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Abstract

Background: Classical Galactosaemia (CG) (OMIM #230400) is a rare inborn error of galactose metabolism caused
by deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). Long-term complications persist in
treated patients despite dietary galactose restriction with significant variations in outcomes suggesting epigenetic
glycosylation influences. Primary Ovarian Insufficiency (POI) is a very significant complication affecting females with
follicular depletion noted in early life. We studied specific glycan synthesis, leptin system and inflammatory gene
expression in white blood cells as potential biomarkers of infertility in 54 adults with CG adults (27 females and 27
males) (age range 17–51 yr) on a galactose-restricted diet in a multi-site Irish and Dutch study. Gene expression
profiles were tested for correlation with a serum Ultra-high Performance Liquid Chromatography (UPLC)-
Immunoglobulin (IgG)-N-glycan galactose incorporation assay and endocrine measurements.

Results: Twenty five CG females (93%) had clinical and biochemical evidence of POI. As expected, the CG female
patients, influenced by hormone replacement therapy, and the healthy controls of both genders showed a positive
correlation between log leptin and BMI but this correlation was not apparent in CG males. The strongest
correlations between serum leptin levels, hormones, G-ratio (galactose incorporation assay) and gene expression
data were observed between leptin, its gene and G-Ratios data (rs = − 0.68) and (rs = − 0.94) respectively with lower
circulating leptin in CG patients with reduced IgG galactosylation. In CG patients (males and females analysed as
one group), the key glycan synthesis modifier genes MGAT3 and FUT8, which influence glycan chain bisecting and
fucosylation and subsequent cell signalling and adhesion, were found to be significantly upregulated (p < 0.01 and
p < 0.05) and also the glycan synthesis gene ALG9 (p < 0.01). Both leptin signalling genes LEP and LEPR were found
to be upregulated (p < 0.01) as was the inflammatory genes ANXA1 and ICAM1 and the apoptosis gene SEPT4 (p < 0.01).

Conclusions: These results validate our previous findings and provide novel experimental evidence for dysregulation
of genes LEP, LEPR, ANXA1, ICAM1 and SEPT4 for CG patients and combined with our findings of abnormalities of IgG
glycosylation, hormonal and leptin analyses elaborate on the systemic glycosylation and cell signalling abnormalities
evident in CG which likely influence the pathophysiology of POI.
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Background
Classical galactosaemia (CG) (OMIM #230400) is a
rare autosomal recessive inborn error of galactose
metabolism caused by deficiency of the enzyme
galactose-1-phosphate uridylyltransferase (GALT; EC
2.7.7.12). This condition occurs with a prevalence
ranging from 1:16,000 to 1:60,000 in Europe and
USA. Life-long galactose restricted diet is the only
treatment currently available for this condition. Al-
though this treatment is life-saving in the neonate,
long-term complications including cognitive impair-
ment, neurological and speech abnormalities, and fer-
tility problems in female patients, persist in treated
adult patients despite early diagnosis and initiation of
treatment [1–8]. Ovarian damage and subfertility with
primary ovarian insufficiency (POI) is a major compli-
cation for females causing a very significant disease
burden. The exact timing of the ovarian insult and its
pathophysiology remains poorly understood [3, 6].
A key limitation to improving care and personalised

therapy for affected individuals for this rare disease is
the lack of insight into the pathophysiology and the lack
of reliable and accurate biomarkers that can predict the
risk of developing disease complications and can moni-
tor the outcome of therapeutic interventions.
Moreover, outcomes can differ even in siblings

with the same GALT genotype, illustrating the com-
plex nature of this condition with the presence of
recognised significant epigenetic effects on the fun-
damental glycosylation pathways involved in galacto-
saemia [9–11].
The toxic build-up of the GALT substrate

galactose-1-phosphate (Gal-1-P) and its metabolites are pro-
posed to be central to the pathophysiology of the ongoing
complications [6]. In the neonatal acute intoxicated phase,
very high ambient levels of Gal-1-P can inhibit a number of
metabolic processes. Elevated Gal-1-P is a known competi-
tive substrate for inositol monophosphatase 1 (IMPase1) and
various glycosyltransferases and also inhibits UDP-hexose
pyrophosphorylases [6, 12]. In addition, over-restriction of
galactose in the long-term may contribute to the disease
phenotype by further depleting UDP-galactose in susceptible
individuals, potentially disrupting glycosylation dependent
pathways [13, 14]. Down-regulation of the key P13K/Akt sig-
nalling pathway has also been recently reported in the GALT
deficient mouse model [15].
It has long been recognised that the measurement of

red blood cell (RBC) Gal-1-P in neonatal blood samples
from untreated patients prompts the initial treatment of
the Gal-1-P intoxicated neonate and is an important
diagnostic marker. However, monitoring RBC Gal-1-P
and urinary galactitol concentrations have not generally
been considered to be reliable prognostic indices of
long-term outcomes [4, 13, 16, 17].
Previous investigations by our group have explored the
mechanisms by which abnormal galactosylation of glyco-
proteins may contribute to the ongoing pathophysiology in
galactosaemia and its complications. Of relevance to fertil-
ity, recent studies have not demonstrated any differences in
Follicle stimulating hormone (FSH) glycosylation pattern or
bioactivity in females with CG [18, 19]. A high percentage
of females with CG have Anti-mullerian hormone (AMH)
levels below the detection limit refecting a low ovarian re-
serve, however the glycosylation status of AMH has not
been studied to date in CG [20]. IgG is the predominant cir-
culating glycoprotein in serum and is very well studied [21].
We developed a glyco-analysis of Immunoglobulin G (IgG)
and studied the incorporation of galactose into IgG in galac-
tosaemia patients in comparison to healthy controls using
an automated hydrophilic interaction ultra-high perform-
ance liquid chromatography (HILIC-UPLC) N-glycan ana-
lytical method for serum IgG, to monitor N-glycan
processing defects in galactosaemia [22, 23].
We previously evaluated the impact of several genes on

