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Abstract

In this paper we present a lock-free version of Hopscotch

Hashing. Hopscotch Hashing is an open addressing algo-

rithm originally proposed by Herlihy, Shavit, and Tzafrir

[10], which is known for fast performance and excellent cache

locality. The algorithm allows users of the table to skip or

jump over irrelevant entries, allowing quick search, inser-

tion, and removal of entries. Unlike traditional linear prob-

ing, Hopscotch Hashing is capable of operating under a high

load factor, as probe counts remain small. Our lock-free

version improves on both speed, cache locality, and progress

guarantees of the original, being a chimera of two concur-

rent hash tables. We compare our data structure to various

other lock-free and blocking hashing algorithms and show

that its performance is in many cases superior to existing

strategies. The proposed lock-free version overcomes some of

the drawbacks associated with the original blocking version,

leading to a substantial boost in scalability while maintain-

ing attractive features like physical deletion or probe-chain

compression.

1 Introduction

The trend in modern hardware development has shifted
away from enhancing serial hardware performance to-
wards multi-core processing. This trend forces program-
mers and algorithm designers to shift their thinking to a
parallel mindset when writing code and designing their
algorithms. Concurrent algorithms tackle the problem
of sharing data and keeping that data coherent while
multiple actors simultaneously attempt to change or
access the data. For concurrent data structures and
algorithms to perform well on modern processors they
must generally have two properties. First, they must
use the processor’s cache memory efficiently for both
data and instruction. Today’s processors are very sensi-
tive to memory access patterns and contention induced
by concurrency in cache coherence protocols. As such,
algorithm designers must take special care to accom-
modate these particulars. Second, the algorithms must
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ensure that reading the data structure is as cheap as
possible. The majority of operations on structures like
hash tables are read operations, meaning that it pays
to optimise them for fast reads.

Figure 1: Table legend. The subscripts represent the
optimal bucket index for an entry, the > represents
a tombstone, and the ⊥ represents an empty bucket.
Bucket 1 contains the symbol for a tombstone, bucket 2
contains an entry A which belongs at bucket 2, bucket
3 contains another entry B which also belongs at bucket
2, and bucket 4 is empty.

Concurrent data structures and algorithms can be
categorised into a variety of classes, with two prominent
divisions emerging, namely blocking and non-blocking.
Blocking algorithms generally involve the use of mu-
tual exclusion primitives to give a single thread sole
access to a specific location in memory. In contrast,
non-blocking algorithms use low-level atomic primitives,
such as compare-and-swap, to modify the data struc-
ture. The category of non-blocking algorithms con-
tains a number of further subdivisions. Ordered by
the strength of progress these are: obstruction-free [17]
(individual progress in the case of no other contending
operation), lock-free [18] (system progress but not in-
dividual thread or actor progress), wait-free [27] (every
operation takes a finite number of steps to complete and
must complete within that bound, which can depend on
the number of threads or actors currently attempting
such an operation), and wait-free population oblivious
(every thread takes a finite amount of time regardless
of how many other threads are in the system).

Maintaining strong progress conditions, or bounds
on max latency, usually comes at the cost of through-
put, meaning that the algorithms with the weakest guar-
antees typically boast the strongest real-world perfor-
mance. Lock-free algorithms have the following ben-
efits: freedom from deadlock, priority inversion, and
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convoying. However, they suffer from their own set of
challenges relating to memory management ( [20], [19],
[25], [24], [23]), proof of correctness ( [7], [21], [22]) and
poor performance under heavy write load, as excessive
contention becomes an issue.

The outline of our paper is as follows. Section 2
gives the background for hash tables, a brief review of
existing concurrent solutions, the original Hopscotch al-
gorithm [10], the Purcell-Harris quadratic probing hash
table [5], and the K-CAS [1] primitive. Section 3 out-
lines our algorithm with code and annotations. Section
4 details our proof sketch. Finally section 5 discusses
the experimental performance results, contrasting them
with those of competing algorithms.

