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ABSTRACT

Glycosylation of the Fc region of IgG has a profound
impact on the safety and clinical efficacy of therapeutic
antibodies. While the biantennary complex-type
oligosaccharide attached to Asn297 of the Fc is essen-
tial for antibody effector functions, fucose and outer-arm
sugars attached to the core heptasaccharide that gen-
erate structural heterogeneity (glycoforms) exhibit
unique biological activities. Hence, efficient and quan-
titative glycan analysis techniques have been increas-
ingly important for the development and quality control
of therapeutic antibodies, and glycan profiles of the Fc
are recognized as critical quality attributes. In the past
decade our understanding of the influence of glycosy-
lation on the structure/function of IgG-Fc has grown
rapidly through X-ray crystallographic and nuclear
magnetic resonance studies, which provides possibili-
ties for the design of novel antibody therapeutics. Fur-
thermore, the chemoenzymatic glycoengineering
approach using endoglycosidase-based glycosyn-
thases may facilitate the development of homogeneous
IgG glycoforms with desirable functionality as next-
generation therapeutic antibodies. Thus, the Fc glycans
are fertile ground for the improvement of the safety,

functionality, and efficacy of therapeutic IgG antibodies
in the era of precision medicine.
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INTRODUCTION

Glycosylation of proteins is a complex and versatile post-
translational modification that influences biological activity,
protein conformation, stability, solubility, secretion, pharma-
cokinetics, and antigenicity (Dwek, 1998). IgG is composed
of three globular domain structures, two of which are the
fragments for antigen binding (Fab) and the other is the
fragment crystalizable (Fc) that activates Fcγ receptors
(FcγRs) on leukocytes and C1 component of complement.
IgG molecules bear oligosaccharides at Asn297 of the Fc
region, and the oligosaccharide plays an essential role in Fc
effector functions including antibody-dependent cellular
cytotoxicity (ADCC) and complement-dependent cytotoxicity
(CDC) that are among mechanisms of action of therapeutic
antibodies. Therefore, engineering of Fc glycosylation is a
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rational strategy to improve the safety and efficacy of ther-
apeutic IgG antibodies. Although the importance of glyco-
sylation for Fc effector functions of therapeutic IgG
antibodies has been previously documented (Jefferis, 2009,
2012, 2017; Mimura et al., 2009; Zhang et al., 2016), this
review summarizes recent advances in antibody glycobiol-
ogy that are applicable for optimization of the functionality of
IgG antibodies for therapeutic purposes, including the novel
glycan profiling technology developed by Rudd’s group
(Bones et al., 2010), the influence of glycosylation on the
structure and function of the Fc revealed from crystal struc-
tures of nonglycosylated Fc, the nonfucosylated Fc-glyco-
sylated Fcγ receptor IIIa (FcγRIIIa) complexes and sialylated
Fc and a new approach to engineering of IgG glycoforms via
transglycosylation of predefined oligosaccharides to degly-
cosylated IgG-Fc.

STRUCTURE OF THE IGG-FC GLYCANS

The IgG-Fc glycans released from human normal polyclonal
IgG are highly heterogeneous (Arnold et al., 2006; Mimura
et al., 2009; Rudd and Dwek, 1997) (Fig. 1A), due to the
variable addition of fucose, bisecting GlcNAc, galactose, and
sialic acid residues to the core complex biantennary hep-
tasaccharide (GlcNAc2Man3GlcNAc2, designated G0). The
heterogeneous glycans can be classified into three sets (G0,
G1, and G2), depending on the number of galactose resi-
dues in the outer arms of biantennary glycans. Within each
of these sets are four species that result from the presence
or absence of core fucose and bisecting GlcNAc, namely, 16
neutral complex-type structures. Figure 1A shows the glycan
profile of intravenous immunoglobulin (IVIG, Kenketsu
Venilon-I, Teijin Phama) which is a therapeutic preparation of
polyclonal IgG derived from pooled plasma of thousands of
healthy donors. The fluorescently labeled glycans from the
Fc fragment of IVIG (IVIG-Fc) were separated into >20
peaks by hydrophilic interaction liquid chromatography
(HILIC) in which fucosylated, monogalactosylated (G1F)
glycoforms predominate, with a preference for galactosyla-
tion on the α(1-6)-arm (G1[6]F) over the α(1-3)-arm (Fig. 1A-
i, Table 1) (Pucic et al., 2011). The proportion of the sialy-
lated glycoforms of IVIG-Fc was approximately 19%
(Table 1), and sialic acid is known to be added preferentially
on the α(1-3)-arm of the digalactosylated (G2) glycoforms
(Barb et al., 2009; Grey et al., 1982; van den Eijnden et al.,
1980). Sialylation occurs in α(2-6)-linkage with N-acetyl-
neuraminic acid (NeuAc) in humans whereas it is in α(2-3)-
linkage in Chinese hamster ovary (CHO)-derived recombi-
nant IgG molecules (Takeuchi et al., 1988). The glycan
profile of Sambucus nigra agglutinin (SNA)-bound IVIG-Fc
showed the prominent peaks of monosialylated and disialy-
lated glycans with and without bisecting GlcNAc (>60%,
Fig. 1A-ii, Table 1). The presence of around 40% of non-
sialylated glycans released from the SNA-bound Fc indi-
cates that sialylation of one of the two Fc glycans is sufficient
for the Fc to bind to SNA. The glycans of the therapeutic

monoclonal IgG antibodies nivolumab (Opdivo®, Ono Phar-
maceutical), bevacizumab (Avastin®, Chugai Pharmaceuti-
cal), and mogamulizumab (Poteligeo®, Kyowa Hakko Kirin)
were less heterogeneous than those of IVIG-Fc (Fig. 1B–D).
Currently approved therapeutic IgG antibodies are produced
in CHO, NS0 and Sp2/0 cell lines, and nivolumab and
bevacizumab are produced in CHO cells (Fig. 1B and C) and
mogamulizumab in α(1-6)-fucosyltransferase (FUT8)-defi-
cient CHO cells (Fig. 1D), which clearly shows the presence
and absence of core fucose, respectively. Non-galactosy-
lated glycoforms (G0F and G0) predominated, and sialylated
glycans were negligible for these CHO-derived IgG anti-
bodies (Table 1). Recombinant IgG antibodies produced
from CHO and murine cells do not contain bisecting GlcNAc
in contrast to human IgG as observed for IVIG (Fig. 1A)
(Raju et al., 2000).

