
SoftwareX 9 (2019) 271–281

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

SimApi, a smartgrid co-simulation software platform for
benchmarking building control algorithms
Fabiano Pallonetto a,∗, Eleni Mangina b, Federico Milano c, Donal P. Finn d

a Energy Institute, University College Dublin, Ireland
b School of Computer Science, University College Dublin, Ireland
c School of Electrical & Electronic Engineering, University College Dublin, Ireland
d School of Mechanical and Materials Engineering, University College Dublin, Ireland

a r t i c l e i n f o

Article history:
Received 3 April 2018
Received in revised form 18 February 2019
Accepted 6 March 2019

Keywords:
Smart grid
Control algorithm
Building simulation software

a b s t r a c t

This paper describes an open source smart grid software infrastructure for co-simulation between
cloud-based energy management systems and a building energy model. The core component of the
infrastructure is an API, which provides a protocol abstraction as a decoupling mechanism between
the control algorithms and the building, thereby facilitating the development and testing of intelligent
controllers. The open-source infrastructure can be utilised for the development and benchmarking of
smart grid demand response algorithms aimed at reducing the energy consumption and the carbon
footprint of buildings, while facilitating the integration of renewable energies into the power system.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version Mediator version 0.4, Platform version 0.8
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_29
Legal Code License MIT License
Code versioning system used Git
Software code languages, tools, and services used Laravel 4.2, PHP, MySQL 5.4, Java
Compilation requirements, operating environments BCVTB (https://simulationresearch.lbl.gov/bcvtb)
If available Link to developer documentation/manual https://github.com/UCD-ElectricityResearchCenter/SimApi/tree/master/docs
Support email for questions fabiano.pallonetto@ucdconnect.ie

1. Introduction

Building energy consumption depends on a significant number
of factors, such as building envelope insulation, air infiltration,
internal and solar gains, the efficiency of the heating system
and occupant behaviour. Estimating the effect of each element
requires an in-depth knowledge of the interactions between these
factors and the related physics.

In recent years, harnessing the exponential growth of hard-
ware computational capabilities, different approaches for esti-
mating building energy consumption have been developed [1],
such as Building Energy Simulation (BES) (white box), hybrid

∗ Corresponding author.
E-mail address: fabiano.pallonetto@ucdconnect.ie (F. Pallonetto).

approaches (grey box) and statistical-based tools (black box) [2].
At the same time, the penetration of Renewable Energy Systems
(RES) at the building level and the electrification of thermal loads
have shifted the attention of system operators from generation to
load controls via Demand Response (DR) programs. DR has been
defined as ‘‘changes in electricity use by demand-side resources
from their normal consumption patterns in response to changes
in the price of electricity or to incentive payments designed to
induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardised’’ [3]. The ob-
jective of DR is to intentionally reshape the electricity demand
in response to a signal sent by an aggregator or Transmission
System Operators (TSO) providing energy flexibility to the power
system. The changes can be quantified using different metrics
and are directly correlated to building thermal characteristics [4],

https://doi.org/10.1016/j.softx.2019.03.003
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.03.003
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.03.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2018_29
https://simulationresearch.lbl.gov/bcvtb
https://github.com/UCD-ElectricityResearchCenter/SimApi/tree/master/docs
mailto:fabiano.pallonetto@ucdconnect.ie
mailto:fabiano.pallonetto@ucdconnect.ie
https://doi.org/10.1016/j.softx.2019.03.003
http://creativecommons.org/licenses/by/4.0/


272 F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281

occupant behaviour and the presence of storage or RES at a
building level [5]. DR assets can alter the electricity demand
curve dynamically, providing peak shaving, load shifting and load
forcing measures [6]. Therefore, electricity loads are becoming
a controllable resource for ensuring the resilience of the power
system [7].

Using buildings as a controllable load implies the adoption of
smart devices and EMS that can respond to a communication
signal from system operators. However, the assessment of the
benefits of the large-scale adoption of controllable load and build-
ing DR measures requires long testing cycles and considerable
investment [8].

Furthermore, innovative combinations of technologies such
as heat pumps, phase change materials and thermal or electric
storage combined with renewable energy systems, can provide
demand response capability to the building stock which become
an energy flexible load. The power flexibility of these complex
system, coupled with the thermal mass of the building can be
analysed using advanced building energy modelling [9]. These
software are effective to analyse the DR potential because they
model the energy usage of building assets under different op-
erational and environmental scenarios. Building modelling soft-
ware can be also used to assess baseline and DR scenarios using
large-scale simulation [10].

Although the use of BES software can facilitate algorithm test-
ing, the development of control algorithms using BES software is
constrained by the capabilities of the integrated development en-
vironments embedded in BES software architecture that revealed
various limitations such as the lack of advanced instructions,
data structures and debugging features. Moreover, the developed
DR algorithms are building model agnostic without a complete
redesign of the overall software infrastructure. Therefore, an open
source smart grid co-simulation infrastructure to benchmark and
decouple DR control algorithms for building simulation software
can represent a solution in producing detailed and realistic stud-
ies of DR measures, in order to assess the benefits and to reduce
the duration of smart-grid enabled appliances testing cycles [11].

Furthermore, in a smart grid, the implementation of a bidirec-
tional communication channel from end users to generators still
represents an open challenge due to the lack of standards and the
high capital costs involved [12]. Moreover, the integration of dy-
namic demand-side assets and high penetration of RES generators
add variability to supply/demand balance of the power grid [13].

Open architecture and co-simulation systems can boost the
adoption of the technology and reduce the development and
implementation life cycle of smart grid architectures [14]. In
this context, buildings controlled by EMS can become a valuable
resource to enable DR measures [11]. Hence, a co-simulation in-
frastructure for assessing control strategy performance on build-
ings in a smart grid scenario represents a fundamental research
vehicle to accelerate the advancement of the smart grid concept
and intelligent DR controllers [15].

2. Software objectives and requirements

This section describes the state of the art for smart grid co-
simulation frameworks. The selected frameworks presented have
been analysed on the basis of the requirements for smart grid
simulation tools reported in [8] and detailed in Table 1.

