 

the primary function of showing the status of the city it represents via a set of information 

which is constantly changing and may become out of date if a user is required to anticipate 

new information and change the display manually. In order to maintain a real-time display, 

visualisations must automatically update when new information becomes available. This is 

especially true of IoT sensor networks which operate by reporting new updated 

measurements to a server only when updates are available (Hunkeler, et al., 2008). Automatic 

updates ensure that a dashboard operates as closely to real-time as possible given the time 

from sensor measurement to server compilation, and rendering of the visualisation. The risk 

of change blindness is enhanced by this rapidly-adapting display, but other visual methods 

can be implemented to reduce that risk. 

Regardless of the method used to incorporate new data into the display, the state of 

the visualisation at any given point in time will appear equivalent, therefore it is important 

that the display indicate its data refresh style. Aside from any obvious changes in the display 

when incorporating new real-time data, the display should indicate the refresh type – whether 

it is automatic or manual. Above all else, this ensures that a viewer is aware of their role in 

changing the content of the page. A manually updating display without the indication to 

perform the necessary action results in a static, non-real-time display, while a manual refresh 

action on an automatically updating page results in frustration at the lack of change when 
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action is taken. Necessarily, a manually refreshing visualisation must include a clickable 

object which initiates the display refresh. Automatic indicators may be textual, explaining the 

automatic nature of the update or the expected occurrences of new updates. It may also 

appear as a visual suggestion, such as representative or flashing icons, as the Human fitness 

tracker’s live activity graphs use (for example, see Human’s activity in Tokyo, 

http://cities.human.co/details/Japan/Tokyo). 

3.1.2 Indicators of refresh timing 

Interaction with the visualisation can be performed without the aid of visual indicators but the 

techniques discussed here illustrate that many displays are enhanced by providing additional 

information about the realtimeness of the data.  Indicators of the refresh timing, where it is 

out of the control of the user, as in automatically updating dashboards, serves the purpose of 

indicating the realtimeness of data while also potentially reducing change blindness by 

preparing users for impending updates. Although change blindness was still measured in 

studies of users who knew that a change was to occur (Fish, et al., 2011), efforts to recognise 

patterns are impossible when updates cannot be anticipated.  

A time since last update visual indicator above all else provides a notification of the 

age or extent to which the data being viewed is out of date. In a real-time display, this is 

critical, as data quickly becomes out of date, as in the case of real-time public transit tracking. 

Time since last update is not sufficient in itself to identify a manual or automatic refresh 

style, since a user would need to observe the display for a length of time to determine if the 

visualisation was going to transition. For example, see Toronto’s live map of bus locations 

with updates given in a seconds since the last reported location (Figure 2).  
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Figure 2: Screen capture of the Toronto transit dashboard and MarineTraffic 

dashboard. A popup for each bus and ship displays the time since last update in 

accumulated time. 

 

 A time until next update method is much less frequently utilised in real-time 

dashboards and cannot be used with manual updating since update frequencies are user-

defined in manual refresh dashboards. This strategy was only implemented in one illustrative 

dashboard. The London Dashboard uses a countdown method with second precision to alert 

viewers of the next display refresh for each separate module on the dashboard (see Figure 3). 

The consistent countdown makes for a very dynamic and potentially distracting display, but 

reduces the interaction necessary to understand the displayed data. Interaction is, in fact, 

discouraged in this view except on specific items regarding transit suspensions and headlines 

of news articles. The next update method also gives a very strong indication of the 

realtimeness of the data and the sampling used to generate real-time urban data. 
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Figure 3: Screen capture of the London dashboard. The counter in the top-right 

corner of each individual module is dynamic, counting down each second until 

the data in the module refreshes. 

 

The advantages and disadvantages of indicators of the last and the next update are 

complementary. Time since last update indicates the age of real-time data and the extent to 

which it is out of date – its realtimeness. However, it cannot provide indication of impending 

updates or the frequency of updates without prolonged observation of the display to observe 

precisely when the indicator changes. Conversely, a time until the next update indicator 

provides information about the next planned update to the display, but contains no 

information about how long the existing data has been displayed. In indicating the time of the 

next update, a display can more prepare a user for expected changes, thus reducing, but not 

resolving, the issue of change blindness. As a front-end to data servers, which are often 

independent of the dashboard itself, the visual components of dashboards have no control 

over when updates are communicated between sensors and servers and from servers to their 

public APIs. Thus, time until next update may not be possible in many dashboards.  



