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Abstract: Supramolecular chemistry, although focused mainly on noncovalent intermolecular and in-
tramolecular interactions, which are considerably weaker than covalent interactions, can be employed
to fabricate sensors with a remarkable affinity for a target analyte. In this review the development
of cyclodextrin-based electrochemical sensors is described and discussed. Following a short intro-
duction to the general properties of cyclodextrins and their ability to form inclusion complexes, the
cyclodextrin-based sensors are introduced. This includes the combination of cyclodextrins with
reduced graphene oxide, carbon nanotubes, conducting polymers, enzymes and aptamers, and elec-
tropolymerized cyclodextrin films. The applications of these materials as chiral recognition agents
and biosensors and in the electrochemical detection of environmental contaminants, biomolecules
and amino acids, drugs and flavonoids are reviewed and compared. Based on the papers reviewed,
it is clear that cyclodextrins are promising molecular recognition agents in the creation of electro-
chemical sensors, chiral sensors, and biosensors. Moreover, they have been combined with a host of
materials to enhance the detection of the target analytes. Nevertheless, challenges remain, including
the development of more robust methods for the integration of cyclodextrins into the sensing unit.

Keywords: cyclodextrins; inclusion complex; electrochemical sensors; biosensors; chiral recognition

1. Introduction

The development of sensors that can be employed in the selective and sensitive de-
tection of an analyte has applications that extend from biomedical [1] to environmental
analysis [2] and encompass wearable bio/chemical sensors [3,4] and sensors for monitoring
urban air quality [5]. Electrochemical sensors can be designed for a variety of analytical
applications with moderate cost and portability, combined with sensitive and selective
detection. The fabrication of the sensor electrode, which acts as the transducer element, is
one of the more significant and challenging steps. Fortunately, there is now a wide selection
of new and novel materials with high electronic conductivity. The discovery of carbon
nanotubes [6] and graphene [7], with their unique properties, has led to the emergence of
alternative layered and nonlayered two dimensional (2D) materials that have become the
focus of intense research [8]. Many of these materials have the capacity to give high sensi-
tivity in electrochemical detection, while supramolecular systems can be integrated into the
sensor design to give enhanced selectivity and sensitivity for the target analyte. Molecular
recognition systems can vary from enzymes, antibodies, proteins [9], to aptamers (single-
stranded DNA or RNA) [10], and to supramolecular molecules, such as cyclodextrins [11],
calixarenes [12], cucurbiturils [13], crown ethers [14], and pillararenes [15].

Many of these systems have the ability to form host-guest complexes and cyclodextrins
represent one of the most studied and well-known hosts.

Cyclodextrins (CDs) are macrocyclic oligosaccharides consisting of α–1,4–linked D–
glucopyranose units [16,17], as illustrated in Figure 1. They have a distinctive truncated
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cone structure, with the primary hydroxyl groups on the narrow side and the secondary
hydroxyl groups on the wider base side of the cone. CDs differ in size with the more
well-known and readily available having six, seven, and eight glucopyranose units, to give
α-, β-, and γ-CDs, respectively. Cyclodextrins were first discovered in 1891 by Villiers and
later developed by Schardinger [17]. Since then, there has been considerable interest in the
applications of these systems, as they are readily available in high purity, are water soluble,
biocompatible, and they can be functionalized using different synthetic methods and
employed to give CD rotaxanes and pseudorotaxanes [18]. Moreover, they can incorporate
a large variety of guest molecules (inclusion complexation) making them interesting in drug
delivery [19], as adsorbent materials [20], and in the development of sensors, especially in
the modification of electrodes to give highly selective electrochemical sensors [21,22].
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Figure 1. Structures of α-, β-, and γ-CDs (cyclodextrins) and a schematic of the conelike structures.

Although there is no single simple theory that can be used to describe the binding
between the CD host and the guest molecule in solution, there is a general consensus
that hydrophobic and van der Waals interactions are important in the formation of the
inclusion complex [23–25]. In this case, the hydrophobic sites on the guest molecule are
included within the hydrophobic cavity of the CD. Dipole-dipole, hydrogen bonding,
and charge-transfer interactions have also been discussed for some guest molecules [25],
illustrating the relevance of the properties of the guests, while the exclusion of cavity-
bound high-energy water and conformational strain are also relevant factors [24]. Another
important consideration is the size of the guest molecule, or the size of the hydrophobic
component of the guest, compared to the internal diameter of the CD [23]. An illustration
of this inclusion formation is given in Figure 2, where dopamine is considered as the guest
molecule. The dimensions of dopamine indicate that it can form a host–guest complex with
β-CD. The corresponding 1H NMR spectra of the aromatic region of dopamine show that
not all the protons are affected in the same manner by the presence of the β-CD. There is a
significant shift in Ha, a smaller shift in Hb and no observable change in Hc, suggesting
that Hc remains outside the cavity.
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A stable inclusion complex with a high binding constant, K, typically in the vicinity
of 1 × 102–1 × 104 M−1, is only achieved if there is a good match between the size of the
CD cavity and guest. This binding constant, which can also be described as a stability or
complex formation constant, is defined in Equation (1) for the formation of a 1:1 inclusion
complex. Here, G and H represent the guest and host, respectively, and CHS indicates the
host-guest complex. The equilibrium in the solution phase is represented in Equation (2).
Some examples of typical binding constants are given in Table 1. These are usually obtained
using analytical techniques, such as NMR or UV-visible spectroscopy, as the encapsulation
of the guest molecule leads to alterations in its chemical and physical properties. These
changes can be easily monitored, as illustrated in Figure 2, and normally involve titrations
where the physiochemical properties of the guest molecule (or the host) are monitored as a
function of its concentration.

K =
[CHG]

[H][G]
(1)

H + G� CHG (2)

Table 1. Some examples of binding constants for the inclusion complexes formed between aromatic
molecules and β-CD in the solution phase; all data taken from Liu et al. [26].

Host log K (K/M−1) −MG/kcal mol−1

Benzoic acid 2.74 3.73
P-nitroaniline 3.48 4.76
P-nitrophenol 2.82 3.91

L-alanine 3.37 4.60
L-aspartic acid 4.04 5.49

D-serine 2.92 3.98

In this review, the applications of cyclodextrins in the development of electrochemical-
based sensors and biosensors are described and discussed. There are a number of very
good review articles already available describing the role of CDs in the development of col-
orimetric and/or fluorescence-based sensors [27,28], while Zhu et al. [29] have highlighted
the advantages of employing CDs in electrochemical sensors. In this review, we consider
the combination of CDs with a large variety of support/companion materials and describe
the sensing performance of these CD hybrid materials in the detection of biomolecules,
drug molecules, and environmental contaminants. In particular, we review the recent
literature on combining CDs with graphene, carbon nanotubes, and other emerging two-
dimensional materials. In addition, recent papers describing the integration of CDs into
conducting polymers and the electropolymerization of CDs to give electrochemical sensors
are introduced and discussed. Finally, the recent applications of CDs in the formation of
biosensors and in chiral recognition are introduced.
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2. The Role of Cyclodextrins in the Design of Electrochemical Sensors

Cyclodextrins have been combined with a number of different materials with the
aim of immobilizing them onto the surface of sensors. This approach gives rise to the
formation of a CD array that has the potential to bind and trap the target analyte, facilitating
selective and sensitive detection. The noncovalent binding between the immobilized CD
and the analyte is sufficiently strong to capture the target analyte and confine it close to
the electrode surface, but suitably weak to facilitate electron transfer and the oxidation or
reduction of the analyte. This provides a signal, normally the flow of current, which can be
related to the concentration of the analyte. Therefore, selective and sensitive detection can
be achieved through the formation of an inclusion complex between the target analyte and
CD, as illustrated in Figure 3a,b. In some cases, this can be facilitated by an accumulation
period prior to the sensing event. This allows the target molecules to include and bind
within the CD cavities [30,31]. As indicated in the schematic in Figure 3b, higher currents
are obtained on increasing the accumulation period, and these accumulation times are
typically no longer than a few seconds. Alternatively, competitive host–guest recognition,
which is based on the competition between the target analyte and an indicator molecule for
the same host, can be employed [32]. In this case, the indicator molecule is initially bound
to the CD and when the target molecule diffuses to the electrode surface, the indicator
molecule is displaced by the target, giving rise to a measurable change in the signal, as
shown in Figure 3a. For example, Yang et al. used this approach with an immobilized CD
in the electrochemical detection of cinchonine, an electrochemically inactive compound.
The probe molecule, 1,4-hydroquinone (HQ), enters into the hydrophobic cavity of β-CD
to form an inclusion complex and this gives rise to a current signal as the HQ is oxidized.
However, when the HQ molecules are displaced by cinchonine, the current is lowered and
this change in current can be used to quantify the concentration of cinchonine [33].
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3. Cyclodextrins and Electrochemical Sensors