The requirements are divided in three main groups: general,
syntactic and control requirements. The general requirements
concern the basic functionality and the extendibility of a co-
simulation software such as the data logging capabilities [GR2]
or the flexibility to different single data types and composi-
tions of data. The syntactic requirements describe the commu-
nication protocol and the availability of the resources. The last

group is the control requirements. This category illustrates the
synchronisation and control capabilities of the system

In the last ten years, several frameworks for smart grid simu-
lation have been developed, and associated research reports have
been published. In Table 2, six packages have been examined
based on the criteria selected. As noted in Table 1, none of the
co-simulation software evaluated meets all the criteria. However,
the MosaikApi [16] is the most flexible and scalable middleware.
Such an infrastructure can be used for simulation of a smart grid
scenario where building models are simple and do not require
complex computational capabilities or interfaces.

Nevertheless, the integration with white box building energy
simulation packages, such as TRNSYS,1 EnergyPlus2 or ESP-R,3
often requires a considerable effort in software integration [17].
The presence of modelling features, the software usability and the
computational capabilities are among the characteristics whose
define different BES packages [18]. For instance, ESP-R is pri-
marily used for design decision support and not for testing of
control systems [19]. Similarly, TRNSYS is a software package that
implements a component-based simulation [20]. Each component
could be a fundamental element of the system, such as a valve
or a pipe or it could be a sophisticated building model with a
complex control algorithm [21] .

Compared to the previous software, the use of EnergyPlus in
a co-simulation environment is facilitated by the presence of an
Functional MockUp Unit (FMU) component [22]. The component
allows the lazy coupling with a third party software, requiring
only the interface description. The TRNSYS implementation of the
same interface is more complex as noted in [23]. Therefore, TRN-
SYS was not considered as the first choice for the development of
the co-simulation API.

The BES integration requirement and the need for data logging
capabilities with a web based user interface in order to bench-
mark control algorithms is identified as a research gap within the
literature [24]. Logging capabilities and BES integration feature
are an essential requirements to assess the benefit of a smart grid
ready building to the overall power infrastructure. Consequently,
such technical requirements and the lack of protocol abstraction
found in the co-simulation frameworks examined, represent a
research gap to address in the current paper. The contribution
of the paper to address such a gap is the development of a
novel open source software infrastructure for building control
and communication which will be presented in the next section.

3. Software description

The SimApi platform is designed to interface a building simu-
lation system to a control algorithm in a programming language
agnostic method exploiting a cloud interface based on the API.
The objective is to abstract the operation of the building actuators
from the controller, thereby decoupling the control algorithm
from the building model. A simulation can be triggered via the API
or the associated web dashboard to assess the baseline scenario.

3.1. Software architecture

The objective of the developed framework is to provide a co-
simulation interface between an EnergyPlus calibrated building
model and a generic cloud-based control algorithm. The software
implements a restful API [30] to allow for remote control of a
building simulation. The API was developed using a Model View
Control (MVC) design pattern. The software stores all the requests

1 TRNSYS homepage: http://www.trnsys.com/.
2 EnergyPlus homepage: https://energyplus.net.
3 ESP-R homepage: https://github.com/ESP-rCommunity.

http://www.trnsys.com/
https://energyplus.net
https://github.com/ESP-rCommunity


F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281 273

Table 1
Smart grid co-simulation framework requirements.
Category Requirement Description

General Requirements [GR1] Variable Entity I/O The system is flexible on the number of I/O required depending on the parameter
configuration of the model.

General Requirements [GR2] Data logging The tool must log all data that is provided by the simulators for later evaluation.
General Requirements [GR3] Execution on multiple

servers
The tool must be able to start and execute simulators across multiple computation nodes and
servers.

General Requirements [GR4] Integration with BES The tool should be able to integrate with BES or other simulation environments.
Syntactic Requirements [SR1] Standardised

simulator Application
Program Interface (API)

A defined minimalistic API is defined with basic CRUD functionalities.

Syntactic Requirements [SR2] Data available via API The API exposes all available model data, including time-invariant data, such as configurations
and settings.

Syntactic Requirements [SR3] Transmission of
complex data types

The API can submit (and receive) complex data types from the entities of the participating
simulators.

Syntactic Requirements [SR4] Time-stepped
simulations

The tool should support time-step simulations.

Control Requirements [CR1] Control strategy API The defined API allows control strategies to interact with the simulated physical part of the
smart grid. The objective is to decouple physical and ICT objects and allows to develop
control strategies independent of specific simulation models.

Control Requirements [CR2] Agent synchronisation Two ways control strategies synchronisation of the simulations.

Table 2
State of the art of smart-grid co-simulation frameworks.

Requirement
description

Variable
I/O

Data
Logging

Execution on
multiple server

Integration
with BES

Standardised
APi

Data Access
API

Transmission
Complex Data

Time
stepped
simulation

Control
Strategy API

Agent syn-
chronisation

Requirement [GR1] [GR2] [GR3] [GR4] [SR1] [SR2] [SR3] [SR4] [CR1] [CR2]
Venus-C [25] × � × × × × � � × ×

Jade [26] � × × × � � � � × ×

Smart Cities
[27]

� × × × × × × × × ×

ILIas [28] × × × × × × × × � �

EPOCHS [29] � × × × × × × × � �

Mosaik API [16] � � � × � � � � � �

from the API in a relational database [31], while it retrieves the
sensor data from the building simulation. The communication is
ensured by a BCVTB background process. Both the BCVTB and
the SimApi are connected to the database via Java Database
Connectivity (JDBC) technology which defines the access protocol
to the database.

The implemented interface reads and writes data to the
database for each time step simulated. The database is connected
to the calibrated building model [32] and tested using Energy-
Plus [33]. The layout of the system is illustrated in Fig. 1 and the
main components are:

1. EnergyPlus BES building model. This is a software model
of a physical building. The building simulation takes into
account the occupancy profile, the weather data and the
renewable energy system installed at building level.