abnormal glycosylation in galactosaemia patients and noted
significant altered expression of a number of relevant N-gly-
can biosynthesis genes in peripheral blood mononuclear
cells (PBMCs) from adult galactosaemia patients involving
four key N-glycan biosynthesis genes: ALG9, MGAT3,
FUT8 and B4GALT1 which correlated with the IgG variant
profiles also identified in the study [9]. Lending further
weight to this finding, a large European population genome
wide association study using liquid chromatography mass
spectrometry (LC-MS) to measure IgG glycoprotein variant
characteristics has recently demonstrated that polymor-
phisms of the glycan genes encoding the glycosyltransfer-
ases (ST6GAL1, B4GALT1, FUT8 and MGAT3) represent
the most important loci associated with variation in IgG
traits [24].
In addition to altered glycosylation, we previously

identified a number of key central signalling pathways
affected in T lymphocyte cell studies to include the
unfolded protein response (UPR) pathway, the inositol
signalling pathway, oxidative phosphorylation, and in-
flammatory pathways [25, 26]. We also observed dysregu-
lation of pathways in leptin metabolism, a key hormone in
the Hypothalamic-Pituitary-Gonadal (HPG) axis which
stimulates release of luteinising hormone (LH), follicle
stimulating hormone (FSH) and oestrogen [27, 28].
The majority of adult females with CG have POI which is

a spectrum varying from absent or delayed pubertal devel-
opment, primary amenorrhoea in adolescents, secondary
amenorrhoea to irregular or premature menopause [29].
POI in females with CG is identifiable by elevated follicle
stimulating hormone (FSH) and LH levels and decreased
oestradiol levels [29]. FSH levels have been found to be sig-
nificantly elevated from four months of life [6, 29, 30]. The
precise timing of the severe decrease in primordial ovarian
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follicles and the absence of intermediate and Graafian folli-
cles, which suggest a maturation arrest, is not clear [6, 29,
30]. A recent paper has suggested that follicles are main-
tained in early childhood, but commence depletion as early
as the 1st year of life [31]. Different mechanisms have been
proposed to explain these changes to include prenatal tox-
icity of galactose and its metabolites, including apoptosis,
abnormal signalling pathways and abnormal gonadotropin
function [29, 30, 32].
There is limited data available for assessing fertility in

CG adult males, though studies have reported delayed
onset of puberty [6]. In a study of 26 CG males, the
prevalence of cryptorchidism was noted to be higher in
CG males than in the general population and the CG pa-
tients had subtle decreases in testosterone, inhibin B and
sperm concentration [33].
As it is not practical to study temporal ovarian or tes-

ticular gene expression in patients, in this study we have
aimed to investigate the expression of key glycan and
other relevant genes in GC patients in a cohort of patients
from a three-site study, (Irish and two Dutch national
galactosaemia cohorts) using accessible PBMCs (periph-
eral blood mononucleocytes) and correlated these findings
with the patient endocrine markers and N-glycome glyco-
sylation status as measured by the IgG N-glycome.

Results
Clinical Characterisation: Table 1 illustrates the study
subject characteristics: age, gender and genotypes.

Endocrine studies
Patient FSH, LH, oestradiol, testosterone serum con-
centrations and reference intervals are illustrated in
Table 2. Of the 27 CG females, 25 had clinical and
biochemically documented POI (92.59%, age range
Table 1 Patient Characteristics

Group Controls

Ethnicity Irish

Patients n = 16

Age (years) 20–40

Gender 9F, 7 M

Genotype (nucleotide annotation) NA

Genotype (protein variant) NA
18–42 yr). 22 of these patients were on hormone re-
placement therapy (HRT).
It was not possible to determine which phase of the

menstrual cycle patients were in when the hormone
samples were taken. Inappropriately raised FSH (>
20 IU) in the context of suppressed oestradiol in females
below the age of 40 is an indicator of POI. Oestradiol re-
sults were available for 23 CG females, 14 of whom had
low or undetectable levels (< 92 pmol/mL). All but one
of these 14 females were on HRT. However synthetic
oestradiol levels are not detected by the assay used.
There were no significant hormone abnormalities noted
in male CG patients (Table 2).
Table 3 illustrates the leptin data for available CG subjects