Terminal α(1-3)-linked galactose (α(1-3)-Gal) and N-gly-
colylneuraminic acid (NeuGc) residues are frequently found
in the N-glycans of recombinant IgG antibodies produced
from murine myeloma cells. Such glycan structures are
unnatural and potentially immunogenic in humans. The α-
galactosylation and sialylation with NeuGc are reported in
cetuximab produced from Sp2/0 (Qian et al., 2007) and
infliximab from NS0 (Mimura et al., 2009) and are markedly
increased for an IgG1-F243A mutant when expressed in
murine cells (Mimura et al., 2016). It has been reported that
all humans have IgG antibodies specific for the α(1-3)-Gal
epitope (Galili et al., 1993) and that the anti-NeuGc activity is

cFigure 1. Glycan profiles of therapeutic antibodies by

hydrophilic interaction liquid chromatography (HILIC).

The glycan profiles of the Fc of IVIG (A). The control IVIG-

Fc (i) and the SNA-bound IVIG-Fc fraction (ii). The glycan

profiles of therapeutic IgG monoclonal antibodies (B–D).
(B) Nivolumab (human anti-PD-1 IgG4), (C) Bevacizumab

(humanized anti-VEGF IgG1), (D) Mogamulizumab (hu-

manized anti-CCR4 IgG1). The glycans were released with

peptide-N-glycosidase F from the Fc fragments of IVIG

and the heavy chains of the recombinant IgG antibodies in

the SDS-PAGE gel bands and labeled with 2-aminoben-

zamide as previously described (Royle et al., 2006). The

fluorescently labeled glycans were separated by ultra-

performance liquid chromatography (UPLC) on a sub-2 μm

hydrophilic interaction based stationary phase with a

Waters Ethylene Bridged Hybrid (BEH) Glycan chromatog-

raphy column (150 × 2.1 mm i.d., 1.7 μm BEH particles)

(Bones et al., 2010; Doherty et al., 2012). The glycan

peaks were assigned in accordance with the previous

study (Pucic et al., 2011). Glycans are designated by the

letters G, F, S, and B indicating the presence of galactose,

fucose, sialic acid, and bisecting GlcNAc, respectively. [3]

and [6] in the G1 glycan codes indicate the attachment of

galactose on the α(1-3)- and α(1-6)-arm, respectively.

Symbols of monosaccharides and lines for showing

glycosidic linkages (Inset).
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detectable in up to 85% of healthy individuals (Tangvora-
nuntakul et al., 2003; Zhu and Hurst, 2002). Cetuximab
bears glycans containing both α(1-3)-Gal (30%) and NeuGc
(12%) on the Fab portion (Qian et al., 2007), and there is a
high prevalence of anti-α(1-3)-Gal IgE antibody in areas of
the United States where anaphylactic reactions to cetuximab
have occurred (Chung et al., 2008). Attempts have been
made to predict severe cetuximab-induced hypersensitivity
reactions prior to exposure to cetuximab (Iwamoto et al.,
2016; Mariotte et al., 2011).

INFLUENCE OF THE FC GLYCAN ON ANTIBODY
EFFECTOR FUNCTIONS

The oligosaccharides at Asn297 of the IgG-Fc are essential
for the optimal activation of FcγRs and complement C1
although the carbohydrate moiety accounts for only 2%–3%
of the IgG molecule. The clearance mechanisms including
phagocytosis, ADCC, and CDC mediated by Fcγ receptors
and C1q are abrogated or severely compromised for agly-
cosylated or deglycosylated forms of IgG (Nose and Wigzell,
1983; Pound et al., 1993; Sarmay et al., 1992; Tao and
Morrison, 1989; Woof and Burton, 2004). The IgG-Fc crystal
structure reveals the oligosaccharide as integral to the Fc
structure, sequestered in the internal space enclosed by the
two CH2 domains (Fig. 2. Glycans shown as green sticks).
The electron density map provides coherent diffraction for
the monogalactosylated oligosaccharide and allows the
possibility of >70 contacts with 14 amino acid residues of the
CH2 domain (Deisenhofer, 1981; Padlan, 1990). The crystal
structure of the complex between IgG1-Fc and an E. coli-
produced soluble recombinant form of FcγRIII (sFcγRIII) has
demonstrated that the FcγRIII binds to the lower hinge and
the hinge proximal regions of the two CH2 domains asym-
metrically with a 1:1 stoichiometry (Radaev et al., 2001;
Sondermann et al., 2000). In the complex of the Fc with the
aglycosylated sFcγRIII, the Fc glycans are not directly
associated with sFcγRIII except the primary GlcNAc of one
oligosaccharide although removal of the Fc glycans abro-
gates sFcγRIII binding. Importantly, the interaction between
IgG-Fc and sFcγRIII can be substantially influenced by the

presence or absence of fucosylation of the Fc and glycosy-
lation of sFcγRIII (see below) (Ferrara et al., 2011; Mizush-
ima et al., 2011). Notably, the horseshoe-shaped Fc opens
up upon complex formation, and therefore it is presumed that
the Fc glycan maintains the open conformation of the Fc and
that removal of the Fc glycan results in a closed conforma-
tion. This notion is supported by the crystal structures of the
Fc glycoforms bearing sequentially truncated glycans
((G2F)2, (G0F)2, (M3N2F)2 and (MN2F)2, G: galactose; M:
mannose; N: GlcNAc; F: fucose) in which the (G2F)2 gly-
coform shows the longest Pro329-Pro329 Cα distance of
33.7 Å whereas the (MN2F)2 glycoform the shortest distance
of 21.9 Å (Krapp et al., 2003). Although truncation of the
terminal sugar residues results in an increase of destabi-
lization of the CH2 domain and a reduction of affinity to
sFcγRIIb (Mimura et al., 2001) and sFcγRIII (Yamaguchi
et al., 2006), the profound influence of Fc glycosylation on
FcγR binding has not been paralleled by gross conforma-
tional differences between glycosylated and aglycosylated
Fc fragments (Lund et al., 1990).