16 
 

The singular methods of update indicators alone provide no information about the 

refresh rate of the dashboard visualisation. Without an indication of the refresh rate, it might 

be assumed that the various modules on the dashboard possess the same realtimeness, 

whereas different types of real-time data vary significantly in their temporality, for example 

the less frequently updated weather information on the London dashboard. The timing of the 

data visible is a critical part of the metadata necessary for inferences from observed patterns. 

However, refresh rate can be gleaned from the combination of last update and next update 

indicators. And as a standalone textual indicator, refresh rate may introduce unnecessary 

clutter to the display. 

3.1.3 Timing indication with clocks 

Although a fairly innocuous difference, dashboards are divided on the question of reporting 

update indicators with clocks or accumulated time. Accumulated time is shown in Figure 2 of 

the Toronto transit dashboard. Previous updates are displayed as seconds since the previously 

known bus location, rather than given by the time of day. Clock time is simpler to create, as 

IoT sensors report precise times along with new measurements. Additionally, the display will 

not require frequent animation to change an indicator displaying accumulated time, which 

changes as time passes. However, unless the viewer has a keen sense of time, clock time 

updates require them to compare their display to an external clock to ground the observation 

against the actual time. For this reason, most dashboards include a clock on their display to 

indicate current time. Most users can interpret an accumulated time indicator as a function of 

their own embodiment of time, and it provides a better sense of realtimeness as it changes in 

reference to the present moment.  

An inconsistency exists among dashboard designs with regards to displaying clock 

time in local time or the user’s own time zone. For example, in Figure 4, where the Boston 

and Berlin transit dashboards were captured at 12:17 GMT, local to the authors and indicated 
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by the clock widget, the clock time of the last update should indicate the local time of 07:17 

EST (GMT -5) for Boston and 13:17 CET (GMT +1) for Berlin. While Berlin displays the 

correct time, the Boston display indicates an impossible time which has not yet occurred 

because it is based on the user’s time zone. There should be no assumption that dashboard 

users only engage with dashboards within the time zone of the data which is represented. 

Information about transportation systems and schedules make little sense outside of the local 

time of the city, but a user-centric design would cater the display to the reference point of the 

viewer. A simple implementation would extract a timestamp from the browser client, local to 

the dashboard user, but would require the user to then translate to the local time zone of the 

dashboard. 

 

Figure 4. Screen capture of the Boston (left) and Berlin (right) transit 

dashboards. Local time indicators are consistent with user time of 12:17, 

despite different time zones. 

3.2 Visual analytics of archived real-time data  

Archival real-time displays capture real-time information at regular intervals over time and 

maintain previous measurements for retrieval and visualisation. Although previously 
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observed real-time data becomes out of date in rapidly-changing displays quickly and storing 

longitudinal information is not a trivial task, the added context of previous measurements is 

useful for analyses of changing cities and for contextually understanding current 

observations. Table 3 highlights a few strategies used by dashboards and the advantages and 

disadvantages that they provide with respect to archival real-time data, each of which is then 

explained in greater detail. 

 

Method Pros Cons 

Archival display Long-term patterns Data archive 

Control over archival timing Trend and seasonality visibility False patterns 

Temporal benchmarking Intuitive comparison Interpretability 

Compare sites in archive No interactivity necessary Display clutter 

 

Table 3. List of visualisation methods which enable archival real-time data 

exploration, with primary pros and cons.  

3.2.1 Archival display 

While spatial displays are ideal for showing differences across geography at a particular time, 

they are often ill-suited for showing time-series data as each refresh erases the previously 

viewable pattern. As such, many dashboards also employ temporal techniques to show trends 

in measurements over time. Because time-series visual methods do not animate through time, 

this method displays changes while minimising the effects of change blindness. In some 

cases, these time-series are relatively short in time frame, perhaps over the past hour or day. 

In other cases, the time-series form a longitudinal archive of data that can be examined over 

different timeframes, such as week, month, and year. Many dashboards consider archival data 
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important in establishing trends, discovering rhythms of regular variation in the city, and 

providing contextual information for interpreting present real-time data. However, significant 

technical implementation is necessary to build an archive to store and recall the time-series 

generated by prolonged data capture. Additionally, the display of longitudinal data requires 

new visual designs which may be incompatible with existing interfaces and require some 

specialised knowledge to interpret. 