(n = 37) and healthy controls (n = 20). Circulating serum
leptin data from both male and female galactosaemia co-
horts were determined. The mean serum leptin level was
lower in both CG males and females in comparison to
healthy controls although this only reached statistical sig-
nificance in males (p < 0.03). There was no significant dif-
ference noted in the soluble leptin receptor (sObR) levels
between CG patients and healthy controls in either gender
group. Leptin levels corrected for BMI were correlated
using linear regression analysis with the IgG galactose in-
corporation (G0/G1 and G0/G2) ratios and with LH, FSH
levels for both genders, and with testosterone for males.
The Spearman correlations between abnormal N-gly-

cosylation as measured by G ratios and leptin are shown
in Table 3. For those CG subjects that had RBC Gal-1-P
levels performed (n = 22), we identified a direct positive
correlation between Gal-1-P and G-ratios in the com-
bined group (rs = 0.699, p < 0.0005 [G0/G1], rs = 0.666, p
< 0.005 [G0/G2] (data not shown).
We observed a strong negative correlation between lep-

tin and G-ratios in the combined CG group, indicating
Galactosaemia

Irish Dutch

n = 36 n = 18

17–51 18–47

15F, 21 M 12F, 6 M

31: (c.563A > G/c.563A > G)
2: c.568A > G/c.580 T > C
1: c.563A > G/c.997C > T
1: c.563A > G/c.379.A > G)
1: c.563A > G/unknown

10: (c.563A > G/c.563A > G)
3: (c.584 T > C/c.687G > T)
1: (c.563A > G/c.584 T > C)
1: (c.563A > G/c.400delT)
1: (c.563A > G/del exon 1_10)
1: (c.956A > C/c.956A > C)
1: Unknown

31: p.Q188R/p.Q188R
2: Q188R/p.F194 L
1: p.Q188R/p.R333W
1: p.Q188R/p.K127E,
1: p.Q188R/unknown

10: (p.Q188R/p.Q188R)
3: (p.L195P/p.K229 N)
1: (p.Q188R/p.L195P)
1: (p.Q188R/p.T134 fs)
1: (p.Q188R/del exon 1_10)
1: (c.956A > C/c.956A > C)
1: Unknown



Table 2 Patient Hormone Results

LH (IU/L) FSH (IU/L) Oestradiol (pmol/L) LH (IU/L) FSH (IU/L) Testosterone (nmol/L)
(Males only)

Normal reference rangesa F: 1.8–11.8 F: 3.0–8.1 F: 92–921 1.4–6.5 0–10.9 7.1–31.1

M: 7.6–89.1 M: 2.6–16.7 M: 139–2382

L: 0.6–14.0 L: 1.4–5.5 L: 92–1145

CG Females (n = 24) CG Males (n = 18)

Median 11.57 32.85 460 (n = 9)
< 92 (n = 14)
No data (n = 1)

4.00 2.00 18.80

Mean 14.94 40.89 500.67 (n = 9)
< 92 (n = 14)
No data (n = 1)

5.51 8.40 19.98

Range 0.5–40.50 0.5–120 < 92–967 0.5–9.4 0.5–9.3 10–31.6

SD 38.43 12.52 N/A 6.10 2.521.47 5.49
aReference ranges are provided for healthy females and males for LH, FSH and oestradiol for comparison to CG patients, with the females divided into three
menstrual stages: Follicular Phase (F), Mid Cycle Phase (M) and Luteal Phase (L). The normal reference ranges were provided from the Investigator site accredited
diagnostic laboratory. For CG patients, median, mean and range data are provided with standard deviation (SD)-no menstrual stage data was available. Oestradiol
levels less than 92 pmol/L were noted as undetectable according to the limits of the assay. Hormone data was available for 38 of the 54 patients
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lower circulating leptin in patients with reduced IgG
galactosylation (Table 3). We also observed a significant
correlation between BMI corrected leptin levels and tes-
tosterone levels in CG males with a less significant correl-
ation evident with FSH levels in the CG combined group
(males and females analysed together).
As shown in Fig. 1, LH levels correlated with G0/G1

and G0/G2 ratios (rs = 0.529, p < 0.05 and rs = 0.608, p <
0.01) respectively in CG females (Fig. 1). There was no sig-
nificant correlation evident between FSH levels and
G-ratios in either genders (data not shown).
Figure 1 illustrates a positive correlation between FSH

and leptin in the combined group (leptin corrected for
BMI: rs = 0.441, p < 0.05).
Leptin is known to correlate positively with BMI in

both healthy males and females [32].
Table 3 Serum Leptin levels in CG vs healthy controls and correlatio

Serum Leptina

Gender Group n=

Male CG 18

Healthy Control 10

Female CG 19

Healthy Control 10

Spearman Correlations - Serum Leptin Corrected for BMIb

Variable 1 Variable 2 Gender

Leptin, BMI corrected G0/G1 Male and Female

Leptin, BMI corrected G0/G2 Male and Female

Leptin, BMI corrected Testosterone Male

Leptin, BMI corrected FSH Male and Female

Leptin, BMI corrected ANXA1 Female
aLeptin data was available for 37 of 54 patients. The p-values of this section show r
(Mann Whitney U test)
bCorrelations between serum leptin corrected for BMI vs other variables in combine
As shown in Fig. 2, the association between log lep-
tin and BMI evident in CG females was absent in CG
males (Fig. 2).