Cyclodextrins are well established in the field of supramolecular chemistry, but they
are finding new applications by combining them with emerging materials to fabricate
high performing electrochemical sensors. Different materials and approaches have been
employed to immobilize the CD while retaining its supramolecular complexation properties
and these are now introduced and discussed, highlighting the versatility of CDs in the
design of electrochemical-based sensors.
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3.1. Cyclodextrin Combined with Graphene

One of the more interesting combinations involve coupling the CDs with graphene
and this approach is attracting considerable interest, particularly during the last decade. In
2010, it was first demonstrated by Guo et al. [34] that a synergistic effect was achieved when
CDs were combined with graphene, giving rise to the impressive electrochemical detection
of biomolecules and drugs. Graphene has a number of ideal characteristics and has been
employed extensively in the development of electrochemical sensors [7,35]. These attractive
properties include a high surface area, good conductivity, very good stability, and good
thermal and mechanical properties, while it provides a metal free support for the CDs and
it can be easily synthesized. While pristine graphene is difficult to form and maintain in this
state, graphene oxide (GO) can be formed readily using the well-known modified Hummers
method [36–38]. This involves the oxidation of graphite and as the oxidation proceeds the
interlayer spacing increases and exfoliation can be achieved through ultrasonication to give
GO sheets. These sheets can then be reduced chemically [39] or electrochemically [40,41]
to give the more conducting reduced GO (rGO). The rGO, with its good conductivity and
efficient electron transfer, is more suitable in the preparation of electrochemical-based
sensors. The complete reduction of GO to rGO is difficult to achieve and the resulting rGO
will inevitably contain oxygen-containing functional groups. However, these functional
groups can be employed to covalently attach CDs to the graphene sheets [42]. Hydrogen
bonding between the –OH groups on the CDs and the oxygen-containing groups on GO
and rGO favor the attachment of the CDs onto the GO/rGO sheets [21,43]. Indeed, it
was shown by Guo et al. [34] that the O–H stretching vibration shifted from 3700 cm−1

for free OH to 3429 cm−1 for the OH groups in the CD/rGO composite. This large red
shift was attributed to the formation of strong hydrogen bonds between the CDs and
the oxygen-containing groups on the rGO. Moreover, it has been shown, using surface
analytical measurements, such as SEM and TEM, that the CD modified rGO sheets are less
prone to aggregation, indicating that the incorporated CDs minimize the restacking effects
normally seen with rGO, maintaining the favorable high surface areas associated with the
well-dispersed rGO sheets [44].

The noncovalent methodologies used to form the rGO/CD-based sensors are generally
very simple and can be carried out with no significant chemical modifications. Typically, GO
is dispersed in solution and then mixed with the CDs, to form stable aqueous dispersions,
and drop cast onto a carbon-based electrode, such as glassy carbon [34], screen printed
electrodes [45], or fabricated as carbon paste electrodes [46–48]. The GO/CD can then
be reduced chemically using reducing agents, such as hydrazine [44,45], or the more
environmentally acceptable ascorbic acid [49] to give rGO/CD. Alternatively, the GO/CD
can be electrochemically reduced by cycling the applied potential to values in the vicinity
of −1.4 V vs. SCE (saturated calomel electrode) [21]. In some studies, the GO is reduced
initially to form rGO, which is then combined with the CD [50], while the CD has also been
immobilized onto the rGO modified glassy carbon electrode by simple immersion in the
CD solution for about 5 h [51]. These simple methodologies are illustrated and summarized
in the schematic provided in Figure 4a.
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In addition to the simple strategies illustrated in Figure 4a, a number of other modifica-
tions have been explored and these include the covalent attachment of the CD or a function-
alized CD to graphene, functionalized CDs incorporated through noncovalent attachments,
the incorporation of polymeric reagents and a variety of metal nanoparticles. Various
functionalized CDs have been employed to generate CD/rGO sensors [52,53]. Although
this is a time-consuming approach compared to the simple wet chemical methods initially
discovered, functionalized CDs can be used to covalently link the CD to the graphene
nanosheets, giving rise to stronger binding and a free dangling attached CD that is more
accessible to the target analyte. Functionalized CDs can also alter the formation of the inclu-
sion complex and therefore the functionalized groups can be selected to tailor the binding
between the CD and the target analyte, to give improved sensitive and selective detection.
Furthermore, aromatic functional groups can be utilized to form dense self-assembled
monolayers using noncovalent π–π interactions [54]. These approaches are illustrated in
the schematic presented in Figure 4b. For example, HP–β-CD (2–Hydroxylpropyl–β-CD)
decorated rGO nanosheets were formed with the assistance of microwave irradiation. In
this analysis, the CD macromolecule was covalently grafted onto the surface of the rGO
nanosheets through the formation of ester bonds [55]. Other functionalized CDs have been
employed and these include 2,6–dimethyl–β-CD [56], mercapto–β-CD [57], and thio–β-CD
(SH–β-cyclodextrin) [58–62], with a schematic of the thiolated system shown in Figure 4c.
In addition, dopamine–β-CD [63] and pyrene–β-cyclodextrin [64] have been immobilized
onto rGO using noncovalent π–π interactions to give efficient electrochemical sensors.

Polymeric materials and other linker molecules have also been employed to coat, mod-
ify, or functionalize the rGO sheets, and these include poly(diallyl dimethyl ammonium
chloride) [44] and 3,4,9,10–perylene tetracarboxylic acid, which act as a bridge between
the rGO and CD [65]. Prussian blue–chitosan [66] and cytochrome c [67] have also been
combined with rGO and CDs and used to improve the electron transfer kinetics. Nafion, a
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negatively charged perfluorsulfonated ion-exchange polymer, which is normally employed
to repel anionic analytes, has been combined with rGO and CD [68]. Likewise, the func-
tional groups on chitosan (protonated amine groups, −NH+

3 ), a well-known biopolymer,
have been exploited to attract negatively charged molecules [69].

Studies have also focused on combining metal nanoparticles with the CD and rGO to
give highly efficient electron transfer. This is not surprising as metal nanoparticles have
excellent conductivity, very good electrocatalytic activity and in many cases have good
biocompatibility, while they are more cost effective than their bulk counterparts and have
been employed extensively in the electrochemical detection of various molecules [70,71].
More recently, these nanoparticles have been combined with GO/rGO and CDs to further
enhance the rate of the electron transfer reaction. For example, a simple one-pot synthesis
was employed to give the in situ reduction of HAuCl4 to yield gold nanoparticle decorated
rGO with β-CD [72]. It was shown that the β-CD not only acted as a dispersant but also
served as a reducing agent, facilitating the reduction of GO to rGO and the conversion of
AuCl−4 to gold nanoparticles.

3.2. Cyclodextrins Combined with Carbon Nanotubes

Another interesting combination involves the blending of carbon nanotubes (CNTs)
with CDs. CNTs are also well known for their high electronic conductivity, surface areas,
and very good stability, and have been employed in the fabrication of a number of sen-
sors [70,71,73]. CNTs can be formed as single-walled (SWCNT) or multiwalled nanotubes
(MWCNT), distinguished by the number or graphitic layers folded over to form the tubes.
In the last decade there has been considerable interest in modifying CNTs with CDs and
there is now ample evidence to show the beneficial effects of this combination. Recent stud-
ies have demonstrated enhanced electron-transfer reactions at these composites, combining
the attractive properties of the CNTs with the supramolecular inclusion complexation
characteristics of the CDs [74,75].

The CNTs can be easily combined with the CDs through a simple wet chemical synthe-
sis, similar to that used with the graphene sheets. This is aided by the good dispersion of
the CNTs in a CD solution. Normally, for efficient dispersion, the CNTs are treated in nitric
acid to generate –COOH groups [76]. Although this is an efficient strategy, the generation
of –COOH groups enhances the dispersion of the CNTs, leading to environmental concerns
as these functionalized CNTs are readily released into the aquatic environment [77]. In
contrast, unmodified CNTs and CDs can be sufficiently well dispersed with good stability
in aqueous or polar media [30,78,79]. This is normally explained in terms of the van der
Waals forces between the MWCNTs and the CDs, where the CDs are sandwiched between
the MWCNTs [80]. This good dispersion also facilitates the formation of a homogenous
modified electrode. Indeed, it was shown by Alam et al. [78] that a glassy carbon elec-
trode modified with MWCNTs gave rise to a heterogeneous coverage, while a uniform
morphology was observed with the MWCNT/βCD. This was attributed to the hydrophilic
properties of the CDs, enabling good dispersion in water.

Alternatively, the CDs can be grafted onto the CNTs functionalized with –COOH
groups. This generally involves a two-step process, where the CNTs are firstly function-
alized with –COOH groups and then the CDs are covalently linked through the –COOH
groups. This approach is highlighted in Figure 5. This normally gives rise to about 14%
of the available –COOH groups linked to the CDs [81]. Disulfide bridged β-CD dimer-
functionalized MWCNTs have also been synthesized and employed to give enhanced
conductivity and efficient electron transfer [82].