2. BCVTB framework. This provides a connection between the
simulation model and the database. The role of the actors is
to store data points from the sensors and send the actions
to the models.

3. API interface. This provides the conceptual protocol ab-
straction of the implemented API, for both CRUD operations
and control flow management.

4. Web server. This exposes the API endpoints defining the
data exchange protocol with the building simulation com-
ponents; it also ensures data validation and connection to
the database and implements the transport layer to and
from the components.

5. MySql Database. This provides a persistent layer to store
the data points for each time step and synchronises the
simulations with the control. The persistent layer is also
used for analytics.

6. Mediator agent. This is a background process that retrieves
a control token over an instance and triggers the BCTVB
framework and the building model simulation.

7. EMS. This embeds the control algorithm for the building
model. It can be language agnostic, and consumes the API
endpoints while receiving the synchronisation signal from
the system.

The web server (4) accepts HTTP requests from one or multiple
EMS (7) connected to the cloud. The requests are stored in a
relational database (5) and are retrieved by the simulation agent
(2), called actor. The actor sends the runtime requests to the
EnergyPlus simulation (1). EnergyPlus uses the data as control
input for each time step. The software platform is divided in three
main components:

1. Web interface. This component allows the interaction with
the building simulation model, the user management and
the data exploration of the stored simulation instances.

2. Initialisation and halt. These two endpoints manage the
interaction with the mediator component. They trigger the
execution of the building model simulation and the end of
the simulation, resetting the environment variables.

3. Flow control. The flow control endpoints interact with the
building simulation environment via the database tables
and are responsible of receiving, storing and sending data
to the simulation.

The next section describes in more detail each of the components
from implementation and software functionality perspective.



274 F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281

Fig. 1. Architecture of the cloud base system interface.

3.2. Software functionalities

The API can be consumed by the control algorithm on a Hy-
pertext Transfer Protocol (HTTP) transport layer over the cloud
an it represents the abstraction of the protocol communication
between the agents involved in the co-simulation infrastructure,
the building model and the EMS. The API resources are described
in the API Blueprint, using a standard description format [34].

A web user interface has been developed for the visualisation
of simulation results and for running the building simulation.
Fig. 2 shows the web interface captured after a simulation. On the
left hand side, the user can evaluate the inside temperature of a
building zone and the associated energy consumption is given on
the right hand side.

The web user interface can also manage the user type and
settings. The system is designed to give access to two user cat-
egories; the admin users and the general user. In addition to all
the capabilities of the general user, the admin user has access to
the endpoints for user creation, change of details and deletion of
generic users. The general user has permission to:

1. Authentication and password management;
2. Create a new simulation instance;
3. Enlist all the instances created;
4. Delete an instance and all the data points;
5. Extract the data points of each simulation instance;
6. Trigger initialisation and flow control endpoints.

The general user authentication and privileges have been used to
test different scenarios and algorithms with the one residential
building simulation model. However, it should be noted that
the framework is designed to handle various and heterogeneous
building models.

The initialisation and halt endpoints have been developed to
interact with the mediator component and set the initial con-
figuration data. After the initialisation of a new instance, the
API responds with an identification number (instance-id). In a
multitasking environment, different instances can begin in paral-
lel and exchange data at each time step following the execution

of the building simulation model associated. The authenticated
user agent can start a building simulation at any point using
the instance-id reference. The objective of the initialisation
endpoints is also to set or retrieve initial parameters such as
the location of the building simulation model or the BCVTB ex-
ecutable. Three available endpoints show the configuration data
and can be used to override the default settings. Two main HTTP
methods can be invoked on the initialisation endpoints: GET
and PUT. The GET method reads the parameters while the PUT
overwrites the parameters default. The initialisation endpoints
are:

1. sensor: this enlists the sensors and actuators available for
the selected building model.

2. appliance: this shows a list of controllable appliances and
the control interface for each appliance.

3. inside-temperature: this endpoint enlists the temper-
ature setpoint for each temperature sensor.

As illustrated in Fig. 3, after the initialisation is complete, the
begin command triggers the simulation and sends the value to
the initialisation value to the building model. Additionally, the
halt command is a feature to force a simulation to stop at any
point after the warm up of the model. When the initialisation
is complete, then the main client–server control flow controller
interacts with the algorithms.

After the begin command is invoked, the building model
simulation starts and the control flow component drives the sim-
ulation exchanging data with the EMS. During the execution, the
user agent can check the simulation status using the command
getBegin. It is also possible to retrieve the time step progress
using the time command. The getsensor endpoint retrieves the
sensor readings for the actual simulation time step. The next
endpoint pushes a control action to the building model. Typical
actions are represented by binary operations or threshold value
rules. At the building level, the actuator can control a circulation
pump, the heating system or a particular appliance. The instruc-
tion is sent through a JavaScript Object Notation (JSON) format
in the body of the call. The command also allows the simulation



F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281 275

Fig. 2. Platform web interface to analyse building simulation data.

Fig. 3. UML, data exchange between an EMS and the BCVTB actor connected to the building simulation via the database.

director component to continue the simulation to the next time
step. The JSON data structure attached to the command has the
objective of describing the list of systems controlled and, for each
system, the value set for each controlled parameter.

The simulation ends releasing the control to the initialisa-
tion and halt component that triggers the mediator component
to clear the environment variables and reset the status of the
instance to complete. As illustrated in Table 3, the developed

infrastructure satisfies all the requirements identified from the
literature and described in Table 1. Although the development
has focused on the control strategies (requirements [CR1] and
[CR2]), the system inherited the functionalities and capabilities of
the foundation layers such as BCVTB, Relational DataBase Model
(RDBMS) such as the transmission of complex data [SR3] and
the execution on multiple server [GR3] ensured by the database
capabilities.



276 F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281

Table 3
Analysis of the developed co-simulation framework.