Gene expression studies
In this current study we observed significant upregulation
of the glycan synthesis genes, and inflammatory and leptin
signaling genes; ALG9, ANXA1, FUT8, ICAM1, LEP,
LEPR, MGAT3, SEPT4 and UGDH (Fig. 3) in PBMC cells
of the CG combined group (both genders). The expression
of the genes B4GALT1, MGAT1, UGP2 was not signifi-
cantly altered in this group.
The key dysregulated glycan synthesis genes (ALG9,

MGAT3 and FUT8) correlate positively with each other
(p < 0.05− 4) in CG which could be expected as they
share the same glycan synthesis pathway.
ns with hormone, G-ratios and ANXAI gene expression

Mean ± SD Range p-value

2.6 ± 1.86 0.10–6.60 0.031

7.40 ± 5.60 0.70–18.80

13.22 ± 9.47 1.18–33.12 0.099

20.10 ± 12.53 3.60–45.44

n= p-value Correlation Coefficient

26 0.0001 − 0.681

26 0.002 − 0.588

11 0.026 0.664

25 0.027 0.441

17 0.012 0.593

esults of the difference in means of serum leptin levels in CG vs healthy control

d and separate gender cohorts



Fig. 1 Hormones, G Ratio and gene correlations in galactosaemia. The strength of the association is denoted by rs (Spearman’s ρ), 1 being a
perfect positive correlation, − 1 being a perfect negative correlation. The p-value (2-tailed) for the association is indicated. The sloping line is the
best fit line and indicates the direction of the correlation. a FSH levels correlate positively with BMI corrected leptin in the CG combined group
(n = 28: rs = 0.445, p < 0.05). b ALG9, LEP and MGAT3 expression correlate negatively with G-ratios (G0/G1) in CG females (ALG9: n = 18, rs = − 0.600,
p < 0.01. MGAT3: n = 13, rs = − 0.687, p < 0.05. LEP: n = 6, rs = − 0.943, p < 0.01). c LH levels correlate positively with G-ratios (G0/G1) in CG females
(n = 18, rs = 0.529, p < 0.05). d LH levels correlate positively with G-ratios (G0/G2) in CG females (n = 18, rs = 0.608, p < 0.01)

Fig. 2 Correlation of log leptin and BMI in both CG males and
females. Associations are measured with rs and p values as
described previously. Serum leptin correlates positively with BMI
in healthy males and females [32]. This correlation was apparent
in the CG female cohort (n = 17, rs = 0.730, p < 0.005) but not in
CG males (n = 12, rs = 0.301, NS)
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MGAT3 was noted to correlate directly with the expres-
sion of the inflammatory/apoptosis genes ANXA1 and
SEPT4 (p < 0.05− 4) in CG, (combined group). The two in-
flammatory markers (ANXA1 and ICAM1) are positively
correlated (p < 0.05− 4) in CG. Of note, increased expression
of FUT8 (indicating dysregulation of the core fucosylation
pathway) was significantly correlated with LEPR expression
(p < 0.0005) in CG.
There was no gender dependent difference in expression

of any of the genes studied as determined by multivariate
analysis of 2-ΔCT values. The same finding was apparent
between males and females of the healthy control group.

Discussion
In this study, we sought firstly to validate identified gly-
can gene expression markers identified from our earlier
studies in this larger multi-site study. We then aimed to
introduce further novel inflammatory and putative
fertility-linked expression markers and to correlate these
expression profiles with the concurrent hormonal pro-
files of the study subjects with a view to further study
the pathophysiology and fertility issues observed in CG.



Fig. 3 Boxplots of PBMC gene expression in CG combined group vs healthy controls (Ctrl). Each boxplot is titled with the relevant gene. The
y-axis represents the 2-ΔCT value of gene expression (Applied Biosystems). The y-axis scale has been log transformed to the base 10 for clarity.
Fold change (RQ) and 2ΔΔCT calculated with DataAssist (Applied Biosystems). Differences in expression between CG and Ctrl groups as calculated
by The Mann Whitney U test, giving a p value which has been Benjamini-Hochberg False Discovery Rate (FDR) adjusted. Boxes indicate median
(middle), 25th (bottom) and 75th (top) percentiles. Error bars indicate 1.5 times the interquartile range. Outliers are indicated with small circles or
asterisks (extreme outliers). a ALG9 upregulated in CG vs Ctrl (n = 52 vs 16, RQ = 5.97, p < 0.005). b ANXA1 upregulated in CG vs Ctrl (n = 54 vs 16,
RQ = 6.21, p < 0.01). (c) FUT8 upregulated in CG vs Ctrl (n = 50 vs 16, RQ = 4.13, p < 0.05). d ICAM1 upregulated in CG vs Ctrl (n = 53 vs 16, RQ =
4.79, p < 0.005). e LEP upregulated in CG vs Ctrl (n = 22 vs 10, RQ = 8.88, p < 0.005). f LEPR upregulated in CG vs Ctrl (n = 47 vs 16, RQ = 6.38, p <
0.0005). g MGAT3 upregulated in CG vs Ctrl (n = 47 vs 16, RQ = 6.10, p < 0.01). h SEPT4 upregulated in CG vs Ctrl (n = 52 vs 16, RQ = 3.62, p < 0.01).
i UGDH upregulated in CG vs Ctrl (n = 46 vs 16, RQ = 2.66, p < 0.05). j UGP2 in CG vs Ctrl (n = 53 vs 16, not significant [NS]). k MGAT1 (n = 53 vs 16,
NS). l B4GALT (n = 54 vs 16, NS)
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ALG9 (the gene that encodes α-1,2-mannosyltransferase)
was shown to be overexpressed in this larger male and fe-
male CG cohort (n = 54 Irish and Dutch subjects: 5.97 fold,
p < 0.01) in agreement with our earlier study [9].
α-1,2-mannosyltransferase catalyses the transfer of man-
nose from Dol-P-Man to lipid-linked oligosaccharides in
N-Glycan assembly. This enzyme is involved in the addition
of the seventh and ninth mannose to the growing N-glycan
chain. This enzyme may be overexpressed in galactosaemia
as cellular stresses increase the rate of glycan assembly in
the endoplasmic reticulum (ER) which leads to improved
levels of mono- and di-galactose glycan species (G1 and
G2) downstream of the processing chain in the Golgi. In
our previous cell studies, we observed that the activity of
this enzyme is very responsive to galactose intoxication
[26].
MGAT3 (the gene that encodes β-1,4-mannosyl-glyco-
protein 4-β-N-acetylglucosaminyltransferase) was the
most significantly dysregulated glycan synthesis gene in
this study, upregulated 6.1 fold in CG males & females vs
controls (p < 0.01). The importance of this gene in N-gly-
cosylation is demonstrated in the recent Genome-Wide
Association Study (GWAS) [24] whereby variation in
MGAT3 was observed to be significantly associated with
IgG glycan variant phenotypes. MGAT3 is responsible for
synthesis of complex hybrid type glycans in the endoplas-
mic reticulum. In the GWAS study, ratios of structures
with bisecting GlcNAcs to structures without bisecting
GlcNAcs were associated with SNPs at the MGAT3 locus.
Abnormal expression of this gene in our earlier study was
associated with decreased bisecting GlcNAcs (decreased
core fucosylated, non-fucosylated and monogalactosylated
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glycans) in CG [9]. It is considered that bisecting GlcNAcs
influence glycan processing and glycan adhesion [34].
We observed that FUT8 (that encodes alpha-1,6–fuco-

