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Dynamics of the Gross-Pitaevskii Equation and

Shortcuts to Adiabaticity

Abstract

Procedures which vary the parameters of a model in an adiabatic way

have applications in many areas of quantum technology. However, explic-

itly employing adiabatic evolution often leads to decoherence issues due to

systems interacting with their environment. For this reason, there has been

much interest in developing shortcuts to adiabaticity in which the target final

state is reached in a finite duration change of parameter. In this thesis, we

design and study a shortcut to adiabaticity in an interacting Bose-Einstein

condensate. In particular, we study the response induced by ramps in the

interaction strength of such a system. We determine the power law decay

exponents of the induced excitations as well as the characteristic frequency

with which these excitations oscillate with respect to the duration and mean

values of the ramps.
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Chapter 1

Introduction

In this thesis, we study the dynamics of a Bose-Einstein condensate modelled

by the Gross-Pitaevskii equation and methods of shortcuts to adiabaticity

in these systems. In this introductory chapter we initially provide some

background discussion regarding Bose-Einstein condensation and the Gross-

Pitaevskii equation in section 1.1. We then introduce the need for methods

referred to as shortcuts to adiabaticity and discuss some of the current

literature surrounding this area of study in section 1.2. Finally in section

1.3 we give an overview of the composition of the entire thesis.

1.1 Background material for Bose-Einstein

condensation

In quantum mechanics, in particular quantum statistics, particles are divided

into two classes, Bosons and Fermions. The statistics of how members of

these classes interact in large numbers have many far-reaching consequences

in all areas of physics. For example, the entire structure of the periodic table

4
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arises from the behaviour of two Fermions under exchange. Arguably, the

most dramatic consequence of these quantum statistics is the phenomenon

of Bose-Einstein condensation (BEC). This exotic state of matter was first

predicted by Albert Einstein and Satyendra Nath Bose in 1924. The first

experimental realisation of such a material was by teams in the University of

Colorado and MIT in 1995. In the decades since these initial experiments,

BEC systems have been an area of intense theoretical and experimental

research.

This section will be split into four main subsections. In 1.1.1 we briefly

discuss the notion of indistinguishable particles and the implications of this

idea. In 1.1.2 and 1.1.3 we outline the behaviour of systems of Bosons leading

to a BEC. Finally, in 1.1.4 we discuss the Gross-Pitaevskii equation (GPE),

its appearances in the literature, and some analytic and numerical methods

used in solving it.

1.1.1 Indistinguishable particles and the Pauli

exclusion principle

The wealth of physics that arise from these exchange statistics can be traced

back to two important concepts: the Pauli exclusion principle (and the spin

statistics theorem which follows), and the indistinguishability of particles in

quantum systems. To begin with, here we briefly discuss what it means for

a pair of particles to be indistinguishable.

In the classical world if we wanted to tell two particles apart, we could do so

by measuring their physical properties such as mass or charge. However, we

know that in the subatomic world two electrons will share the same mass,

two protons will have the same charge, and so on. This means measuring the

qualities of the particles cannot help us in distinguishing them. We might
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then try to follow their paths from point A to point B, like following a ball

under a cup, to tell them apart at their final destination. In the classical

limit of quantum mechanics, ie. the limit of sufficiently high temperatures or

similarly low particle density, this approach may be feasible. In a quantum

system however, as the mean separation between particles approaches the de

Broglie wavelength of said particles it would become impossible to distinguish

particles in this manner.

In a quantum system this analagous description can be defined as an invari-

ance of multiparticle systems up to some global phase with respect to an

interchange of particles. In a system composed of both Bosons and Fermions

this phase invariance holds independently for either class of particle.

In such a quantum system then, we may consider the phase picked up by a

two particle exchange to be

ψ → ψeiθ (1.1)

, where the angle θ is determined by the type of particle. Regardless of the

type of particle, if we performed this exchange twice, we would expect to

return to the initial state meaning

e2iθ = 1. (1.2)

This implies that for a single exchange the available phases are either +1 or

−1 corresponding to Bosons and Fermions respectively. By considering the

behaviour of two particle exchanges in this manner we arrive at the essential

ingredient for Bose-Einstein condensation: the Pauli exclusion principle. For

Fermions this exclusion principle means the probability of two Fermions

occupying the same state is necessarily zero. Conversely, as Bosons do not

obey this principle, there is no mechanism preventing any number of Bosons

from occupying the same quantum state.
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The Pauli exclusion principle explains a wide range of phenomena in

physics. For Fermions, the structure imposed by this condition gives rise to

the periodic table, electron degeneracy in white dwarves and even the simple

notion of atoms occupying space.

The inapplicability of this principle to Bosons also allows some peculiar

behaviour to occur in many body systems of Bosons. For example, coherent

photons are used to create laser light via the mechanism of population

inversion1. However, the most relevant implication for this thesis is the

abrupt accumulation of atoms in the ground state of the system below some

critical temperature known as Bose-Einstein condensation (BEC).

A discussion of the characteristics of BEC can be found in any condensed

matter or statistical mechanics textbooks. Here we provide a short summary

of the main points. In particular, we discuss the bias towards ground state

occupation in systems of bosons compared to the classical treatment of

particles in 1.1.2. We then make some approximate calculations of the

temperature ranges involved in Bose-Einstein condensation in 1.1.3. A more

detailed discussion of these accounts can be found in [1].

1.1.2 Ground state occupation in systems of Bosons

In the previous section, we discussed the Pauli exclusion principle and the

implications of it for symmetric and antisymmetric particles. These exchange

statistics when considered in conjunction with the canonical partition func-

tion lead to the following statistical distributions for Bosons and Fermions
1The term population inversion describes a system of atoms in which the majority exist

in an excited state rather than the ground state
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respectively:

〈nBE〉 = 1
eβ(ε−µ) − 1 , 〈nFD〉 = 1

eβ(ε−µ) + 1 (1.3)

, where µ is the chemical potential and β = 1
kBT

is the inverse temperature.

We refer to the Bose-Einstein and Fermi-Dirac distributions as nBE and nFD
respectively. In either case here 〈n〉 gives the expected number of particles

with energy ε. For the purposes of comparison, we also mention the Maxwell-

Boltzmann distribution nMB

〈nMB〉 = 1
eβ(ε−µ) . (1.4)

The Maxwell-Boltzmann distribution describes systems of distinguishable

particles. Despite (1.4) being entirely unphysical as no real particles display

these statistics it is still useful to consider as a high temperature limit of nBE
and nFD.

As an illustrative example of Bose-Einstein condensation, here we consider

a system of free Bosons in a cube of length L. We study how the system

responds to changes in temperature when treated using Bose-Einstein and

Maxwell-Boltzmann statistics.

By setting the ground state energy ε0 = 0 (which we can do without loss of

generality) we can write the number of Bosons in the lowest energy state N0

as

N0 = 1
e−βµ − 1 . (1.5)

Similarly the total number of Bosons in the whole system is given by the sum

over all available states

N =
∑
n

1
eβ(εn−µ) − 1 =

∑
n

1
eβεne−βµ − 1 . (1.6)
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If we solve (1.5) for e−βµ we can write the total atom number in terms of the

energy eigenvalues and the ground state occupation

N =
∑
n

1
eβεn

(
1
N0

+ 1
)
− 1

. (1.7)

The energy of a free Boson in a cube can be found by considering the free

particle Schrödinger equation for particles with momentum k2 = 2mε
~2 .

∇2ψ(x) + k2ψ(x) = 0. (1.8)

The general solution of this ODE is ψ(x) = A sin(kx) +B cos(kx). Imposing

Dirichlet boundary conditions at the edges of the cube gives us momenta

k = nπ
L

and thus energies

εn = ~2π2

2mL2n
2 = ε1n

2. (1.9)

By inserting this expression of the system energies into equation (1.7) we

find the total atom number in terms of the energy of the first excited state,

the temperature of the system, and the ground state occupation

N =
∑

nx,ny ,nz=0

1
eβε1(n2

x+n2
y+n2

z) ( 1
N0

+ 1
)
− 1

. (1.10)

We would like to invert this expression in order to express the ground

state occupation in terms of the total atom number N and temperature T .

Of course, this involves computing the sum above, which is not possible.

Performing the sum numerically2 however is sufficient for this illustrative

example. Additionally, for the purposes of comparison, the same calculation

for the Maxwell-Boltzmann statistics leads to ground state occupancy

N = N0
∑

nx,ny ,nz=0
e−βε1(n2

x+n2
y+n2

z). (1.11)

2Sum is calculated up to the nx = ny = nz = 16 energy level.
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Figure 1.1: (a) Relative ground state occupation of particles in a cube

using equation (1.10) nBE statistics and equation (1.11) nMB distributions.

(b) Relative ground state occupation of Bosons calculated numerically from

equations (1.10) and (1.11) and rescaled by N−2/3 as discussed after equation

(1.18) compared to the analytic result equation (1.18).

In figure 1.1 (a) the particles following Bose-Einstein statistics display the

overwhelming preference towards occupying the ground state known as Bose

condensation. Even at relatively high temperatures NBE
0 is several orders of

magnitude larger than the classical Boltzmann analogue.

This feature of Bose gases was predicted in 1925 early in the development

of the then new field of quantum statistics. First, by Satyendra Nath Bose

for photons and then extended to all Bosons by Albert Einstein. Many tech-

nologies were to be developed before Bose Condensation would be realised

experimentally. In the following section we continue this analysis of the Bose-

Einstein distribution with the intention of approximating the temperature

ranges typical in Bose-Einstein condensates.
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1.1.3 Critical temperatures

In the previous section, we showed that systems of Bosons tend to accumulate

in the ground state as a result of Bose-Einstein statistics. This macroscopic

occupation occurs at temperatures significantly higher than those predicted

by the classical Maxwell-Bolzmann statistics, however the necessary temper-

atures are still extremely low. Here we discuss just how low a temperature

must be reached experimentally to form a BEC in the laboratory.

In this subsection we use the chemical potential and the Bose-Einstein dis-

tribution to understand how the ground state occupation N0 responds to

T . Let us start by approximating the sum over all states equation (1.6)

as an integral. Note that this is only valid for the excited Bosons, as the

integral does not account for the macroscopic occupation of a single state.

What we are actually computing then is the occupation of the excited states

Nexc = N −N0

Nexc =
∑
n=1

1
eβ(εn−µ) − 1 . (1.12)

In order to change the sum to an integral we consider the number of avail-

able states to be the volume of a 1/8th sphere in n-space ∑n → 1
8
∫∞

0 4πn2dn

so from equation (1.9) ∑
n

→ π

4ε3/21

∫ ∞
0

√
εdε. (1.13)

The resulting integral however, after the continuation from a sum to an

integral, is still unsolvable in general. However, if we choose the value µ = 0

for the chemical potential, and also make the change of variable x = βε we

can solve in terms of the Riemann-Zeta function as

Nexc = π

4

(
kBT

ε1

)3/2 ∫ ∞
0

√
x

ex − 1dx

= ζ(3/2)
(
πkBT

4ε1

)3/2

. (1.14)
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Above the critical temperature TC all particles are assumed to be in excited

states. Assuming then that Nexc = N along with the previous µ = 0

condition we obtain

N = ζ(3/2)
(
kBTCm

2~2π

)3/2

V (1.15)

⇒ TC ≈ 3.31 ~2

kBm

(
N

V

)2/3
. (1.16)

In the original 1995 experiment by the group of Cornell and Wieman at

Boulder University [2] a condensate was formed using a vapour of 87Rb atoms

with molecular mass 86.909181 g/mol and number density of 2.5×1012cm−3.

Using this result, these parameters predict a critical temperature TC ≈ 34nK,

similar at least in magnitude to the Boulder experiment where a BEC was

found to form at around 170 nK.

We can also then write the relation between the number of particles in excited

states and the total atom number as

Nexc = N
(
T

TC

)3/2
, (1.17)

or rather
N0

N
= 1−

(
T

TC

)3/2
. (1.18)

In figure 1.1 (a) we plot the relative occupancy of the ground state of a

system of particles as a function of the temperature of the system. Taking

inspiration from this result, and the methods discussed in [1], in figure 1.1

(b) we rescale this same data for Bosons by a factor of N−2/3. We find this

rescaling approximates the analytic result well for temperatures T < TC .
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1.1.4 Mean field theory and the Gross-Pitaevskii

equation

We have seen now that the distributions of statistical mechanics can be

used to determine characteristics of a BEC system in bulk, such as the

relative condensate proportions and critical temperature. Many other effects

in condensed Bose gases however can be understood as solutions to a type of

nonlinear Schrödinger equation known as the Gross-Pitaevskii equation.

In the 1960’s Eugene P. Gross [3] and Lev Pitaevskii [4] used a mean field

approximation to describe the interparticle interactions in a BEC as a cubic

nonlinear term added to the Schrödinger equation. The motivation here

is that in a dilute gas the interactions would be weak and atoms sparse

and so could be modelled as contact interactions. This lead to an effective

description of the ground state collective dynamics of a weakly interacting

BEC at zero temperature known as the Gross-Pitaevskii equation3.

The GPE offers a mean field description of the condensed portion of a BEC.

As the condensed atoms are all occupying the ground state of the system,

the single particle wavefunctions of the BEC’s constituent atoms all satisfy

the GPE (1.19)

i~
∂ψ

∂t
= − ~2

2m∇
2ψ + Vtrψ + U(t)|ψ|2ψ. (1.19)

The full many-body wavefunction can then be shown to minimise the model

Hamiltonian from which the GPE is derived (under certain restrictions which
3Of notably similar form to the GPE (and originating in the same time period of

the mid-20th century) is the Ginzburg-Landau equation, used to model superconductivity

rather than Bose condensation.
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will be discussed in Chapter 2) [5]

H =
N∑
i=1

(
p2
i

2m + Vtr(ri)
)

+ 1
2

N∑
i=1

N∑
j 6=i

V (|ri − rj|). (1.20)

From the GPE a whole host of phenomena beyond Bose-Einstein condensa-

tion can be explored. Just a few examples can be found in density waves in

superfluids, the propogation of light in optical fibres in the form of temporal

solitons and wave propogation in non-linear media in the form of spatial

solitons [6–8]. The GPE has even been used to study the flow of people

in large crowds to model the phenomena of crowd turbulence, an effect

describing potentially dangerous mass stampede effects in large crowds [9].

In one-dimensional BEC systems breathing and dipole modes can be studied.

