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Abstract. Packet round trip time is a quantity that is easy to measure for end
hosts and applications. In many wired networks, the round trip has been exploited
for purposes such as congestion control and bandwidth measurement because
of relatively simple relationships between buffer occupancy and drain time. In
802.11 networks, the buffer drain times show considerable variability due to the
random nature of the MAC service. We examine some of the problems faced
when using round-trip-time-based queue estimates in these networks, particularly
in relation to congestion control.

1 Introduction

Network round-trip time is a useful measurement that is easily estimated by end hosts.
It is often used as a measure of network congestion either implicitly (e.g. a human
looking at the output from traceroute or ping) or explicitly (e.g. TCP Vegas [3], FAST
[13] or Compound TCP [12] use RTT as a proxy measure of buffer occupancy). The
assumption is that queueing is the main source of variation in RTTs, and so RTTs can
be used to estimate queueing. This has led to tools such as pathchar [7].

In wired networks, this is often a reasonable assumption: there is usually a linear
relationship between queue length and queue drain time. However, this relationship is
not universal. In WiFi networks there can be a significant random component associated
with transmitting packets. A device usually has a back-off period before sending. The
duration of this period is a combination of a randomly selected number and the duration
of busy periods due to other traffic on the network [6]. Also, a packet may suffer a
collision or corruption, requiring further back-off periods and retransmission.

Figure 1 shows observed queue drain times plotted against queue length from a
device transmitting packets over a contended WiFi link. A striking feature of this graph
is the overlap between RTTs associated with different queue lengths: RTTs observed
for a queue length of one packet could have come from a queue length of 10 packets;
RTTs from a queue of 10 packets could easily have come from a queue of 20 packets.
Even before other sources of delay are considered, this is a challenging environment for
making inferences about queue length from RTTs.

Previous work has touched on the impact of this variability. A comparison of band-
width estimation tools over wireless was conducted in [11]. They suggest that some
errors made by bandwidth estimation tools may be due to variable service, but they do
not conduct an in-depth investigation of this. Other work, such as [5] looks at various
TCP metrics over WiFi. They consider RTT averaged over connection lifetimes, but are
not concerned with the relationship between measured RTT and buffer occupancy.
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Fig. 1. Impact of Queue Length on Drain Time. (a) Scatter plot of observed values. (b) 10–90%
box-and-whiskers plot and mean; number of samples is also shown on right hand axis.

In this paper we investigate the complications introduced by the random nature of
the service in 802.11. We note that there have been complications in application or
transport layer measurement of RTTs in wired networks (for example, some filtering is
necessary to remove artifacts caused by TCP’s delayed ACKing or TSO [8]). However,
in order to focus on the issues raised by the varying delay of a wireless link, in this
paper we will assume that accurate RTT measurements are available.

We show that raw RTT measurements don’t allow sharp conclusions to be drawn
about the queue length, but are well correlated with it. We also show that variability
in measurements grows as

√
n. We then look at filters that might be applied to the

RTT measurements and find that normal RTT filters decrease correlation. Linux’s Vegas
implementation deals relatively well with these challenges and we consider why this is.

2 Testbed Setup

We consider network delay associated with winning access to transmission opportuni-
ties in an 802.11 WLAN. We measure both the queue drain time (the time from when
a packet reaches the driver to when the transmission is fully complete) and the MAC
service time (the time from reaching the head of the hardware interface queue to when
transmission is fully complete), using techniques described in [4]. The MAC service
time can vary by orders of magnitude, depending on network conditions.

The 802.11 testbed is configured in infrastructure mode. It consists of a desktop PC
acting as an access point, 15 PC-based embedded Linux boxes based on the Soekris
net4801 [2] and one desktop PC acting as client stations. The PC acting as a client
records measurements for each of its packets, but otherwise behaves as an ordinary
client station. All systems are equipped with an Atheros 802.11b/g cards.