syltransferase) was upregulated in the CG combined
group vs healthy controls (4.12 fold, p < 0.05)) in this
study. This was more significant than in our previous
smaller study and correlates with the findings of in-
creased glycan core fucosylation, which we have ob-
served previously [9]. The findings also indicate this
gene as a significant modifier of glycan phenotype vari-
ation (ratios of fucosylated over non-fucosylated glycan
structures) as noted in the GWAS study [24].
The group of Jumbo-Lucioni et al. have demonstrated in

a Drosophila galactosaemia model that the UGDH (UDP--
Glucose 6-dehydrogenase) gene is upregulated and con-
sidered to be a modifier/rescue glycosylation gene in
drosophila [35]. We included this gene in our analysis and
we also observed upregulation 2.6 fold in the CG com-
bined group (p < 0.05). This change may be a response to
reduced substrate from disruption of UDP-Glc turnover
via the GALT enzyme in the Leloir pathway (Fig. 4). An-
other potential salvage gene that we included is UGP2
(UDP-glucose pyrophosphorylase 2). We did not note any
significant difference in expression of this gene between
CG patients and healthy controls.
Of the glycan synthesis genes, ALG9 overexpression

correlated with the overexpression also of the genes
FUT8, MGAT3 and B4GALT in the CG combined group
(rs = 0.418, 0.643, 0.534 respectively, p < 0.003) consistent
with the shared common N-glycan synthesis pathway.
On account of the known population variation (SNPs)

for MGAT3, FUT8 and in the case of possible variation
in expression of the ALG9 gene we compared the fold
differences in expression between these genes in the
Irish and Dutch cohort. There was no statistically signifi-
cant difference in expression noted.
More than 50% of all proteins are considered to be glyco-

sylated in humans. Glycan oligosaccharide modification af-
fects receptor function, cell signalling, and cell adhesion.
Modification of branched N-glycans structures such as
bisecting GlcNAc, β-1,6-GlcNAc and core fucose
(α-1,6-fucose), the enzymatic products of MGAT3 and
FUT6 genes, shown to be abnormal in galactosaemia [9],
are highly associated with biological functions involving
cell adhesion [34, 36].
Almost all key molecules involved in innate and adap-

tive immune responses are glycoproteins. IgG is the
most abundant circulating glycoprotein (as measured in
this study). The addition of different glycans to its Fc re-
gions (region that interacts with cell surface receptors)
and changes in core fucosylation can have dramatic ef-
fects on its effector function [37, 38].
In addition to N-glycan synthesis genes in this study,

we thus sought to examine whether there was also an
identifiable anti-inflammatory component to the patho-
physiology of galactosaemia. We proposed from our
earlier studies that systemic glycosylation abnormalities
evidenced in galactosaemia could be associated with ab-
normal inflammatory responses. We studied two genes
as possible anti-inflammatory markers, ANXA1 and
ICAM1, the former which we previously reported as
dysregulated in galactosaemia [26].
ANXA1 (Annexin A1) is a phospholipid binding protein

which responds to a glucocorticoids and carries out an
anti-inflammatory response [39]. The expression of ANXA1
was increased 6.2 fold in the CG combined group females
vs healthy controls, (p < 0.01), which may reflect upregu-
lated apoptosis pathways, one of the proposed possible
mechanisms of primordial follicle depletion.
Another consideration is an anti-inflammatory re-

sponse to the sub-galactosylation of immunoglobulins
resulting in increased immune activation as shown for
IgG, whereby reduced galactosylation of the Fc region
results in an inflammatory conformation [40].
ICAM1 (Intercellular Adhesion Molecule 1) encodes a