 Visually, archival time-series plots are easily interpretable as horizontally-oriented 

linear displays. For example, the smart wifi dashboard of the Moncloa Campus of 

International Excellence in Madrid (Alvarez-Campano et. al 2017) uses an archival time 

series view to compare the number of current real-time wifi users to those of the last seven 

days (see Figure 5). Patterns are detectable in this visual representation from daily events (the 

weekend is obvious with fewer people using wifi on campus), sub-daily patterns appearing 

which correspond to the regular work day, and smaller regular variations within that.  

 

Figure 5. Wifi dashboard for the Moncloa Campus of International Excellence.  
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3.2.2 Control of archive timing 

Those dashboards that incorporate archival comparison have a widely variable range of time 

scales on which the archival data is displayed. The CEI Moncloa wifi dashboard uses a 

weekly archival scale and uses data with fifteen-minute precision, providing no means to 

view patterns which occur outside of these parameters. In other cases, dashboards provide 

methods to control the timing of the archive to which the real-time information is compared. 

Visual analytics research has considered interactive ways to adjust a temporal display to 

account for temporal patterns in multiple scales. By controlling the intervals of daily historic 

hotel visits, Weaver et al  (2007) illuminated patterns of traveling salesperson behaviour that 

were not visible in the typical seven-day weekly-repeating display by making the temporal 

display interactive. Similar methods in city dashboards facilitate exploration of temporal 

patterns at various and irregular intervals. 

In city dashboards, the ability to control the timing of archives is important because of 

the prevalence of non-cyclical patterns in social activity and infrastructure. Most social 

activity on a city scale is somewhat consistent – daily patterns in traffic flows, for example, 

show typical rush hour patterns when large volumes of vehicles move in similar directions. 

But temporal scales of multiple days create inconsistencies which are visible in simple cases 

involving weekends and holidays. Archival comparison that does not consider these expected 

temporal variations are insufficient analytical tools. Although the ability to change the visible 

extent of data can help users discover new periodic patterns, it also provides more control to 

find spurious patterns. A relevant periodicity for one piece of archival data may indicate only 

randomness in another, so pre-set controls may be misleading at the same time that they 

facilitate new exploration. 

 Dashboards which provide the capability to control temporal framing provide users 

with greater control over the comparisons that they can make between real-time and archival 



21 
 

data. The Plume Labs world air map displays pollution levels in major cities by using both 

real-time and archival records over the course of hours, the most recent week, most recent 

month, and most recent year. The example of Istanbul is shown in Figure 6. The interactive 

display allows the viewer to trace back along the time series, changing the numerical display 

to reflect the selected time.  

 

Figure 6. Screen capture of Plume Labs’ city air quality dashboard with 

Istanbul selected. Tabs at the top allow for changing between current, weekly, 

monthly, and yearly scales of archival comparison to real-time measurements 

of air quality. 

3.2.3 Temporal benchmarking 

The city dashboard for Oberlin, Ohio utilises a similar anthropomorphic animation to help 

represent water and electricity usage throughout the city. Its more innovative data 

visualisation strategy is the additional feature of time-series benchmarking comparison, 

displaying the most recent full temporal cycle (i.e., the previous day’s data) (see Figure 7), as 

well as a “Typical use” series based on longitudinal data collection. Benchmarking is an 

important task in city management for tracking progress toward goals and is not impossible 

with a simple, well-labelled time series plot. For example a weekly time series plot allows for 

comparison between real-time data and the data from the previous day at the same time of 
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day. But by superimposing the last full day’s cycle alongside todays, the Oberlin example 

also allows for trend comparison in a way that requires no special ability to decipher a time 

series diagram. 

 

Figure 7. Screen capture from the Oberlin city dashboard’s City Water Flows 

module, with daily real-time data selected. Real-time data is displayed, along 

with archived data from the pre day and the previous day’s time series.  