All nodes, including the AP, use a Linux kernel and a version of the MADWiFi
[1] wireless driver modified to record packet statics at the driver layer with a fixed
queue of 20 packets. While we focus on the queueing at the drive layer, Section 3
shows the statistics of drain time as the number of packets increases. All of the tests
are performed using the 802.11b physical maximal transmission rate of 11Mbps with
RTS/CTS disabled and the channel number explicitly set.



3 Raw RTT Signal

The data for Figure 1 is taken from a run from our testbed where 4 stations are uploading
using TCP. Measurements are taken from one TCP sender, so all packets are 1500 bytes.
The results are taken over about 110s where network conditions are essentially static.

Briefly consider the simple problem of determining if the queue in Figure 1 contains
more than ten packets based on the observed drain time. For example, consider a simple
threshold scheme: set a threshold and if the observed time is greater than the threshold,
we infer it has more than ten packets, otherwise we infer it has less than ten packets.
Even if we have prior knowledge of the drain time distribution in Figure 1, how effective
can such a scheme be for WiFi?

Figure 2 shows how often this scheme makes a mistake for a range of different
thresholds. The upper curve in Figure 2(a) is the chance that the delay threshold incor-
rectly indicated that the queue length was either above or below 10 packets. The upper
curves in Figure 2(b) show how this breaks down into situations where the queue was
small but the delay was big or the queue was big but the delay was small. The best
choice of threshold, around 60,000µs (about 10 times the mean service time), makes a
mistake just over 10% of the time. Thus a congestion control scheme based on such a
threshold could make an incorrect decision about once in every ten packets.
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Fig. 2. Simple thresholding of delay measurements: (a) how often simple thresholding is wrong,
(b) breakdown of errors into too big or too small.

Of course, it is possible that these mistakes occur mainly when the queue is close to
10 packets. To check this we also calculate the chance that while the queue had five of
fewer packets that the delay is less than the threshold and the chance that the queue has
more than fifteen packets while the delay is short. These represent large mistakes by the
threshold technique. The results are the lower set of curves in Figure 2(a), with a large
flat section for threshold values from 40,000 to 80,000µs. While it is making mistakes
regularly these are not gross mistakes. A range of thresholds produce reasonable results.

This suggests that though delay measurements are quite noisy, there is hope of
learning information about queue length from them. Basic statistics for the drain times
against queue lengths are shown in Figure 1(b). We show the mean drain time and a
box-and-whiskers plot showing the range and the 10th and 90th percentiles.



Figure 3(a) shows the estimated autocorrelation for the MAC service times, queue
drain times and queue lengths. We see that the MAC service times show no evidence of
correlation structure. This is what we intuitively expect from an 802.11 network operat-
ing without interference. In contrast, the queue lengths show a complicated correlation
structure. The queue lengths are sampled at the time a transmission completes; because
the queue length will not change much between these times we expect strong correla-
tion over lags comparable to the queue length. The longer term structure in the queue
length will be a function of TCP’s congestion control behaviour in this network. Finally,
the queue drain times show a similar structure to that observed for the queue lengths.
This is encouraging: the drain time and the queue length are in a sense carrying similar
information. We can confirm this by calculating the Pearson correlation value of 0.918.
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Fig. 3. Drain time statistics. (a) Autocorrelation for the sequence of MAC service times, queue
drain times and queue lengths. (b) Estimate of standard deviation of drain times as a function of
queue length.

Based on the low autocorrelation of the MAC service times, it may be reasonable to
approximate the drain time of a queue of length n as the sum of n independent service
times. The variance of the sum of random variables grows like the sum of the variances.
Thus we expect the range of the 10–90% percentiles to scale like

√
n. This is confirmed

in Figure 3(b), where we plot standard deviation of the drain times and compare them
to
√

n. Larger buffers will make queue estimation even more challenging.

4 Smoothed RTT Signal

Most RTT measurements are smoothed before use, and based on the statistics we have
seen in the previous section, there is a reasonable possibility that this may help in un-
derstanding queue behaviour. In this section we look at the impact of a number of
commonly used filters on our ability to estimate the queue length.