In two or three dimensions it is possible to understand vortex dynamics in

terms of normal modes, stability and coupling to other oscillatory modes

[10, 11]. When coupled to the Poisson equation the GPE has even been

implemented in modelling a suggested alternative dark matter model, com-

prised of ultralight Bosons in a self gravitating BEC state [12, 13] in the

galactic halo and beyond.

Beyond what is possible with the standard GPE, many adaptations and

extensions exist describing more complex theories. Long-range anisotropic

interactions can be modelled in terms of the Dipolar Gross-Pitaevskii equa-

tion [14–16]. Studies regarding BEC soliton dynamics exist across a range

of models based on modified GPE’s [17, 18] allowing dissipative processes,

high density BEC’s, and quantum fluctuations. For thermal fluctuations at

finite temperatures, the Zaremba-Nikuni-Griffin (ZNG) formalism describes

the evolution of a coupled thermal cloud and condensate [19,20].

In all of these cases it is generally impossible in all but the most simple

circumstances to exactly solve these models analytically. A range of numer-
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ical methods have been applied to GPE systems with contact and dipolar

interactions as well as ZNG systems, some of which will be discussed in

Chapter 3 [21–26]. However, many approximations are possible to treat

various systems analytically with varying levels of accuracy. Amongst the

most effective methods are those coming from the calculus of variations,

which we will discuss in Chapter 2. These methods are near universal in

studies of GPE dynamics and there are far too many appearances in the

literature to list, some of particular interest include falling BEC droplets for

atom lithography [27], formation of Faraday patterns in dipolar BEC’s [16],

and bright solitons in cigar shaped optically trapped BEC’s [28]. For now,

we move on to discussing the primary focus of this thesis: adiabatic processes

and shortcuts to adiabaticity.

1.2 Adiabatic processes and shortcuts to

adiabaticity

In this section, we introduce the concept of adiabaticity and the quantum adi-

abatic theorem in quantum systems. We then outline some of the commonly

used techniques for reproducing this adiabatic evolution known as a shortcut

to adiabaticity in section 1.2.1. We give some examples from the literature

of where these techniques have been implemented and the advantages gained

from them in 1.2.2. We then take some time to discuss the specifics of inverse

engineering based shortcut protocols taking a number of existing studies as

examples in 1.2.3.

In quantum systems a process is described as adiabatic if it obeys the quan-

tum adiabatic theorem. This theorem was originally stated heuristically

by [29] in 1928 with regards to a change in some system parameter and the
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likelihood of transitions to higher energy states as:

”The adiabatic theorem now states that at an infinitely slow change

of the system...the transition probability remains infinitely small”

The inverse of this statement then implies that rapid changes in a system

parameter are likely to induce transitions to higher energy states. Adiabatic

processes have become an essential tool in the developement of many quan-

tum technologies for the preparation and manipulation of quantum states.

However, as a consequence of the quantum adiabatic theorem, procedures

implementing adiabatic evolution of states are in practice hamstrung by

their long durations. Moreover, besides the logistical limitations of extending

processes over exceedingly long timescales, in quantum systems decoherence

can make traditional adiabatic evolution infeasible. Over the timescales as-

sociated with adiabatic passage, the desirable characteristics of a state would

be lost to decoherence before the transition could be completed. This has

motivated the search for faster reproduction of adiabatic evolution. Methods

such as optimal control theory use numerical methods to approximate this

adiabatic passage. Such methods can often achieve extremely short evolution

times with low fidelity between the final and target state, however with the

caveat that not all protocols may be experimentally realizable. Alternatively,

some methods aim to reproduce the final state exactly using analytic meth-

ods. These analytic methods are referred to as shortcuts to adiabaticity and

will be the primary focus of this thesis.
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1.2.1 Methods of determining shortcut protocols

The most widely used methods of developing shortcut protocols are coun-

terdiabatic driving [30], fast forward scaling [31], and inverse engineering

[32–34]. The counterdiabatic driving method (also known as transitionless

quantum driving) is based on designing time-dependent interactions, in the

form of an auxiliary Hamilitonian, to force the system along an approxi-

mately adiabatic trajectory. Inverse engineering approaches instead start by

designing the path of some feature of the wavefunction dynamics, then using

this target path to determine the necessary path of the control parameter.

Finally, fast forward methods [31] attempt to introduce a magnification factor

to rescale the time parameter. The process then uses this infinitely large

magnification factor to cancel the divergence caused by the infinitesimally

slow adiabatic evolution. As a result of this cancellation it is then possible

to construct a fast forward potential that accelerates the adiabatic evolution

of the system to much shorter times.

Counterdiabatic driving and inverse engineering methods were shown to

be potentially equivalent using a time dependent harmonic oscillator as an

example in [35], similarly fast forward methods were compared to the inverse

engineering approach in [31]. In both cases it was argued that it may be

possible to interpret either method in terms of the other. The differing results

then lie in the freedom of choice regarding: Invariant ansätze in the inverse

engineering approach, or reference Hamiltonians in the counterdiabatic driv-

ing approach. The implication here then is that any shortcut protocol found

using any of the above methods is not unique but rather a member of a family

of solutions that show an overlap in their spaces of possible solutions.
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1.2.2 Applications of adiabatic evolution and

shortcuts to adiabaticity

Theoretical research in the area of shortcuts to adiabaticity has occurred in

the context of many quantum systems, including but not limited to atom

cooling methods in trapped BEC’s [30, 34, 36–39], expansion and compres-

sion of trapped fermi gases [40, 41], manipulation of atoms in interacting

multiparticle systems in the form of state transitions [42], contunneling and

splitting in multi-well potentials [43–45] and population inversion in multi-

level atomic systems [43,46].

These methods might also find purpose in adiabatic quantum computing.

References [47, 48] show implementations of Grover’s search algorithm for

database searches and equivalent problems as well as (3SAT) satisfiability

problems based on the adiabatic evolution of a quantum mechanical system.

The 3SAT problem considers a Boolean formula of a given number of clauses

say φ = C1∧C2∧...∧CM where the Ci terms are clauses in conjunctive normal

form in variables x1, ..., xn. It then asks whether the variables of each clause

can be chosen such that the full formula φ evaluates to true. Reference [47]

demonstrates the quadratic speedup obtained by Grovers search algorithm

can be replicated using an implementation of adiabatic quantum computing.

Similarly, [48] finds success in certain special cases, determining an algorithm

for solving the satisfiability problem which runs in polynomial time.

More recent studies have performed calculations (similar to those relating to

atom cooling) for ramps in a systems interaction strength for use in quantum

heat engines. References [49] and [50] discuss the concept of a Feshbach

engine driven by adiabatically varying the internal interaction strength of

a system. In each of these studies the authors follow a similar procedure
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as we will present in Chapter 4; taking an appropriate ansatz to fit their

chosen regime, and approximating a shortcut to adiabaticity using an in-

verse engineering approach. Reference [50] investigates the regime of strong

attractive interactions using a bright soliton type ansatz whilst [49] instead

chooses a Thomas-Fermi ansatz to study strong repulsive interactions. The

latter case in particular is relevant to the present work as we also make use

of the Thomas-Fermi ansatz at times and reach some of the same conclusions

as presented here. In our analysis, we reach the same shortcut protocol as

found in [49] using a slightly different method. We discuss the efficiency with

which this protocol can be implemented as well as studying the nature of any

excitations which are added to the system.

1.2.3 Inverse engineering based shortcuts to

adiabaticity

In Chapter 4, we will use the method of inverse engineering to derive a

shortcut to adiabaticity in a BEC. In this section we provide a slightly more

detailed discussion of the particulars of these methods. We also provide some

examples from the literature of implementations of these methods.

As discussed previously, the inverse engineering approach consists of defin-

ing the desired boundary conditions of some feature of the wavefunction

dynamics (hereafter referred to as the target parameter) over a given time

span. This path is then used as a constraint in the governing equations

of the system and the path of the control parameter is derived from these

constraints. This method of course necessitates an analytic treatment of the

governing equations.

In the context of noninteracting systems, this can be achieved by forming the
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constraint or target path using invariants of the Schrödinger equation. These

methods have appeared in the literature in a number of contexts ranging

from the atom cooling processes discussed previously [30, 34, 36–39] to the

Feshbach engine studies by [49] and [50], and accelerated forms of quantum

perceptrons for quantum-enhanced machine learning [51]. A common exam-

ple in the literature of these forms of inverse engineering methods are the

Lewis-Reisenfeld or Ermakov-Lewis invariant based methods [52–54].

In systems described by the linear Scrödinger equation, in particular the

Scrödinger equation in a harmonic trap, the analysis of the invariants of the

system tends to lead to some form of Ermakov equation [55]

b̈+ ω2(t)b = ω2
0/b

3 (1.21)

, where in references [35,56] the parameter b can be shown to be proportional

to the standard deviation of the wavefunction of the system ψ. In these sys-

tems it is possible to determine shortcuts to adiabaticity using the parameter

b as the target parameter and the frequency ω of the trapping potential as

the control parameter.

In our analysis we make use of a variational approximation to the GPE to

reach an equation similar to this Ermakov equation with the addition of an

order b−4 term

b̈+ ω2(t)b = ω2
0/b

3 + u

b4 , (1.22)

, where the u parameter determines the strength of interactions in a BEC

system. This modified Ermakov equation is often referred to as the gen-

eralised Ermakov equation and has appeared in many sources including

[37, 55, 57]. We then employ this inverse engineering approach to determine

an approximate quasi-adiabatic scheme for the GPE. Rather than considering

a time varying trap frequency, we instead drive the dynamics using the
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interaction strength of the system as in the aforementioned Feshbach engine

studies [49, 50]. From here we investigate the efficiency with which we can

employ this routine with respect to the average strength of interactions in

the system and the rate of decay of these efficiency curves with respect to

the duration of the ramp.

1.3 Composition of thesis

This thesis will be organised as follows. Firstly, in Chapter 2 we will discuss

the framework necessary for modelling such a system. We will provide a

derivation of the Gross-Pitaevskii equation itself and make two variational

approximations to its dynamics, one being based on the noninteracting limit

and one on strong interactions. We will make a number of analytic investi-

gations into the stationary solutions and normal modes of these variational

approximations. In Chapter 3, we will discuss the numerical methods of

symplectic integration and imaginary time propagation that will be necessary

for numerical solutions of the Gross-Pitaevskii equation directly. We will

define the quantities we will be recording over these investigations and our

methods of sampling them. We will then make a similar series of calculations

as those contained in Chapter 2, this time for the Gross-Pitaevskii equation

as well as testing how closely our variational calculations replicate the true

dynamics of the Gross-Pitaevskii equation. Finally, in Chapter 4 we will

outline the derivation of our shortcut solution. We will show results of

the numerical analysis in terms of a function of the energy added to the

system by a given shortcut protocol. This analysis will be performed for

both the variational equations and the Gross-Pitaevskii equation. We will

also provide a heuristic proof for the decay exponents and frequencies of this
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energy function.

Regarding the originality of the material presented in this document, in

Chapters 2 and 3 we will discuss existing results and methods as background

material. In Chapter 4, we derive an interaction ramp which has appeared

recently in the literature in [49] using a slightly different method. The

analysis of the decay and frequency of these interaction ramps as well as

the exact two-dimensional ramp is, to the best of our knowledge, original

material.



Chapter 2

Variational study of the

Gross-Pitaevskii equation

2.1 Overview

In this chapter we will use methods of the calculus of variations to derive

and study the Gross-Pitaevskii equation in terms of normal mode frequencies.

These methods will be necessary background for our derivation and analysis

of shortcuts to adiabaticity in Chapter 4.

First we will provide a derivation for the GPE in section 2.2, both time

dependent and independent varieties. We will compute the energy functional

obeyed by a wavefunction satisfying the GPE in 2.2.2. We will then take a

brief aside to discuss the correspondence between ground state solutions of

partial differential equations and Euler-Lagrange equations in 2.3. Following

this we will apply these variational methods by using two wavefunction

ansätze for the GPE to calculate equations of motion approximating GPE

dynamics. We will calculate upper and lower bounds for the characteristic

23
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frequencies of normal modes in these equations at the non-interacting (U = 0)

and Thomas-Fermi (U >> 1) limits in section 2.4. We will then use numerical

ODE methods to solve these systems of ODE’s for the component widths

of a BEC in the variational regime in section 2.5. We will give examples

of breathing and quadrupole normal modes in 2.5.1 and 2.5.2 respectively

and show the variance in the frequencies of these normal modes with varying

interaction strengths. In 2.5.3 we will also briefly discuss some some resonant

like behaviour which occurs when the interaction strength of the system is

modulated [16,58].

2.2 Derivation of the Gross-Pitaevskii

equation

In deriving the Gross-Pitaevskii equation, two important assumptions regard-

ing the behaviour of a BEC must be made. Firstly, we assume the system

is at zero temperature. Secondly, the system is assumed to be dilute, with

the distance between particles remaining much larger than the scattering

length of particles. Together, these assumptions allow us to make a mean

field approximation to the many body wavefunction.

2.2.1 Minimising the Landau potential

Here we provide a derivation of the GPE via minimisation of the Landau

potential [5]. We begin by considering the model Hamiltonian for a dilute

gas of trapped Bosons

Ĥ =
N∑
i=1

( p2
i

2m + Vtr(x)
)

+ 1
2
∑
i,j=1
i 6=j

V (|xi − xj|). (2.1)



CHAPTER 2. VARIATIONAL METHODS 25

Here we define the spatial region the wavefunction ψ exists in as Ω ⊂ RD,

some subset x ∈ Ω, Vtr(x) as the trapping potential and V (|xi − xj|) as the

interaction potential corresponding to a contact interaction between two par-

ticles. We minimise the energy of said Hamiltonian via the thermodynamic

Landau or Grand potential φG defined as

φG
def= U − TS − µN

= 〈Ĥ〉Ψ − µ 〈Ψ|Ψ〉 , T = 0. (2.2)

The many body wavefunction of the system as a whole is composed of single

particle wavefunctions ψi(xi) as |Ψ(x1, ...,xN)〉 = |ψ1(x1)〉 ⊗ ...⊗ |ψN(xN)〉.

Since we have assumed T = 0 the single particle states ψi are all the ground

state and so we can drop the labels to give us the mean field interpretation

of the many body wavefunction

|Ψ〉 = |ψ〉 ⊗ |ψ〉 ⊗ ...⊗ |ψ〉 .