  

3.2.4 Comparison of multiple sites’ archives  

In addition, some dashboards facilitate the exploration of multiple sensors’ archival records 

simultaneously. In the methods observed so far, individual time series have been compared 

against real-time data for the purpose of understanding patterns in a single sensor or spatial 

scale’s measurements. In this task, not only are the patterns in individual time series 

important to visualise, but displays must also facilitate the ability to compare those patterns in 

the data collected from other sensors. Comparison is made optimal by the simultaneous 

viewing of archives (Andrienko, et al., 2009; Steiger, et al., 2014).  

Display space is a limiting factor for comparing multiple archived time series. 

Archival display frequently uses linear representations of time, which demand greater display 

space to produce an interpretable visual presentation. Thus, to compare archival information 

from multiple sensors, spatial organisation is typically removed in dashboards in favour of 
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multiple stacked or overlaid time series charts. So visual comparison of these sensors’ time 

series can optimise display space and comparability by plotting them on the same chart, as in 

the ‘Tweets %’, ‘Air Quality Index’, ‘Operating Busses’, and ‘Bus Delays’ modules of the 

Curio dashboard of Columbus, Ohio, created by the Center for Urban and Regional Analysis 

(CURA) at Ohio State University (Xiao, 2017) in Figure 8a. This strategy may be unusable 

when the time series have different ranges, necessitating a separation of the display into 

individual plots, as in the Dublin dashboard (McArdle and Kitchin, 2016) in Figure 8b. Even 

though archival analysis is the primary objective of these comparisons, real-time information 

is still typically a component of them. In the linear displays of the Curio dashboard, the 

current real-time values are situated at the end of the horizontal lines beginning near the 

plot’s origin. The Columbus dashboard provides limited interactivity to compare the plotted 

values at selected points in time along the plot, including the most recent, real-time figure, 

which affords greater analytical potential than simply observing general trends. 

 

(a) 
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(b) 

Figure 8 (a).Screen capture of the Curio dashboard. The ‘Air Quality’, ‘Tweets 

(%)’, ‘Operating Busses’, and ‘Bus Delays’ modules show separate sensors on 

the same Cartesian plot. (b) Screen capture of the Dublin dashboard. Time 

series are split into separate displays. 

 

4. Principles of dashboard design 

 

The observations we have made about displaying spatio-realtime data and facilitating real-

time and archival temporal analysis reveals a lack of standardised principles for dashboard 

design, though despite their non-uniformity, visualisations are largely based on established 

fundamentals of temporal visualisation. We identified two challenges that shaped and 

differentiated spatio-realtime dashboard tools: the dynamic nature of the data, how they are 

refreshed, and how the realtimeness of the data is communicated to the user; and how the tool 

enables archival analysis. The variety of spatio-temporal methods employed is indicative of 

the sources and forms of data generated by smart cities. However, the methods we have 
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documented have different strengths and weaknesses that seem to have been little evaluated 

in the design and building of some dashboards.  

 Dashboards, as the front end to a variety of both official and other data which can be 

informative for day-to-day urban tasks such as commuting, are important tools for 

communicating city data to both decision makers and casual data explorers. Thus, these 

design principles facilitate interpretability as well as advanced pattern analysis, and provide a 

novel effort to establish much-needed standards of real-time dashboard design.  

4.1 Refresh and realtimeness 

Among existing city dashboards, the preference is for automatically refreshing visual tools. 

Automatic refresh dashboards better reflect the always-on nature of smart city technologies 

than the requirement to manually update data. Automatic refresh is able to adapt to data 

availability in such a way as to require minimal interaction to obtain a real-time perspective 

of city function. The disadvantage of an automatic refresh rate is a greater likelihood of 

change blindness being introduced. Consequently, there must also be a method put in place to 

communicate the key properties of refresh rate, last update, and next update.  

 Although Fish et al. (2011) still measured change blindness in subjects who were 

aware that a change was occurring in a spatial display, we maintain that communication of 

the display’s refresh and the realtimeness of the data currently on display enables users to 

anticipate and focus on data transition. A dynamic display which has a multitude of 

individual dynamic elements (such as the London dashboard, Figure 3), as opposed to a 

single updating feature, is vulnerable to greater degrees of change blindness due to the 

difficulty of monitoring multiple elements (O'Regan, et al., 1999). Thus, a single indicator of 

planned updates to the display is necessary for user preparation for that update. 