In a similar manner to that employed with the graphene-based system, the CNTs
and CDs have been combined with and without other additives and fabricated as carbon
paste electrodes [11,31] and drop-cast onto glassy carbon or screen printed electrodes. Like-
wise, the CNTs have been combined with functionalized CDs [83,84] and the CNTs/CDs
have been further modified with metal nanoparticles, including gold [85–87], copper [88],
cobalt [89], silver [90], and platinum [91].
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3.3. Cyclodextrins Combined with Conducting Polymers

Cyclodextrins have been immobilized successfully within a number of polymer matri-
ces and used as electrochemical sensors. Some of the better studied polymers come from
the family of conducting polymers and include polypyrrole (PPy), polyaniline (PANI),
and polythiophene derivatives, such as poly(3,4–ethylenedioxythiophene) (PEDOT). These
polymeric materials are interesting as they have a high surface area, a highly porous
surface, where the porosity can be further controlled by varying the rate of electropolymer-
ization, have ion exchange properties, and provide a conducting matrix. These polymers
are easily formed at a substrate electrode through the electropolymerization of the corre-
sponding monomers in aqueous solutions. For example, PPy can be formed at a variety of
conducting substrates through the electropolymerization of pyrrole in the presence of a
dopant at potentials in the vicinity of 0.6 to 0.8 V vs. SCE [93,94] to generate an adherent
conducting film.

Cyclodextrins have been incorporated within a number of conducting polymers, and it
has been shown that the CDs play a significant role in the detection of the target molecules,
with the CD immobilized films outperforming the other combinations. This clearly illus-
trates that the immobilized CDs retain their supramolecular complexation properties. For
example, PANI films have been combined with β-CD and –COOH functionalized MWC-
NTs and used in the selective detection of dopamine [95]. The MWCNTs promoted electron
transfer, while a supramolecular complex was formed between β-CD and dopamine. The
sensing performance of the β-CD-MWNTs/PANI film was superior to the MWCNTs/PANI,
PANI, or substrate glassy carbon electrodes. This combination of MWCNTs, PANI, and
β-CD has been employed in the fabrication of sensors for the determination of phenylala-
nine [96], dopamine [97], ciprofloxacin [98], cocaine [99], and fungicides and herbicides,
such as pyrimethanil [100], chlorophenoxy compounds [101,102], and bentazone [103].

Substituted aniline monomers, such as N–acetylaniline, have also been electropoly-
merized in the presence of β-CD and employed as electrochemical sensors for the detection
of guanine and adenine [104] and in the simultaneous detection of levodopa and carbidopa
in pharmaceutical formulations [105]. MWCNTs have been added to further enhance the
kinetics of the electron transfer reaction and these ternary PAcANI/β-CD/CNT hybrids
have been used in the simultaneous detection of serotonin and dopamine [31], and for the
quantification of hydroquinone [106], while the good conducting properties of graphene
have been exploited to give efficient PAcANI/β-CD/rGO electrochemical sensors [33,107].

A number of CD-modified polypyrrole films have been fabricated and employed as
sensors. These polypyrrole/β-cyclodextrin films (PPy/β-CD) can be formed by the simple
electropolymerization of pyrrole in the presence of the β-CD and a supporting electrolyte
to give PPy/β-CD adherent films. These polymeric materials have been employed in
the detection of catecholamine compounds [108], various neurotransmitters [109–111],
and methyl paraben [112], and utilized as an impedimetric sensor to detect rocuronium
bromide, which is a muscle relaxant [113]. By employing anionic β-CDs, such as sulfonated



Materials 2021, 14, 1668 9 of 28

or sulfated CDs (sβ-CD), the anionic β-CDs can be incorporated as dopants within the PPy
matrix. As these are large and immobile dopants, they are not expelled as the polymer is re-
duced and are very well immobilized. These PPy/sβ-CD films have been employed in the
electrochemical detection of dopamine [114,115], urea [116,117], and viologens [118]. Simi-
lar to the strategy employed with the PANI system, MWCNTs [119,120] and rGO [121–123]
have been added to the PPy/CD polymers to enhance conductivity and the performance
of the sensors.

PEDOT, which can be prepared by the chemical or electrochemical oxidation of EDOT,
has also been combined with β-CD to develop electrochemical sensors. For example, a
nanostructured PEDOT/β-CD was prepared by oxidizing EDOT with FeCl3 in the presence
of β-CD. Again, it was shown that the PEDOT/β-CD outperformed the PEDOT in the
sensitive and selective sensing of hyperoside and shikonin [124]. PEDOT/β-CD films
have also been utilized in the electrochemical quantification of acetaminophen (parac-
etamol) [125], creatinine [126], sulfur oxoanions, and nitrite [127]. PEDOT and sulfated
β-cyclodextrin (PEDOT/sβ-CD) films deposited onto gold were investigated for the si-
multaneous detection of ascorbic acid and catecholamines, giving good simultaneous
analysis [128].

3.4. Electropolymerization of Cyclodextrins

An interesting alternative to the physically immobilized CD and the covalently linked
CD supramolecules is the electropolymerization of the CDs to generate an adherent insolu-
ble CD polymer. While the physically adsorbed CD supramolecules, which are soluble,
tend to dissolve from the surface, leading to a progressive loss of the CDs from the surface,
the insoluble CD polymer is retained. Moreover, it has been shown in several studies that
this polymer has good conducting properties [129], making it an ideal candidate for the
development of electrochemical-based sensors. Furthermore, it can be combined with a
range of other conducting materials, such as CNTs [130,131] and rGO [129,132].

The CD polymers, poly-β-CDs, are normally formed using cyclic voltammetry where
the substrate electrodes are cycled between the potential limits of −2.0 V and 2.0 V to 2.3 V
vs. SCE [133], or with a smaller electrochemical window between approximately −0.8 to
1.3 V vs. SCE. Acidic conditions are generally used with the polymer being generated in
slightly acidic phosphate buffer [133,134], or in the presence of HClO4 [135,136]. These poly-
β-CDs have been deposited at carbon paste electrodes [136,137], glassy carbon [138–140],
and rGO decorated screen printed electrodes [129], and combined with CNTs [141,142],
rGO [132,133,143], boron-doped rGO [134], TiO2 [144], and gold nanoparticles [145].

Despite the growing number of publications where these poly-β-CDs are being used
in the design of electrochemical sensors, there is relatively little known about the elec-
tropolymerization mechanism. As the polymeric material is formed, the voltammograms
change with the emergence of well-defined redox peaks, as illustrated in Figure 6. Clear
oxidation waves (peaks I and II) are observed and a well resolved reduction wave (peak
III) is evident at about −0.6 V vs. SCE. These peaks increase with increasing cycling until
about 15–20 cycles are reached, at which point the currents become essentially constant,
indicating no further or little growth of the polymer. The oxidation waves (peaks I and II)
have been attributed to the oxidation of the β-CD supramolecules. Indeed, β-CDs have
been employed as reducing agents, clearly indicating that these β-CDs can be oxidized [72].
The electropolymerization mechanism has been described as a radical polymerization
reaction, where a radical cation is formed facilitating the formation of dimers, trimers, and
eventually the dark-colored poly-β-CD. It has been suggested that it is the –CH2–OH of the
β-CD which is oxidized, as the C–1 position is blocked by the glycosidic linkage [136]. This
active site can form a dimer with an adjacent β-CD molecule but also form a covalent bond
with the carbon substrate electrode [139], which is consistent with the good adherence of
the polymer to the substrate electrode. It is also well established that the primary alcohol
groups are susceptible to oxidation, giving rise to the formation of aldehyde and/or a
carboxylic acid group [146]. These carboxylic acid groups can react with the primary
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hydroxyl groups through an esterification reaction to give the β-CD dimer [139]. As β-CD
dimers, trimers, and higher polymeric units are formed, the solubility in aqueous media
will decease significantly in the diffusion layer, leading to the precipitation of the insoluble
poly-β-CD.
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Although the electropolymerization mechanism is not fully understood and the origins
of peaks I, II, and III in Figure 6 have yet to be fully explained, these poly-β-CD-based
sensors have been employed successfully. Indeed, these sensors have been used in the
electrochemical detection of biomolecules [129,131,135,142,145], insecticides [132,140,141],
and heavy metal ions [136].

3.5. Other Conducting Materials Combined with Cyclodextrins

In addition to the materials described above, a number of other promising combi-
nations comprising CDs as the molecular recognition agent have been explored in the
development of sensors. Some of the more interesting materials include highly porous
materials, such as ordered mesoporous silicas and mesoporous carbon, and 2D layered
materials with good conducting properties and high surface areas, such as graphitic carbon
nitride, MXenes, layered double hydroxides (LDHs), and 2D layered TiO2 nanosheets,
which have good hydrophilic character. Additional new and emerging materials include
carbon nanohorns (CNHs), which are carbon nanomaterials with a similar shape to CNTs
but with horn-shaped sheaths composed of graphene sheets. In terms of ordered meso-
porous silica, these materials possess an ordered porous structure, with uniform pore sizes
and a high surface area. SBA-15, a hexagonal mesoporous silica, has been functionalized
with CDs to form sensors for the determination of nitrophenol isomers [147], while meso-
porous carbon has been combined with CDs and gold nanoparticles for the detection of
p-nitrophenol [148].