2 Background

A data structure for which concurrency is particularly
amenable is the hash table. A hash table is an effi-
cient base structure for implementing the abstract data
structure of sets or maps. In general, hash tables com-
pute a hash value from a key or key-value pairing that
a user seeks to either check membership, look up value,
insert, or remove from the structure. The algorithm
uses the hash value to index the location in which the
entry should belong, and the entries are searched by
following some strategy until a result is obtained. The
expected lookup, insertion, and removal time bounds
are O(1) [15]. Entries need only be capable of being
hashed to a location and compared for equality. In con-
trast, tree structures require a total ordering on keys or
key/value pairings, but don’t require a hash function.

Hash-tables are bifurcated into either open address-
ing or closed addressing algorithms. Open addressing
constrains a bucket to contain only a single key or key-
value pair. This constraint means that if two different
keys or key-value pairings hash to the same index for an
insertion, then an algorithm must be devised for find-
ing another suitable bucket for insertion. The algorithm
must then also be able to find the key or key-value pair-
ing at some bucket outside of the original/home index.
The alternative approach is closed addressing. Closed
addressing stores all keys or key-value pairs at the orig-
inal hash index. If two keys or key-value pairs collide at
an address, then they are stored in an auxiliary data-
structure like a linked-list or binary tree for searching.
Closed addressing is therefore relatively simple and con-
cise, needing only to search a single bucket when exam-
ining the table for an entry. Open addressing can be
more challenging, as buckets contain entries which don’t
belong there but rather are there due to a previous col-
lision. There has been many publications covering both
concurrent open addressing [2], [9], [5], [10], [12], [6], [11]
and closed addressing algorithms [13], [3], [4].

Figure 2: An example Hopscotch Hashing table. The
neighbourhood of virtual buckets is represented by a
bit-map below each bucket. Each set bit represents the
offset of buckets to examine for key matches. Note the
bit endianness of the bit-mask.

2.1 Original Hopscotch Hashing Herlihy, Shavit,
and Tzafrir [10] presented Hopscotch Hashing, a hash
table algorithm they describe as a mixture of linear
probing [28], separate chaining [14], and Cuckoo Hash-
ing [29]. Their paper presented solutions in both the
serial and concurrent form. The algorithm comes in two
main flavours. The first is to create a fixed sized neigh-
bourhood defining a virtual bucket containing many
physical buckets. This neighbourhood is represented
with a bit-mask, where the index of each set bit in the
mask indicates the presence of a relevant entry for that
particular bucket. An example table is shown in Figure
2, and a table legend is shown in Figure 1. The algo-
rithm solves collisions by linear probing to a free bucket
and marking the i’th bit in the bit-mask, where i is the
distance from the original bucket. Due to the fixed size
of the virtual buckets, a limit is enforced on how far an
entry can be placed from its home/original bucket. The
authors describe an algorithm for displacing entries from
the saturated neighbourhood in order to create space
for the new entry. The displacement algorithm works
by linear probing to find an initial bucket and marking
it as Busy. The algorithm then subsequently relocates
the bucket backwards, swapping it with a currently oc-
cupied bucket, and modifying the occupied bucket’s bit-
mask during the move. Moving an occupied bucket for-
wards is only permissible if the destination bucket is
also inside its neighbourhood. The algorithm repeats
this process until the initially claimed bucket is within
range of its home/original neighbourhood. If no such
displacement can be made, then the table is forced to
resize.

The authors then build upon this idea of the fixed
size neighbourhood, using relative offsets to indicate
where the next relevant entry is stored. These offsets
represent the hops throughout the table. Each entry
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(a) A Separate Chaining table. Entries hashed to a
bucket are put into a linked list at the bucket. Buckets
with nulls are denoted with a diagonal line.

(b) A “relative offset” variant of Hopscotch Hashing table
with the same entries as the Separate Chaining table.
Each bucket contains two integers. The first is the offset
where the probe chain starts, and the second is the next
item in the probe chain.

Figure 3: Comparison between Separate Chaining and Hopscotch Hashing with relative offsets.

is then part of a chain of entries, aptly named the
probe chain. The relative offsets, if large enough,
can represent a neighbourhood as large as the table,
removing the need to displace entries that otherwise
would be outside the neighbourhood range. These hops,
like the bit-masks, allow the method to skip over entries
that are irrelevant to the search. For example, when a
table using linear probing becomes saturated an entry
may end up quite some distance from its original bucket.
If such a situation were to arise in Hopscotch Hashing,
then the last relevant entry to that original bucket would
have the offset embedded into it, “pointing” to the new
entry. The relative offset variant of Hopscotch can be
thought of as a specialised version of Separate Chaining,
in which the linked list present at each bucket has been
flattened directly into the table. Figure 3 illustrates a
comparison between Separate Chaining and Hopscotch
Hashing where each table has the same entries.