Although we observed no dashboards with indicators of both last and next update 

time, both are necessary to begin to counteract the effects of change blindness. With both 
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indicators, a viewer can prepare for an impending update as well as know the data refresh rate 

through their combination. Thus, no explicit indicator of refresh rate is necessary. Using both 

indicators also allows for displaying data with different temporal granularities, as in the case 

of sensors with non-uniform activation rates. Each sensor must thus have its own indicator of 

previous update contained within a popup, which reduces display clutter by keeping the 

accompanying text behind interactive components. 

 Finally, with both refresh indicators in use, a combination of clock time and self-

referential accumulated time make for an ideal display. Time until next update indicators 

should involve a countdown in regularly-decreasing time to emphasise the currency of the 

data and the display’s reactiveness. The animated nature of a consistently-updating indicator 

of the next update ensures that users will not perform unnecessary manual interaction with 

the assumption that their actions only will create a change. A time of last update indicator 

provides no advantage by being dynamic, as with an accumulating time indicator, thus the 

time of last update should be recorded to the display as the local time at the moment when the 

data refreshed. Clock time indicators and digital clock readouts are critical to real-time 

dashboards, but only if the clock appears in local time and not in the time zone of the viewer. 

Sensor times, scheduled public transport, and metadata should all be displayed in the local 

time of the dashboard, so their display does not appear temporally independent of associated 

activities.  

 Human perception reveals that change blindness is an issue in dynamic displays, and 

we acknowledge that further testing is necessary to measure the impact that it has on real-

time interpretation. We also have shown that example methods in existing dashboard 

environments may address some of the issues associated with change blindness and its 

associated loss of pattern comprehension. Our categorisation of visual indicators of 

realtimeness contributes to a body of literature testing strategies for interactive data 



27 
 

exploration among varying user types (Roth, et al., 2015), but which has not yet been applied 

to the open city dashboard. Since public engagement and interpretation are primary goals of 

interfaces to the data generated by smart cities (Degbelo, et al., 2016), indication of the 

realtimeness of that data is critical to the openness and usability of dashboards.  

4.2 Archival time series 

Although not all dashboards which utilise real-time data also make use of archived records of 

those data, all that prevents a long term comparison between real-time and archival 

information is data storage. The advantages of archiving real-time data are vast for the 

purpose of trend analysis, benchmarking current conditions against previous ones, 

establishing regular patterns of city activity, and being able to create predictive models. 

Archival methods are of little public utility where the long term pattern is designed and 

remains fairly rigid, such as in GPS traces of public transportation routes, but long term 

measurement data is invaluable for understanding urban patterns. With fairly simple additions 

to temporal visualisation strategies, archival displays facilitate a range of useful tasks, so we 

suggest that archival visualisation methods be used whenever the data exists to populate 

them. 

 Even simple archival time series with real-time data at one end of a trend line (e.g., 

the Columbus dashboard in Figure 8) overcomes the issue of change blindness with respect to 

losing sight of previous data. The addition of temporal benchmarking against which to 

compare records with other times (e.g., yesterday, week, month, quarter, year) provides a 

means to evaluate the progress of city initiatives and track change at meaningful intervals. 

Because a previous data cycle will not largely vary in scope from real-time measurements, 

adding a second series to a linear time series plot, as the example from Oberlin City in Figure 

7 does, is a straightforward process and one that does not introduce significant complexity to 

the interpretation of the visualisation. Simplified sparklines can provide an effective means to 
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allow comparison between real-time and recorded data, but there must be an option to show 

temporal granularity to enable contextual interpretation.  

 Ideally, users should be allowed to customise the temporal scale of any benchmark 

comparison. Again, as Plume Labs and Oberlin City demonstrate, changing the duration of 

the time series on display no further complicates the visualisation while allowing new 

patterns to emerge from the different time scales being compared. This selectivity is 

particularly important in urban temporal pattern analysis, where some functions are better 

compared at weekly or seasonal intervals than daily ones, or against specific policy-related 

target dates. Short term changes and trends can guide decision making at the city scale, while 

long term patterns are useful for comprehensive analysis of sustainability and growth.  

To that point, urban data contexts may require nonstandard date range comparisons in 

the form of bespoke archival data query. Current monthly or quarterly durations restrict the 

ability to examine a date range to only those data which coincide with the dates provided. No 

observed dashboards have existing methods to create precise queries by date range, which 

would facilitate exploration of data with variable periodicities and enable specific 

benchmarking comparisons (Auer, et al, 2011, MacEachren, et al. 2011). 