cell surface glycoprotein which is typically expressed on
endothelial cells and cells of the immune system which
binds to integrins. ICAM1’s concentration greatly in-
creases upon cytokine stimulation [41]. ICAM1 was ob-
served to be upregulated 4.79 fold in the CG combined
group (p < 0.01). The expression of ANXA1 and ICAM1
expression correlated strongly in galactosaemia patients
(rs = 0.624, p < 0.05 × 10− 4), suggesting an inflammatory
association.
ANXA1 correlated strongly with expression of the

glycan assembly gene ALG9 in the CG combined
group (rs = 0.840, p < 0.05 × 10− 12). Also ncreased ex-
pression of ICAM1 correlated with the increased ex-
pression of ALG9 in the CG combined group (rs =
0.615, p < 0.05 × 10− 4) indicating a possible relationship
between inflammation and abnormal glycosylation in
these patients.
SEPT4 (the gene that encodes Septin 4) was increased

in expression 3.6 fold (p < 0.005). The septin family of
proteins are a group of GTP-binding proteins that are
essential for biological processes such as cytokinesis and
vesical trafficking. SEPT4 has been shown to be involved
with sperm terminal differentiation in mice and is a
marker of apoptosis, required for the induction of cell
death mediated by TGF-beta and by other apoptotic
stimuli [42].
In addition to the identification of dysregulation of

specific genes in CG, we and others have proposed that
abnormal glycosylation leads to systemic signalling ab-
normalities. We noted significant dysregulation of the
leptin receptor (LEPR) in our earlier studies and also re-
ported decreased circulating serum leptin in both CG
males and females [27]. We now report dysregulated



Fig. 4 Galactose metabolism, glycosylation and inflammatory cascades in galactosaemia. a In galactosaemia, the Leloir pathway is disrupted with
the absence of GALT, leading to an increase of Gal-1-P and disruption of UDP-hexose turnover. b Increased Gal-1-P levels may lead to cellular
toxicity and ER stress, with competitive inhibition of glycosyltransferases and inhibition of UDP-hexose pyrophosphorylases. T [6, 11–13]. Disrupted
glycosylation may lead to an upregulation of glycan synthesis genes. Abnormal glycosylation of IgG may lead to an activated immune
conformation [36] and increased expression of anti-inflammatory genes. Leptin expression, influenced by abnormal glycosylation, cross signals
with the HPG axis and gonadal function [52, 53]
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expression of leptin (LEP) and LEPR in both CG males
and females in the present extended study and provide a
link between glycosylation (G-ratio) and leptin expres-
sion. Both LEP and its receptor (LEPR) were upregulated
8.8 and 6.38 fold respectively (p < 0.005) in the CG com-
bined group (male and females). The fact that we noted
upregulation of the leptin gene in CG male and female
PBMCs but reduced serum concentration in both CG
males and females (not statistically significant in fe-
males) requires further investigation.
The finding of normal leptin circulating concen-

trations in females as previously identified may re-
flect the fact that the majority of females in the
study who manifested POI were on hormone re-
placement therapy as reviewed earlier in our previ-
ous study [27].
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Biochemical and endocrine clinical correlates with gene
expression
We noted that Gal-1-P levels correlate positively with
G-ratios which may be consistent with a recent observa-
tion of better clinical outcomes in male and female CG
patients who exhibit lower RBC Gal-1-P levels on a galact-
ose restricted diet [17]. Lower Gal-1-P levels with lower
G-ratios may be explained by residual GALT activity,
accessory pathway metabolism and less endogenous turn-
over of galactose from sources such as glycoproteins [43].
Testosterone levels have been noted to be in the lower

normal range in a small number of galactosaemic males
but within reference ranges [33]. Testosterone levels in
this patient cohort were within the normal reference
range (Table 2). As expected with the normal values for
FSH and LH observed in our male cohort, there was no
correlation noted between G-ratios and FSH and LH
levels in males (data not shown). LH, as an indicator of
POI in females, was shown to correlate positively with
both abnormal G0/G1 and G0/G2 ratios in females.
Leptin levels (BMI corrected) were shown to correlate

negatively with G-ratios in the CG combined group. Lep-
tin levels correlated positively with the hormone FSH in
the combined cohort and with testosterone in males.
Leptin is an important hormone predominantly re-

leased by adipocytes which has key roles in the regula-
tion of energy balance, body weight, metabolism,
neuroendocrine function, reproductive function and
bone formation. Leptin exhibits its activity by binding to
its fully active receptor (Ob-R, encoded by LEPR) which
activates the JAK2 signalling mechanism and activators
of transcription (STATs) [44–46] (see Fig. 4).
Reproductive signals integrate at different levels of the

hypothalamic-pituitary-gonadal (HPG) axis involving
GnRH, the pituitary hormones LH and FSH and gonadal
hormones (see Fig. 4). Hypoleptinemia associated with
energy deficiency influences several neuroendocrine axes
including the thyroid, gonadal, cortisol and growth hor-
mone axes. The identification of humans with mutations
of the leptin and leptin receptor gene has illustrated how
leptin deficiency influences the onset of puberty [47].
Leptin replacement has been shown to result in resump-
tion in ovulation, increase in LH and oestradiol levels in
blood and increase in follicular diameter and number in
women with hypothalamic amenorrhea and replacement
of leptin in deficient individuals has led to the successful
treatment of hypogonadism by gonadotropin secretion
and the restoration of puberty and fertility [48].
Although the primary site of leptin is the control of

the HPG axis in the brain the actions of leptin have been
shown on other reproductive systems including the go-
nads. Leptin expression has been confirmed in ovarian
granulosa and cumulus cells and in mature human oo-
cytes [49]. The leptin receptor also has been shown to
be expressed in theca and granulosa cells on the human
ovary with a putative function of leptin in the ovary to
control folliculogenesis [50]. Expression of leptin recep-
tors has also been reported in the testis [51].
Also leptin has a pro-inflammatory effect stimulating