Calculating each term in the Landau potential one at a time we have〈
N∑
i=1

p2
i

2m

〉
Ψ

=
N∑
i=1

~2

2m

∫
Ω
∇ψ∗(xi)∇ψ(xi)dxi

= N
~2

2m

∫
Ω
|∇ψ(x)|2dx

= −N ~2

2m

∫
Ω
ψ∗(x)∇2ψ(x)dx (2.3)

, where we have integrated by parts in the final line. The potential term is

then simply 〈
N∑
i=1

Vtr(xi)
〉

Ψ
= N

∫
ψ∗(x)Vtr(x)ψ(x)dx. (2.4)
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The interaction term comes to〈
1
2
∑
i,j=1
i 6=j

V (|xi − xj|)
〉

Ψ

= 1
2
∑
i,j=1
i 6=j

∫
Ω
dxi

∫
Ω
dxjψ∗(xi)ψ∗(xj)V (|xi − xj|)ψ(xi)ψ(xj)

= N(N − 1)
2

∫
Ω
dx
∫

Ω
dx′ψ∗(x)ψ∗(x′)V (|x− x′|)ψ(x)ψ(x′). (2.5)

The chemical potential term is

µ 〈Ψ|Ψ〉 = µ
(∫

Ω
ψ∗(x)ψ(x)dx

)N
. (2.6)

Now considering ψ and ψ∗ as independent fields we calculate a variation in φG
by taking functional derivatives of equations (2.3)-(2.6). Firstly, the kinetic

term

δ

δψ∗

(
−N ~2

2m

∫
Ω
ψ∗(x)∇2ψ(x)dx

)
= N

∫
Ω
− ~2

2m∇
2ψ(x)δψ∗(x)dx. (2.7)

The variation of the trapping potential term is

δ

δψ∗

(
N
∫

Ω
ψ∗(x)Vtr(x)ψ(x)dx

)
= N

∫
Ω
Vtr(x)ψ(x)δψ∗(x)dx. (2.8)

The variation of the contact interactions term is

δ

δψ∗

(
N(N − 1)

2

∫
Ω
dx
∫

Ω
dx′ψ∗(x)ψ∗(x′)V (|x− x′|)ψ(x)ψ(x′)

)

= N(N − 1)
∫
δψ∗(x)

(∫
|ψ(x)|2V (|x− x′|)dx′

)
ψ(x)dx. (2.9)

Then finally the variation of the chemical potential term is

δ

δψ∗

(
µ
∫

Ω
ψ∗(x)ψ(x)dx

)N
= µN

(∫
Ω
ψ∗(x)ψ(x)dx

)N−1 (∫
Ω
δψ∗(x)ψ(x)dx

)

= µN
∫

Ω
δψ∗(x)ψ(x)dx (2.10)
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, as the single particle wavefunctions are normalised to one. In addition,

note the dummy variables x and x′ are relabelled after the differentiation

step in each of (2.7)-(2.10). When we put all the terms together we find the

variation of the Landau potential is given by

δφG
δψ∗

= N
∫

Ω

− ~2

2m∇
2ψ(x) + Vtr(x)ψ(x)

+(N − 1)
(∫

Ω
|ψ(x)|2V (|x− x′|)dx′

)
ψ(x)− µψ(x)

δψ∗(x)dx = 0. (2.11)

If the variation is to vanish then by the fundamental lemma of the calculus

of variations the terms in braces must also be zero, leading to the time

independent GPE (2.12). Since N is usually large it is common to make the

approximation N ≈ N − 1. As V (|x− x′|) is modelling contact interactions

we assume it has a delta function form ie. V (|x − x′|) = 4π~2

m
aδ(x − x′)

with a being the s-wave scattering length. It is then convenient to absorb

these constants into the parameter U encapsulating the strength of contact

interactions in the system giving us

− ~2

2m∇
2ψ(x) + Vtr(x)ψ(x) + U |ψ(x)|2ψ(x) = µψ(x). (2.12)

Applying the unitary time evolution operator we find the time dependent

version in ψ(x, t)

i~
∂ψ(x, t)
∂t

= − ~2

2m∇
2ψ(x, t) + Vtr(x)ψ(x, t) + U |ψ(x, t)|2ψ(x, t). (2.13)

2.2.2 Energy density

The energy of the wavefunction described by (2.12) and (2.13) is given by

equations (2.3)-(2.5). For clarity, when we combine these equations we have
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the total energy functional

E[ψ] =
∫

Ω

(
− ~2

2mψ∗(x, t)∇2ψ(x, t) + ψ∗Vtr(x, t)ψ(x, t)
)
dx+∫

Ω
dx
∫

Ω
dx′

N − 1
2 V (|x− x′|)|ψ(x, t)|2|ψ(x′, t)|2. (2.14)

After inserting the form of V (|x−x′|) used in equation (2.12) and integrating

over the delta function this leads to the total energy

E[ψ] =
∫

Ω

(
~2

2m |∇ψ(x, t)|2 + Vtr(x)|ψ(x, t)|2 + U

2 |ψ(x, t)|4
)
dx. (2.15)

The energy density, ie. the integrand of the above, is not a conserved

quantity, the total energy itself however is conserved under time evolution

which we can see by differentiating with respect to time

dE

dt
=
∫

Ω
ψ̇(x, t)

(
−∇2ψ(x, t)∗ + Vtr(x)ψ(x, t)∗ + U

2 |ψ(x, t)|2ψ(x, t)∗
)
dx+h.c..

(2.16)

The GPE gives us ψ̇ and ψ̇∗ so we find

dE

dt
=
∫

Ω
−i
∣∣∣∣∣
(
− ~

2m∇
2ψ(x, t) + Vtr(x)ψ(x, t) + U

2 |ψ(x, t)|2ψ(x, t)
)∣∣∣∣∣

2

+ i

∣∣∣∣∣
(
− ~

2m∇
2ψ(x, t) + Vtr(x)ψ(x, t) + U

2 |ψ(x, t)|2ψ(x, t)
)∣∣∣∣∣

2

= 0.

(2.17)

2.3 Variational calculations

The variational method of solving certain partial differential equations in-

volves recognising the solution of a given PDE as the extremum of an associ-

ated energy functional. This minimiser can then be found by computing the

Euler-Lagrange equations of the system given a suitable ansatz. The proof

of existence and uniqueness of minimisers requires more careful functional
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analysis and is beyond the scope of this thesis. However, a detailed discussion

of these problems with respect to the Gross-Pitaevskii can be found in [59]

and [60] respectively where it is shown that so long as the trapping potential

satisfies some criteria at the boundaries as x→∞ and U ∈ [0, U∗) for some

cut-off value U∗ there exists a unique minimiser of equation (2.12). Here we

assume some function u is a minimiser of a general functional L and show

that this function also satisfies the Euler-Lagrange equations (1) [61,62].

Theorem 1. For some interval in time τ ⊂ R and a given functional

L(ω′, ω, τ) where the ′ represents differentiation with respect to τ , consider

some action IL(ω)

IL(ω) =
∫
τ
L(ω′, ω, t)dt. (2.18)

Let A = {ω(τ) ∈ C2, ω(t) = 0 : t ∈ ∂τ} be the family of functions which

are continuous and twice differentiable on the interval τ . Let u ∈ A be a

minimiser of the action IL(ω). This function u is then also a solution to the

corresponding Euler-Lagrange equations
∂L

∂u
(u′, u, t)− d

dt

∂L

∂u′
(u′, u, t) = 0. (2.19)

Consequently, u then also solves the partial differential equation to which the

functional L(ω) corresponds.

Proof. Consider a perturbation of the function u(t) for a small parameter ε

and some function v(t) ∈ A defined as i(ε) = u(t) + εv(t). The perturbed

action is then

IL(i(ε)) =
∫
τ
L(t, i(ε), i′(ε))dt =

∫
τ
Lεdt. (2.20)

If u is a minimiser of IL then I ′L(i(0)) = 0 so
dIL
dε

=
∫
τ

dLε
dε

dt (2.21)

=
∫
τ
v(t) ∂Lε

∂i(ε) + v′(t) ∂Lε
∂i′(ε)dt. (2.22)
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Which when evaluated at ε = 0 is

I ′L(i(0)) =
∫

Ω
v(t)∂L

∂u
+ v′(t) ∂L

∂u′
dt = 0. (2.23)

Integrating by parts over the second term this becomes∫
τ
v(t)∂L

∂u
dt+

[
v(t) · ∂L

∂u′

]
t=∂τ
−
∫
τ
v(t) d

dt

∂L

∂u′
dt = 0. (2.24)

The boundary term is zero owing to the compactness condition on v so∫
Ω
v(t)

(
∂L

∂u
− d

dt

∂L

∂u′

)
dt = 0. (2.25)

Since this is true for all v ∈ A we conclude via the fundamental lemma of

calculus of variations that the function u solves the Euler-Lagrange equations

∂L

∂u
(u′, u, t)− d

dt

∂L

∂u′
(u′, u, t) = 0. (2.26)

In the following two sections, we choose two different ansätze, one valid

at small values of U, and one valid at large U. We then exploit the corre-

spondence discussed here to derive equations of motion for the parameters

of our chosen ansatz. The relevant functional is the Lagrangian density of a

complex scalar field with a harmonic potential and contact interactions. The

corresponding action is the spatial integral of said Lagrangian density

L(∇ψ, ∂ψ
∂t
, ψ,x) = i

2

(
ψ∗(x, t)∂ψ(x)

∂t
− ψ(x)∂ψ

∗(x)
∂t

)

− 1
2 |∇ψ(x)|2 − Vtr(x)|ψ(x)|2 − U

2 |ψ(x)|4. (2.27)

2.3.1 Gaussian ansatz

The non-interacting Schrödinger equation is solved by a Gaussian ansatz,

at small U this should approximate the ground state of the GPE. The first
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ansatz we choose is a Gaussian of widths σi in each dimension of the space

xi and respective phases βi

ψ(x, σi, σ̇i, βi, β̇i) = N (σ, β) exp
(∑

i

− x2
i

2σ2
i

− iβix2
i

)
(2.28)

, where x is the spatial vector x = (x1, ..., xD) for dimension D. The

normalisation factor N comes to N = ΠD
i=1(σiπ1/2)−1/2. Note the results of

this section hold for dimension D ∈ {1, 2, 3}. As a reminder, the Lagrangian

we want to minimise is

L = i

2

∫
Ω
ψ∗(x, t)∂tψ(x, t)− ψ(x, t)∂tψ∗(x, t)

− 1
2 |∇ψ(x, t)|2 − Vtr(x)|ψ(x, t)|2 − U

2 |ψ(x, t)|4dx. (2.29)

We have introduced the harmonic trapping potential Vtr(x) defined as

Vtr(x) = 1
2
(
Ω2

1x
2 + Ω2

2y
2 + Ω2

3z
2
)

(2.30)

, for a three dimensional system. Note that the trapping frequencies Ωi have

no relation to the function space Ω. After calculating this Lagrangian using

the anisotropic ansatz equation (2.28) we find

LG =
D∑
i=1

(
β̇iσ

2
i

2 − 1
4σ2

i

− β2
i σ

2
i −

Ω2
iσ

2
i

4

)
− U

2
1

(2π)D/2
D∏
i=1

σ−1
i . (2.31)

This leads to a system of 2×D ODE’s in σi and βi

σ̇i = −2βiσi, (2.32)

β̇iσi + 1
2σ3

i

− 2β2
i σi −

Ω2
iσi
2 + U

2
1

(2π)D/2
1
σi

D∏
j=1

σ−1
j = 0. (2.33)

Solving the first D equations for the phase parameters βi and then computing

β̇i gives

βi = − σ̇i
2σi

β̇i = σ̇2
i

2σ2
i

− σ̈i
2σi

. (2.34)
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Using these expressions we eliminate the phase dependence from the second

D equations giving us the system of equations for σi where i = (1, ..., D),

σiσ̈i + Ω2
iσ

2
i −

1
σ2
i

= U

(2π)D/2
D∏
j=1

σ−1
j . (2.35)

With energy given by

E = 1
4

D∑
i=1

(
σ̇2
i + 1

σ2
i

+ Ω2
iσ

2
i

)
+ U

2(2π)D/2
D∏
j=1

σ−1
j . (2.36)

Isotropic motion

In the case where only breathing mode type oscillations are present and the

trapping potential is isotropic, ie. Ω1 = Ω2 = Ω3 = Ω, we may impose

σ1 = σ2 = σ3 = σ. The system of equations (2.35) reduces to a single

equation,

σσ̈ + Ω2σ2 − 1
σ2 = U

(2π)D/2
1
σD

. (2.37)

Similarly, the energy of the system (2.36) reduces to,

E = D

4

(
σ̇2 + 1

σ2 + Ω2σ2
)

+ U

2(
√

2πσ)D
. (2.38)

The system described by this isotropic equation of motion would describe a

breathing mode in the GPE, with each component (σ1, σ2, σ3) oscillating in

phase with the other.

2.3.2 Thomas-Fermi ansatz

The Thomas-Fermi approximation is applicable to BEC’s with either very

large total atom number N or very strong interactions U . In either of these

cases, the kinetic energy term in the GPE may be neglected, leading to a

simple solution for the wavefunction ψ(x). To see this, we begin with the
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time independent GPE (2.12):

µψ(x) = − ~2

2m∇
2ψ(x) + Vtr(x)ψ(x) + U |ψ(x)|2ψ(x). (2.39)

Figure 2.1: Width of wave-

function in a harmonic trap.