STRUCTURES OF NONGLYCOSYLATED IGG-FC

Recently crystal structures have been solved for E. coli-ex-
pressed, aglycosylated murine IgG1-Fc (PDB ID code:
3HKF) and aglycosylated human IgG1-Fc (PDB ID code:
3S7G) (Fig. 2A) (Borrok et al., 2012) and enzymatically
deglycosylated human IgG1-Fc (PDB ID code: 3DNK)
(Fig. 2B-i) and deglycosylated IgG4-Fc (PDB ID code: 4D2N)
(Fig. 2B-ii) (Davies et al., 2014a). The bacterially expressed
murine aglycosylated IgG1-Fc shows a strongly closed
conformation (Feige et al., 2009). The crystal structure of
aglycosylated human IgG1-Fc (PDB ID code: 3S7G) reveals
two Fc dimers of the asymmetric unit, interfacing at the CH2-
CH3 elbow between the dimers, and adopts a closed Fc
conformation with Pro329-Pro329 Cα distances of 18.9 Å
and 19.6 Å for the two Fc molecules whereas the structure of
native Fc (PDB ID code: 3AVE) shows the Pro329-Pro329
distance of 25.1 Å (Fig. 2A) (Borrok et al., 2012). Further-
more, significant disorder is observed in the C’E loop
(Gln293–Phe303) that contains the N-glycosylation site and

Table 1. Analysis of the key features of the N-glycans released from the therapeutic IgG antibodiesa

IgG Sialylation (%) Term. Gal
(%)b

Term. GlcNAc
(%)c

Bisecting
GlcNAc (%)

Core fucose
(%)

Predominant
glycoform

S1 S2

IVIG-Fc 16.2 2.6 62 19.2 11.4 92.8 G1F

SNA-IVIG-Fc 32.5 30.2 27.2 10.1 36.1 89.4 G2FBS1

Nivolumab 1.3 0 42.4 56.3 0 100 G0F

Bevacizumab 0 0 19 81 0 97.4 G0F

Mogamulizumab 0 0 36.3 63.7 0 0 G0

a Glycans were quantitated by measuring peak areas in the HILIC profiles (Fig. 1).
b Glycoforms terminating in galactose residues (G1, G1F, G1FB, G2, G2F, G2FB).
c Glycoforms terminating in GlcNAc residues (G0 and G0F).
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a region crucial for FcγR binding. In contrast, the crystal
structure of enzymatically deglycosylated human IgG1-Fc
(PDB ID code: 3DNK) reveals an open conformation
(Pro329–Pro329 distance, 27.6 Å) (Fig. 2B-i). The crystal
structure of the enzymatically deglycosylated human IgG4-
Fc myeloma protein (Rea) reveals two interlocked Fc mole-
cules with the CH2 domains oriented in a symmetric open
conformation (Pro329–Pro329 distance, 29.1 Å) (Fig. 2B-ii)
(Davies et al., 2014a). There are no significant differences
between the overall structures of deglycosylated IgG4-Fc
and glycosylated IgG4-Fc although the conformation of the
C’E loop is altered in the absence of the oligosaccharide
(Davies et al., 2014a; Davies et al., 2014b). Thus, it seems
likely that nonglycosylated CH2 domains can adopt not only
closed but also flexible orientations. Furthermore, the agly-
cosylated human IgG1-Fc in Fig. 2A displays larger radii of
gyration than glycosylated Fc by small angle X-ray scatter-
ing, which suggests a more open CH2 domain conformation
in solution (Borrok et al., 2012).

AGLYCOSYLATED IGG ANTIBODIES FOR THERAPY

Aglycosylated antibodies are suited for purposes where
ADCC/CDC action is not required as is the case for neutral-
izing, agonistic or antagonistic antibodies. Numerous agly-
cosylated IgG antibodies are under clinical evaluation
including otelixizumab (TRX4), onartuzumab (MetMAb), and
clazakizumab (ALD518) (Ju and Jung, 2014; Jung et al.,
2011). The use of aglycosylated IgG antibodies provides the
following advantages: (1) The serum half-life of aglycosylated
IgG is shown to be comparable to that of glycosylated coun-
terpart in chimpanzees (Simmons et al., 2002); (2) Aglyco-
sylated IgG can be produced in lower eukaryotes or in
bacteria, which provides bioprocessing advantages in terms
of shorter bioprocess development and running times without
need to consider glycan heterogeneity problems; (3) Aglyco-
sylated IgG antibodies maintain the ability to engage some of
the FcγRs by a small subset of substitutions in the CH2 and/or
CH3 domains. An aglycosylated IgG variant with S298G/
T299A mutations has been identified that activates FcγRIIa
(Sazinsky et al., 2008). In addition, an aglycosylated IgG
variant with mutations E382V/M428I within the CH3 domain
has been shown to mediate cytotoxicity of target cells via
FcγRI (Ju et al., 2015; Jung et al., 2010). Thus, engineering of
aglycosylated IgG provides new routes for the design of
therapeutic antibodies with customized functionality.

Deglycosylation of circulating IgG in vivo by administra-
tion of endoglycosidase from Streptococcus pyogenes
(Endo-S) has been considered as a novel therapeutic
strategy for immune evasion in patient with autoimmune
disorders (Allhorn and Collin, 2009; Collin et al., 2008).
Endo-S selectively hydrolyzes the glycosidic bond of the
chitobiose core of the Fc glycans leaving the primary GlcNAc
with or without fucose, and Endo-S treatment of IgG results
in a severely reduced affinity to FcγRs. Administration of

recombinant Endo-S to mice has been shown to transiently
remove the Fc glycans from circulating IgG and suppress
inflammation in autoimmune models including immune
thrombocytopenic purpura (ITP) and serum transfer arthritis
(Albert et al., 2008). As a novel approach to enhance the
efficacy of therapeutic antibodies, both Endo-S and thera-
peutic IgGs bearing Endo-S-resistant high mannose-type
glycans are administered to eliminate competition for FcγR
binding between circulating IgG and therapeutic IgG so that
the therapeutic IgG could efficiently exert effector functions
(Baruah et al., 2012). However, repeated administrations of
the bacteria-derived endoglycosidase may lead to the

Figure 2. Comparison of nonglycosylated and glyco-

sylated Fc structures. (A) Closed conformation of the

nonglycosylated Fc. Superposition of the E. coli-produced

aglycosylated human IgG1-Fc (red) (PDB ID code: 3S7G)

with the glycosylated human IgG1-Fc (cyan) (PDB ID

code: 3AVE). Overall structure of the two aglycosylated Fc

molecules is shown in red and green, and the Fc shown in

red is superimposed with the glycosylated Fc. (B) Open

conformation of the nonglycosylated Fcs. (i) Superposition

of the enzymatically deglycosylated human IgG1-Fc (ma-

genta) (PDB ID code: 3DNK) with the glycosylated human

IgG1-Fc (cyan) (PDB ID code: 3AVE). (ii) Superposition of

deglycosylated human IgG4-Fc myeloma protein Rea

(pink) (PDB ID code: 4D2N) with the glycosylated IgG4-

Fc (cyan) (PDB ID code: 4C54). Overall structure of the

two interlocked Fc molecules is shown in pink and blue.