A well-known example of the use of a smoothed RTT is the sRTT used in TCP to
estimate round-trip timeouts. This estimator updates the smoothed estimate every time
a new estimate arrives using the rule

srtt← 7/8srtt + 1/8rtt. (1)



We’ll refer to this as 7/8 filter. It is also used in Compound TCP for delay based con-
gestion control. We can do similar smoothing based on the time between packets:

srtt← e−∆T/Tcsrtt + (1− e−∆T/Tc)rtt. (2)

∆T is the time since the last packet and Tc is a time constant for the filter. This filter
approximately decreases the weight of RTT estimates exponentially in the time since
the RTT was observed. We’ll refer to this as the Exponential Time filter.

TCP Vegas and derivatives use a different smoothing. Ns2’s implementation of Ve-
gas uses the mean of the RTT samples seen over a window of time that is about the same
as the current RTT. In order to avoid spurious spikes due to delayed acking, the Linux
implementation of Vegas uses the minimum of the RTT’s seen over a similar window.
We’ll refer to these as the Windowed Mean and Windowed Minimum filters.

We applied these filters to the drain time data to see if the resulting smoothed mea-
surement was a better predictor of the queue length. We used a window size/time con-
stant of 100ms, which is comparable to the actual RTT in our experiment. The results
of our simple threshold test and calculation of autocorrelation are shown in Figure 4.
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Fig. 4. Thresholding of filtered delay measurements: (a) errors while thresholding simple mea-
surements, (b) autocorrelation of filtered measurements.

Interestingly, the filters except for Windowed Minimum have made things worse.
Achievable error rate for thresholding has increased from 11% to 15, 18 and 20% for
7/8s, Windowed Mean and Exponential Time filters. The Windowed Minimum achieves
an error rate of around 10.5%, which is comparable with the raw drain time error rate.

The autocorrelation graph tells a similar story: raw times and Windowed Minimum
follow the queue length most closely. The Windowed Minimum measurements have the
highest Pearson correlation with the queue length (0.922) closely followed by the raw
measurements (0.918). There is then a gap before the 7/8th filter, the Windowed Mean
and the Exponential Time results (0.836, 0.797 and 0.752 respectively).

5 Variable Network Conditions

As noted, the length of 802.11’s random backoff periods are not just based on the se-
lection of a random number, but also on the duration of busy periods due to the trans-



missions of other stations. In addition, the number of backoff periods is dependent on
the chance of a collision, which is strongly dependent on the number of stations in the
network and their traffic. Thus the RTTs observed by a station depend on cross traffic
that may not even pass through the same network buffers.

For example, consider Figure 5. This shows the time history of queue lengths and
drain times as we shut down the competing stations from the setup described in Sec-
tion 3. By 242s there is little competing traffic in the system, and Figure 5(a) shows that
the mean drain time and variability have been radically reduced. However, if we look at
Figure 5(b) we see that this is not because the queue size has been reduced. In fact TCP
Reno is keeping the queue closer to full because of reduced RTTs and contention.
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Fig. 5. The impact of other stations leaving the system: (a) drain times and (b) queue lengths.

When stations join the system the impact can also be dramatic, as shown in Figure 6.
4 TCP uploads are joined by another 4 TCP uploads just after 120s (note, to get 8 TCP
uploads to coexist in a WLAN, we have used the ACK prioritisation scheme from [9],
resulting in smoother queue histories). We see basically no change in queue length, but
almost a doubling of round trip time.
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Fig. 6. The impact of other stations joining the system: (a) drain times and (b) queue lengths.



These changes in drain time are caused by a change in the mean service rate for the
queue. Clearly, any scheme for detecting queue length based on round-trip time would
have detect changes in network conditions and re-calibrate. This also creates a problem
for systems that aim to measure the base RTT, i.e. the round-trip time in the absence of
queueing. Because the mean service rate depends on traffic that is not in the queue, a
change in other traffic can cause a shift in the base RTT. As queueing time is usually
estimated as RTT− baseRTT, this could be an issue for many schemes.