By introducing some parameter ρ as a

heuristic measure of the size of the con-

densate cloud we can estimate the average

energy contributions from the kinetic, po-

tential, and interaction terms in one dimen-

sional systems,

EK ∼
~2

2mρ2 , (2.40)

EP ∼
mω2ρ2

2 , (2.41)

EI ∼
UN

ρ
. (2.42)

Both the kinetic and interaction terms increase the energy of the cloud as

the radius decreases, meaning that each of these terms tend to force the

cloud to expand. Since both of these terms act in the same direction, if

one is much greater than the other then neglecting one accumulates rel-

atively little error. The Thomas-Fermi approximation is valid if and only

if the condition EI >> EK is met. In terms of (2.40)-(2.42) this condi-

tion becomes
UN

ρ
>>

~2

2mρ2 . (2.43)

The cloud size ρ is a monotonically increasing function of U for repulsive

interactions as the interactions act to expand the cloud. This behaviour of

ρ(U) along with imposing the normalisation condition N = ||ψ|| = 1

and adopting units ~ = m = 1 means the condition which must be sat-

isfied is

U >> 1. (2.44)
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Assuming we are in this large U regime, we can write an asymptotic so-

lution to (2.12) as

ψ(x) =
(

3
4
ρ2 − x2

ρ3

)1/2

. (2.45)

Using this as our ansatz, we compute from the complex scalar field Lagrangian,

the Thomas-Fermi Lagrangian (2.46) (this time in just one dimension),

LTF = ρ2β̇

5 − 2ρ2β2

5 − Ω2ρ2

10 − 3U
10ρ. (2.46)

Which by theorem (1) has minimisers ρ and β satisfying the system of equa-

tions

β = − ρ̇

2ρ, (2.47)

ρβ̇ − 2ρβ2 − Ω2ρ

2 + 3U
4ρ2 = 0. (2.48)

Computing the phase parameter derivative β̇ from the first equation, we

can rewrite this as a single second order differential equation in ρ,

ρρ̈+ Ω2ρ2 = 3U
2ρ . (2.49)

We can also compute the energy of a state following (2.49) as

E(ρ) = ρ̇2

10 + Ω2ρ2

10 + 3U
10ρ. (2.50)

2.4 Normal modes of the variational

equations

Now that we have reduced the GPE to a significantly simpler set of or-

dinary differential equations, we would like to understand the normal modes

we expect the system to exhibit under time evolution. We soon solve the
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equations numerically for this purpose, but some analytic methods may also

be employed as limiting cases in the U = 0 non interacting and U >>

1 Thomas-Fermi regimes of the variational equations.

Since the Thomas-Fermi variational equation (2.49) is a limiting case for

the Gaussian variational equation (2.35) there will be no variation in the

charactistic frequencies of its normal modes. The Thomas-Fermi equation

can be shown to have a constant breathing mode frequency for all U given

by equation (2.52). For this reason the remainder of this section will con-

cern normal modes of the Gaussian equations (2.35).

2.4.1 Characteristic frequency of the breathing mode

via oscillatory ansatz

As we are interested in studying the breathing mode only in this section,

we make the following calculations using the isotropic Gaussian variational

equation (2.37). We approximate the frequency ω of the breathing mode

in the Gaussian equation by linearising equation (2.37). We make the sec-

ondary ansatz σ(t) = σ0 + Σ cos(ωt) and expand in powers of Σ/σ0. As-

suming the oscillations are relatively small, and the trapping potential is

isotropic, this approximation is valid. Firstly, we consider the noninteract-

ing case. Inserting the oscillatory ansatz into equation (2.37) with U = 0

leads to the frequency ω = 2 as
(
ω2Σ + Σ + 3Σ

)
cos(ωt) = 0,

⇒ ω = 2, U = 0. (2.51)

We note here that this procedure applied to the Thomas Fermi equation

also yields this same frequency but for all U as we expected.
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We use a similar process to approximate the breathing frequency in the large

U limit. As discussed relating to the Thomas-Fermi approximation to the

GPE in section 2.3.2, at large values of U we can neglect the kinetic term

in the GPE. The corresponding term in the Gaussian variational equation

is σ−2. By dropping this σ−2 in the Gaussian variational equation and then

taking the oscillatory ansatz we find the breathing frequency at large val-

ues of U

ω =
√
D + 2, U >> 1. (2.52)

We also note that when the Gaussian variational equation (2.37) is con-

sidered in two dimensions it has an exact analytic solution as well as a con-

stant breathing frequency of ω = 2 independent of U . We make use of

this fact in section 4.2.5 when determining exact shortcuts to adiabaticity

in a two-dimensional system. A discussion of the relation between this con-

stant frequency breathing mode and a symmetry of the underlying SO(2, 1)

Lorentz group is available in [63].

2.4.2 Spectrum of normal modes via the Hessian

matrix

In this section we perform a more thorough analysis of the normal modes

present in the anisotropic Gaussian equation (2.35).

The normal modes of a dynamic system of several variables can be stud-

ied using the Hessian matrix. The Hessian matrix is formed of the second

derivatives of the potential energy function as Λij = ∂2U
∂σi∂σj

. Consider a dy-

namical system of the form q̈i = f(q1, ..., qn) with potential energy V (q)
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and a stationary point at q0 which is assumed to be zero,

V (q) =V (0) + 1
2
∑
j,k

qj
∂2U

∂qj∂qk

∣∣∣∣
qj=0,qk=0

qk

=V (0) + 1
2
∑
j,k

qjΛjkqk. (2.53)

We form Newtons equation ṗ = −∇V by calculating the force along the

jth canonical coordinate as Fj = −∇V = −∑k Λjkqk using the expanded

version of V (q) given above. The momentum term along the jth coordi-

nate is q̈j so we have

q̈j = −
∑
k

Λjkqk. (2.54)

We then take an oscillatory ansatz q = q0+Q cos(ωt), as we are concerned

with the normal modes of vibration, to find the eigenvalue equation

ω2
jxj =

∑
k

Λjkxk (2.55)

, where ω2
j and xj are the eigenvalues and eigenvectors of Λjk.

By applying this principle to the Gaussian variational equations, we may

compute the normal mode frequencies as the square root of the eigenval-

ues of Λij.

The Gaussian equation (2.35) has total energy function

E = 1
4

(
D∑
i

σ̇2
i + 1

σ2
i

+ Ω2
iσ

2
i

)
+ U

2(2π)D/2
D∏
j

1
σj
. (2.56)

The potential energy then follows as

V (σi) = 1
4

(
D∑
i

1
σ2
i

+ Ω2
iσ

2
i

)
+ U

2(2π)D/2
D∏
j

1
σj
. (2.57)

When calculated in the Thomas-Fermi limit, ie. after dropping the 1
σ2

i
term,

the diagonal terms of the Hessian matrix are

Λii =
(

Ω2 + 2u
σ2
i

D∏
n

1
σn

) ∣∣∣∣
σi=σ0

i , i=(1,...,D)
(2.58)
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, where σ0
i is the ground state value of σi and u is a redefinition of U to

absorb the (2π)D/2 constant. The off-diagonal terms are found as

Λij =
(

u

σiσj

D∏
n

1
σn

) ∣∣∣∣
σi=σ0

i , i=(1,...,D)
. (2.59)

The ground state values σ0
i for an isotropic trap are σ0

i =
(
u

Ω2

)1/5
at large

U meaning the full Hessian matrix is

Λ =


3Ω2 Ω2 Ω2

Ω2 3Ω2 Ω2

Ω2 Ω2 3Ω2

 . (2.60)

The frequencies of associated normal modes are given by the square root

of the Hessians eigenvalues. For Λ above we have eigenvalues λ = 2Ω2;λ =

2Ω2;λ = 5Ω2 meaning the characteristics frequencies of normal modes in

three dimensions are the breathing mode ωB =
√

5Ω and two quadrupole

modes with ωQ =
√

2Ω.

2.5 Dynamics of the variational equations

In this section, we solve the Gaussian variational equations numerically to

verify the normal mode frequencies calculated in the previous section.

We initially recreate the evolution of the wavefunction ψ by creating a mesh

of normally distributed random variables in R3 with standard deviations

σi given by the anisotropic equations (2.35). Some illustrative examples of

these dynamical modes are given in figures 2.2 and 2.4. We perform this

analysis for dynamics of the breathing mode and quadrupole mode type.

We then record the characteristic frequencies of these normal modes for a

range of U .
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Figure 2.2: (a) Breathing type dynamics from Gaussian radius data

using equation (2.35) for U = 0 and D = 3. (b) Snapshots of a sample

of normally distributed random variables in R3 with variances shown in

(a).

2.5.1 Breathing mode dynamics in the Gaussian

equations

We solve the anisotropic equations (2.35) for the parameters σi with σx(0) =

σy(0) = σz(0). In figure 2.2 we see the time evolution of these parame-

ters in (a) and a recreation of a wavefunction density from this data in

(b). In figure 2.3 we show a number of sample three-dimensional systems

and their Fourier decomposition as well as the relation between interaction

strength and breathing mode frequencies in one, two, and three dimensions.

2.5.2 Quadrupole mode dynamics

Quadrupole dynamics occur when one of the components of σ oscillates out

of phase with the others. Here we study the frequencies present when dy-

namics are initiated with σz out of phase with σx and σy. In the non-interacting

system there is no coupling between each equation in (2.35) and we see
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Figure 2.3: (a) Breathing mode (σx = σy = σz) radius dynamics

in three dimensions. (b) Fourier transform frequency analysis with

dominant frequency ωB highlighted. (c) Breathing frequencies for

U = {0, ..., 100} using the isotropic equation of motion in D = 1, 2, 3

dimensions and the anisotropic equations in D = 3, dotted lines at
√
D + 2.
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Figure 2.4: (a) Quadrupole type dynamics from Gaussian radius data

using equation (2.35) for U = 0 and D = 3. (b) Snapshots of a sample

of normally distributed random variables in R3 with variances shown in

(a).

regular sinusoidal oscillations independent of one another, see figure 2.4 (a).

As previously, we have also used a sampling of normally distributed ran-

dom variables with standard deviation given by (2.35) to recreate a wave-

function undergoing quadrupole type dynamics in figure 2.4 (b).

However once we consider finite interactions each component is coupled and

the dynamics of one component has a distinguishable effect on the others,

appearing here as a beating phenomenon. A fast Fourier transform (FFT)

analysis of this data shows two distinct frequencies, one for the breathing

mode and another for the quadrupole mode. Measuring these frequencies

in three dimensions for a range of U we find peaks representing the breath-

ing and quadrupole frequencies as well as a number of smaller contribu-

tions from higher harmonic frequencies shown in figure 2.5. We record the

two dominant frequencies in this Fourier space data and display them ver-

sus the respective interaction strengths in figure 2.6. We can also use the

beat frequency calculated from this breathing and quadrupole frequency data
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to approximate an envelope above and below the radius oscillations as shown

in figure 2.6

2.5.3 Resonant behaviour for time-dependent

interactions

In the GPE, resonant dynamical behaviour may occur when parameters of

the system are driven at frequencies close to an eigenmode of the system,

ie. the breathing or quadrupole modes. The nonlinearity of the equation

can then induce nonlinear responses such as harmonic generation and shifts

in the frequencies of collective modes [11,16,58]. In these studies, in par-

ticular [58], the nonlinear response of a BEC described by the isotropic Gaus-

sian equation (2.37) is studied by modulating the strength of interactions

in a system and analysing the magnitude of resonant dynamics that oc-

cur. The strength of interactions is modulated as

U(t) = p+ q cos(Ωt). (2.61)

The system is initially in the ground state of the undriven U = p system

and, when driven with amplitude q and frequency Ω, the magnitude of the

non-linear response is defined as (σmin − σmax) /2. We find several responses,

ranging from slight constructive and destructive interference when Ω is far

from an eigenmode, to large resonant responses when the driving frequency

is close to an eigenmode. In figure 2.7 we show the time dependence of

σ for a number of driving frequencies. We also show the magnitude of these

resonant responses versus the driving frequency Ω. We find that large am-

plitude resonant responses occur near the undriven normal mode frequen-

cies ωB and higher harmonics 2ωB/n, n ∈ Z but offset by some amount

related to the magnitude q of the driven parameter. Shifted resonant fre-
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Figure 2.5: Quadrupole type dynamics and the Fourier space picture

for (top two panels) U = 0 (centre) U = 6 and (lower two panels)

U = 25, D = 3. Arbitrary y-axis units in Fourier space panels.
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Figure 2.6: (a) Frequencies of the breathing and quadrupole mode for

U = {0, ..., 25}. (b) Envelopes calculated from the difference in the

breathing and quadrupole frequencies.

quencies of this form have been studied in the context of variational ap-

proximations to the GPE in [11,58].
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Figure 2.7: (upper) Radius dynamics whilst modulating the interaction

strength U as U(t) = p + q cos(Ωt), p = 4.0, q = 3.0 in three dimensions.

(lower) Resonant amplitude (σmin − σmax) /2 versus driving frequency

Ω for p = 4.0, q = 3.0, 0.5. Resonance peaks occuring near undriven

breathing frequency ωB and harmonics as 2ωB/n (for integer n) with

offset amplified by the magnitude of the driving force q.



Chapter 3

Numerical study of the

Gross-Pitaevskii equation

3.1 Overview

In this chapter we will discuss the numerical methods used to treat the Gross-

Pitaevskii equation numerically before providing some basic results regarding

ground state wavefunctions and normal modes.

In section 3.2 we discuss the symplectic integration methods we will use

to solve the GPE numerically. We will begin with some simpler first and

second-order schemes in 3.2.1 and 3.2.2 before discussing the composition

methods used for more efficient, higher order schemes in 3.2.3. We will then

outline the process used to determine the sixth order Runge-Kutta-Nyström

methods [25], which we will use in the remainder of our GPE analysis, in 3.2.4.

Once we have determined the mechanisms for time evolution of the GPE,

we will discuss the imaginary time propagation method for approximating

ground state solutions to the GPE in section 3.3. We will provide a proof

46
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of some features of the GPE in imaginary time in 3.3.2. Quantities of

interest of the resulting wavefunctions are defined and sampling methods are

discussed in section 3.4. We will then apply the imaginary time propagation

method to investigate the ground state solutions of the GPE for a range of

interaction strengths U in section 3.5. We will compare these ground state

approximations to our variational ansätze and discuss the regimes of U , as

well as the extent of the spatial region x, in which these ansätze are valid in

3.5.1. Finally, we will apply our numerical algorithms to compare the normal

modes of the GPE with those of our variational equations in terms of their

characteristic frequencies in 3.5.2.

3.2 Symplectic integrators and operator

splitting

Symplectic integration schemes are numerical schemes used to solve Hamil-

tonian systems. For Hamilton’s equations in canonical coordinates p and q

we have the equations of motion (3.1)

ṗ = −∂H
∂q

, q̇ = ∂H

∂p
. (3.1)

Which may also be written in terms of a symplectic matrix asṗ
q̇

 =

 0 1

−1 0


∂H

∂p

∂H
∂q

 . (3.2)

The time evolution of these equations (p(t), q(t)) = φt(p(t0), q(t0)), is a

symplectic map, meaning it conserves the differential 2-form ω = dp∧ dq. In

classical mechanics, a symplectic map is a canonical transformation on the

phase space which is volume preserving and preserves this 2-form ω. Any

particular numerical scheme is considered symplectic if it also conserves this
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2-form. For a more detailed discussion of this background see any of [64–66].