T Lymphocyte proliferation and cytokine production
and is proposed to be an important link between nutri-
tional status and the immune system [52]. LEPR activity
on astrocytes has been proposed to actively regulate lep-
tin transport across the blood brain barrier, a finding
consistent with evidence that central regulatory changes
of LepR during obesity and inflammation often occur in
astrocytes [53, 54].
In our studies in Galactosaemia, we have identified a

primary alteration of the leptin system in CG patients
with low circulating leptin levels in males and females
which are statistically significant in males with the ex-
pected correlation between log leptin and BMI evident
in CG females who were mostly on HRT but not in CG
males. The corresponding gene expression, the LEP gene
and its receptor is significantly overexpressed in galacto-
saemia vs healthy controls (upregulated 8.88 fold, p <
0.01 and 6.38 fold, p < 0.001, respectively). Both the lep-
tin gene LEP and its receptor gene LEPR are upregulated
in CG males (n = 27) and CG females (n = 27).
From our earlier studies, we have suggested that abnor-

mal N-glycosylation could putatively disrupt leptin-HPG
signalling resulting from distorted Ob-r, soluble leptin re-
ceptor (sOb-R) and GnRH receptor (GnRH-R) function in
galactosaemia [53].
Leptin exerts paracrine effects and is predominantly

synthesized in adipose tissue. Expression of LEP gene is
weight-course dependent and circulating leptin concen-
trations can be indicative of an adaptive pattern of LEP
gene expression in obese subjects undergoing weight re-
duction [55]. Conversely, expression of LEPR gene,
which is abundantly present in adipose tissue specimens
from lean subjects, is found reduced in specimens ob-
tained from obese patients [56]. As we could not exam-
ine adipose tissue specimens as part of this study it is
unclear if the upregulation of expression of LEP and
LEPR observed in white blood cells from this Galacto-
saemia cohort with the existence of decreased circulating
leptin levels relates to altered transcriptional regulatory
pathways, inflammatory mediators, or adaptive changes
directly affecting leptin signalling molecules such as
Suppressor of Cytokine Signaling 3 (SOCS3) [56].
The role and context of ANXA1 as an

anti-inflammatory and apoptosis marker in females re-
quires further elaboration. Primordial ovarian follicular
atresia and dysgenesis can be noted in the first year of life
in affected galactosaemia females. It is considered that ab-
normal signalling for development of this dysgenesis may
occur prenatally and during the first years of life linked to
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an apoptosis pathway. It has recently been demonstrated
that human ovarian explants exposed to ibuprofen (anti--
inflammatory) showed reduced cell number, less prolifer-
ating cells, increased apoptosis and a dramatic loss of
germ cell number [57]. Whether ANXA1 is a marker of
apoptosis in this pathway remains to be determined.
Limitations of the study: The findings of this study in-

volve a limited number of adult CG patients. As with
many rare diseases it can be challenging to recruit large
sample sizes, in particular for adult patients when at-
tendance to clinic may be lower than anticipated. Fur-
ther validation of the significant gene expression
abnormalities could be indicated.
In addition, these data relate to a Dutch and Irish

population. The population frequency of modifying
SNPs for the glycan synthesis genes ALG9, MGAT3,
FUT8, and B4GALT1 for the Dutch and Irish popula-
tions in comparison to other populations is currently
not known. However, we did not note any statistical dif-
ferences in gene expression differences between the
Dutch and Irish study groups for these glycan synthesis
genes. Also, as glycosylation is determined not only by
genetic control but very significantly by epigenetic ef-
fects, variations in environmental influences including
changes in dietary substrate (glucose and galactose ex-
posure) would be expected to modify the specific glycan
gene expression between subjects on an individual basis
dependent on environmental exposures.
This study describes the gene expression in periph-

eral blood lymphocytes in adults with CG compared
with N-glycosylation and endocrine hormonal mea-
surements. The findings cannot describe the ovarian
specific tissue expression or prenatal developmental
expression or aberrant signalling effects presumed to
be in existence prenatally with evidence of profound
serum N-glycome intoxication effects (assembly de-
fects) in CG intoxicated neonates with CG (25).

Conclusion
In this study we have demonstrated the validation of
specific key N-glycan synthesis genes, and related
genes associated with inflammation and fertility in
CG patients. These findings were correlated biochem-
ically with IgG N-glycan galactose incorporating
phenotypic markers and also with phenotyping endo-
crine markers of POI in females and fertility in males.
As shown in Fig. 4, this study of galactosaemia has il-
lustrated the dysregulation of glycosylation, inflamma-
tory response and leptin metabolism as possible
cellular event sequences with apoptosis in CG. These
studies further illustrate the complex nature of the
CG phenotype, in particular in relation to fertility.
We propose also that these studies of a rare inborn
error of metabolism involving central N-glycosylation
have also illustrated how significant oligosaccharide
modification/glycosylation ‘modifier’ epigenetic gene
effects involving recently described glycan modifier
genes influencing cell signaling converts Galactosae-
mia and its outcome analysis from a simple mendel-
ian disease to a complex trait, applicable to other
related disorders [10, 11].