Graphitic carbon nitride has a layered 2D structure, with the graphitic planes con-
nected by amino groups, with good conductivity and is normally formed through the
pyrolysis of melamine. This layered material has been combined with graphite, mineral oil,
and β-CD to form a carbon paste electrode and employed in the electrochemical detection
of linagliptin, a hypoglycemic drug molecule [149]. A carboxymethyl–β-cyclodextrin,
serving as the polyanion, was layered with Mg–Al LDH and deposited onto a glassy
carbon electrode to give the capacitive detection of acetaminophen. The LDH nanosheets
provided a rigid inorganic matrix, while supramolecular recognition was achieved with
the CD [150]. Fu et al. decorated 2D TiO2 nanosheets with gold nanoparticles, to enhance
conductivity and provide a gold surface to facilitate the formation of Au–S bonds with a
mono–6–thio–β-CD [151].

The CNHs have been combined with β-CD to give a hybrid material with extremely
high electrochemiluminescent (ECL) activity for luminol and an effective and selective
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ECL biosensor [152], while Kingsford et al. formed an aqueous dispersion of CHNs and
β-CD using a simple ultrasonication process and then drop-cast the dispersion onto a
glassy carbon electrode to produce an electrochemical sensor [153]. In a more recent
study, MXenes, CNHs, β-cyclodextrin, and metal–organic frameworks were combined
and exploited for the electrochemical detection of carbendazim [154]. This strategy is
summarized in Figure 7. The MXene nanosheets are initially formed through dissolution of
the Al layer in the bulk Ti3AlC2 and then combined with CNHs, CD-MOF, and drop-cast
onto a glassy carbon electrode.
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CDs have also been combined with various nanoparticles/nanostructures by simply
mixing (with sonication) and then drop-casting the slurry onto a glassy carbon substrate.
This strategy has been employed with SrTiO3, a perovskite with good electronic conductiv-
ity and chemical inertness, to give SrTiO3/β-CD and employed in the electrochemical detec-
tion of As(III) [155]. Similarly, various metal nanoparticles have been combined with CDs to
form decorated glassy carbon electrodes. For example, Daneshvar and Rounaghi [156] em-
ployed trimetallic Au/Ag/Pd nanoparticles with β-CD for the detection of carbamazepine.
Similarly, a number of carbon paste electrodes modified with metal nanoparticles and β-CD
have been formed and utilized as electrochemical sensors and this includes gold [157,158]
and platinum nanoparticles [46], while gold substrate electrodes have been modified with
gold nanoparticles, β-CD, and Nafion [159].

3.6. Cyclodextrin-Based Biosensors

It is well established that electrochemical-based biosensors can be constructed using
molecular recognition elements, such as proteins, enzymes, and more recently aptamers.
However, there is also clear evidence that the addition of cyclodextrins can lead to a further
improvement in the sensitivity and selectivity of biosensors. This supramolecular-centered
approach can be employed to increase the loading of the enzyme/protein. Moreover,
the CD has a hydrophobic cavity, providing an ideal microenvironment for the enzyme.
Among the extensive range of host–guest complexes, the adamantane–β-CD inclusion com-
plex [160] is especially useful in the design of electrochemical-based biosensors [161,162].
The CD adamantane host–guest complex serves to dock the biological recognition element
of the sensor, facilitating its recognition of the target analyte. Coupling is normally achieved
with adamantane carboxylic acid [163,164], but in addition, adamantane derivatives can be
used. For example, an adamantane-pyrrole derivative has been employed as an affinity



Materials 2021, 14, 1668 12 of 28

binding polymer [119] and pyrene-adamantane was used to form a biosensor for the detec-
tion of glucose [165]. This strategy is summarized in Figure 8, where pyrrole is coupled to
adamantane, facilitating the deposition of a polypyrrole film with free adamantane that
can form an inclusion complex with the CD. This in turn captures the β-CD tagged glucose
oxidase (GOX), anchoring it to the electrode surface.
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Thiol groups serve as very good linkages enabling the attachment of CDs and polythi-
olated CDs to the biosensor surface [166]. If the entire surface is covered, this hydrophilic
surface layer (due to the hydrophilic exterior of the CD) reduces considerably the nonspe-
cific interactions, and this is especially important in the development of immunosensors.
In addition, the CD can be polymerized using the well-known method that uses strong
alkaline conditions coupled with epichlorhydrin to give a polymer with a β-CD content
of about 52% [167], or indeed the CD can be electropolymerized to give a polymer layer
or electropolymerized in the presence of enzymes to give an enzyme immobilized poly-
mer layer [130].

Other additives have been combined with the CDs, and graphene is a good option,
as it provides good conductivity with high surface areas. This combined with the CD
host-guest interactions gives rise to high loadings of the biological recognition agent. This
approach has been utilized in the development of an immunosensor for the detection of
carcino-embryonic antigen (CEA), an important biological marker of colorectal adenocar-
cinoma [168]. Likewise, carbon nanotubes have been integrated into the supramolecular
biosensors due to their high electrocatalytic properties and employed in the detection of
organophosphates [169] and glucose [119]. Moreover, gold [170], platinum [171,172], and
silver [173] nanoparticles have been added to enhance the rate of the electron-transfer
reaction. Likewise, enzyme-loaded nanoparticles have been magnetically immobilized
in the fabrication of biosensors for xanthine and catechol detection [161] and this strat-
egy is illustrated in Figure 9. The magnetic nanoparticles are functionalized with amine
groups and then coupled with the CDs through the reaction of the NH2 and CHO groups,
combined with the enzyme and cast onto a magnetic substrate.
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paramagnetic Fe3O4 nanoparticles. Reproduced with permission from Diez et al. [161], J. Colloid
Interface Sci.; published by Elsevier, 2012.

Another important element in the design of biosensors are mediators which are
frequently utilized, and ferrocene and its derivatives are very effective as mediators [174].
However, their leaching from the sensor remains challenging, affecting the overall stability
of the biosensor. Ferrocene forms a strong inclusion complex with β-CD [174] and this has
been exploited to improve the stability of the ferrocene-based mediators. This ferrocene/β-
CD combination has been used in the amperometric detection of glucose [175,176] and as
an electrochemiluminescence biosensing platform for Hg(II) [177].

The ferrocene/β-CD inclusion complex has also been applied in the assembly of
aptamer-based sensors [178–180]. Aptamers are single-stranded RNA or DNA oligonu-
cleotides and they can bind with high affinity and specificity to their target molecules.
They can be engineered with different sequences to recognize a variety of target molecules.
Compared with receptor proteins or antibodies, aptamers have good thermal stability
and are cost-effective, making them widely applicable in the design of biosensors. Upon
binding to their target molecules, the aptamers fold their flexible, single-stranded chains
into a three-dimensional (3D) structure, moving either closer or further away from the
surface. Provided a conducting pathway exists, these interactions can be converted into an
electrochemical signal. This strategy was used by Wu et al. [179] and Xue et al. [178] to form
electrochemical aptasensors for the detection of tetracycline and thrombin, respectively. In
both cases, a thiolated β-CD was attached to a gold substrate and the aptamer was labeled
with ferrocene, enabling the formation of an inclusion complex between the ferrocene and
β-CD, while anchoring the aptamer to the surface. On recognizing the target analyte, the
aptamer changes its configurations moving the ferrocene/aptamer/target complex away
from the surface and reducing the electrochemical signal [179], or closer to the surface to
increase the signal [178].