When solving Hamiltonian systems, symplectic integrators offer advantages

over more traditional numerical schemes. In particular, in the current work

we are interested in computing small energy differences between various

interaction ramp variants. Finite difference methods, such as Runge-Kutta

methods, often contains secular terms in the total energy truncation error.

These terms lead to quadratic growth over long times and would therefore be

unsuitable for our current purposes. The methods we present in this section

exhibit near conservation of the total energy over long times at relatively

large step sizes [67]. Additionally, symplectic methods have the benefit of

being time reversible. This characteristic allows the composition of schemes

to develop successively higher order schemes [23] as we see in 3.2.3.

A widely used class of symplectic integrators are centred around separable

Hamiltonian systems, the GPE being an example of such a system. In the

case of the GPE, splitting the equation into kinetic terms Â and potential

terms B̂ allows either term to be solved analytically. The kinetic term is

solved in frequency space, and the external potential and interaction terms

in coordinate space. This operator splitting is referred to as a symplectic

method as the resulting schemes preserve the phase space volume and the

symplectic form ω.

3.2.1 First order symplectic integrators

Before discussing the more precise schemes which we use in our analysis, we

first give a demonstrative example. Consider the GPE as the composition of

two operators acting on a complex field ψ with one being a small perturbation

i~∂tψ =
(
Â+ εB̂

)
ψ (3.3)
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, with ε being some small parameter ε ∈ R. This system has a formal solution,

although not in closed form, as the complex exponential

ψ(x, dt) = exp
(
−idt(Â+ εB̂)/~

)
ψ(x, 0). (3.4)

As the quantities Â and B̂ are operators, they will not generally commute.

However, if we were to expand the above exponential in terms of the Baker-

Campbell-Hausdorff formula we would see that treating them as if they do

leads to an error of order dt2 as

ψ(x, dt) =
(
exp

(
−idtÂ/~

)
exp

(
−idtεB̂/~

)
+O(dt2)

)
ψ(x, 0). (3.5)

The elimination of these higher order terms in a Baker–Campbell–Hausdorff

expansion is the purpose of symplectic integration schemes.

3.2.2 Symplectic integrators of order two

Consider two operators Â and B̂ with a non-zero commutator and some small

real number τ representing the step size. The question of the correct manner

in which to take these alternating steps in frequency and coordinate space

can be framed as such.

Find a set of real numbers (a1, a2, ..., ak) and (b1, b2, ..., bk) such that for a

given integer n called the order of the integrator the following relation holds:

exp
(
τ
(
Â+ B̂

))
=

k∏
i=1

exp
(
aiτÂ

)
exp

(
biτB̂

)
+O(τn+1). (3.6)

When this equation is solved for a desired order n, the parameters {ai, bi}

will, when implemented numerically, yield a solution to the exponential

exp
(
τ(Â+ B̂)

)
with leading error term O(τn+1).

The typical approach to calculating {ai, bi} combinations, which is detailed
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in [21], is to expand the above equation to the desired order n as below.

Then after pairing off coefficients of operator permutations Â, B̂, ÂB̂, B̂Â...

and so on, we find

exp
(
τ
(
Â+ B̂

))
= 1 + τ(Â+ B̂) + 1

2τ
2(Â+ B̂)2 + ... (3.7)

k∏
i

exp
(
aiτÂ

)
exp

(
biτB̂

)
=

1 + τ(p1Â+ p2B̂)+τ 2(p3ÂB̂ + p4B̂Â+ p5Â
2 + p6B̂

2) + ... (3.8)

, where pi are polynomials in the parameters ai and bi proportional to the

terms Â, B̂, ÂB̂, B̂Â etc. Coefficients of like terms in (3.7) and (3.8) are

then equated to give a system of equations for the parameters {ai, bi}. For

example, for a first order integrator we would have

1 + τ(Â+ B̂) = 1 + τ(p1Â+ p2B̂). (3.9)

Therefore, when we equate like terms here we find p1 = 1 and p2 = 1. The

simplest solution to this would then be k = 1 or p1 = a1, p2 = b1, meaning

we recover the proposed first order method equation (3.5) with a1 = b1 = 1

and the basic first order symplectic scheme S1
1 (Snk being a symplectic scheme

with k applications of exponential operators eτÂ and eτB̂ and of order n),

S1
1 = exp

(
τÂ
)

exp
(
τB̂

)
. (3.10)

By this approach a second order integrator can be found. By including terms

of order τ 2 in equation (3.7) and (3.8) we find an additional equation for the

parameters ai, bi proportional to ÂB̂ along with those found for the first
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Figure 3.1: Flow diagram for Störmer-Verlet symplectic method with time

step τ .

order terms,

a1 (b1 + b2 + ...+ bk) + a2 (b2 + ...+ bk) + ...+ akbk = 1/2, (3.11)

a1 + a2 + ...+ ak = 1, (3.12)

b1 + b2 + ...+ bk = 1. (3.13)

When solved with k = 2 this additional equation allows us to compute the

canonical example amongst symplectic integrators, the Stormer-Verlet, or

Leapfrog scheme [22,23] with a1 = a2 = 1/2, b1 = 1 and b2 = 0

S2
2(τ) = exp

(
1/2τÂ

)
exp

(
τB̂

)
exp

(
1/2τÂ

)
. (3.14)

Implemented numerically this algorithm would follow the flow diagram figure

3.1.
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3.2.3 Composition methods for symplectic

integrators n ≥ 4

Although it is technically possible to find higher order methods using the

methods described above, it quickly becomes cumbersome to solve the ensu-

ing systems of equations. Following the process discussed in [21] and [23], it

is suggested that an integrator of order n + 2 can be formed by symmetric

repetition of an order n integrator as

S4(τ) := S2(x1τ)S2(x0τ)S2(x1τ). (3.15)

We take the second-order Stormer-Verlet scheme equation 3.14 as an exam-

ple,

S2
2(τ) = exp

(1
2τÂ

)
exp

(
τB̂

)
exp

(1
2τÂ

)
. (3.16)

By applying the Baker-Campbell-Hausdorff formula successively we can write

S2
2(τ) as a single exponential. Consider some arbitrary operators X̂ and Ŷ .

The Baker-Campbell-Hausdorff formula tells us

ln(eX̂eŶ ) = X̂ + Ŷ + 1
2[X̂, Ŷ ] + ... (3.17)

We want to know the equivalent of this expansion for the expression eX̂eŶ eX̂ .

We define an additional operator Ŷ ′ = 1
2 Ŷ . The product of three exponentials

can then be written as

eX̂eŶ eX̂ = eX̂eŶ
′
eŶ

′
eX̂ . (3.18)

If we define the resulting operator Ŵ as eX̂eŶ eX̂ = eŴ then by successive

application of the Baker–Campbell–Hausdorff we would have

Ŵ = (X̂ + 1/2Ŷ + ...) + (1/2Ŷ + X̂ + ...) = 2X̂ + Ŷ + ... (3.19)
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Where we have restricted ourselves to terms linear in X̂ and Ŷ for brevity’s

sake. A more comprehensive expression is given by [21] as

Ŵ =2X̂ + Ŷ + 1
6[Ŷ , [Ŷ , X̂]]− 1

6[X̂, [X̂, Ŷ ]] (3.20)

+ 7
360[X̂, [X̂, [X̂, [X̂, Ŷ ]]]]− 1

360[Ŷ , [Ŷ , [Ŷ , [Ŷ , X̂]]]]

+ 1
90[X̂, [Ŷ , [Ŷ , [Ŷ , X̂]]]] + 1

45[Ŷ , [X̂, [X̂, [X̂, Ŷ ]]]]

− 1
60[X̂, [X̂, [Ŷ , [Ŷ , X̂]]]] + 1

30[Ŷ , [Ŷ , [X̂, [X̂, Ŷ ]]]] + ...

If we apply this expression to the Stormer-Verlet scheme equation (3.16) we

find

S2
2(xτ) = exp

(
xτ(Â+ B̂) + 1

12x
3τ 3[B̂, [B̂, Â]]

− 1
24x

3τ 3[Â, [Â, B̂]] + 7
5760x

5τ 5[Â, [Â, [Â, [Â, B̂]]]] + ...
)
. (3.21)

Which after once again applying (3.20) in the spirit of (3.15) yields the

fourth-order scheme S4
4 :

S4
4(τ) =S2

2(x1τ)S2
2(x0τ)S2

2(x1τ) (3.22)

= exp
(
τα1(2x1 + x0) + τ 3α2(2x3

1 + x3
0) + ...

)
(3.23)

, where the terms αi are defined for notational convenience as α1 = (Â +

B̂), α2 = 1
12 [B̂, [B̂, Â]] etc. We can solve for x0 and x1 by requiring S4(τ) =

exp
(
τ( ˆ
A+ B̂)

)
+O(τn+1). This requirement leads to the system of equations

2x1 + x0 = 1 and 2x3
1 + x3

0 = 0 with solutions

x0 = − 21/3

2− 21/3 , x1 = 1
2− 21/3 (3.24)

≈ −1.70241 , ≈ 1.35121. (3.25)

Therefore, the full form of a fourth-order symplectic scheme is

S4
4(τ) = exp

(
a1τÂ

)
exp

(
b1τB̂

)
× ...× exp

(
a4τÂ

)
(3.26)
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, with coefficients a1 = a4 = 1/2x1, b1 = b3 = x1, b2 = x0, and a2 = a3 =

1/2(x0 + x1).

In this manner we can successively develop symplectic schemes of order n+2

by concatenating three instances of an order n scheme and solving for the

parameters ai and bi.

3.2.4 Symplectic Runge-Kutta-Nyström schemes of

order n = 6

Many possible schemes can be constructed using the composition methods

above. Several of which ranging from order n = 2 to n = 8 are pre-

sented in [24] with extensive analysis of the performance of each. Amongst

the best performing schemes discussed are the sixth-order Runge-Kutta-

Nyström (SRKN) schemes [25] which we present here shortly. These SRKN

methods are formed by symmetric compositions of operators exp
(
aiτÂ

)
and

exp
(
biτB̂

)
. Since the operators Â and B̂ are qualitatively different, there are

two possible compositions to be considered. Schemes beginning and ending

with an application of the Â exponential:

SRKNa
s = exp

(
a1τÂ

)
exp

(
b1τB̂

)
× ...× exp

(
bsτB̂

)
exp

(
as+1τÂ

)
(3.27)

, where as+2−i = ai and bs+1−i = bi. Or schemes beginning and ending with

an application of the B̂ exponential:

SRKN b
s = exp

(
b1τB̂

)
exp

(
a1τÂ

)
× ...× exp

(
asτÂ

)
exp

(
bs+1τB̂

)
(3.28)

, where as+1−i = ai and bs+2−i = bi.

Both of these methods of composition require s evaluations of eÂ and eB̂.

Rather than computing the coefficients ai and bi by solving systems of equa-

tions or compositions of lower order schemes, [25] treats the process of finding
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these schemes as an optimisation problem. An objective function based on

the coefficients {ai, bi} in (3.27) and (3.28) is minimised numerically. Choices

of initial coefficients were generated at random until 10,000 local minima

of the objective function were found. These 10,000 candidates were then

analysed further using a range of sample problems (one of which includes

the non linear Schrödinger equation). Two schemes of order 6 found using

this method are shown below and unless stated otherwise will be used for all

numerical integration calculations in the rest of this thesis.

SRKN b
11(τ) = exp

(
b1τB̂

)
exp

(
a1τÂ

)
× ...× exp

(
b5τB̂

)
exp

(
a5τÂ

)
exp

(
b6τB̂

)
× exp

(
a5τÂ

)
exp

(
b5τB̂

)
× ...× exp

(
a1τÂ

)
exp

(
b1τB̂

)
(3.29)

SRKNa
14(τ) = exp

(
a1τÂ

)
exp

(
b1τB̂

)
× ...× exp

(
a7τÂ

)
exp

(
b7τB̂

)
exp

(
a8τÂ

)
× exp

(
b7τB̂

)
exp

(
a7τÂ

)
× ...× exp

(
b1τB̂

)
exp

(
a1τÂ

)
(3.30)

The coefficients for both schemes are given in tables 3.1 and 3.2.

3.3 Ground states of the time independent

Gross-Pitaevskii equation

In this section, we will discuss the method of approximating ground state

solutions to Schrödinger like equations via imaginary time propagation.

3.3.1 Schrödinger equations in imaginary time

As an extension of the Schrödinger equation, the ground state wavefunctions

of the GPE can be computed to arbitrary precision using the method of
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a1 0.0378593198406116 b1 0.09171915262446165

a2 0.102635633102435 b2 0.183983170005006

a3 0.0258678882665587 b3 0.05653436583288827

a4 0.314241403071447 b4 0.004914688774712854

a5 0.130144459517415 b5 0.143761127168358

a6 0.106417700369543 b6 0.328567693746804

a7 0.00879424312851058 b7 1/2− (b1 + ...+ b6)

a8 1− 2(a1 + ...+ a7)

Table 3.1: Coefficients of the SRKNa
14 scheme.

a1 0.123229775946271 b1 0.0414649985182624

a2 0.290553797799558 b2 0.198128671918067

a3 -0.127049212625417 b3 -0.0400061921041533

a4 -0.246331761062075 b4 0.0752539843015807

a5 0.357208872795928 b5 -0.0115113874206879

b6
1
2 − (b1 + ...+ b5)

Table 3.2: Coefficients of the SRKN b
11 scheme.

imaginary time propagation. This method consists of a Wick rotation in

time from t to it. Consider any Schrödinger type equation transformed into

imaginary time

∂itψ = −Hψ/~. (3.31)

Decompose the wavefunction ψ as a sum of the energy eigenfunctions φi as

ψ =
∑
i

ci · φi. (3.32)

For each individual eigenfunction the solution to (3.31) becomes

φi(τ) = e−τEiφi(0) (3.33)



CHAPTER 3. NUMERICAL METHODS 57

, where we have defined the imaginary time parameter τ as τ def= it/~. The

solution for the full wavefunction is then the sum over all eigenfunctions φi
where

ψ(τ) =
∑
i

e−τEici · φi(0). (3.34)

Which means at every step of size τ , the relative population of the ground

state eigenstate to that of all other states is proportional to the energy of

said eigenstate as
φi(τ)
φ0(τ) = e−τ(Ei−E0) φi(0)

φ0(0) . (3.35)

Meaning if this process is repeated many times, the overall wavefunction ψ

will tend towards the ground state φ0 as long as the initial state ψ(0) has

some finite overlap with the ground state φ0.