Methods
Study subjects and characterisation
For this multi-center cross sectional study, RNA samples
from 54 adult CG adult patients were included for gene
expression analysis. This included 36 Irish patients and
18 Dutch patients (age range 17–51). The genotypes and
gender of these subjects are illustrated in Table 1.
The inclusion criterion was a diagnosis of CG (con-

firmed by the genotypes illustrated in Table 1 or by the
presence of absent or virtually absent GALT enzyme activ-
ity). All study patients were maintained on a dietary gal-
actose intake of < 1000 mg galactose/day. All patients
entered in the study were compliant with regular clinic at-
tendances and adherence to the galactose dietary restric-
tion. Recent biochemical monitoring by RBC Gal-1-P in
this adult population was available for only a subset of
subjects. 16 apparently healthy adult control subjects aged
between 20 and 40 years (9 females and 7 males) provided
RNA samples as healthy controls.

Endocrine studies/hormonal assays
FSH, LH, and leptin were analysed in females and males.
Oestradiol was measured in females and testosterone in
male subjects. FSH, LH and oestradiol were measured by
chemiluminescent immunoassay on the Abbott Architect
i2000SR (Abbott Diagnostics, Illinois, USA). Between run
coefficients of variation (CV) for LH and FSH were < 5%,
while the maximum between run CV for oestradiol was
6.3% at 147 pmol/L. The assay limits of quantitation were
0.5 IU/L, 0.5 IU/L and 92 pmol/L for LH, FSH and
oestradiol respectively. Testosterone was analysed using li-
quid chromatography tandem mass spectrometry (LC-MS/
MS using a Waters Acquity UPLC coupled to a Xevo TQ
tandem quadrupole using positive ion electrospray MS and
multiple reaction monitoring (MRM). Serum leptin was
measured using a human leptin immunoassay: an in-house
immunoassay using DELFIA technology with antibodies
and standards purchased from R&D Systems (R&D Sys-
tems Europe, Abington UK). CVs were 7.1% at 2.7 ng/mL,
3.9% at 14.9 ng/mL and 5.7% at 54.9 ng/mL (in-house data)
and the Lower Limit of Detection (LLOQ) was 0.1 ng/mL.
The concentration of sOb-R was determined using a com-
mercially available ligand immunofunctional assay with re-
agents and standards purchased from R&D Systems. CVs
ranged from 5.3 to 8.6% and the Lower Limit of Detection
was 0.7 ng/mL.
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IgG N-glycan analysis
The method of IgG glycoprofiling was as previously de-
scribed [22, 23]. Briefly, serum was extracted from whole
blood and immediately frozen. IgG was captured and
eluted with Protein G spin plates. IgG was then denatured
and N-glycans were released with Peptide N-glycosidase F
(PNGase F). N-glycans were washed and labelled with
anthranilamide (2-AB) and analysed on a Waters Acquity
UPLC machine. The ratios of non-galactosylated,
mono-galactosylated and di-galactosylated N-glycan spe-
cies were compared (G-ratios)]. Statistical analysis was
performed as described below with SPSS software (IBM).

TaqMan qPCR arrays
Within 3 h of collection, the whole blood samples were
spun in BD Vacutainer cell preparation tubes (Fisher Sci-
entific, Loughborough, UK), which allow rapid isolation of
PBMCs. Total RNA was extracted from PBMCs using the
RNeasy Plus Mini Kit (Qiagen Ltd., Manchester UK).
cDNA was produced following reverse transcription of
total RNA using the RT2 First Strand Kit (Qiagen Ltd).
Custom format ABI Taqman Array plates (Applied

Biosystems, Foster City, CA, USA), were manufactured
for 12 selected gene probes; ALG9, ANXA1, B4GALT1,
FUT8, ICAM1, LEP, LEPR, MGAT1, MGAT3, SEPT4,
UGDH and UGP2 along with three selected controls;
ACTB, GAPDH and GUSB, of which ACTB and GUSB
were selected as reference genes for normalisation of tar-
get genes of interest. cDNA was applied to the custo-
mised plates and Quantitative Real-Time PCR analysis
was performed on an ABI PRSIM 7900 HT Sequence
Detection System with a 96-well Fast thermal cycling
block (Applied Biosystems).

Statistical analysis
For the RNA assays: Fold change of gene expression
was quantified from raw CT scores with DataAssist
software, version 3.01 using the 2ΔΔCT method (Ap-
plied Biosystems). Genes with undetermined CT
scores were excluded. Two control and three galacto-
saemia samples with undetermined CTs for the se-
lected normaliser genes were excluded entirely. This
was likely due to insufficient PBMC pellet or exces-
sive RNA contamination in these samples. Next, the
fold change values were tested for normality of distri-
bution with Shapiro Wilk’s test and checked for
homogeneity of variance with Levene’s test.
A t-test was not suitable as most of the genes were

not normally distributed. We thus opted for a Mann
Whitney U test which evaluates differences between
the groups irrespective of normality or variance. Type
1 errors were controlled with application of the
Benjamini–Hochberg False Discovery Rate using
R-software, version 3.4.0.
Spearman’s rank correlation coefficient (rs) was used
to evaluate correlating data. Preparation of boxplots and
scatterplots, testing of statistical differences between
groups and correlation tests were conducted with SPSS
software, version 24 (IBM, New York, USA).
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