3.7. Enantioselective Cyclodextrin-Based Electrochemical Sensors

Enantioselective sensors or chiral-based recognition sensors are centered on the princi-
ple that the sensor can preferentially recognize one of the enantiomers of a chiral molecule.
This is especially relevant to drug molecules as the enantiomers can exhibit very differ-
ent therapeutic effects, with one of the enantiomers giving the desired response, but the
other having serious side effects. In recent years, β-CD has been recognized as a chiral
selector and employed as the chiral element in electrochemical-based sensors. A variety of
stereoisomer molecules, including tryptophan [181–184], phenylalanine [65,185], dihydrox-
yphenylalanine (DOPA) [186,187], cystine [188], moxifloxacin hydrochloride [189], and
clopidogrel [46] have been detected with the β-CD, showing a high preference for one of
the enantiomers.
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The chiral recognition property of β-CD is based on its ability to form stronger in-
clusion complexes with one enantiomer. For example, β-CD forms a stronger inclusion
complex with L-tryptophan compared to D-tryptophan [181,184], as stronger hydrogen
bonds can be formed between the amino group on L-tryptophan and the secondary hy-
droxyl on the β-CD rim, due to the orientation of the included amino acid [183]. Likewise,
β-CD shows a preference for L-phenylalanine, and this has been attributed to more facile
hydrogen bonding between the amino group of L-phenylalanine and the secondary OH
groups on the rim/edge of the β-CD [65]. The degree of enantioselective recognition
can be determined by changes in the peak currents arising from the oxidation of the two
enantiomers, while shifts in the peak potential, ∆Ep, are also a good indication of chiral
recognition in electrochemical-based sensors [189]. For example, typical changes in the
peak currents are illustrated in Figure 10, where nanosheets of black phosphorus and β-CD
are used to discriminate between the enantiomers of tryptophan, with the L-tryptophan
being preferentially detected.
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BPNSs/β-CD modified electrode and its application in the electrochemical recognition of tryptophan
enantiomers shown in II. Reproduced with permission from Zou and Yu [184], Mater. Sci. Eng. C;
published by Elsevier, 2020.

For analytes that have poor electroactivity, or are not electroactive, ferrocene can be
employed. This strategy is based on the strong inclusion complex that forms between β-CD
and ferrocene. As long as the ferrocene is maintained within the cavity, high currents are
measured. However, once ferrocene is replaced by the preferred enantiomer, the current
decreases and this drop in the peak current arising from the electroactive ferrocene can be
used to determine the degree of the enantioselective recognition [65].

While there is normally good agreement in terms of the preferred enantiomer included
within the CD cavity, there are also some conflicting results. For example, Chen et al. [186]
concluded that the β-CD exhibited stronger enantioselectivity towards D-DOPA, while
Ates et al. [187] observed poor discrimination of D- and L-DOPA using β-CD, but favorable
interactions between L-DOPA and γ-CD. This may indicate that the other components of
the sensor are also important. Indeed, Upadhyay et al. [189] observed synergistic effects
between graphene and β-CD in the discrimination of the enantiomers of moxifloxacin.

4. A Comparison of the Performance of the Cyclodextrin Modified Electrodes as Sensors

It is clearly evident from the previous sections that the integration of CDs, with their
supramolecular interactions, into the sensor assembly can be employed in the detection of
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several molecules. A summary and comparison of some of the cyclodextrin-based sensors
are shown in Tables 2–5. The molecules are divided between environmental contaminants
(Table 2), essential biomolecules focused on neurotransmitters and amino acids (Table 3),
and biosensors (Table 4). Lastly, the performances of drug molecules and flavonoid sensors
are illustrated in Table 5. It is clearly evident that a large number of molecules have been
detected using a variety of CD-based sensors. The CDs, mainly β-CD, have generally been
combined with conducting materials, including graphene sheets/reduced graphene, CNTs,
(normally MWCNTs), and a range of metal nanoparticles. The performance of the sensors
can be compared using the limit of detection (LOD), which is defined in Equation (3), where
σb is the standard deviation in the baseline and m represents the sensitivity of the sensor
and corresponds to the slope of the linear calibration plot. In some cases, the standard
deviation is found using the lower concentrations of the analyte. These computed LOD
values can often overestimate the sensing ability of a sensor, and therefore, the linear region
can be more useful in assessing and comparing the performances of sensors. For example,
the LOD value was computed as 6.64 pM, while the linear region only extended to a lower
concentration of 0.04 µM in the electrochemical detection of methocarbamol [190].

LOD =
3σb
m

(3)

In terms of the environmental contaminants, Table 2, it is no surprise that highly
carcinogenic compounds, such as bisphenol A, nitro-and chlorophenols, and a number
of herbicides and pesticides have been selected as the target analytes. Many of these
compounds have aromatic rings and this will facilitate the formation of an inclusion
complex between the CD and the contaminant. These aromatic rings can include within
the hydrophobic cavity of the CD and this inclusion complex allows the accumulation of
the molecules at the surface, giving rise to enhanced electrochemical detection.

The interactions between metal ions, such as heavy metal ions, and CDs are largely
unexplored, and this may be connected to the difficulties involved in obtaining good quality
crystalline materials for structural analysis. However, the secondary hydroxyl groups of
the CDs can deprotonate and form complexes with metal ions, but this usually leads to
the generation of a sandwich-type complex where the CD molecules become connected,
through the metal ions [191]. This is unlikely to occur with the immobilized CDs, and
therefore it appears that the good performance seen in the electrochemical stripping of the
metal ions (Table 2) is largely due to the graphene sheets. However, the CD plays a role.
There is clear evidence to show that the CDs can prevent the restacking of the graphene
sheets through the formation of hydrogen bonds with GO [21,34], and this will enhance
the performance of the sensors. These synergistic interactions between CDs and graphene
have led to the development of several rGO/CD-based sensors and this is clearly seen in
Tables 2–5. Likewise, CNTs can be well dispersed in CD solutions and a number of sensors
have been developed using MWCNTs combined with CDs.

Similarly, for the drug molecules, flavonoids, amino acids, and biomolecules, rGO
is frequently combined with CDs (Tables 3 and 5). Again, many of the systems contain
hydrophobic aromatic ring structures and these can include within the hydrophobic CD
cavity, to give an inclusion complex. This gives rise to impressive detection with linear re-
gions, extending over a wide concentration range, covering the therapeutic levels for many
drugs, while also being able to detect concentrations at the nM levels. This ability to detect
concentrations at the nM level can be employed not only in biological samples, but also in
the analysis of antibiotics and/or drug molecules in wastewater, where concentrations of
nM and lower exist.

In terms of the essential biomolecules, dopamine, ascorbic acid, and uric acid coexist
in biological systems and changes in their concentrations can be linked to a number of
diseases, such as Parkinson’s disease and schizophrenia. Normally, in biological systems
dopamine concentrations vary from about 10 nM to 1 µM, ascorbic acid from 1 to 2 mM,
and uric acid from 207 to 444 µM [192]. Therefore, their accurate quantification across these
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concentration ranges in biological fluids is necessary for the clinical diagnosis of various
diseases. As shown in Table 3, many of the CD-based systems have linear regions that
extend to the lower concentration levels and while the linear regions may not extend into
the higher mM levels, the biological samples can be diluted. Moreover, many of these
sensors can be employed in the simultaneous detection of these analytes, with the oxidation
of the molecules occurring at different potentials, enabling their resolution.

Table 2. Summary of some of the CD-based sensors used in the determination of environmental contaminants.

Materials 1 Analyte LOD Linear Range/s Ref.

B-CD/AuNPs/MC p-nitrophenol. 3.63 µg mL−1 0.1–10 µM
10–350 µM [148]

α-CD/NiONPs/rGO p-nitrophenol 0.12 nM 1–5 µM [193]
β-CD/CB 4-nitrophenol 0.040 µM 0.125–225.8 µM [194]

β-CD/rGO/CS o-nitrophenol 0.018 µM 0.12–0.28 µM
5–40 µM [69]

p-nitrophenol 0.016 µM 0.06–0.16 µM
5–40 µM

B-CD/AuNP/TiO2NS MP 0.05 nM 1.5–60.0 nM [151]

β-CD/rGO MP 0.05 ppb 0.3–1.0 ppb
1.0–500 ppb [195]

α-CD/rGO IDP 0.02 µM 0.5–40 µM [21]

β-CD/MWCNTs Bisphenol 13.76 nM 125 nM–2 µM
2–30 µM [92]

β-CD/GO/MWCNT Bisphenol 6 nM 0.05–5 µM [196]
5–30 µM

SH-β-CD/NPGL Bisphenol 60 nM 0.3–100 µM [197]
β-CD-Gr/PtNPs Bisphenol 15 nM 0.05–80 µM [198]
β-CD/GRs/CPE 2-chlorophenol 0.2 µM 0.5–40 µM [48]

3-chlorophenol 0.09 µM 0.4–77 µM
β-CD–GNs) CBZ 2 nM 5 nM–0.45 µM [45]

β-CD/rGO/PU TER 0.550 µM 2.50–30 µM [199]
NIM 0.083 µM 0.62–7.3 µM
MET 0.077 µM 0.62–7.3 µM

β-CD/MGO TC 0.18 ng L−1 0.5–90.0 ng L−1 [47]
DC 0.18 ng L−1 0.5–90.0 ng L−1

β-CD/PdNPs/rGO Hydrazine 28 nM 0.05–1600 µM [200]
β-CD/PANI/MWCNT MCPA 1.1 µM 10–50 µM [102]

Chloromethylphenol 1.9 µM 10–50 µM
β-CD/MWCNT MCPA 0.99 µM 10–100 µM [101]

Bi/HP-β-CD-
rGO/Nafion Pb(II) 0.09 nM 1.0–90 nM [201]

(stripping
voltammetry) Cd(II) 0.07 nM 5.0–90 nM

β-CD/NH2-rGO/ Cu(II) 2.8 nM 0.05–1.0 µM [202]
mp-g-C3N4/β-CD TNT 68 ppb 1–100 µM [203]

CNHs/β-CD CNB 9.0 nM 0.05–1.0 µM [153]
MXene/CNHs/βCD/MOF CBZ 1.0 nM 3.0 nM–10.0 µM [154]

1 Abbreviations: limit of detection (LOD); 2,4,6–trinitrotoluene (TNT); 1–chloro–4–nitrobenzene (CNB); carbon nanohorns (CNHs);
terbutaline (TER); nimesulide (NIM); methocarbamol (MET); polyurethane (PU); methyl parathion (MP); mesoporous carbon (MC); carbon
black (CB); nanosheets (NS), chitosan (CS); imidacloprid (IDP); carbendazim (CBZ); gold leaf (NPGL); tetracycline (TC); doxycycline (DC);
magnetic GO (MGO); carbon paste electrode (CPE).
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Table 3. Summary of some of the CD-based sensors used in the electrochemical detection of essential
biomolecules and amino acids.