The Fc shown in pink is superimposed with the glycosy-

lated Fc. The Fc glycans are shown in green sticks. The

Pro329 residues located in the FG loop of the CH2

domains are indicated by red and blue arrowheads for

the nonglycosylated and glycosylated CH2 domains,

respectively. The molecular models were produced with

PyMOL (The PyMOL Molecular Graphics System, Version

1.8.5.0, Schrodinger, LLC).
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development of antibodies against the enzyme. It should
also be noted that immune complexes formed with Endo-S-
treated IgG retain the ability to activate FcγRs in an IgG
subclass-dependent manner. Human IgG1 and IgG3 anti-
bodies deglycosylated by Endo-S are found to be able to
activate FcγRs (Kao et al., 2015). Thus, the therapeutic
efficacy of the Endo-S administration may not be pre-
dictable where FcγR activation via multivalent immune
complexes is involved in disease pathogenesis. The
remarkable specificity of Endo-S for native IgG has also
been exploited for engineering of IgG glycoforms as descri-
bed below.

INFLUENCE OF FC GLYCAN STRUCTURE
ON PHARMACOKINETICS OF IGG ANTIBODIES

Clearance has a critical impact on the efficacy of therapeutic
antibodies. IgG antibodies are protected from rapid degra-
dation in lysosomes through the neonatal Fc receptor (FcRn)
recycling mechanism, which explains the long half-life of IgG
antibodies in the serum (Roopenian and Akilesh, 2007).
FcRn interacts with IgG at the CH2/CH3 interface, indepen-
dently of the Fc glycan. Other receptors that are known to
bind and clear proteins with specific glycans include the
asialoglycoprotein receptor that binds to terminal galactose
residues of N-glycans (Ashwell and Harford, 1982) and the
mannose receptor that recognizes terminal mannose or
GlcNAc sugars (Lee et al., 2002). High mannose glycoforms
are frequently found in recombinant IgG antibodies produced
from tissue culture CHO and murine cells (Goetze et al.,
2011; Mimura et al., 2009; Zhang et al., 2016). Shorter half-
lives have been demonstrated for IgG antibodies bearing
high mannose-type glycans compared with those with the
complex-type glycans in mice (Kanda et al., 2007) and
human FcRn-transgenic mice (Liu et al., 2011). When ther-
apeutic IgG1 or IgG2 antibody was administered in human
subjects, the relative abundance of IgG glycoforms with
terminal galactose or GlcNAc remained constant during
34 days after injection while high mannose glycoforms were
selectively cleared more rapidly at lower intravenous doses
(Goetze et al., 2011). Thus, the presence of high mannose
glycoforms may compromise the efficacy of antibody thera-
peutics through enhanced clearance and/or possible
immunogenicity elicited by uptake of immune complexes via
the mannose receptor on macrophages/dendritic cells and
the activation of the mannan-binding lectin pathway (Arnold
et al., 2006; Jefferis, 2017). The Fab is also glycosylated in
approximately 20% of polyclonal human IgG, and the Fab
glycans can be of highly galactosylated and sialylated
complex-type (Holland et al., 2006; Mimura et al., 2007) or of
high mannose-type, depending on the location of the gly-
cosylation site in the VH region (Gala and Morrison, 2004;
Radcliffe et al., 2007; Wright et al., 1991). As Fab glycosy-
lation can modulate the antibody binding (Wright et al., 1991)
and physicochemical properties (Wu et al., 2010) and in vivo

clearance as observed for highly glycosylated Fc-fusion
proteins (Higel et al., 2016; Liu, 2015, 2017), the variable
region glycosylation may also be exploited to improve the
efficacy of antibody therapeutics.

BIOLOGICAL ACTIVITY OF CORE FUCOSE
RESIDUE

The impact of fucose depletion from the IgG-Fc glycan on
ADCC probably represents one of the most important dis-
coveries in antibody glycobiology. The dramatic enhance-
ment of ADCC is attributed to the improved affinity of
nonfucosylated IgG for FcγRIIIa expressed on natural killer
(NK) cells (Kanda et al., 2007; Okazaki et al., 2004; Shields
et al., 2002; Shinkawa et al., 2003; Yamane-Ohnuki et al.,
2004). In the past century, the biological relevance of core
fucosylation received relatively little attention, in part, due to
difficulty in the removal of core fucose from the IgG-Fc.
Although the influence of the fucose residue on the stability
of the Fc was examined by differential scanning calorimetry,
fucosylated and nonfucosylated human IgG1-Fc proteins did
not show any significant difference in the stability (Mimura
et al., 2000; Mimura et al., 2001). However, the discovery of
the importance of fucose depletion needed an appropriate
binding partner, i.e., glycosylated (mammalian cell-ex-
pressed) FcγRIII. On the other hand, preparation of biologi-
cally active aglycosylated (E. coli-expressed) FcγRs was
optimized in the late 1990s (Sondermann and Jacob, 1999),
which led to the first crystallographic analyses of FcγRIIb
(Sondermann et al., 1999) and the Fc–sFcγRIII complex
(Sondermann et al., 2000). When the binding of fucosylated
Fc to aglycosylated FcγRIII was analyzed by surface plas-
mon resonance (Maenaka et al., 2001), the Fc affinity to
aglycosylated FcγRIII was slightly higher than that to gly-
cosylated (CHO cell-expressed) FcγRIII observed by ana-
lytical ultracentrifugation (Ghirlando et al., 1995). Therefore,
it was presumed at this time that N-glycosylation of FcγRIII
negatively influences the Fc–FcγRIII interaction. Rather than
core fucose, bisecting GlcNAc drew attention because
recombinant IgG1 bearing bisected glycans by overexpres-
sion of β1,4-N-acetylglucosaminyltransferase III (GnT-III)
exhibited improved ADCC (Umana et al., 1999), which later
proved to be due to inhibition of α(1-6)-fucosyltransferase
(FUT8) by the presence of bisecting GlcNAc.