Requirement
description

Variable
I/O

Data
Logging

Execution on
multiple server

Integration
with BES

Standardised
APi

Data Access
API

Transmission
Complex Data

Time
stepped
simulation

Control
Strategy API

Agent syn-
chronisation

Requirement [GR1] [GR2] [GR3] [GR4] [SR1] [SR2] [SR3] [SR4] [CR1] [CR2]
SimApi � � � � � � � � � �

Consequently, requirement [SR2] has been check marked be-
cause of the standard JDBC capabilities embedded in the RDBMS
that exposed a standard data access API. The same assumption is
valid for [SR4] that is delegated to the combination of BCVTB and
EnergyPlus.

4. Implementation example of a rule-base algorithm

A simple rule-based algorithm was developed to test the func-
tionalities of the software platform on a calibrated residential
building model developed using EnergyPlus. The building has an
electric heating system connected to a Thermal Energy Storage
(TES) and PhotoVoltaics (PV) system of 6 kWp. The selected
building was fully instrumented and the EnergyPlus model has
been calibrated with metered data. Fig. 4 shows the hourly based
cumulative simulated electricity consumption for 2014 versus the
measured data. Additionally, on the right vertical axis, the average
Mean Bias Error (MBE) index for the calibration is reported on
hourly basis.

The control system implemented has the objective of reducing
the energy expenditure using a time of use electricity price while
maintaining the thermal comfort in the building. The time of use
electricity price is divided in three tariffs depending on time of
consumption, 0.30 (e · kWh) during the peak (17:00–19:00), 0.1
(e · kWh) during night tariff (00:00–06:00) and 0.2 (e · kWh)
during off-peak (06:00–17:00 and 19:00–00:00). The algorithm
simply charge the TES two hours before peak tariff (15:00–17:00)
and exploit the thermal energy stored during the peak time.
The algorithm control flow is illustrated in Fig. 5 and it was
implemented in Java.

The rule-based algorithm creates and uses a single instance of
a HTTP client class during its execution for all communication to
the API. In the code repository, a utility class that outputs all the
initial settings and the static variables such as temperature, server
name and others was developed.

The program has two conditions based on the sensor reading
at each timestep. The first condition checks whether the data
point for the timestep is produced or not. The timestep counter
is incremented only if a new data point is generated. Whereas
the second condition checks if the control needs to disable the
heating system.

The second condition is verified only between 09:00 and
15:00, which represents the period when the heating system
is disabled if there is no electricity generation from the PV.
Between 15:00 and 17:00, the controller enables the heating
system, charging the thermal storage. The control instructions
and sensor readings are stored in the SimApi database during the
whole simulation.

The rule based algorithm shows an expected behaviour, shift-
ing the electricity consumption to off-peak hours. The baseline
system is controlled only by the thermostatic set point, so it
exhibits a greater overall electricity cost during the day-time
hours. Additionally, as illustrated in Fig. 6, the baseline oper-
ation of the heating system during price peaks (1700 to 1800
hrs) results in high expenditure periods due to the structure of
the price tariff, which penalises peak consumption. These peaks
are not present for the rule based controller demonstrating the
effectiveness of the simulation in reducing the peak expenditure.

A more extensive example of the use of the cloud platform for
the assessment of DR algorithms in residential buildings can be
found in [35].

5. Experimental results and discussion

The developed infrastructure is a cloud-based platform for
co-simulation of EMS and BES system. The approach used to
develop the infrastructure required the interaction of different
components such as the API, web server, BCVTB and EnergyPlus.
Each component was tested in isolation during the development
phase. However, assembling the components in a single cloud-
based system can lead to deadlocks and inefficiency caused by
the interaction. Therefore, a cloud-based testing was necessary
to evaluate the overall system performance based on standard
criteria.

The objective of the test was to ensure the reliability of
the software, identifying bottlenecks and synchronisation er-
rors which, if not monitored, can output altered information.
As best practise, a standard performance environment was used
for testing the stability and the scalability of the cloud-based
software [36].

The test was performed using a dataset of API calls extracted
from a simulation execution of the rule-based algorithm de-
scribed in the previous section embracing a one week period,
from 1st August to 7th August 2017. The evaluation of the algo-
rithm shows the average computational time for each timestep
is approximately 5.4 s. Such a time interval gives a sufficient
time gap for the EMS to update the settings and to compute a
new action. In the latter case, the sensor readings are retrieved
and a new action is added to the database. The overall average
simulation time for a week is 1.1 h. The API calls were invoked by
a client using Jmeter package [37] to ensure the parallelisation of
the test. The results were stored in a test database for the analysis.
The following section describes the physical infrastructure of the
test environment.

5.0.1. Physical infrastructure
The Performance environment is composed of two servers; an

App Server and a Database Server. All co-simulation components
are deployed upon the App Server and the Database Server hosts
a single MySQL database instance. The Performance environment
DB Server was configured to manage all the data requirements
involved for the simulation. The Performance environment is
detailed in Table 4. The servers used were standard test instances
of the Amazon AWS Cloud Platform [38]. The data retrieved from
the Performance environment for the analysis of the results were:

• Database Server: temporal (1 min) snapshots of Database
(DB) utilisation (percentage)

• Application Server: temporal (1 min) snapshots of CPU util-
isation (percentage)

In the following sections, the results from the stability analysis
and the scalability analysis are outlined.



F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281 277

Fig. 4. Cumulative annual electricity consumption on an hourly basis: simulated, metered and MBE (2014).

Fig. 5. Rule-based control flow algorithm.

5.1. Stability analysis

A test harness of 58 simulations was used to evaluate the
stability of the API response and the framework. Each simulation
had 5762 API endpoint calls. The total number of test calls were
334,196 calls. The test has two objectives:

• Ensure that 100% of the API calls were stored in the database
(DB);

• Evaluate the presence of bottlenecks or server unrespon-
siveness in the execution via the analysis of the Round Trip
Time (RTT) with an established threshold of 1000 ms.

The output of the test was a binary value passed/failed.

5.1.1. Test results
The number of API calls sent to the web server was compared

with the number of rows in the Timestep in the database. If the
number of rows and API calls matched consequently the test was
deemed passed.