3.3.2 Normalisation and energy decay in the GPE

Here we provide a proof of some features of the imaginary time propagation

method in the Gross-Pitaevskii equation [26]. Firstly, consider the GPE

transformed to imaginary time ie. t→ τ = it:

∂τψ = 1
2∇

2ψ − V (x)ψ − U |ψ|2ψ, τ > 0,x ∈ Ω, (3.36)

ψ(x, 0) = ψ0(x), x ∈ Ω, (3.37)

ψ(x, τ) = 0, x ∈ Γ, τ ≥ 0 (3.38)

, where Ω ⊂ RD, V (x) is the trapping potential and Γ = ∂Ω is the boundary

of the region Ω.

We can then establish the following theorem.

Theorem 2. Suppose V (x) ≥ 0 for all x ∈ Ω, U ≥ 0, 0 < τ < τ ′ < ∞
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and ||ψ0|| = 1, then

(i) ||ψ(x, τ ′)|| ≤ ||ψ(x, τ)|| = 1, (3.39)

(ii) E [ψ(x, τ ′)] ≤ E [ψ(x, τ)] (3.40)

, where we have adopted the norm || · || as || · ||L2(Ω).

Proof. To prove (i), we compute the time derivative of ||ψ||, using (3.36) and

integrating by parts we find

d

dτ
||ψ|| =

∫
Ω

(
ψ̇ψ∗

)
dx + h.c. (3.41)

=
∫

Ω

[1
2ψ
∗∇2ψ − V (x)|ψ|2 − U |ψ|4

]
dx+ h.c. (3.42)

=− 2
∫

Ω

[1
2 |∇ψ|

2 + V (x)|ψ|2 + U |ψ|4
]
dx ≤ 0 (3.43)

, which implies 2 (i).

To prove (ii) we use (2.15) along with (3.36) as

d

dτ
E[ψ] = d

dτ

∫
Ω

1
2 |∇ψ|

2 + V (x)|ψ|2 + U

2 |ψ|
4dx (3.44)

=
∫

Ω
ψ̇
(
−1

2∇
2 + V (x) + U |ψ|2

)
ψ∗dx + h.c. (3.45)

=
∫

Ω
−
∣∣∣∣12∇2 − V (x)− U |ψ|2

∣∣∣∣2 dx + h.c = −2
∫

Ω
|∂τψ|2dx (3.46)

, which implies (ii).

It should be noted here that, even though we stated all numerical calcula-

tions would be performed using the SRKN methods defined in the previous

section, imaginary time propagation calculations are the exception. A single

time step taken in imaginary time τ using these 6th order methods reduces

the norm ||ψ|| by such an amount that the 64 bit floating point array of ψ is

rounded to zero. For this reason, any use of the imaginary time propagation

algorithm will use the 4th order symplectic scheme equation (3.26)
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3.4 Energy and Variance of the

time-dependent Gross-Pitaevskii

equation

To record excess energy after various ramps in Chapter 4 we will be taking

the difference between the final energy and the ground state energy. Since

these differences will at times reach values of the order 10−10 and smaller,

we will require measurements of energy with a precision at least greater than

these minimal values. To reach these high levels of precision we use higher

order central difference methods to approximate the GPE energy functional

(2.15). As a reminder, the GPE energy functional is

E[ψ(x, t)] =
∫

Ω
dx

~2

2m |∇ψ|
2 + V (x)|ψ|2 + U

2 |ψ|
4. (3.47)

The external potential and interaction terms can be solved exactly (up to

spatial discretisation error) using the wavefunction. The kinetic energy term

will be discretised using the methods below.

3.4.1 Central difference methods

Consider the Taylor series of some arbitrary function f(x + h) plus some

small deviation h

f(x+ h) = f(x) + hf ′(x) + h2f
′′(x)
2! + ... (3.48)

Rearranging this, we can find the common O(h) approximation to the deriva-

tive f ′(x)
f(x+ h)− f(x)

h
= f ′(x) + h

f ′′(x)
2! . (3.49)
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∇n Order -4 -3 -2 -1 0 1 2 3 4

1 2 -1/2 0 1/2

4 1/12 -2/3 0 2/3 -1/12

6 -1/60 3/20 -3/4 0 3/4 -3/20 1/60

8 1/280 -4/105 1/5 -4/5 0 4/5 -1/5 4/105 -1/280

Table 3.3: Table of central difference coefficients for first derivatives.

By the same process, various higher order central difference approximations

to the derivative can be formed. Table 3.3 shows the coefficients of these

higher order central difference schemes, for example, the second-order ap-

proximation to the first derivative has coefficients −1/2, 0 and 1/2 meaning

the derivative would be:

f(x+ h)− f(x− h)
2h = f(x) + h2 (f ′′′(x1) + f ′′′(x2))

12 (3.50)

In all numerical calculations for the GPE energy, we use the 8th order central

difference of table 3.3 in the interior of ψ(x). Around the boundaries of ψ(x)

we use successively lower order schemes until at the boundary ψ(∂x) we use

forward or backward derivatives before integrating.

3.4.2 Wavefunction variances and variational

equation comparisons

The width of the wavefunction ψ(x, t) is measured using the variance Var[|ψ|2]

given by

Var[|ψ|2] =
∫

x
(x− 〈x〉)2|ψ|2dx = 〈x2〉 − 〈x〉2. (3.51)
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However, as the mean 〈x〉 is zero when no dipole mode is present, in our

analysis this will usually reduce to the width rGP

rGP =
∫

Ω
x2|ψ|2dx. (3.52)

To have some commensurable quantity between the GPE and the two vari-

ational equations, we compute rVM for each of the two variational ansätze.

This leads to rescaled versions of the variational parameters σ and ρ to be

compared to the GPE data

rG = σ2

2 , rTF = ρ2

5 (3.53)

, for the widths of the Gaussian ansatz rG and the Thomas-Fermi ansatz

rTF .

3.5 Numerical solutions of the one

dimensional GPE

In this section, we will implement the numerical methods outlined in the

beginning of this chapter. Initially in 3.5.1 we will calculate the ground state

wavefunctions necessary for performing an analysis of interaction ramps.

This will be performed using the imaginary time propagation methods dis-

cussed previously.

We will take some time to analyse how these ground states respond to varying

interaction strength as well as the regimes of U satisfying either of the

Gaussian and Thomas-Fermi ansätze. We will then compare the charac-

teristics of GPE dynamics to those predicted by the variational equations in

3.5.2, namely the frequencies of breathing modes versus interaction strength.

Finally, we will show the effect or lack thereof of the interaction strength on

the dipole mode frequency.
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Figure 3.2: GPE ground state wavefunctions as compared to the Thomas-

Fermi and Gaussian variational ansätze. Parameters for ground state

calculations: m = 10, ε = 10−10, n = 25, initial time step dτ = 0.5, and

spatial discretisation dx = 0.025.

3.5.1 Gross-Pitaevskii ground states

The imaginary time propagation method allows us to calculate ground state

wavefunctions of the GPE to arbitrary precision for any value of the inter-

action strength U . However, the precision achievable is heavily dependent

on the discretisation used. At too large an imaginary time step size dτ , the

algorithm will plateau at high energy states. To reach an approximation to

the ground state of sufficient precision for our purposes, we are then forced

to use very fine discretisations in time. Of course using such a small time

step will quickly become tiresome, so instead we use an adaptive imaginary

time step dτ , decreasing as the evolution goes on. The criteria we use be

to reduce the step by a factor of 1/2 if a plateau in the value of previous

energy measurements is detected. A plateau will be defined as a sequence

of energy samples satisfying abs(Ei/Ei−m) > 1 − ε for some integer m and
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Figure 3.3: Particles inserted to the right of the dotted line would have more

kinetic than potential energy meaning the Thomas-Fermi approximation is

only valid in the region to the left of this line.

small parameter ε and each loop will halted after some fixed number of steps

n.

An initial comparison of the GPE and variational ground state solutions

shows clearly the areas in which either variational ansatz is valid. Figure 3.2

shows the ground state solutions (using parameters m = 10, ε = 10−10, n =

25) versus the stationary solutions of Gaussian isotropic and Thomas-Fermi

variational equations (2.37) and (2.49) respectively. In the limit of the non-

interacting GPE, the Gaussian ansatz is the exact solution by design, however

the Thomas-Fermi solution is undefined. As the strength of interactions grow,

the inverted parabola form of the Thomas-Fermi solution becomes a much

stronger approximation to the GPE solution.

At the boundary of the condensate the assumption that the potential

dominates over the kinetic energy fails. We can see the point at which the

crossover between kinetically dominated and potentially dominated energy

contributions occurs as follows. The wavefunction density in the one dimen-



CHAPTER 3. NUMERICAL METHODS 64

sional Thomas-Fermi regime is |ψ(x)|2 = (µ− V (x)) /U . By expanding the

wavefunction about some point x = ρ at the boundary of the condensate,

this radial component becomes

|ψ(x)|2 = µ− V (ρ)
U

−
∂xV (x)

∣∣∣
ρ
· (x− ρ)
U

⇒ψ(x) =
(
F · (x− ρ)

U

)1/2

(3.54)

, where F is the force exerted on a particle at the boundary of the condensate

due to an isotropic harmonic potential. We also use the fact that µ−V (x) = 0

when evaluated at the boundary x = ρ. When we assume V (x) is a harmonic

potential the force F is

F = −∇V (ρ) = −mω2ρ (3.55)

, where the minus sign implies the force is acting towards the centre of the

trap. The kinetic energy per particle of a condensate satisfying (3.54) is

~2

2m

∣∣∣ d
dx
ψ
∣∣∣2

|ψ|2
∼ ~2

8m(ρ− x)2 . (3.56)

In the Thomas-Fermi regime, we assume that the wavefunction density van-

ishes at some width ρ which then implies that µ − V (ρ) = 0. We can then

make a linear approximation to this difference in the bulk of the condensate

and say

µ− V (x) = |F |(ρ− x) (3.57)

, where |F | is the magnitude of the force F . The crossover point at which the

energy contributions due to the kinetic energy of particles becomes greater

than that of the potential energy occurs when δ ≈ ρ− x for

δ =
(

~2

8m2ω2ρ

)1/3

. (3.58)



CHAPTER 3. NUMERICAL METHODS 65

Figure 3.4: Widths
∫
x x

2|ψ|2dx and energies E[ψ] of ground states from

GPE, Gaussian and Thomas-Fermi variational equations. GPE errors

calculated from the amplitude of residual oscillations after imaginary

time propagation is halted for the r0 data and the square of said

oscillations for the E0 data.

The parameter δ gives us an idea of the region of the condensate wavefunction

in which the Thomas-Fermi approximation makes a reasonably good predic-

tion of the true GPE solution. Comparing to the numerical results once

again, in figure 3.3 we see that the region within this boundary δ, ie. the

proportion of particles within the condensate satisfying the Thomas-Fermi

condition, grows larger as we increase the interaction strength in the system

as expected. Further discussion of this result and other features of the surface

structure of BEC’s in the Thomas Fermi regime can be found in [68].

3.5.2 Normal modes of the GPE

In Chapter 2, we studied the monopole and quadrupole normal modes of

a BEC using our variational equations of motion for a three-dimensional

condensate. In one-dimensional systems, the scope of possible dynamical

modes is restricted to monopole and dipole modes. Here we compare the
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breathing mode dynamics of the GPE with that of the Gaussian and Thomas-

Fermi variational equations. We also sample the frequency of the dipole mode

for the GPE alone.

Breathing modes

To initiate dynamics from the calculated ground states, we apply a sud-

den quench in U . If starting from a ground state ψ0 at some value Ui, U

is varied to some final value Uf rapidly, forcing the system into a breath-

ing mode with frequency ωB. An example of this effect is provided in fig-

ure 3.5. We then use an FFT to convert the r(t) signal into its frequency

domain representation. The dominant Fourier mode in this representation

is the breathing mode. By sampling these dominant frequencies we can con-

firm the results found in Chapter 2 for isotropic breathing frequencies, namely

the
√
D + 2 limit at large U and ω = 2 for the noninteracting limit. In

the intermediate range we find a good agreement between the simplified

Gaussian ansatz and the full GPE calculation for the frequency of breath-

ing modes.

We note that finite size effects have a notable effect on the values mea-

sured for any characteristic frequencies. In this section as well as the fol-

lowing section, the error ranges for both ωB and ωD are calculated as fol-

lows. We calculate three versions of σ(t) or µ(t) data using different dis-

cretisation schemes. Once using a control discretisation of (dx1, dt1), then

two more with finer steps in space and time (dx2, dt1) and (dx1, dt2). We

record the deviations between these three calculations, taking the maximum

difference to be an upper bound on the numerical error. Discretisations used

for the data shown in 3.6 are, in pairs,

(dx, dt) = {(0.025, 0.05), (0.025, 0.025), (0.0125, 0.05)}.
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Figure 3.5: (left) Breathing mode induced by a rapid quench in U

from U = 1 to U = 2. (centre & right) Fourier analysis for (centre)

U = 2 and (right) U = 20 breathing mode (arbitrary y-axis units).

Dipole modes

Additionally, in the full GPE we can also investigate dipole type oscilla-

tions, a phenomenon we did not allow for in our variational ansätze. In

a three dimensional condensate there are three available dipole modes, one

for each Cartesian axis. In the one-dimensional system there is only one.

Dipole motion is investigated by tracking the mean of the wavefunction µ(t) =∫
x x|ψ(x, t)|2dx. When dipole oscillations are initiated (by offsetting the cal-

culated ground states from the centre of the trap), we find that varying

the internal interaction strength of the system has no effect on the frequency

of the dipole mode (up to numerical discretisation error).

This result can be shown to be related to the Kohn theorem [69] as well

as the generalised Ehrenfest theorem for the non-linear Scrödinger equa-

tion [70,71]. This constant frequency has been used as an indicator for cal-

ibration in experimental investigations into trapped BEC’s [72]. The con-

nection to trapped Bose gases has been discussed in detail in [73]
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(a) (b)

Figure 3.6: (a) Breathing frequency ωB from the GPE and both

variational equations. (b) Constant dipole frequency from the GPE,

errors approximated by three calculations over differing discretisations.