Biological relevance of core fucose in the Fc glycan was
demonstrated by two groups (Shields et al., 2002; Shinkawa
et al., 2003). The Genentech group expressed glycosylated
FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa in mammalian cell
lines (Shields et al., 2001) and humanized anti-HER2 and
anti-IgE IgG1 antibodies with low fucose contents (ca. 10%
and 21%, respectively) in Lec13 cells, a variant CHO cell line
deficient in fucosylation (Shields et al., 2002). Lack of core
fucose in the Fc glycan enhanced the binding of IgG to
FcγRIIIa up to 50-fold, together with slightly improved bind-
ing to the Arg131 FcγRIIa polymorphic form and FcγRIIb
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whereas the absence of fucose did not affect the binding to
human FcγRI, C1q, and neonatal FcR. The BioWa (or
Kyowa Hakko Kirin) group produced an anti-CD20 antibody
with low fucose contents (9%) in rat YB2/0 B-lymphoblast
cells, and the antibody exhibited enhanced ADCC using
human peripheral blood mononuclear cells (Shinkawa et al.,
2003). The latter group has also found that increased
bisecting GlcNAc contents in the nonfucosylated IgG gly-
cans fractionated by PHA-E4 lectin affinity chromatography
do not show additive effect on ADCC, which suggests that it
is not bisecting GlcNAc but core fucose that markedly
influences ADCC. The study also demonstrated the low
expression level of FUT8 mRNA in the YB2/0 B-cells, which
led to the establishment of FUT8 double gene-knockout
CHO/DG44 cell line for production of completely nonfuco-
sylated antibodies (Yamane-Ohnuki et al., 2004). It is known
that human IgG1 binds more strongly to NK cells expressing
homozygous FcγRIIIa-Val158 than to those expressing
FcγRIIIa-Phe158 (Koene et al., 1997; Wu et al., 1997). IgG
devoid of core fucose show improved binding to both
FcγRIIIa-Val158 and FcγRIIIa-Phe158, with the affinity being
increased up to 50-fold and 30-fold, respectively (Ferrara
et al., 2006; Shields et al., 2002). Importantly, the glycan at
Asn162 of FcγRIIIa is crucial for the high affinity of nonfu-
cosylated IgG to FcγRIIIa whereas the glycan at Asn45 is
required for proper folding but has a negative effect on the
binding (Shibata-Koyama et al., 2009). X-ray crystallo-
graphic analysis of nonfucosylated Fc fragments produced in
the FUT8−/− CHO/DG44 cells revealed a similar structure to
the fucosylated counterpart (PDB ID codes: 2DTQ and
2DTS), with subtle difference in conformation around Tyr296
near the fucose residue. The stable-isotope-assisted NMR
analyses also confirmed the similarity of the overall struc-
tures in solution (Matsumiya et al., 2007).

Crystal structures of the complex between nonfucosylated
Fc and glycosylated FcγRIIIa have been solved by two inde-
pendent groups (Ferrara et al., 2011; Mizushima et al., 2011).
The crystal structure of the complex from Ferrara et al. was
obtained with human nonfucosylated IgG1 produced from
CHO-K1SVcells that overexpressedGnT-III to block theaction
of FUT8 and the sFcγRIIIa variant glycosylated at Asn45/
Asn162 produced in HEK293-EBNA cells treated with the
mannosidase I inhibitor, kifunensine (PDB ID code: 3SGK).
The sFcγRIIIa bearing oligomannose glycans at the two sites
binds nonfucosylated IgG1 with comparable affinity to the fully
glycosylated FcγRIIIa. The crystal structure reveals unique
interactions between the nonfucosylated glycan of the Fc and
the high mannose-type glycan at Asn162 of sFcγRIIIa. The
absence of core fucose allows hydrogen bonding between the
chitobiose core of the glycan at Asn162 of sFcγRIIIa and the
primary GlcNAc of the Fc glycan of the chain A (Fig. 3A). The
terminal mannose residue on the α(1-3)-arm of the high man-
nose-type glycan of sFcγRIIIa forms a hydrogen bond to the
Gln295 residue of the Fc. In addition, Tyr296 of the Fc makes
contacts between the branching β-mannose and Lys128
residue of sFcγRIIIa (Fig. 3A). On the other hand, the crystal

structure of the fucosylated Fc–glycosylated sFcγRIIIa com-
plex (PDB ID code: 3SGJ) reveals that core fucose inhibits the
ligand–receptor binding, due to steric hindrance (Fig. 3B). The
other crystal structure of the nonfucosylated Fc–FcγRIII com-
plex from Mizushima et al. was obtained with nonfucosylated
IgG from the FUT8−/− CHO cells (Ms704) and sFcγRIIIa gly-
cosylated at Asn45/Asn162 from CHO/DG44 cells (PDB ID
code: 3AY4) (Mizushimaet al., 2011). As revealed in the former
crystal structure, the binding ismediated by the carbohydrate–
carbohydrate and carbohydrate–protein interactions although
this sFcγRIIIa bears biantennary fucosylated complex-type
glycans, in contrast to high mannose-type glycans for the for-
mer. The glycan at Asn162 of sFcγRIIIa interacts with the
nonfucosylated glycan and the Tyr296 and Arg301 residues of
the Fc, thereby stabilizing the complex formation. These
crystal structures demonstrate that the ADCC activity of non-
fucosylated IgG is enhanced by the carbohydrate–carbohy-
drate interactions through van der Waals force, hydrogen
bonding, and hydrophobic interactions. This is a novelmode of
the ligand–receptor binding that provides an opportunity to
explore optimal combinations of glycoforms of a ligand with
those of a receptor to design glycosylated biological
therapeutics.