Materials 2 Analyte LOD Linear Range/s Ref.

β-CD/rGO Ascorbic acid 0.067 mM 0.2–2 mM [129]
Dopamine 0.017 µM 0.05–50 µM
Uric acid 0.026 µM 0.08–150 µM

3DrGO/Fe3O4/HP-
β-CD Serotonin 3.3 nM 0.01–25 µM [204]

Dopamine 6.7 nM 0.02–25 µM
Ascorbic acid 3.3 µM 10–350 µM

β-CD/CQDs Ascorbic acid 0.14 µM 4–220 µM [205]
Uric acid 0.01 µM 0.3–200 µM

Trypophan 0.16 µM 5–270 µM
Au/NF/β-

CD/AuNPs Dopamine 0.6 nM 0.05–280 µM [159]

MWCNT/β-CD Dopamine 6.7 µM 0.01–0.08 mM [206]
GR/CD/Pt Cysteine 0.12 µM 0.5–170 µM [207]

(CuO/β-CD/NF Tyrosine 0.0082 µM 0.01–100 µM [208]
PDA-β-CD Glycine 0.2 µM 0.20–70 µM [209]

Cysteine 0.06 µM 0.06–0.2 µM
Tyrosine 0.01 µM 0.01–0.1 µM

Phenylalanine 0.2 µM 0.20–10 µM
2 Abbreviations: carbon quantum dots (CQDs); Nafion (NF); polydopamine (PDA).

Table 4. A selection of some of the biosensors using CDs or functionalized CDs as a supramolecular recognition unit.

Enzyme/Protein/Other
Reagents 3 Target Analyte Linear Range LOD Ref.

HRP H2O2 100 mM–3.9 mM 2 µM [166]
HRP/BSA/MB H2O2 – 0.5 µM [210]

GOX/CNT Glucose 4 mM–3.2 mM 3.5 µM [211]
CD/rGO/Cu@Ag-

CD/antibodies CEA 0.01–20 ng mL−1 20 fg mL−1 [168]

Fe3O4/TYR Cathecol 100 nM–12 µM 22 nM [161]
Fe3O4/XO Xanthine 5.0–120 µM 2.0 µM

XO Xanthine 300 µM–10.4 mM 200 µM [162]
SPE/rGO Eugonal 13 nM–10 µM 4 nM [212]
Lac/rGO Dopamine 0.1–70 µM 30 nM [213]

CD/rGO/AuNPs/PB/CS Malathion
Carbaryl

7.98−2.00 × 103 pg mL−1

4.3−1.00 × 103 pg mL−1
4.14 pg mL−1

1.15 pg mL−1 [66]

Aptamer/AuNPs/GO/ferrocene Thrombin 1.6 × 10–17–8.0 × 10–15 M 5.2 × 10–18 M [178]
Aptamer/ferrocene Tetracycline 0.01–100 nM 0.008 nM [179]

3 Abbreviations: xanthine oxidase (XO); soybean peroxidase (SPE); laccase (Lac) tyrosinase, (TYR); Prussian blue (PB); chitosan (CS).

Table 5. Summary of some of the CD-based sensors employed in the electrochemical determination of drugs and flavonoids.

Materials 4 Analyte LOD Linear Range/s Ref.

β-CD/AgNPs/GO/G-
DVD Naproxen 0.08 µM 0.4 µM–80 µM [214]

β-CD-l-arg Ciprofloxacin 0.01 µM 0.05–100 µM [215]
Ofloxacin, 0.04 µM 0.1–100 µM

Norfloxacin 0.04 µM 0.1–40 µM
Gatifloxacin 0.02 µM 0.06–100 µM

DM-β-CD-GNs Isoquercitrin 4 nM 10 nM–3.0 µM [56]
Baicalin 10 nM 0.04 µM–3.0 µM

Poly-βCD/rGO Quercetin 0.001 µM 0.005–20 µM [216]
β-CD/CB Flutamide 0.016 µM 0.05–158 µM [194]

SH-β-CD-Gr/PdNPs Rutin 0.3 nM 1.0 nM–30 µM [58]
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Table 5. Cont.

Materials 4 Analyte LOD Linear Range/s Ref.

Isoquercitrin 1.6 pM 5.0 pM–5 µM
PDDA-G-CNTs/β-CD Luteolin 0.02 µM 0.05–60 µM [217]

β-CD-AuNP/GO Nilutamide 0.4 nM 0.01–193 µM [218]
β-CD/CNF Nitrofurantoin 1.8 nM 0.004–308 µM [219]

β-CD/ILC/rGO Methocarbamol 6.64 pM
10.9 nM

0.04–1 µM
8–100 µM [190]

GR-β-CD/CuONPs metronidazole 0.6 nM 0.002–210.0 µM [220]
SnS2/GO/β-CD Melatonin 0.17 nM 1 nM–100 µM [221]

β-CD/rGO Acetaminophen 2.3 µM 0.01–0.8 mM [44]
SnO2/MWCNT/β-CD Acetaminophen 5.8 nM 0.01–340 µM [222]

PB-rGO/Tβ-
CD/AuNPs Quercetin 1.83 nM 0.005–0.4 µM [57]

NH2-GQDs/Au-β-CD Quercetin 285 pM 1–210 nM [61]
DM-β-CD-GNs Isoquercitrin 4 nM 10 nM–3.0 µM [56]

Baicalin 10 nM 0.04–3.0 µM
MIP/CoNPS/β-

CD/MWNTs Oxacillin 6.9 nM 0.2–100 µM [89]

4 Abbreviations: gold digital versatile disc (G–DVD); l-arginine (l-arg); poly(diallyldimethylammonium chloride) (PDDA); carbon nanofiber
(CNF); ionic liquid crystal (ILC); 1-pyrenebutyrate (PB); mercapto–β-cyclodextrin (Tβ-CD); aminated graphene quantum dots (NH2–GQDs);
2,6–dimethyl–β-cyclodextrin (DM–β-CD); molecularly imprinted polymers (MIP).

CDs have also been combined with various enzymes, antibodies, and aptamers,
as illustrated in Table 4, enabling the detection of simple molecules, such as hydrogen
peroxide and more complex structures. It is clearly evident that the aptamer-based sensors
provide detection at very low levels. Again, rGO, MWCNTs, and metal nanoparticles, such
as AuNPs, are routinely combined with the CD and enzyme to give biosensors. While
MWCNTs, rGO, and metal nanoparticles feature in the fabrication of many of these sensors
(Tables 2–5), other new emerging materials, including MXenes and graphitic carbon, are
now beginning to find applications in the design of CD-based sensors.

5. Conclusions

It is clearly evident from the papers described that CDs have excellent supramolec-
ular recognition properties, and these can be exploited in the design and fabrication of
electrochemical-based sensors for the detection of various molecules, encompassing en-
vironmental, biological, and biomedical applications. Moreover, these sensors have been
employed in challenging environments. Biological and environmental media are especially
difficult, with interference compounds and complex samples.

Although these CD-based electrochemical sensors have a number of attractive prop-
erties and excellent molecular recognition properties, a number of challenges still exist
and must be addressed before these sensors can progress from a proof-of-concept stage to
employment in environmental, biomedical, and/or healthcare sectors. While the immobi-
lization of CDs by mixing and dispersing onto a transducer surface is a simple process and
has been used widely, this method results in the gradual loss of the CD from the electrode
surface. Covalent attachment of the CDs and the more recently employed approach of
electropolymerization address some of these stability issues. However, more robust meth-
ods are required to give higher loadings and stronger integration of the CDs within the
sensor unit.