278 F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281

Fig. 6. Rule-based versus baseline, electricity expenditure over a week using time of use tariff.

Table 4
Performance environment, servers configuration.

Application Server Database Server

Hardware Intel Xeon E5-2670 v2
(Ivy Bridge) Processors

Intel Xeon E5-2676 v3
(Haswell) processors

Processor (Base Freq.) 2.6 GHz 2.5 GHz
Processor (Turbo Freq.) 3.3 GHz 3.3 GHz
Memory 16 GB 4 GB
Hard disk 30 GB SSD 300 GB SSD
Cores 8 10
Threads 16 20
Thermal design power 115 W 115 W

The second objective was to analyse the upper limit of the
RTT of a single API endpoint call. The server average response
time was calculated to be 310 ms. The maximum and minimum
response times were 450 ms and 259 ms, respectively. The stan-
dard deviation was 40.9 ms. The network latency from the test
harness location situated in the UK was on average equivalent to
25% of the response time. The maximum, minimum and average
RTT were 600 ms, 330 ms and 387 ms, respectively. Although
the maximum RTT was almost equivalent to the double of the
average, the established threshold was never met and so the test
was considered passed.

Moreover, after the system evaluation, a time out waiting
feature was added to the framework control flow to avoid server
hang events. If the remote controller does not send an instruction
within a threshold time equal to the maximum response time
plus a standard deviation, the simulation will continue using the
current settings. Other metrics to assess the number of cycles in
the code base and the scalability of the data access were anal-
ysed using an open source package for API test assessment [37].
According to [39], scalability is the ability to continue to func-
tion with acceptable performance when the workload has been
significantly increased. The authors characterised an interval of
demand in which the system would perform acceptably. Their
analysis revealed that if the testing interval were sufficiently
large (i.e., it covered a significantly wide range of workloads), the
system would be scalable.

Scalability failures occur when some resource is overloaded or
exhausted and adding capacity to the resource does not result
in a commensurate ability to handle significant additional de-
mand. In particular, by determining likely times that performance
problems may occur when workloads are significantly increased,
it is possible to ensure the consistency and the integrity of the
simulation output.

Consequently, the objective of the analysis was to evaluate
the scalability performance of the co-simulation framework ap-
plication for simulation data integrity reasons. The analysis was
performed using data from a live environment (the Performance
environment) with 210 instances running in parallel. The infras-
tructure delivering the service includes the following compo-
nents:

Fig. 7. Database (DB) usage over number of users for date interval.

• Framework server-side API;
• Database.

The test is considered passed, if the result shows a CPU and
DB utilisation less or equal to 100%. In case of utilisation per-
centage close to the limit, the code base could be affected by
redundant operations or inefficient loops. The test is performed,
as previously mentioned, to ensure the consistency of the output
under the use of the Object Relational Model (ORM) open source
package. The assessment was performed in four main phases:

1. Identification and configuration of resources;
2. Analysis of the resources utilisation over a time period;
3. Curve fitting of the resource utilisation and statistical anal-

ysis;
4. Scalability evaluation.

The passing threshold is an average CPU utilisation and DB utili-
sation of less than 90%.



F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281 279

Table 5
Performance Environment, servers configuration.

Max Min Average Standard Deviation

Application Server % CPU Usage 50.16 0.46 10.75 3.24
Database Server % CPU Usage 71.33 1.97 6.71 2.94

Fig. 8. CPU usage over number of users for date interval.

5.1.2. Summary analysis
During the test period, the Performance Environment Server

supported a minimum of 10 and maximum of 210 concurrent
connected users of which in excess of 98% were connected via
the co-simulation framework. The data resolution is one minute
and each data point represents the maximum resource utilisation
during the time step.

As illustrated in Table 5, the average App Server CPU Usage
was 10.75% with a standard deviation of 3.24. Throughout the
test period of 1 week, the App Server CPU Usage peak of 50.16%
was recorded; evidence that the computation capabilities of the
App Server are deemed more than sufficient to meet the demand.
Similarly the DB Server reached a utilisation peak of 71.33% with
an average of 6.71% and standard deviation of 2.94. It is evident
that the computational capabilities of the DB Server are more
than sufficient to support additional users, consequently the test
was deemed passed.

A deeper analysis was necessary to assess the causes of the
CPU and DB metric spikes. However occasional, these spikes align
often with the scheduling of cron jobs which are regular database
maintenance routines.

Fig. 7 illustrates that a logarithmic relation exists between the
number of concurrent users and DB Utilisation. It is noted that the
spikes above 50% occurred when the Performance Environment
reached the threshold of 10% from the maximum number of
concurrent users and often coincided with Extract, Transform,
Load (ETL) processes. Fig. 8 shows a linear relationship can be
established between the CPU usage of the App Server and the
number of users. Compared to the DB usage there is a higher
variance when the number of users is above 160. However, the
CPU Usage is greater than 45% only on five occurrences. For CPU
usage, the impact of the cronjobs is also relevant, serialisation of
the four top cronjobs could reduce the peak size and increase the
overall performance.

The overall co-simulation system, utilising the Performance
Environment, can support more than two hundreds instances in
parallel, therefore all the tests passed without any exception.
The stability and the scalability performance of the infrastructure
indicates a robust code base that can be used without data loss
or computational bottlenecks for the EMS assessment.

5.2. Discussion

Evaluation of the effectiveness of control algorithms in real
buildings often require considerable periods of analysis before a
consistent validation can be arrived at, and test conditions are not
easy to reproduce because of the unpredictable nature of human
behaviour or weather conditions. When the evaluation also in-
volves critical infrastructure, such as a power grid or advanced
heating and cooling equipment, trial-and-error-approaches can
compromise the integrity of the test bed and the relating sys-
tems. Therefore, the ability to test control algorithms in a co-
simulation environment on BES software can reduce the test cycle
time, reduce the hardware infrastructure and also allows for the
replication of the experimental conditions [15].