Several nonfucosylated IgG antibodies have already
entered the clinic. The phase I clinical trial of nonfucosylated
humanized anti-CC chemokine receptor 4 (CCR4) IgG1
antibody KW-0761 (mogamulizumab, Fig. 1D) was initiated in
patients with relapsed adult T cell leukemia or peripheral
T-cell lymphoma in 2006 (Yamamoto et al., 2010). The phase
II clinical trial demonstrated potent antitumor activity and
tolerable toxicity profile by mogamulizumab monotherapy
(Ishida et al., 2012), which led to approval by the regulatory
authority in Japan in 2012. Several other nonfucosylated IgG
antibodies are under clinical evaluation, including the ones
against OX40 (KHK4083), IL-5R (benralizumab) (Wang et al.,
2017), EGFR (imgatuzumab) (Delord et al., 2014), and CD20
(obinutuzumab). Fucose depletion of existing antitumor
therapeutic IgG antibodies such as rituximab and trastuzu-
mab has been shown to enhance the ADCC activities ex vivo
(Iida et al., 2006; Mossner et al., 2010). The anti-CD20
humanized IgG1 antibody obinutuzumab produced in CHO-
K1 cells engineered to overexpress GnT-III and Golgi
β-mannosidase II exhibits low fucose contents in the Fc
glycans and superior antitumor activities to rituximab (Sehn
et al., 2012; Sehn et al., 2015). Obinutuzumab was approved
in the United States in 2013 for treatment of follicular lym-
phoma. Thus, nonfucosylated IgG antibodies will be further
developed as next-generation therapeutic antibodies with
potent ADCC at reduced doses.

BIOLOGICAL ACTIVITY OF THE TERMINAL SIALIC
ACID RESIDUES

Influence of sialylation on the structure of the Fc has been
analyzed by NMR and X-ray crystallographic analysis
(Ahmed et al., 2014; Barb et al., 2009; Barb et al., 2012;
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Crispin et al., 2013). By NMR spectroscopy the relaxation
rates of the galactose resonances for the Fc monosialylated
on the α(1-3)-arm and the disialylated Fc were found to be
largely similar to those for the G2F Fc glycoform, which
suggests that Fc sialylation has a minor effect on the
motional behavior of the N-glycan. Although the sialic acid
residues are highly dynamic and free of strong interaction
with the protein moiety of the Fc, the sialylated glycan–CH2
polypeptide interactions are largely mediated by the carbo-
hydrate residues up to galactose (Barb et al., 2012). The
crystal structure of sialylated Fc (PDB ID code: 4BYH) pro-
vides consistent findings with the solution-state NMR

measurements (Fig. 4A). The terminal sialic acid on the α(1-
6)-arm (Fig. 4A, shown in red) projects away from the protein
surface in a solvent-exposed manner, and the monosac-
charides on the α(1-3)-arm are visible up to GlcNAc for the
Fc chains (Crispin et al., 2013). The lack of electron density
for terminal sialic acid residues on the α(1-3)-arm is con-
sistent with the dynamics of the terminal sialic acid observed
by the NMR study. This crystal structure of the enzymatically
sialylated Fc does not show gross conformational change as
compared with that of the native Fc (PDB ID code: 1H3Y,
Fig. 4A) whereas those of the disialylated Fc fragments
prepared by chemoenzymatic glycoengineering show both

Fc
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CH3-A

CH2-B

CH3-B

N297

N297 glycan

N297 glycan

Y296

Q295glycan

N297
glycan

glycan

N162 glycan

N162 glycan

N162 glycan

K128 

N45

glycan

N162 glycan

N45

FcγRIIIa

FcγRIIIa

A. Nonfucosylated

B. Fucosylated

Fuc

Figure 3. Crystal structures of the complexes between FcγRIIIa and nonfucosylated Fc (A) or fucosylated Fc (B). (A) The

nonfucosylated Fc chains A and B are shown in cyan and gray, respectively, and the FcγRIIIa in pink. (Right) The close-up view of the

interaction interface between nonfucosylated Fc and glycosylated FcγRIIIa. (B) The fucosylated Fc chains are shown in green and

gray, and the FcγRIIIa in blue. (Right) The close-up view of the interaction interface between fucosylated Fc and glycosylated

FcγRIIIa. The oligosaccharides are shown in sphere (Left) and stick (Right) representation. Hydrogen bonds are presented as dashed

lines. The molecular models were produced with PyMOL (The PyMOL Molecular Graphics System, Version 1.8.5.0, Schrodinger,

LLC).
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open and closed CH2 domain conformations in the crystal
(Fig. 4B, PDB ID code: 4Q6Y) (Ahmed et al., 2014). The
distances between the Cα atoms at the Pro238 residues of
the CH2 domains for the open and closed conformers of the
disialylated Fc and a representative native Fc (PDB ID code:
3AVE) are 13 Å, 20.2 Å and 19.3 Å, respectively. Although it
is unclear whether the conformational heterogeneity of the
disialylated Fc results from sialylation or crystal packing
contacts, increased conformational flexibility of the sialylated
Fc may be associated with anti-inflammatory properties of
this glycoform as described below (Ahmed et al., 2014).

Sialylated glycans of the Fc have recently drawn
increased attention as an active component of IVIG that
exerts anti-inflammatory properties. IVIG has been used to
treat not only immunodeficiency (hypogammaglobulinemia)
but also various autoimmune diseases including idiopathic
thrombocytopenic purpura and Kawasaki disease. It has
been shown that the anti-inflammatory effects of IVIG reside
in the Fc region of IVIG and that infusion of Fc fragments
ameliorates the conditions of children with acute immune
thrombocytopenic purpura (Debre et al., 1993). It has been

proposed that IVIG binds to an inhibitory FcγRIIb that
transmits an inhibitory signal in the cytoplasm to suppress
inflammation. The protective effect of IVIG was associated
with the induced expression of an inhibitory Fc receptor
FcγRIIb (Bruhns et al., 2003) although a correlation between
the sialylation level and the anti-inflammatory activity of IgG
was not provided.