While CDs have very good biocompatibility, many of the additives employed to
enhance electron conductivity, such as rGO and CNTs, have environmental concerns,
especially if they escape into the environment. In particular, carboxylated CNTs and GO,
have reasonably good dispersion in water, making it more difficult to prevent their release
into the environment. Therefore, these additives, which are essential in promoting efficient
electron transfer, need to be effectively anchored and trapped with the CD supramolecules.
In addition, the costs of CNTs remain high, and while small quantities are employed in the
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fabrication of sensors, this will ultimately increase the overall cost of the sensor, impacting
its real applications.

Nevertheless, CDs have a promising future in the development of sensors, providing
molecular recognition properties for a host of molecules, and providing a protective
hydrophobic cavity for the immobilization of enzymes and aptamers. Besides, their ability
to provide chiral recognition, is especially interesting in the development of chiral drug
molecules. The development of new functionalized CDs with simpler synthetic steps and
high yields has the potential to further extend the applications of CD supramolecules.
Other new and emerging supramolecular systems, such as pillararenes, are also likely to
receive more attention in the next few years, further contributing to the development of
both highly sensitive and selective supramolecular electrochemical sensors. Indeed, there is
potential to combine supramolecular systems such as CDs and pillararenes to give sensors
that can recognize a number of analytes simultaneously.
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posite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application
to dopamine biosensing. Electrochim. Acta 2015, 178, 108–112. [CrossRef]

123. Palanisamy, S.; Thangavelu, K.; Chen, S.-M.; Velusamy, V.; Chang, M.-H.; Chen, T.-W.; Al-Hemaid, F.M.A.; Ali, M.A.; Ramaraj,
S.K. Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical
detection of mercury(II) in water. Sens. Actuators B Chem. 2017, 243, 888–894. [CrossRef]

124. Wu, L.; Xu, J.; Lu, L.; Yang, T.; Gao, Y. Fabrication of nanostructured PEDOT clusters using β-cyclodextrin as substrate and
applied for simultaneous determination of hyperoside and shikonin. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 203–212.
[CrossRef]

125. Atta, N.F.; Galal, A.; El-Said, D.M. A novel electrochemical sensor for paracetamol based on β-cyclodextrin/Nafion®/polymer
nanocomposite. Int. J. Electrochem. Sci. 2015, 10, 1404–1419.

126. Naresh Kumar, T.; Ananthi, A.; Mathiyarasu, J.; Joseph, J.; Lakshminarasimha Phani, K.; Yegnaraman, V. Enzymeless creatinine
estimation using poly(3,4-ethylenedioxythiophene)-β-cyclodextrin. J. Electroanal. Chem. 2011, 661, 303–308. [CrossRef]

127. Vasantha, V.S.; Thangamuthu, R.; Chen, S.-M. Electrochemical polymerization of 3,4-ethylenedioxythiophene from aqueous
solution containing hydroxypropyl-β-cyclodextrin and the electrocatalytic behavior of modified electrode towards oxidation of
sulfur oxoanions and nitrite. Electroanalysis 2008, 20, 1754–1759. [CrossRef]

128. Colleran, J.J.; Breslin, C.B. Simultaneous electrochemical detection of the catecholamines and ascorbic acid at PEDOT/S-β-CD
modified gold electrodes. J. Electroanal. Chem. 2012, 667, 30–37. [CrossRef]

129. Qin, Q.; Bai, X.; Hua, Z. Electropolymerization of a conductive β-cyclodextrin polymer on reduced graphene oxide modified
screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 2016, 782,
50–58. [CrossRef]

130. Alarcón-Ángeles, G.; Guix, M.; Silva, W.C.; Ramírez-Silva, M.T.; Palomar-Pardavé, M.; Romero-Romo, M.; Merkoçi, A. Enzyme
entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosens.
Bioelectron. 2010, 26, 1768–1773. [CrossRef] [PubMed]

131. Li, Y.; Zhai, X.; Wang, H.; Liu, X.; Guo, L.; Ji, X.; Wang, L.; Qiu, H.; Liu, X. Non-enzymatic sensing of uric acid using a carbon
nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin). Microchim. Acta 2015, 182, 1877–1884. [CrossRef]

132. Oliveira, A.E.F.; Bettio, G.B.; Pereira, A.C. An electrochemical sensor based on electropolymerization of ß-cyclodextrin and
reduced graphene oxide on a glassy carbon electrode for determination of neonicotinoids. Electroanalysis 2018, 30, 1918–1928.
[CrossRef]

133. Ghanbari, M.H.; Shahdost-fard, F.; Khoshroo, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R.; Wysokowski, M.; Rębiś, T.; Żółtowska-
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191. Prochowicz, D.; Kornowicz, A.; Lewiński, J. Interactions of native cyclodextrins with metal ions and inorganic nanoparticles:
Fertile landscape for chemistry and materials science. Chem. Rev. 2017, 117, 13461–13501. [CrossRef]

192. Murugan, N.; Jerome, R.; Preethika, M.; Sundaramurthy, A.; Sundramoorthy, A.K. 2D-titanium carbide (MXene) based selective
electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. J. Mater. Sci. Technol. 2021, 72,
122–131. [CrossRef]

193. Solaem Akond, U.; Barman, K.; Mahanta, A.; Jasimuddin, S. Electrochemical sensor for detection of p-nitrophenolbased on nickel
oxide nanoparticles/α-cyclodextrin functionalized reduced graphene oxide. Electroanalysis 2020. [CrossRef]

194. Kubendhiran, S.; Sakthivel, R.; Chen, S.-M.; Mutharani, B.; Chen, T.-W. Innovative strategy based on a novel varbon-black-
β-cyclodextrin nanocomposite for the simultaneous determination of the anticancer drug flutamide and the environmental
pollutant 4-nitrophenol. Anal. Chem. 2018, 90, 6283–6291. [CrossRef]

195. Wu, S.; Lan, X.; Cui, L.; Zhang, L.; Tao, S.; Wang, H.; Han, M.; Liu, Z.; Meng, C. Application of graphene for preconcentration and
highly sensitive stripping voltammetric analysis of organophosphate pesticide. Anal. Chim. Acta 2011, 699, 170–176. [CrossRef]
[PubMed]

196. Alam, A.U.; Deen, M.J. Bisphenol A electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled
carbon nanotubes. Anal. Chem. 2020, 92, 5532–5539. [CrossRef] [PubMed]

197. Zhang, R.; Zhang, Y.; Deng, X.; Sun, S.; Li, Y. A novel dual-signal electrochemical sensor for bisphenol A determination by
coupling nanoporous gold leaf and self-assembled cyclodextrin. Electrochim. Acta 2018, 271, 417–424. [CrossRef]

198. Zou, J.; Liu, Z.; Guo, Y.; Dong, C. Electrochemical sensor for the facile detection of trace amounts of bisphenol A based on
cyclodextrin-functionalized graphene/platinum nanoparticles. Anal. Methods 2017, 9, 134–140. [CrossRef]

199. Wong, A.; Santos, A.M.; Baccarin, M.; Cavalheiro, É.T.G.; Fatibello-Filho, O. Simultaneous determination of environmental
contaminants using a graphite oxide—Polyurethane composite electrode modified with cyclodextrin. Mater. Sci. Eng. C 2019, 99,
1415–1423. [CrossRef]

200. Sakthinathan, S.; Kubendhiran, S.; Chen, S.-M.; Sireesha, P.; Karuppiah, C.; Su, C. Functionalization of reduced graphene
oxide with β-cyclodextrin modified palladium nanoparticles for the detection of hydrazine in environmental water samples.
Electroanalysis 2017, 29, 587–594. [CrossRef]

201. Lv, M.; Wang, X.; Li, J.; Yang, X.; Zhang, C.; Yang, J.; Hu, H. Cyclodextrin-reduced graphene oxide hybrid nanosheets for the
simultaneous determination of lead(II) and cadmium(II) using square wave anodic stripping voltammetry. Electrochim. Acta 2013,
108, 412–420. [CrossRef]

202. Huang, S.; Lu, S.; Huang, C.; Sheng, J.; Su, W.; Zhang, L.; Xiao, Q. Sensitive and selective stripping voltammetric determination of
copper(II) using a glassy carbon electrode modified with amino-reduced graphene oxide and β-cyclodextrin. Microchim. Acta
2015, 182, 2529–2539. [CrossRef]

203. Wang, Z.-W.; Liu, H.-J.; Li, C.-Y.; Chen, X.; Weerasooriya, R.; Wei, J.; Lv, J.; Lv, P.; Wu, Y.-C. Mesoporous g-C3N4/β-CD
nanocomposites modified glassy carbon electrode for electrochemical determination of 2,4,6-trinitrotoluene. Talanta 2020, 208.
[CrossRef]

204. Liang, W.; Rong, Y.; Fan, L.; Zhang, C.; Dong, W.; Li, J.; Niu, J.; Yang, C.; Shuang, S.; Dong, C.; et al. Simultaneous electrochemical
sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and
hydroxypropyl-β-cyclodextrin. Microchim. Acta 2019, 186. [CrossRef]