The developed framework also acts as a test benchmark and
a logging tool for the evaluation of thermostatic settings, con-
trollers, new retrofit measures, installation of RES and new elec-
tricity tariffs which can affect the energy consumption and pro-
file. Furthermore, it can become an assessment tool for the cali-
bration of BES model using sensor data. The implemented analytic
dashboard can provide information on electricity patterns and
total consumption with the objective of identifying inefficiency
in the operation of the heating system. Moreover, the logging
capabilities of the interface can facilitate the assessment of con-
nected devices that may affect the thermal comfort or the energy
expenditure. The software also acts as a data repository for the
simulations performed and the available interface allows the
custom creation of energy expenditure graphs based on the data
stored.

The infrastructure decouples the building from the controller
reducing the overhead of direct in situ control. The API is de-
scribed as an abstraction paradigm, representing a scalable solu-
tion to connect a Home Area Network (HAN) to the smart grid in-
frastructure. Moreover, the framework enables the bi-directional
communication between a centralised or distributed controller
and a residential building, exposing the control building interface
as an external DR asset to utilise through the API abstraction. The
framework also enables the convergence of end user and utility
objective which is increasing the efficiency of the power system
while reducing the overall operational costs.

At the environmental level, the co-simulation may provide in-
direct relevant benefits. The software architecture abstraction can
represent the communication infrastructure between the smart
grid operators and single residential units facilitating DR events
for the integration of RES and therefore reducing the overall
carbon footprint of the building.

6. Conclusions

A smart grid co-simulation software which focused on the BES
integration and established on API abstraction paradigm, has been
developed and released as an open source resource repository.
The co-simulation architecture facilitates the implementation and
testing of control algorithms in the building sector that can be
updated through the server and centrally combined. The use of
the co-simulation framework developed can reduce the testing
cycle of smart grid components such as smart thermostats or
advanced heating systems enabling Demand Side Management
(DSM) measures such as DR.

The co-simulation framework will be of interest to several
stakeholders in the energy arena. The primary purpose of the
system is to become a test benchmark and a logging tool for
the evaluation of thermostatic settings, controllers, new retrofit
measures, installation of RES and new electricity tariffs which
can affect the energy consumption and profile. The analytic dash-
board can provide information on electricity patterns and total



280 F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281

consumption with the objective of identifying inefficiency in the
operation of the heating system. Moreover, the logging capabili-
ties of the interface can facilitate the assessment of devices that
may affect the thermal comfort or the energy expenditure.

Therefore, the target users of the system are mainly energy
policymakers, utilities and research institutions. From the utility
perspective, the co-simulation framework offers a modular soft-
ware architecture for the exchange and distribution of data in a
connected smart grid system. The framework can regularly push
data to the utility which then uses the exposed API endpoints to
signal DR events. Energy and technology policymakers can use
the tool to test and evaluate the scalability of new technologies
and their environmental, energy and sustainability impact. It can
also be utilised by utilities to gather aggregated information on
flexibility, facilitating demand response for geographic regions.

The co-simulation framework has broader applications from
an integration perspective. The infrastructure decouples the
building from the controller reducing the overhead of direct
in situ control which requires equipment capital costs, regular
sensor maintenance and accurate experiment planning. Further
development of the API will aim to adapt the code base thereby
facilitating a more scalable solution for connection between a
HAN and a smart grid infrastructure. Additionally, the provision
of an interface for the assessment and optimisation of building
design features would enhance the capabilities of the API. There-
fore, such as technological innovation through the integration of
information technology, communications, and circuit infrastruc-
ture can lead to a higher penetration of RES, increase the asset
efficiency and reduce the overall carbon emissions of the power
system.

Acknowledgements

This work was conducted in the Electricity Research Cen-
tre, University College Dublin, Ireland, which is supported by
the Commission for Energy Regulation, Ireland, Bord Gis Energy,
Ireland, Bord na Mna Energy, Ireland, Cylon Controls, Ireland,
EirGrid, Ireland, Electric Ireland, Energia, Ireland, EPRI, Ireland,
ESB International, Ireland, ESB Networks, Ireland, Gaelectric, Ire-
land, Intel, Ireland, SSE Renewables, Ireland, and UTRC, Ireland.
This publication has emanated from research conducted with the
financial support of PRLTI, Ireland [R12681]. The authors would
like to thank the building owner for his essential support.

Conflict of interest

The authors declare that there is no conflict of interest.

References

[1] Bianco V, De Rosa M, Scarpa F, Tagliafico LA. Analysis of energy de-
mand in residential buildings for different climates by means of dynamic
simulation. Intl J Ambient Energy 2016;37(2):108–20.

[2] Coakley D, Raftery P, Keane M. A review of methods to match building
energy simulation models to measured data. Renew Sustain Energy Rev
2014;37:123–41. http://dx.doi.org/10.1016/j.rser.2014.05.007, http://www.
sciencedirect.com/science/article/pii/S1364032114003232.

[3] Gils HC. Assessment of the theoretical demand response potential in
Europe. Energy 2014;67:1–18.

[4] De Rosa M, Bianco V, Scarpa F, Tagliafico LA. Impact of wall discretization
on the modeling of heating/cooling energy consumption of residential
buildings. Energy Efficiency 2016;9(1):95–108. http://dx.doi.org/10.1007/
s12053-015-9351-5, https://doi.org/10.1007/s12053-015-9351-5.

[5] Chen Y, Xu P, Gu J, Schmidt F, Li W. Measures to improve energy demand
flexibility in buildings for demand response (DR): A review. Energy Build
2018;177:125–39. http://dx.doi.org/10.1016/j.enbuild.2018.08.003, http://
www.sciencedirect.com/science/article/pii/S0378778818310387.

[6] Nolan S, O’Malley M. Challenges and barriers to demand response de-
ployment and evaluation. Appl Energy 2015;152:1–10. http://dx.doi.org/
10.1016/j.apenergy.2015.04.083.

[7] Palensky P, Dietrich D. Demand side management: Demand response,
intelligent energy systems, and smart loads. IEEE Trans Ind Inform
2011;7(3):381–8.