Multiple effects of Fc sialylation on antibody effector
functions and the immune system have been reported
including reduction of ADCC (Kaneko et al., 2006; Scallon
et al., 2007) and CDC (Quast et al., 2015) and induction of
TH2 cytokine IL-33 and upregulation of FcγRIIb (Anthony
et al., 2011). Sialylated forms of IgG enriched with Sambu-
cus nigra agglutinin (SNA) show reduced affinity to FcγRIII,
thereby reducing the ability of the IgG autoantibodies to
trigger in vivo cytotoxicity (Kaneko et al., 2006). In addition
to this inhibitory effect, SNA-enriched IVIG-Fc is shown to
exert anti-inflammatory activity in the murine K/BxN serum
transfer arthritis model equivalent to unfractionated IVIG-Fc
at a 10-fold lower dose. The anti-inflammatory activity of
SNA-enriched IVIG has been recapitulated with highly sia-
lylated, recombinant human IgG1-Fc (Anthony et al., 2008a).
The receptor required for the anti-inflammatory effect of the
sialylated IgG has been identified as the C-type lectin, SIGN-
R1, expressed on murine splenic macrophage (Anthony
et al., 2008b), and its human orthologue DC-SIGN has been
shown to act as a receptor for sialylated IgG in human DC-
SIGN transgenic mice (Anthony et al., 2011). The proposed
mechanism by which sialylated IgG exerts anti-inflammatory
effects is TH2 cytokine IL-33 expression in SIGN-R1+ or DC-
SIGN+ macrophages/dendritic cells through interaction with
sialylated IgG. IL-33 then suppresses inflammation by
induction of IL-4 from basophils which leads to upregulation
of inhibitory receptor FcγRIIb on effector macrophages.
However, the anti-inflammatory activity of sialylated IgG has
not been reproduced in some mouse models of autoimmune
diseases. No differences were observed between SNA-en-
riched IVIG and neuraminidase-treated IVIG in the efficacy
to ameliorate ITP (Guhr et al., 2011; Leontyev et al., 2012b),
K/BxN serum transfer arthritis (Campbell et al., 2014), and
experimental autoimmune encephalomyelitis (Othy et al.,
2014). In the K/BxN serum arthritis model, depletion of
basophils did not influence the anti-inflammatory effect of
IVIG. The requirement of FcγRIIb for anti-inflammatory
effects of IVIG was not demonstrated by using FcγRIIb-
knockout mice (Bazin et al., 2006; Leontyev et al., 2012a).
Furthermore, neither sialylated nor native Fc was shown to
bind to recombinant DC-SIGN although the binding of serum
IgG and its deglycosylated, desialylated, and sialylated gly-
coforms to DC-SIGN was comparable, indicating that the
DC-SIGN binding to IgG could be attributed to cross-reac-
tive, polyclonal Fab specificities (Yu et al., 2013). It has been
shown that F(ab′)2 fragments of IVIG could directly interact
with DC-SIGN on dendritic cells, which ultimately leads to
expansion of Treg cell populations (Trinath et al., 2013). It
seems that the discrepancies of the anti-inflammatory effects

Figure 4. Comparison of sialylated and native Fc struc-

tures. (A) Superposition of enzymatically sialylated Fc (blue)

(PDB ID code: 4BYH) and native Fc (gray) (PDB ID code:

1H3Y). (B) Superposition of chemoenzymatically synthesized

disialylated Fc (magenta) (PDB ID code: 4Q6Y) and native Fc

(gray) (PDB ID code: 3AVE). The monosaccharides fucose,

GlcNAc, mannose, galactose, and sialic acid are shown in

magenta, yellow, gray, green and red, respectively. The molec-

ular models were produced with PyMOL (The PyMOL Molecular

Graphics System, Version 1.8.5.0, Schrodinger, LLC).
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of sialylated IgG among these studies have arisen due to
different IVIG-Fc preparations at differing sialylation levels in
the presence or absence of F(ab′)2, different glycan analysis
methods and different genetic backgrounds of mice. Another
key question exists around the anti-inflammatory properties
of IVIG regarding the identification of the human counterpart
of the DC-SIGN+ macrophage from the DC-SIGN-transgenic
mouse. Thus, the impact of sialylation of IgG-Fc on
immunosuppression in autoimmune diseases remains
unsolved, and further studies are needed to elucidate the
mechanism of action of IVIG.

CHEMOENZYMATIC GLYCOENGINEERING

Separation of various glycoforms to investigate the biological
relevance of glycosylation is a real challenge with glyco-
proteins. Although cell engineering through overexpression
or disruption of relevant enzyme genes have been employed
to produce specific glycoforms of IgG (Ha et al., 2011; Li
et al., 2006; Raymond et al., 2015; Umana et al., 1999;
Yamane-Ohnuki et al., 2004), it is still challenging to optimize
the production of desired glycoforms of IgG. Recently,
transglycosylation reactions have been applied to synthesis
of new glycoconjugates that consist of deglycosylation by an
endo-β-N-acetylglucosaminidase (ENGase) to leave the
innermost GlcNAc with or without core fucose at the N-gly-
cosylation site(s) and subsequent reglycosylation by an
ENGase-based glycosynthase to transfer a predefined N-
glycan substrate to the innermost GlcNAc (Giddens and
Wang, 2015; Huang et al., 2012; Umekawa et al., 2010)

(Fig. 5). This technique utilizes highly active glycan oxazo-
lines, the mimics of the transition state, as donor substrates
(Kobayashi et al., 1996), and transglycosylation with the
synthetic glycan oxazoline proceeds in both a stereo- and
regiospecific manner (Li et al., 2005). This chemoenzymatic
glycoengineering is recognized as one of the most promising
approaches to synthesize homogeneous glycoforms of a
given glycoprotein including IgG and has been applied to the
synthesis of fully sialylated IgG glycoforms which would
otherwise be quite difficult (Ahmed et al., 2014; Kurogochi
et al., 2015; Lin et al., 2015).

Several ENGases possess transglycosylation activity,
including Endo-A from Arthrobacter protophormiae (Take-
gawa et al., 1995; Takegawa et al., 1997), Endo-M from
Mucor hiemalis (Fujita et al., 2004; Yamamoto et al., 1994),
Endo-D from Streptococcus pneumoniae (Fan et al., 2012;
Muramatsu et al., 2001), and Endo-CE from Caenorhabditis
elegans (Kato et al., 2002) in the glycoside hydrolase (GH)-
85 family and Endo-S from Streptococcus pyogenes (Huang
et al., 2012) and Endo-S2 from Streptococcus pyogenes of
serotype M49 (Li et al., 2016) in the GH18 family. Various
glycosynthase mutants of ENGases have been generated to
abolish the hydrolytic activity on the transglycosylation
products and improve the transglycosylation efficiency,
including Endo-A-N171A, Endo-M-N175Q (Fig. 5B), Endo-S-
D233Q, and Endo-S2-D184M. Different ENGases have
distinct substrate specificity and limitations. Endo-M acts on
both the complex-type and high mannose-type oligosac-
charides whereas Endo-A and Endo-S are limited to action
on the high mannose-type and the complex-type,
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respectively. In addition, Endo-S and Endo-S2 in GH18 act
on both nonfucosylated and fucosylated glycans whereas
ENGases in GH85 are generally inactive on fucosylated
glycans except Endo-D. The substrate specificity of an
ENGase for transglycosylation is not always the same as
that of the wildtype ENGase for hydrolysis, e.g., Endo-D
prefers fucosylated glycans for hydrolysis whereas its
N322Q mutant favors the nonfucosylated GlcNAc as the
acceptor (Fan et al., 2012). The ENGase-catalyzed transg-
lycosylation has further been improved through the efficient
synthesis of sugar oxazolines in H2O with 2-chloro-1,3-
dimethylimidazolinium chloride (Noguchi et al., 2009) or
2-chloro-1,3-dimethyl-1H-benzimidazol-3-ium chloride
(CDMBI) as a dehydrative condensing agent (Noguchi et al.,
2012).