Chapter 4

Shortcuts to adiabaticity

4.1 Overview

In this chapter we will use the inverse engineering method discussed in section

1.2.3 to determine a number of interaction ramps approximating shortcuts

to adiabaticity. We will briefly make some analytic arguments towards the

behaviour of a BEC undergoing these ramps. Following this we will make a

more thorough numerical investigation into their function.

The chapter will be split into three main sections. In section 4.2 we will

implement the inverse engineering method used to derive an interaction ramp

in a BEC. In general, this method will approximate a shortcut to adiabaticity

in a BEC described by our variational approximations. We will refer to

ramps designed in this way as manufactured ramps. We note 3 possible ramp

variants but will largely focus on one manufactured ramp using a Thomas-

Fermi-esque approximation to the Gaussian variational equation. In 4.2.4 we

define the deviation between the final energy attained after the ramp and the

ground state energy of the final target state as the function Q(τ) describing

69
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the efficacy of a particular ramp process. We then discuss the scaling of such

a function with respect to the ramp’s duration τ .

Hereafter we will employ numerical methods, including common ODE tools

and the methods outlined in Chapter 3, to analyse the behaviour of these

ramps in the context of both the variational equations in section 4.3 and the

GPE in section 4.4.

Section 4.3 will pertain to numerical solutions of the Thomas-Fermi and

Gaussian variational equations. We will confirm numerically the scaling

arguments made earlier in the chapter regarding the τ dependence of the

function Q. We find that Q(τ) has a predictable power law decay, and also

oscillates with some frequency Ω. We find that this frequency tracks closely

behind the natural breathing frequency of the condensate system at the end

of the ramp, ie. Ω ≈ ωB(Uf )

In section 4.4 we repeat the analysis discussed above for the GPE. As the

quantities we are sampling are of an order ∼ 10−10 at times, the propagation

of errors due to subtracting two very small numbers necessitates a very high

precision in our evolution and sampling. For this reason, we will analyse in

detail the propagation of errors in, and convergence of, our numerical calcu-

lations. We will then compare this GPE data to the variational equivalents,

paying attention to the respective power law exponents and frequencies as in

the variational case.

4.2 Inverse engineered shortcuts to

adiabaticity

The first step in implementing the inverse engineering method to determine

shortcuts to adiabaticity is defining the desired trajectory of some system



CHAPTER 4. SHORTCUTS TO ADIABATICITY 71

parameter. In our case this parameter will be the width σ of the BEC cloud.

We then use this trajectory as a constraint to compute the corresponding

trajectory of our control parameter. In our case, we choose the path of

σ(t) in the Gaussian variational equation that would yield a ground state

to ground state transition, then work backwards to the path of U(t) that

generates this.

4.2.1 Target trajectory of σ(t) and the polynomial

ansatz.

In Chapter 2 we showed that a system obeying the GPE has breathing

and quadrupole normal modes which can be approximated using any of the

variational equations (2.35), (2.37), or (2.49). For the purposes of this section

we assume the dynamics to be described by the single parameter isotropic

case of the Gaussian system of equations:

σσ̈ + σ2 − σ−2 = U(t)(√
2πσ

)D . (4.1)

Since this equation is non-linear for D 6= 2 we define the function h(U) as a

stationary solution to the variational equation above. In general, the target

trajectory of the parameter σ is

R0(t̃) = h(Ui) + (h(Uf )− h(Ui)) ξ(t̃)

ξ(t̃) =
N∑
n

ant̃
n, an ∈ R, t̃ ∈ [0, 1]. (4.2)

The equation R0(t̃) and the polynomial ξ(t̃) are parametrised by the length

of the ramp τ where each of these ramps are defined on the interval t̃ ∈ [0, 1]

and t̃ = t
τ
. The choice of polynomial ξ and the function h(U) determines the

specific trajectory U(t̃) we find. In order to determine a suitable solution for
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ξ we impose the boundary conditions on equation (4.2)

R0(0) = h(Ui), R0(1) = f(Uf ),

Ṙ0(0) = Ṙ0(1) = R̈0(0) = R̈0(1) = 0. (4.3)

Conditions at the beginning of the ramp ie. at t = 0 imply the system

begins in its ground state as R0(0) = σ0. Similarly the conditions at the

end of the ramp ie. at t = τ imply the system ends the process in its

ground state also. Together these conditions, if fulfilled, ensure a ground

state to ground state transition with no induced excitations. These conditions

then imply the corresponding conditions on the ramp polynomial ξ(1) = 1,

ξ(0) = ξ̇(0) = ξ̇(1) = ξ̈(0) = ξ̈(1) = 0. Imposing these conditions on the

general N th order polynomial ξ(t̃) leads to the system of equations

N∑
n

an = 1
N∑
n

nan = 0 ,
N∑
n

(n− 1)nan = 0. (4.4)

From here we must make a choice regarding the solution to (4.4) as well as

the function h(U) approximating the stationary width of the condensate in

relation to U . Over the remainder of section 4.2 we outline a number of these

choices and their resulting interaction ramps.

4.2.2 Ramps in the Thomas-Fermi limit

By ignoring the contributions of the σ−2 term in equation (4.1) we find the

approximate solution h(U) =
(
U/
√

2π
) 1

2+D . For simplicity for this section

we assume the system is one dimensional so h(U) =
(
U/
√

2π
) 1

3 . This

approximation to the isotropic equation of motion along with taking the

lowest order solution to the system of equations determining ξ(t̃) at N = 5

leads to the polynomial ξ(t̃) = 10t̃3 − 15t̃4 + 6t̃5. After inserting the target
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Figure 4.1: Ramp trajectories in the Thomas-Fermi limit for N = 5

polynomial ramp θ(t̃) equation (4.5) and linear η(t̃) ramp, τ = {0.5, 2.0, 5.0},

Ui = 1.0.

path R0(t̃) into the isotropic equation of motion we find the ramp trajectory

U(t̃) = θ(t̃):

θ(t̃) =
(
U

1/3
i + λξ(t̃)

)2
×
(
U

1/3
i + λξ̈(t̃) + λξ(t̃)

)
, λ = U

1/3
f − U1/3

i . (4.5)

For ease of notation, we also define a linear interaction ramp as η(t̃). A

number of the curves generated by this function, as well as the η(t̃) linear

ramp, are shown in figure 4.1. We can see from figure 4.1 that when the

duration of the ramp τ is below some threshold, θ(t̃) temporarily causes the

system to obtain negative (attractive) interactions. In this case the ground

state of the system would become qualitatively different from the Gaussian

ansatz we have chosen and this variational approximation would likely break

down. For this reason we largely ignore these shortest duration ramps in the

analysis to follow.
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4.2.3 Efficiency metric for interaction ramps

The goal of these interaction ramps is to vary the parameter U from some

initial value Ui to some final value Uf whilst avoiding unwanted excitations

in the final target state. We begin at t = 0 in the ground state ψ0 at

U = Ui. In the case of a perfectly adiabatic transition, the wavefunction

after this evolution from t = 0 to t = τ will be the ground state in the new

system at U = Uf . In the case of a trajectory resulting in a less than perfect

replication of the final system’s ground state we require a metric by which to

measure how well each trajectory has performed. In many of the applications

discussed in Chapter 1, the energy added to the system is often of primary

concern. For that reason, we use a metric based on the deviation from the

ground state energy at the current interaction strength U = U(t) and time t

to determine the effectiveness of our scheme,

Q(t) = E[ψt]− Et
0. (4.6)

, where Et
0 is the ground state energy of the system at time t and U = U(t).

4.2.4 Approximate scaling of excess energy

As the derivation of the θ(t̃) ramp assumes a Thomas-Fermi like solution to

the isotropic equation, we do not expect to see a true shortcut to adiabatic-

ity. As θ is a smooth continuous function however we would expect it to

eventually approach adiabaticity at large timescales τ . We might then try to

understand how the excess energy function Q(τ) behaves in the intermediate

regions between τ = 0 instantaneous ramps and τ → ∞ adiabatic ramps.

For this we define a function of the parametrised time coordinate t̃

f(t̃) = σ(t̃)−R0(t̃) (4.7)
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, describing the deviation of σ from the target radius path. The excess energy

Q should then scale as the square of this deviation when evaluated at the

endpoint of the ramp t̃ = 1. The true behaviour of f(t̃) is likely intractibly

complicated as we cannot solve for σ(t̃) directly. However, we can consider

a simplified scenario in which the small radius oscillations along the ramp

trajectory are ignored and the fluctuations at t̃ = 1 come purely from the

derivative of f(t̃) as

f(t < τ) = 0 , f ′(t < τ) 6= 0. (4.8)

For reference, the target radius paths of the linear and manufactured ramps

Rη
0(t̃) and Rθ

0(t̃) respectively are

Rη
0(t̃) =h(Ui) + (h(Uf )− h(Ui)) t̃, (4.9)

Rθ
0(t̃) =

(
Ui√
2π

)1/3

+
( Uf√

2π

)1/3

−
(
Ui√
2π

)1/3
 ξ(t̃). (4.10)

To understand the scaling of f ′(t̃) then we need to compute or approximate

that of σ′(t̃)
∣∣∣
t̃=1

and R′0(t̃)
∣∣∣
t̃=1

. Intuitively it seems σ′(τ) should have an oscil-

latory mode plus some overall decay. In figure 4.2 we check this assumption

numerically for a number of ramps. From here we see σ′ ∼ τ−1 and σ′ ∼ τ−3

for the linear and manufactured ramps respectively. Define these exponents

as αη and αθ. The scaling of the function f i′ for i = {η, θ} then is

f i′(t̃) ∼ Ri
0
′(t̃) + τ−α

i

. (4.11)

By differentiating equations (4.9) and (4.10) we find the target paths Ri
0 scale

identically to σ′ for both the linear and manufactured ramps. It follows then

that f i′(t̃) ∼ τ−α
i . Now assume f(t′ = t > τ) is of the form

f(t′) = ρ sin(Ωt′)⇒ f ′(t′) = −Ωρ cos(Ωt′). (4.12)



CHAPTER 4. SHORTCUTS TO ADIABATICITY 76

Figure 4.2: Scaling of σ′(τ) for ramps over τ = {5, ..., 25}. (left) Linear ramp,

solid line is a τ−1 decay. (right) Manufactured ramp, solid line is a τ−3 decay.

Evaluating this at t = τ or t′ = 0 and equating the result to f ′(t̃) leads to

the scaling of f ′(τ)

f i′(τ) = −Ωρ = cτ−α
i

⇒ρi ∼ τ−α
i ⇒ f i(t > τ) ∼ τ−α

i ⇒ Qi(τ) ∼ τ−2αi

. (4.13)

For linear ramps then we haveQη(τ) ∼ τ−2 and manufactured rampsQθ(τ) ∼

τ−6.

These results offer no more than an approximate qualitative description of

the overall Q(τ) response to various ramp shapes and durations. In the

following section we will perform a numerical analysis of the linear η(t̃) and

manufactured θ(t̃) ramp shapes to determine their effectiveness in both the

variational regime as well as for the full GPE model. Before we move on

however, we note an alternative ramp shape that meets the requirements of

equation 4.4 whilst providing an exact shortcut to adiabaticity at any τ .
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4.2.5 An exact shortcut to adiabaticity in two

dimensional systems

When considered in two dimensions, the Gaussian isotropic variational equa-

tion becomes solvable. This allows for the exact solution σ0 to the stationary

equation

σ0 =
(
U

2π + 1
)1/4

. (4.14)

By following the procedure as outlined in subsections 4.2.2 and 4.2.1, this

solution leads to the interaction ramp

κ(t̃) = 2π

(λ1
(
ξ(t̃) + ξ̈(t̃)

)
+ λ0

)
×
(
λ0 + λ1ξ(t̃)

)3
− 1

. (4.15)

Here λ0 and λ1 are defined as

λ0 =
(
Ui
2π + 1

)1/4
, (4.16)

λ1 =
(
Uf
2π + 1

)1/4
−
(
Ui
2π + 1

)1/4
. (4.17)

We will see in figure 4.8 (c) that this ramp yields zero excess energy when im-

plemented in a system with dynamics obeying the two dimensional Gaussian

variational equation.

4.3 Performance of engineered ramps -

Variational equations

In this section, we will use numerical simulations of the variational equations

to analyse the effect of the interaction ramps discussed in the previous section

on the excess energy Q(τ). Unless mentioned otherwise, we will only be

considering comparisons between the fifth order manufactured ramp θ(t̃)
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Figure 4.3: Ramp trajectories: exact κ(t̃), Thomas-Fermi θ(t̃) and linear

η(t̃) ramps using the two dimensional variational equation (4.15), τ =

{0.5, 2.0, 5.0}, Ui = 1.0 and Uf = 1.2Ui and 2.0Ui.

equation (4.5) and linear η(t̃) ramps. Numerical data will come from the

isotropic Gaussian variational equation mainly in one dimension, but we will

also show a two-dimensional calculation in figure 4.8.

4.3.1 Time dependence of radius and excess energy

Before analysing the excess energy at the end of a ramp t = τ we would

like to first understand how the radius σ(t̃) and excess energy Q(t̃) of a

wavefunction reacts in the intermediate times 0 < t < τ under the action

of θ(t̃) and η(t̃) ramps. As we derived the θ(t̃) ramp under a Thomas-Fermi

approximation, we would expect to see a significantly more efficient ramp

when the average interaction strength of the ramp is large.

In figure 4.4 we show the radius dynamics, ramp path and excess energy for

ramps in this small τ region. What is evident from this initial data is a clear
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Figure 4.4: Radius dynamics σ(t) equation (2.37) over manufactured θ(t̃)

ramp equation (4.5) and linear η(t̃) ramp. Excess energy Q(t) = Et −

E0[U(t)], parameters (left) (Ui, Uf ) = (1, 2) (right) (Ui, Uf ) = (25, 50),

τ = {0.5, 1.5, 5.0} for each row respectively.

decay in the amplitude of radius dynamics at the end of the θ(t̃) ramp when

U is large as we expected. Excess energy measurements are likely decaying

in tandem but are not clearly visible from this data.

Conversely, the linear η(t̃) ramps have the opposite effect, producing larger

amplitude radius oscillations as well as larger excess energy at larger mean

values of the interaction strength.