[8] Rohjans S, Lehnhoff S, Schutte S, Andren F, Strasser T. Requirements for
Smart Grid simulation tools. In 2014 IEEE 23rd international symposium
on industrial electronics; 2014. p. 1730–6. http://dx.doi.org/10.1109/ISIE.
2014.6864876.

[9] Lizana J, Friedrich D, Renaldi R, Chacartegui R. Energy flexible building
through smart demand-side management and latent heat storage. Appl En-
ergy 2018;230:471–85. http://dx.doi.org/10.1016/j.apenergy.2018.08.065,
http://www.sciencedirect.com/science/article/pii/S0306261918312170.

[10] Curtis M, Torriti J, Smith ST. A comparative analysis of building energy
estimation methods in the context of demand response. Energy Build
2018;174:13–25. http://dx.doi.org/10.1016/j.enbuild.2018.06.004, http://
www.sciencedirect.com/science/article/pii/S0378778817336393.

[11] Mets K, Ojea JA, Develder C. Combining power and communication
network simulation for cost-effective smart grid analysis. IEEE Com-
mun Surv Tutor 2014;16(3):1771–96. http://dx.doi.org/10.1109/SURV.2014.
021414.00116.

[12] Farhangi H. The path of the smart grid. IEEE Power Energy Mag
2010;8(1):18–28. http://dx.doi.org/10.1109/MPE.2009.934876.

[13] IEA. Technology roadmap smart grids. Tech. rep., International
Energy Agency; 2011, https://www.iea.org/publications/freepublications/
publication/technology-roadmap-smart-grids.html.

[14] Podmore R, Robinson MR. The role of simulators for smart grid
development. IEEE Trans Smart Grid 2010;1(2):205–12.

[15] Schloegl F, Rohjans S, Lehnhoff S, Velasquez J, Steinbrink C, Palensky P.
Towards a classification scheme for co-simulation approaches in energy
systems. In 2015 international symposium on smart electric distribution
systems and technologies; 2015. p. 516–21. http://dx.doi.org/10.1109/
SEDST.2015.7315262.

[16] Schatte S, Scherfke S, Traschel M. Mosaik: A framework for modular
simulation of active components in Smart Grids. In 2011 IEEE first
international workshop on smart grid modeling and simulation; 2011. p.
55–60. http://dx.doi.org/10.1109/SGMS.2011.6089027.

[17] Jones A, Finn D. Co-simulation of a HVAC system-integrated phase change
material thermal storage unit. J Build Perform Simul 2017;10(3):313–25.

[18] Crawley DB, Hand JW, l Kummert M, Griffith BT. Contrasting the capabil-
ities of building energy performance simulation programs. Build Environ
2008;43(4):661–73. http://dx.doi.org/10.1016/j.buildenv.2006.10.027,
http://www.sciencedirect.com/science/article/pii/S0360132306003234,
Part Special: Building Performance Simulation.

[19] Clarke J, Cockroft J, Conner S, Hand J, Kelly N, Moore R, OBrien T,
Strachan P. Simulation-assisted control in building energy management
systems. Energy Build 2002;34(9):933–40.

[20] EMD University of Wisconsin. TRNSYS. Thermal energy system specialists.
University of Wisconsin, Engineering Mechanical Department; 2013, http:
//sel.me.wisc.edu/trnsys/.

[21] Ruiz-Calvo F, De Rosa M, Monzó P, Montagud C, Corberán JM. Cou-
pling short-term (B2G model) and long-term (g-function) models for
ground source heat exchanger simulation in TRNSYS. Application in a real
installation. Appl Therm Eng 2016;102:720–32.

[22] Ferroukhi M-Y, Belarbi R, Limam K, Bosschaerts W. Experimental
validation of a HAM-BES co-simulation approach. Energy Procedia
2017;139:517–23. http://dx.doi.org/10.1016/j.egypro.2017.11.247, http://
www.sciencedirect.com/science/article/pii/S1876610217356588, Materials
& Energy I (2015).

[23] Widl E, Müller W, Basciotti D, Henein S, Hauer S, Eder K. Simulation of
multi-domain energy systems based on the functional mock-up interface
specification. In: Smart electric distribution systems and technologies
(EDST), 2015 international symposium on. IEEE; 2015, p. 510–5.

[24] Schütte S. Simulation model composition for the large-scale analysis of
smart grid control mechanisms (PhD diss.), BIS der Universit?t Oldenburg.;
2013.

[25] Naboni E, Zhang Y, Maccarini A, Hirsch E, Lezzi D. Extending the use of
parametric simulation in practice through a cloud based online service. In
Proceedings of 1st IBPSA-Italy conference: BSA2013–building simulation
applications conference, vol. 30; 2013. p. 105–12.

[26] JADE. Java agent Development framework. 2015, http://jade.tilab.com/.
[27] Knudsen H, Nielsen JN. Introduction to the modeling of wind turbines.

Wind Power Power Syst 2005;525–85.
[28] Chinnow J, Tonn J, Bsufka K, Konnerth T, Albayrak S. A tool set for

the evaluation of security and reliability in smart grids. In: International
workshop on smart grid security. Springer; 2012, p. 45–57.

[29] Hopkinson K, Wang X, Giovanini R, Thorp J, Birman K, Coury D. EPOCHS:
a platform for agent-based electric power and communication simulation
built from commercial off-the-shelf components. IEEE Trans Power Syst
2006;21(2):548–58.