6 Impact on TCP Vegas

We now look at the performance of Linux’s TCP Vegas in light of our observations.
We consider Vegas because it is one of the simplest delay-based congestion control
schemes. We expect other delay based schemes, such as FAST and Compound, to face
similar challenges. Linux’s Vegas module alters congestion avoidance behaviour but
reverts to Reno-like behaviour in other situations. Over each cwnd’s worth of packets it
collects a minimum RTT observed over that cwnd. It also maintains a base RTT, which
is the smallest cwnd observed over the current period of congestion avoidance.

The target cwnd is then estimated as cwnd × baseRTT/minRTT. The difference
between this and the current cwnd is compared to the constants α = 2 and β = 4. If
the difference is less than α cwnd is increased, if it is greater than β it is decreased.
Vegas aims to introduce a few packets more than the bandwidth-delay product into the
network resulting in a small standing queue.

We anticipate two possible problems for Vegas. First, because Vegas is using RTT
measurements, it is possible that the noise in these measurements will cause Vegas to
incorrectly manage the queue, either resulting in an empty queue (reducing utilisation)
or overfilling the queue (resulting in drops, which delay-based schemes aim to avoid).
Second, after a change in network conditions, Vegas may use an incorrect baseRTT. If
this change results in an increased baseRTT then Vegas might continually reduce cwnd
in an attempt to reduce the observed minRTT, resulting in poor utilisation.

To investigate these potential issues, we run a TCP flow across our testbed with var-
ious round trip times introduced with Dummynet [10]. After 60s we change the network
conditions by introducing additional 11 stations, one per second, sending UDP packets
at a high rate. First, as a baseline, we run a set of experiments with very large buffers
and TCP Reno. Reno keeps these buffers from emptying, and so gives an indication of
the best achievable throughput. Results for Reno with a 5ms, 50ms and 200ms RTT are
similar to the throughput for Vegas shown in Figure 7.

Figure 7 shows throughput and cwnd histories for Vegas with a 5ms RTT (results for
Vegas with a 50ms RTT are broadly similar). We observe that in terms of throughput,
it compares well with Reno, both before and after the introduction of additional flows.
Can we understand why Vegas does not keep reducing cwnd? If we calculate the min-
RTT that is the threshold for increasing cwnd, we get a value of baseRTT/(1− α

cwnd).
The upper threshold for decreasing cwnd is the same, but with β instead of α. When
cwnd is small, the band for maintaining or increasing cwnd becomes larger. Thus, as
cwnd becomes smaller Vegas can accommodate increased variability, though it may
decrease cwnd below the bandwidth-delay product before this comes into play.
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Fig. 7. Vegas with 5ms additional RTT in an initially uncontended WLAN with additional flows
introduced around 60s: (a) throughput, (b) cwnd.

Figure 8 shows results for Vegas with a 200ms RTT. Vegas is behaving in a different
way: it experiences losses even when not competing with other stations. This may be
due to Vegas maintaining a longer queue, and consequently seeing larger fluctuations
due to the random service. At 200ms the queue fluctuations are large enough that pack-
ets are lost, resulting in Vegas reverting to Reno until it re-enters congestion avoidance.
This resets the baseRTT, allowing Vegas to recover when new flows are introduced.
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Fig. 8. Vegas with an additional 200ms RTT in an initially uncontended WLAN with additional
flows introduced around 60s: (a) Throughput. (b) Cwnd.

7 Conclusion

In this paper we have studied a number of interesting problems faced when inferring
buffer occupancy from RTT signals in a WiFi network. We have seen that the raw RTT
signal is correlated with buffer occupancy, but there is significant noise that grows as
buffer occupancy increases. Standard smoothing filters seem to reduce our prospects of
estimating buffer size. We have also seen that traffic that does not share a buffer with
our traffic may have a significant impact on the RTT measurements, possibly creating



problems for estimation of queue length under changing network conditions. We have
briefly looked at the implications of these observations for Linux’s Vegas implementa-
tion. While Vegas performs well in our simple tests, possibly due to its use of a Win-
dowed Minimum filter. We believe these observations will prove useful in designing
delay-based congestion-control for WiFi.
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