4.3.2 Dependence of excess energy on ramp duration

Regarding the excess energy remaining at the end of a ramp, there are a

number of features we can examine. For example, the mean value of a Q(τ)

curve with respect to the average interaction strength shows a decay for the
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Figure 4.5: Mean excess energies Q̄ (averaged over τ) versus Uf with Uf =

2Ui and τ = {1, ..., 40}.

manufactured θ ramp and a growth for the η linear ramp. This behaviour

can be justified by noting the Thomas-Fermi like approximation used in the

derivation of the manufactured ramp leads to a more effective ramp process

with lesser excess energy at large values of U . The two quantities we focus on

here however will be the power law scaling ofQ with τ , namely the parameter

ν in τ−ν , and the frequency of oscillation Ω of Q(τ).

In figure 4.7 we plot the ν = 2 and ν = 6 values approximated earlier

in this chapter against the numerical Q(τ) data for a number of values of

(Ui, Uf ). In the instance tested these curves approximate an upper envelope

of the numerical data. To estimate the frequency of this Q(τ) data, and

for a more thorough confirmation of this decay rate, it is helpful to have a

model function. We find that a shifted and rescaled cosine function of the

form g(τ) = aτ−2 + bτ−2 cos(c+ Ωτ) is fit for this purpose excluding small

τ ∼ 1 ramps. An example of this model and a least squares estimation

of its parameters is shown in figure 4.7. Using this model we can sample

the frequency of oscillation Ω and a larger number of decay exponents ν. We
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Figure 4.6: Excess energies from the isotropic Gaussian equation for ramps

with Uf/Ui = 2.

find the decay exponents are constant with respect to the average interaction

strength. We also see that the excess energy frequency Ω closely follows the

breathing frequency of the condensate at U = Uf . A number of fits with

the decay exponents ν = 2 and ν = 6 are shown in figure 4.7. The Ω(Uf )

frequency data is shown in figure 4.8 along with the breathing mode frequency

at U = Uf .

To summarise this data we have provided excess energy data for a grid

of Ui and τ parameters also in figure 4.8 (a).

We also show excess energy data for the two-dimensional ramp variant κ(t̃)

equation 4.15 and the previous manufactured ramp θ(t̃) both calculated

in two dimensions in figure 4.8 (c). Note the θ(t̃) excess energy data in

two dimensions lacks the frequency variation we see in the one dimensional

implementations due to the constant breathing frequency of two-dimensional

systems. When considered alongside the discussion which we will present in
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Figure 4.7: Model g(τ) = τ−ν(a + b cos(c+ Ωτ)) fit to Q(τ) data for linear

η(t̃) with ν = 2 and fifth order manufactured θ(t̃) ramp with ν = 6.

subsection 4.4.2, this data further builds on the connection between natural

breathing frequencies ω and the frequencies of the excess energy curves Ω.

4.4 Performance of engineered ramps - GPE

In this section, we repeat the excess energy analysis of the previous section

whilst using the GPE for our simulations rather than the variational equa-

tions. As this involves the evolution of a PDE rather than an ODE, the

discretisation of space and time are of much greater importance. For this

reason, we take some time initially to understand the effect of discretisation

on our calculations of Q(τ) curves. We collect three distinct sets of Q(τ)

data for a particular choice of (Ui, Uf ): one control set with discretisation

(dx1, dt1), one with a fine spatial mesh (dx2, dt1), and one with a fine time

mesh (dx1, dt2). We then vary the step size parameter pairs dx and dt until
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Figure 4.8: Ramp excess energy comparisons using gaussian isotropic equa-

tion. (a) Excess energy data for (left) linear η(t̃) and (right) manufactured

θ(t̃) ramps in one dimension with Ui = {1, ..., 20}, Uf = 2Ui, and τ =

{1, ..., 40}. (b) Frequencies Ω of Q versus Uf for linear η and manufactured

θ ramp. Also shown are the breathing frequencies ωB at U = Uf . (c)

(left) Manufactured θ(t̃) showing constant frequency Q(τ) due to constant

breathing frequency in two dimensions. (right) Zero excess energy (to

machine precision) using exact shortcut ramp κ(t̃) in two dimensions.
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Figure 4.9: Comparison of variational equation excess energy data to that of

the GPE. Parameters for imaginary time evolution step update criteria: δ =

100, ε = 10−14, n = (20′000, 100′000) for left and right figures respectively,

discretisation: dx = 0.00025, dt = 0.001.

these data sets are consistently converged to at least 2 orders of magnitude

less than the smallest Q(τ) data point.

In figure 4.9 we use these converged discretisation parameters to compare our

variational data to that of the GPE. As we would expect, the two methods

tend to diverge somewhat as we increase the average interaction strength of

the system.

4.4.1 Dependence of excess energy on ramp duration

In the GPE data, we find more deviations from the g(τ) model used in section

4.3, particularly at low Q values due to numerical precision issues. We also of

course cannot collect as much data as we could with the variational equations.

However we can still make some sparse measurements for the quantities Ω

and ν. In figure 4.10 we show the g(τ) model from the previous section
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Figure 4.10: g(τ) = τ−ν(a+ b cos(c+ Ωτ)) model fit to (a) linear η(t̃) ramp

data and (b) θ(t̃) manufactured ramp data. Parameters and discretisation

used: δ = 100, ε = 10−14, n = 50′000, dx = 0.00025, dt = 0.001.

fitted to GPE Q data for ramps of (Ui, Uf ) = {(1, 2), (3.0, 6.6), (5.6, 11.2)}

for both linear η(t̃) and fifth order manufactured θ(t̃) ramps. We note

that although this g(τ) model reproduces the characteristics of the linear

η ramps reasonably well, it fails to reproduce the behaviour of the θ ramps,

particularly at large U . We find it is necessary to include a second and third

oscillatory term to approximate the data accurately. An example of such a

fit for a model of the form f(τ) = τ−6(a + b cos(c+ ω1τ) + d cos(e+ ω2τ) +

f cos(g + ωgτ)) is provided in figure 4.11. The first two frequencies can

be approximately identified as the breathing frequency ωB and twice the

breathing frequency 2ωB. The third frequency is not identified with any
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Figure 4.11: f(τ) = τ−6(a+ b cos(c+ ω1τ) +d cos(e+ ω2τ) + f cos(g + ωgτ))

model fit to θ(t̃) manufactured ramp data. Parameters and discretisation

used: δ = 100, ε = 10−14, n = 50′000, dx = 0.00025, dt = 0.001.

particular dynamical mode, but it is necessary to achieve an appropriate fit

to the data. Fitting this model to a number of Q(τ) curves we find the first

frequency ω1 matches the data from the variational equation provided in

figure 4.8 (b). All three frequencies of the f(τ) model data shown in figure

4.11 are shown in table 4.1. Note the third frequency is not always present

in any significant quantity in the fitted parameters but is still necessary to

achieve a proper fit to the data.

4.4.2 Physical reasoning for breathing frequency

dependence of Q(τ)

The appearance of the ωB breathing frequancy quantity in the Q(τ) data

can be interpreted most intuitively in the context of the Gaussian variational

equation. If we consider an instance of the θ(t̃) manufactured ramp from

Ui to Uf the radius of the cloud would vary as σ(t̃). Although the system

would begin at t̃ = 0 in its ground state σ0, once U begins to vary, σ will

again begin to oscillate with some frequency. When these oscillations line



CHAPTER 4. SHORTCUTS TO ADIABATICITY 87

Figure 4.12: First frequency ω1 from the model shown in figure 4.11 for GPE

Q(τ) data.

up with the length of a ramp, ie. a point with σ′(τ) = 0 (where the ′

represents differentiation with respect to t̃), the radius of the cloud σ(τ)

adopts the ground state of the new system. The frequency in τ of these

exact shortcuts would be expected to fall in the region between the natural

breathing frequency at the initial U = Ui value, and the final U = Uf value.

We see from the data shown in figures 4.8 and 4.12 that this frequency closely

follows the breathing frequency at the final U value ωB(Uf ).
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ω U = (1, 2) U = (3.3, 6.6) U = (5.6, 11.2)

fitted parameters

ω1 1.869 ± 0.006 1.78 ± 0.01 1.764 ± 0.001

ω2 3.75 ± 0.05 3.54 ± 0.04 3.427 ± 0.001

ω3 0.0006 ± 0.0007 2× 10−5 ± 6× 10−5 0.21 ± 0.02

breathing mode

ωB(Uf ) 1.87474... 1.78977... 1.76513...

Table 4.1: Frequency parameters returned from a least squares optimisation

of the model f(τ). First two frequencies are approximately (ω1, ω2) ≈

(ωB, 2ωB).



Chapter 5

Summary and outlook

In this thesis we have studied dynamical modes of Bose Einstein condensates

as well as shortcuts to adiabaticity for ramps in the interaction strength of

such a system. In this chapter we will summarise the results and findings of

previous chapters, the limitations of said analysis, and suggest avenues for

further research.

5.1 Discussion

In Chapter 2 a variational analysis for the dynamical modes of a Bose Einstein

condensate is carried out. By these methods the dynamics of a cloud of

weakly interacting Bosons are approximated using the mean field Gross-

Pitaevskii equation. This mean field description is then further simplified as

various systems of nonlinear ordinary differential equations. By this analysis,

we reproduce some existing results regarding the characteristic frequencies of

normal modes. In particular we characterise the breathing and quadrupole

dynamical modes in terms of their frequencies. We also reproduce an analysis

89
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of resonant like behaviour appearing in similar systems with a modulated

interaction strength [11,58].

Chapter 3 mainly focused on the numerical methods used for solving the

Gross-Pitaevskii equation. We discuss the symplectic integration schemes

and imaginary time algorithms which are used in the remainder of the analy-

sis. We then implement these techniques for solutions of the Gross-Pitaevskii

equation in one dimension. We largely focus on understanding the degree to

which our variational calculations approximate Gross-Pitaevskii dynamics.

In Chapter 4 we determine a shortcut protocol for ramps in the interaction

strength U . We then investigate some features of this shortcut ramp’s

function in the context of the Gaussian variational equation and the Gross-

Pitaevskii equation. Shortcuts to adiabaticity in Bose-Einstein condensates

have appeared in the literature in a number of contexts [30, 34, 36–39] using

various methods. We have continued the analysis of the excess energy gener-

ated by shortcut processes derived using the methods of inverse engineering.

The magnitude of excess energy curves are found to decay as a power law

relationship of the form τ−ν . In the case of our Thomas-Fermi manufactured

ramp we find a ν = 6 decay, an improvement over the ν = 2 linear process.

We have demonstrated that this power law relationship lingers beyond the

variational approximations we have made to appear in full Gross-Pitaevskii

calculations also.

The frequency with which the induced excitations oscillate in τ has also

been studied in the context of variational methods as well as the Gross-

Pitaevskii equation. We see that these excitation frequencies can be closely

approximated by the characteristic frequency of the breathing mode in the

final U = Uf system. We see the Gaussian variational equation offers an

excellent approximation of these induced excitations when compared to the
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Gross-Pitaevskii equation. This oscillatory behaviour has been interpreted

in some studies, particularly in [74], as an accidental shortcut when the

duration of a particular ramp process coincides with the wavelength of radius

oscillations in the condensate. In linear ramp processes these accidental

shortcuts tend to approach exact shortcut processes ie. generate zero excess

energy. In our polynomial ramp processes, the excess energy curves tend

to decay significantly faster as a whole but do not approach zero at their

minima. Rather they oscillate about a finite value in line with a τ−6 decay.

In Gross-Pitaevskii calculations, we find the induced excitations oscillate

with three distinct frequencies. The breathing mode continues to be the

dominant frequency, followed by its first harmonic, and a third frequency

currently unidentified with any physical quantity.

5.2 Future research questions

Several avenues for additional research present from the current study. An

investigation of these processes in Bose Einstein condensates beyond mean

field Gross-Pitaevskii methods would certainly be of interest. Exact diago-

nalisation techniques for example might be applied to systems with a small

number of Bosons under the action of these shortcut protocols. We also note

that our analysis is limited in some regards as our variational analysis does

not allow for all dynamical modes present in the Gross-Pitaevskii system.

A further discussion of the induced excitations using a variational equation

allowing for dipole and other surface type excitations would be of interest in

future studies.

Additionaly we found a symmetry in two-dimensional systems could be lever-
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aged to determine an exact shortcut to adiabaticity. Another possible avenue

of future research would be to implement this two-dimensional shortcut

trajectory in a pseudo one or two-dimensional Bose Einstein condensate

by way of the anisotropic variational equations of motion we discussed in

Chapter 2 or full three-dimensional Gross-Pitaevskii calculations. The tran-

sition between exact shortcut trajectories for two dimensional systems to

approximate shortcuts in a pseudo one or two-dimensional cigar or disc

shaped condensate may provide interesting insights.
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[45] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera,

T. Müller, and I. Bloch, “Direct observation of second-order atom

tunnelling,” Nature.

[46] S. Mart́ınez-Garaot, A. Ruschhaupt, J. Gillet, T. Busch, and J. G.

Muga, “Fast quasiadiabatic dynamics,” Physical Review A, vol. 92, no. 4,

p. 043406, 2015.



BIBLIOGRAPHY 99

[47] W. Van Dam, M. Mosca, and U. Vazirani, “How powerful is adiabatic

quantum computation?,” in Proceedings 42nd IEEE Symposium on

Foundations of Computer Science, pp. 279–287, IEEE, 2001.

[48] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum

computation by adiabatic evolution,”

[49] T. Keller, T. Fogarty, J. Li, and T. Busch, “Feshbach engine in

the Thomas-Fermi regime,” Physical Review Research, vol. 2, no. 3,

p. 033335, 2020.

[50] J. Li, T. Fogarty, S. Campbell, X. Chen, and T. Busch, “An efficient

nonlinear Feshbach engine,” New Journal of Physics, vol. 20, no. 1,

p. 015005, 2018.

[51] Y. Ban, X. Chen, E. Torrontegui, E. Solano, and J. Casanova, “Speeding

up quantum perceptron via shortcuts to adiabaticity,” Scientific reports,

vol. 11, no. 1, pp. 1–8, 2021.

[52] H. R. Lewis Jr, “Classical and quantum systems with time-dependent

harmonic oscillator type Hamiltonians,” Physical Review Letters, vol. 18,

no. 13, p. 510, 1967.

[53] H. R. Lewis Jr and W. Riesenfeld, “An exact quantum theory of

the time-dependent harmonic oscillator and of a charged particle in a

time-dependent electromagnetic field,” Journal of mathematical physics,

vol. 10, no. 8, pp. 1458–1473, 1969.
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