[30] Jorgensen A, Whittaker JA. An api testing method. In Proceedings of the
international conference on software testing analysis & review; 2000.

http://refhub.elsevier.com/S2352-7110(18)30046-3/sb1
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb1
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb1
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb1
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb1
http://dx.doi.org/10.1016/j.rser.2014.05.007
http://www.sciencedirect.com/science/article/pii/S1364032114003232
http://www.sciencedirect.com/science/article/pii/S1364032114003232
http://www.sciencedirect.com/science/article/pii/S1364032114003232
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb3
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb3
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb3
http://dx.doi.org/10.1007/s12053-015-9351-5
http://dx.doi.org/10.1007/s12053-015-9351-5
http://dx.doi.org/10.1007/s12053-015-9351-5
https://doi.org/10.1007/s12053-015-9351-5
http://dx.doi.org/10.1016/j.enbuild.2018.08.003
http://www.sciencedirect.com/science/article/pii/S0378778818310387
http://www.sciencedirect.com/science/article/pii/S0378778818310387
http://www.sciencedirect.com/science/article/pii/S0378778818310387
http://dx.doi.org/10.1016/j.apenergy.2015.04.083
http://dx.doi.org/10.1016/j.apenergy.2015.04.083
http://dx.doi.org/10.1016/j.apenergy.2015.04.083
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb7
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb7
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb7
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb7
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb7
http://dx.doi.org/10.1109/ISIE.2014.6864876
http://dx.doi.org/10.1109/ISIE.2014.6864876
http://dx.doi.org/10.1109/ISIE.2014.6864876
http://dx.doi.org/10.1016/j.apenergy.2018.08.065
http://www.sciencedirect.com/science/article/pii/S0306261918312170
http://dx.doi.org/10.1016/j.enbuild.2018.06.004
http://www.sciencedirect.com/science/article/pii/S0378778817336393
http://www.sciencedirect.com/science/article/pii/S0378778817336393
http://www.sciencedirect.com/science/article/pii/S0378778817336393
http://dx.doi.org/10.1109/SURV.2014.021414.00116
http://dx.doi.org/10.1109/SURV.2014.021414.00116
http://dx.doi.org/10.1109/SURV.2014.021414.00116
http://dx.doi.org/10.1109/MPE.2009.934876
https://www.iea.org/publications/freepublications/publication/technology-roadmap-smart-grids.html
https://www.iea.org/publications/freepublications/publication/technology-roadmap-smart-grids.html
https://www.iea.org/publications/freepublications/publication/technology-roadmap-smart-grids.html
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb14
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb14
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb14
http://dx.doi.org/10.1109/SEDST.2015.7315262
http://dx.doi.org/10.1109/SEDST.2015.7315262
http://dx.doi.org/10.1109/SEDST.2015.7315262
http://dx.doi.org/10.1109/SGMS.2011.6089027
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb17
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb17
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb17
http://dx.doi.org/10.1016/j.buildenv.2006.10.027
http://www.sciencedirect.com/science/article/pii/S0360132306003234
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb19
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb19
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb19
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb19
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb19
http://sel.me.wisc.edu/trnsys/
http://sel.me.wisc.edu/trnsys/
http://sel.me.wisc.edu/trnsys/
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb21
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb21
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb21
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb21
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb21
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb21
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb21
http://dx.doi.org/10.1016/j.egypro.2017.11.247
http://www.sciencedirect.com/science/article/pii/S1876610217356588
http://www.sciencedirect.com/science/article/pii/S1876610217356588
http://www.sciencedirect.com/science/article/pii/S1876610217356588
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb23
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb23
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb23
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb23
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb23
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb23
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb23
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb24
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb24
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb24
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb24
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb24
http://jade.tilab.com/
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb27
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb27
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb27
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb28
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb28
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb28
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb28
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb28
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb29
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb29
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb29
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb29
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb29
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb29
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb29


F. Pallonetto, E. Mangina, F. Milano et al. / SoftwareX 9 (2019) 271–281 281

[31] Nijssen GM, Halpin TA. Conceptual schema and relational database design:
a fact oriented approach. Prentice-Hall, Inc.; 1989.

[32] Pallonetto F, Oxizidis S, Finn D. Exploring the demand response potential
of a smart-grid ready house using building simulation software. In IBPSA
building simulation conference; 2013.

[33] Ellis PG, Torcellini PA, Crawley DB. Simulation of energy management
systems in EnergyPlus. National Renewable Energy Laboratory; 2008.

[34] Pallonetto F, Mangina E, Finn D, Wang F, Wang A. A restful API to
control a energy plus smart grid-ready residential building: demo abstract.
In: Proceedings of the 1st ACM conference on embedded systems for
energy-efficient buildings. New York, NY, USA: ACM; 2014, p. 180–1.
http://dx.doi.org/10.1145/2674061.2675023.

[35] Pallonetto F, Milano F, Finn D. Demand response algorithms for smart-grid
ready residential buildings using machine learning models. Appl Energy
2019. http://dx.doi.org/10.1016/j.apenergy.2019.02.020.

[36] Gao J, Bai X, Tsai W-T. Cloud testing-issues, challenges, needs and practice.
Software Eng Intl J 2011;1(1):9–23.

[37] Nevedrov D. Using JMeter to performance test web services. Published on
dev2dev (http://dev2dev.bea.com/); 2006. p. 1–11.

[38] Bermudez I, Traverso S, Mellia M, Munafo M. Exploring the cloud
from passive measurements: The Amazon AWS case. In: INFOCOM, 2013
proceedings IEEE. IEEE; 2013, p. 230–4.

[39] Weyuker EJ, Avritzer A. A metric to predict software scalability. In:
Software metrics, 2002. Proceedings. Eighth IEEE symposium on. IEEE;
2002, p. 152–8.

http://refhub.elsevier.com/S2352-7110(18)30046-3/sb31
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb31
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb31
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb33
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb33
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb33
http://dx.doi.org/10.1145/2674061.2675023
http://dx.doi.org/10.1016/j.apenergy.2019.02.020
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb36
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb36
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb36
http://dev2dev.bea.com/
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb38
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb38
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb38
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb38
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb38
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb39
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb39
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb39
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb39
http://refhub.elsevier.com/S2352-7110(18)30046-3/sb39

	SimApi, a smartgrid co-simulation software platform for benchmarking building control algorithms
	Introduction
	Software objectives and requirements
	Software description
	Software architecture
	Software functionalities

	Implementation example of a rule-base algorithm
	Experimental results and discussion
	Physical infrastructure
	Stability analysis
	Test results
	Summary analysis

	Discussion

	Conclusions
	Acknowledgements
	Conflict of interest
	References