4.3. User-focussed design 

Effective visualisation design often follows an iterative design principle, where feedback 

from users at multiple stages in the design and implementation process guides new iterations 

of the interface (Roth, et al., 2015). Importantly then, dashboard evaluations must consider 

how users with different expectations of dashboard communication and experience using 

visual analysis interpret and make meaning from spatio-temporal visualisations (McArdle & 

Kitchin, 2016). Dashboard design begins to diverge considering distinctions between user 

types and the anticipated users of dashboards. Internal dashboards, like those which provide 

interfaces to data in urban control rooms (Kitchin, et al., 2015; Mattern, 2015), are used by 



29 
 

what might be termed ‘power-users’ who have well developed data literacy. Public facing 

dashboards, however have a more diverse and less specialised user experience base who have 

varying levels of ability to interpret visual analytics.  

User experience presents a challenge to dashboard design because overly complex 

visualisations will leave inexperienced and novice users unable to derive meaning in the way 

the display intends. Similarly, an oversimplified display risks alienating experienced users 

whose needs are not facilitated through basic controls. We consider the challenge of 

facilitating knowledge discovery through visual design for the range of users from novice to 

advanced to be an important factor in evaluating display effectiveness. Although visual 

methods have been proposed for the purpose of comparing historical time series on a spatial 

map, including compressed, space-saving methods (Heer, et al., 2009) and nonlinear temporal 

glyphs (Auer, et al., 2011, Fuchs, et al., 2013), the complex interactions and visual 

comprehension necessary to interpret such methods may preclude their usefulness for 

inexperienced users.  

Many of the proposed solutions to temporal visualisation challenges are fairly 

complex and require some degree of advanced interpretation. As city dashboards are public-

facing compilations of visual tools, advanced users are not the only anticipated users of the 

system. Innovative solutions to the challenges of temporal visualisation may not be viable 

ones if they require specialised knowledge or instruction to be used as intended. Many 

methods which have been proposed in visual analytics and interactive cartography literature 

may not satisfy the requirement of facilitating interpretation by users inexperienced with data 

visualisation. We believe that dashboard visualisation strategies present a unique challenge to 

visual analytics design by aiming to facilitate inexperienced users first. As complexity and 

fear of interactivity are barriers to visual analytic use by novice users (Wisniewski, et al., 
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2009), visual indicators of realtimeness aim to reduce the complexity of real-time data such 

that the barriers to using dashboards are reduced for inexperienced users.  

5. Conclusion 

 

As dashboards become stable, public-facing gateways to technology-mediated smart cities, 

these principles – automatic refresh and communicating that property to viewers through 

indicators and making use of archival data in analytical and intuitive ways – provide, we 

believe, a valuable reference for creating usable data exploration tools in browsers and 

smartphone apps. Although modes of interactivity change how such systems are designed on 

different platforms (e.g., desktop, tablet, smartphone), the dashboard concept and its tools for 

pattern discovery and other temporal analysis are transferable.  

Additional research is necessary to explore the utility of different visual methods for 

recognising particular urban temporal patterns. The challenges of change blindness and 

archival data exploration require user testing with the goal of evaluating interpretability, 

insights which lead to decision making, and desire to continue using the dashboard in the 

ways that it is intended. Critically, further research in these areas must acknowledge the 

multiple nature of dashboard users which includes casual users (e.g., tourists) who seek 

quick, current information at a glance and are less advanced at interpreting complex displays, 

as well as long-term decision-makers with high stakes in interpreting and obtaining 

comprehensive, actionable information from visualisations. Further research and testing 

should strike a balance between interpretability and informativeness and between familiarity 

and creativity to create more effective dashboards. 

Dashboards remain an emerging technology, though they have quickly become vital 

tools for making sense of the smart city, particularly when implemented for public 

consumption. Dashboards are decision-making tools at both authoritative and casual levels, 
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and where there is a space to use them to improve public participation and data literacy in 

cities, design must leverage intuition and aesthetic to be usable. Improving dashboard 

effectiveness will ensure that more value and insight can be extracted from the spatio-

temporal data of smart city technologies and increase efficiencies in the management of 

cities.  
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