Chemoenzymatic glycosylation of IgG antibodies has
been reported with Endo-A, yeast-produced IgG-Fc bearing
high mannose-type glycans as the acceptor and Man3-
GlcNAc-oxazolines as the donor substrate (Wei et al., 2008).
Complete transglycosylation of the IgG-Fc with Endo-A
required a large excess quantity of the donor substrate. Two
mutants of Endo-D (N322A and N322Q) can also attach a
Man3GlcNAc tetrasaccharide to a fucosylated GlcNAc-con-
taining Fc (Fan et al., 2012) whereas none of Endo-D, Endo-
A and their mutants can transfer intact complex-type N-gly-
can to either fucosylated or non-fucosylated GlcNAc-con-
taining Fc. The Endo-M-N175Q mutant has recently been
shown to act on proteins with a broad range of molecular
weight including IgG (Fig. 5) despite a preference of low
molecular weight proteins as acceptors. Endo-S mutants
(Endo-S D233A and D233Q) are the first ENGase-based
glycosynthases applicable for remodeling of IgG glycoforms
with fucosylated and nonfucosylated full-length complex-
type glycans using rituximab (Huang et al., 2012). The
D184M and D184Q mutants of Endo-S2 from Streptococcus
pyogenes NZ131 (serotype M49) have been reported to
have more potent transglycosylation activity and more
relaxed substrate specificity than the Endo-S-D233Q
mutants (Li et al., 2016). Among the high mannose-, hybrid-,
and complex-type N-glycan substrates, Endo-S2 prefers the
complex-type over the other two types. The lower concen-
trations of sugar oxazolines and the shorter incubation times
would be beneficial to reduce the risk of unwanted side
reactions to the transglycosylation products.

Industrial scale production of homogeneous antibody gly-
coforms by chemoenzymatic glycoengineering would require
large-scale production of homogeneous oligosaccharide
substrates, simplification of synthesis for sugar oxazolines,
and enhancement of the transglycosylation efficiency of gly-
cosynthases. The production of complex-type oligosaccha-
rides has recently been developed using egg yolk (Sun et al.,
2014). The one-step synthesis of sugar oxazolines from
unprotected sugars has been discovered by the use of
CDMBI (Noguchi et al., 2012). The transglycosylation effi-
ciency of the ENGase-based glycosynthases has been
improved by systematic mutagenesis at the critical residues

of various ENGases (Li et al., 2016). The development of this
glycoengineering technology opens a new avenue to glyco-
form remodeling for therapeutic purposes.

CONCLUSION

IgG-Fc glycoengineering contributes to the development of
next-generation therapeutic IgG antibodies with enhanced or
silenced Fc effector functions. With the success of nonfu-
cosylated IgG antibodies in the clinic, glycoengineered IgG
antibodies have proven to be efficacious and devoid of
immunogenicity in vivo as long as the Fc bears naturally
occurring human-type glycans, in contrast to mutant forms of
antibodies. Therefore, a range of glycan structures from
monosaccharide GlcNAc to fully sialylated biantennary
complex-type are to be explored for the design of homoge-
neous IgG glycoforms as therapeutic antibodies. Che-
moenzymatic glycoengineering is a robust approach for
remodeling of IgG-Fc glycoforms. It should be noted that
gain- or loss-of-function may occur in a subclass-dependent
manner as human IgG consists of four subclasses with dif-
fering abilities to activate different FcγRs and complement
(Kao et al., 2015; Niwa et al., 2005). As the structural basis
for the enhanced ADCC activity of nonfucosylated IgG
antibodies has been elucidated, the carbohydrate–carbohy-
drate interactions between IgG-Fc and FcγR can also be a
key issue for the design of novel glycoengineered IgG anti-
bodies. On the other hand, E. coli-produced aglycosylated
IgG antibodies with compromised effector functions can be
exploited as neutralizing, agonist and antagonist antibodies
for a wide range of diseases including cancers and autoim-
mune diseases. Bypassing glycosylation contributes to
shorter bioprocess development and running times, without
concerns about glycosylation heterogeneity as CQAs, and is
expected to substantially reduce production costs. The high
costs of therapeutic antibodies have imposed financial
pressures on national and private health care bodies.
Blocking/neutralizing antibodies anti-PD-1 IgG nivolumab
(Fig. 1B), anti-VEGF IgG bevacizumab (Fig. 1C), and anti-
TNFα IgG infliximab are among largest selling pharmaceu-
ticals that could maintain their efficacies in an aglycosylated
format as demonstrated by the licensed therapeutic Fab
fragments certolizumab and ranibizumab specific for TNFα
and VEGF-A, respectively. Thus, glycoengineering provides
strategies to optimize the safety, functionality, and efficacy of
therapeutic IgG antibodies as more affordable treatment
options in the next decade.
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ABBREVIATIONS

ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-

dependent cytotoxicity; CDMBI, 2-chloro-1,3-dimethyl-1H-benzimi-

dazol-3-ium chloride; CHO, Chinese hamster ovary; ENGase, endo-

β-N-acetylglucosaminidase; Fab, fragment for antigen binding; Fc,

fragment crystalizable; FcγR, receptor for Fc portion of IgG; FcRn,

neonatal Fc receptor; FUT8, α(1-6)-fucosyltransferase; GlcNAc,

N-acetylglucosamine; GnT-III, N-acetylglucosaminyltransferase III,

HILIC, hydrophilic interaction liquid chromatography; IgG,

immunoglobulin G; IVIG, intravenous immunoglobulin; NeuAc,

N-acetylneuraminic acid; NeuGc, N-glycolylneuraminic acid; NMR,

nuclear magnetic resonance; UPLC, ultra performance liquid chro-

matography; SNA, Sambucus nigra agglutinin
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