205. Chen, J.; He, P.; Bai, H.; He, S.; Zhang, T.; Zhang, X.; Dong, F. Poly(B-cyclodextrin)/carbon quantum dots modified glassy carbon
electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan.
Sens. Actuators B Chem. 2017, 252, 9–16. [CrossRef]

206. Alarcón-Angeles, G.; Pérez-López, B.; Palomar-Pardave, M.; Ramírez-Silva, M.T.; Alegret, S.; Merkoçi, A. Enhanced host-guest
electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 2008, 46, 898–906.
[CrossRef]

207. Singh, M.; Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. A reduced graphene oxide-cyclodextrin-platinum nanocomposite
modified screen printed electrode for the detection of cysteine. J. Electroanal. Chem. 2018, 829, 230–240. [CrossRef]

208. Karthika, A.; Rosaline, D.R.; Inbanathan, S.S.R.; Suganthi, A.; Rajarajan, M. Fabrication of Cupric oxide decorated β-cyclodextrin
nanocomposite solubilized Nafion as a high performance electrochemical sensor for L-tyrosine detection. J. Phys. Chem. Solids
2020, 136. [CrossRef]

209. Hasanzadeh, M.; Sadeghi, S.; Bageri, L.; Mokhtarzadeh, A.; Karimzadeh, A.; Shadjou, N.; Mahboob, S. Poly-dopamine-beta-
cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH. Mater. Sci. Eng. C 2016, 69,
343–357. [CrossRef] [PubMed]

210. Zhu, M.; Han, S.; Yuan, Z. β-Cyclodextrin polymer as the immobilization matrix for peroxidase and mediator in the fabrication of
a sensor for hydrogen peroxide. J. Electroanal. Chem. 2000, 480, 255–261. [CrossRef]

http://doi.org/10.1016/j.electacta.2017.07.141
http://doi.org/10.1149/2.1441607jes
http://doi.org/10.1021/acs.chemrev.7b00231
http://doi.org/10.1016/j.jmst.2020.07.037
http://doi.org/10.1002/elan.202060450
http://doi.org/10.1021/acs.analchem.8b00989
http://doi.org/10.1016/j.aca.2011.05.032
http://www.ncbi.nlm.nih.gov/pubmed/21704771
http://doi.org/10.1021/acs.analchem.0c00402
http://www.ncbi.nlm.nih.gov/pubmed/32141295
http://doi.org/10.1016/j.electacta.2018.03.113
http://doi.org/10.1039/C6AY02719A
http://doi.org/10.1016/j.msec.2019.02.093
http://doi.org/10.1002/elan.201600339
http://doi.org/10.1016/j.electacta.2013.06.099
http://doi.org/10.1007/s00604-015-1627-0
http://doi.org/10.1016/j.talanta.2019.120410
http://doi.org/10.1007/s00604-019-3861-3
http://doi.org/10.1016/j.snb.2017.05.096
http://doi.org/10.1016/j.carbon.2008.02.025
http://doi.org/10.1016/j.jelechem.2018.09.018
http://doi.org/10.1016/j.jpcs.2019.109145
http://doi.org/10.1016/j.msec.2016.06.081
http://www.ncbi.nlm.nih.gov/pubmed/27612722
http://doi.org/10.1016/S0022-0728(99)00442-8


Materials 2021, 14, 1668 28 of 28

211. Yang, H.; Zhu, Y.; Chen, D.; Li, C.; Chen, S.; Ge, Z. Electrochemical biosensing platforms using poly-cyclodextrin and carbon
nanotube composite. Biosens. Bioelectron. 2010, 26, 295–298. [CrossRef]

212. Lopez, J.C.; Zon, M.A.; Fernández, H.; Granero, A.M. Development of an enzymatic biosensor to determine eugenol in dental
samples. Talanta 2020, 210. [CrossRef]

213. Hua, Z.; Qin, Q.; Bai, X.; Wang, C.; Huang, X. β-Cyclodextrin inclusion complex as the immobilization matrix for laccase in the
fabrication of a biosensor for dopamine determination. Sens. Actuators B Chem. 2015, 220, 1169–1177. [CrossRef]

214. Tarahomi, S.; Rounaghi, G.H.; Daneshvar, L. A novel disposable sensor based on gold digital versatile disc chip modified with
graphene oxide decorated with Ag nanoparticles/B-cyclodextrin for voltammetric measurement of naproxen. Sens. Actuators B
Chem. 2019, 286, 445–450. [CrossRef]

215. Zhang, F.; Gu, S.; Ding, Y.; Zhang, Z.; Li, L. A novel sensor based on electropolymerization of β-cyclodextrin and l-arginine on
carbon paste electrode for determination of fluoroquinolones. Anal. Chim. Acta 2013, 770, 53–61. [CrossRef] [PubMed]

216. Zhang, Z.; Gu, S.; Ding, Y.; Shen, M.; Jiang, L. Mild and novel electrochemical preparation of β-cyclodextrin/graphene
nanocomposite film for super-sensitive sensing of quercetin. Biosens. Bioelectron. 2014, 57, 239–244. [CrossRef] [PubMed]

217. Lu, D.; Lin, S.; Wang, L.; Li, T.; Wang, C.; Zhang, Y. Sensitive detection of luteolin based on poly(diallyldimethylammonium
chloride)-functionalized graphene-carbon nanotubes hybrid/β-cyclodextrin composite film. J. Solid State Electrochem. 2014, 18,
269–278. [CrossRef]

218. Karthik, R.; Karikalan, N.; Chen, S.-M.; Gnanaprakasam, P.; Karuppiah, C. Voltammetric determination of the anti-cancer drug
nilutamide using a screen-printed carbon electrode modified with a composite prepared from β-cyclodextrin, gold nanoparticles
and graphene oxide. Microchim. Acta 2017, 184, 507–514. [CrossRef]

219. Balasubramanian, P.; Annalakshmi, M.; Chen, S.-M.; Sathesh, T.; Balamurugan, T.S.T. Ultrasonic energy-assisted preparation of
β-cyclodextrin-carbon nanofiber composite: Application for electrochemical sensing of nitrofurantoin. Ultrason. Sonochem. 2019,
52, 391–400. [CrossRef] [PubMed]

220. Velusamy, V.; Palanisamy, S.; Kokulnathan, T.; Chen, S.-W.; Yang, T.C.K.; Banks, C.E.; Pramanik, S.K. Novel electrochemical
synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug
metronidazole. J. Colloid Interface Sci. 2018, 530, 37–45. [CrossRef]

221. Liu, X.; Sakthivel, R.; Chen, Y.-C.; Chang, N.; Dhawan, U.; Li, Y.; Zhao, G.; Lin, C.; Chung, R.-J. Tin disulfide-graphene oxide-β-
cyclodextrin mediated electro-oxidation of melatonin hormone: An efficient platform for electrochemical sensing. J. Mater. Chem.
B 2020, 8, 7539–7547. [CrossRef] [PubMed]

222. Keerthika Devi, R.; Muthusankar, G.; Gopu, G.; Berchmans, L.J. A simple self-assembly fabrication of tin oxide nanoplates
on multiwall carbon nanotubes for selective and sensitive electrochemical determination of antipyretic drug. Colloids Surf. A
Physicochem. Eng. Asp. 2020, 598. [CrossRef]

http://doi.org/10.1016/j.bios.2010.06.036
http://doi.org/10.1016/j.talanta.2019.120647
http://doi.org/10.1016/j.snb.2015.06.108
http://doi.org/10.1016/j.snb.2019.01.131
http://doi.org/10.1016/j.aca.2013.01.052
http://www.ncbi.nlm.nih.gov/pubmed/23498686
http://doi.org/10.1016/j.bios.2014.02.014
http://www.ncbi.nlm.nih.gov/pubmed/24594590
http://doi.org/10.1007/s10008-013-2261-6
http://doi.org/10.1007/s00604-016-2037-7
http://doi.org/10.1016/j.ultsonch.2018.12.014
http://www.ncbi.nlm.nih.gov/pubmed/30591361
http://doi.org/10.1016/j.jcis.2018.06.056
http://doi.org/10.1039/D0TB00934B
http://www.ncbi.nlm.nih.gov/pubmed/32844867
http://doi.org/10.1016/j.colsurfa.2020.124825

	Introduction 
	The Role of Cyclodextrins in the Design of Electrochemical Sensors 
	Cyclodextrins and Electrochemical Sensors 
	Cyclodextrin Combined with Graphene 
	Cyclodextrins Combined with Carbon Nanotubes 
	Cyclodextrins Combined with Conducting Polymers 
	Electropolymerization of Cyclodextrins 
	Other Conducting Materials Combined with Cyclodextrins 
	Cyclodextrin-Based Biosensors 
	Enantioselective Cyclodextrin-Based Electrochemical Sensors 

	A Comparison of the Performance of the Cyclodextrin Modified Electrodes as Sensors 
	Conclusions 
	References