The use of relative offsets does not mean that the
need to relocate entries disappears. The authors (in
their released implementation) optimise the probe chain
by shifting entries backwards when an entry earlier in
the chain is removed. Resizes may still be required, as
some entries may end up being further away from the
last item in the probe chain than can be represented in
the relative offsets. We choose the fixed size bit-mask
as our model for our lock-free version of the algorithm.
Their concurrent version employs mutual exclusion on
threads wishing to insert or remove from the data struc-
ture, with remove operations incrementing a relocation
counter relating to the relevant bucket deleted or moved.

The reading thread will check the relocation counter be-
fore and after, to ensure that none of the entries have
been shifted around during the reading. The number of
segments is set to the expected concurrency exposure of
the table.

Figure 4: An illustration of a Purcell-Harris table with
bucket states and probe bounds.

2.2 Purcell-Harris Algorithm Our algorithm uses
the Purcell-Harris method for insertion and deletion,
so as to support physical deletion. Their approach
uses a state based method for insertion and deletion.
During insertion, keys or key-value pairs are eagerly
inserted into the table and later checked for uniqueness.
A bucket in their algorithm can be in 1 of 6 states,
namely Empty, Busy, Collided, Visible, Inserting,
or Member. Empty indicates that this bucket is empty
and available for use in a new insertion. Busy can be
seen as a lock, used when the inserting/deleting thread
is busy writing/deleting the key information in that
bucket, and no one else may use the bucket. Collided

is a state to indicate that the eager insertion of the
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entry has failed, as either a closer potential entry exists,
or an entry already marked as Member exists. Visible

represents buckets which contain valid key data, but
the bounds for per bucket probes may have not been
updated yet. This allows other threads to see the entry
and not decrease the probe length. The Inserting state
means that the per bucket bounds have been updated
to include this bucket and is in the process of being
checked for uniqueness in the table. Member is the final
stage of insertion, representing a unique key or key-
value pair which is part of the table. All state variables
contain an associated relocation counter to avoid the
ABA problem [16]. An illustration of the table can be
viewed in Figure 4.

Removal of keys or key-value pairs is trivial, since
they are atomically manipulated through the state vari-
able. When removing an entry, the algorithm will sim-
ply move the state from Member to Busy, erase the key,
potentially move the bound downwards, and then move
the state back to Empty. Supporting physical deletion in
non-blocking algorithms is difficult and is normally ac-
complished by putting each entry behind a dynamically
allocated node. The Purcell-Harris algorithm makes
this process trivial, while delivering good performance;
all state variables and entries can be stored directly in
the table, removing a level of indirection, and increas-
ing cache efficiency. Checking for key membership is
also straightforward. This simply involves reading the
probe bound, examining any buckets marked as Member
in the table, and checking that the associated version
number hasn’t changed since reading the state variable.

2.3 K-CAS K-CAS or, multi-word-compare-and-
swap, is an extension of the compare-and-swap or, CAS
primitive. The algorithm allows for multiple memory
locations to be atomically updated in the same fashion
as a single CAS operation. The quintessential algo-
rithm for K-CAS was published by Harris, Kaiser, and
Pratt [1], which works by installing shared operation
descriptors at each word being updated so that threads
can cooperatively help each other complete the opera-
tion. To distinguish descriptors from normal words, up
to 2 bits are reserved by the algorithm. For pointers, no
extra bits are needed, as the lower bits are normally free;
normal values like integers require 2 bits to be set aside.
As a result of reserving bits, special read/write func-
tions are needed when interfacing with memory. The
read function checks the reserved bits of a word to see
if any ongoing K-CAS operation is currently in flight
and, if so, assists in completing it.

The performance of K-CAS was previously limited
due to the necessity of a memory reclaimer. Each de-
scriptor must be fresh (newly allocated) to avoid the

ABA problem [16], and, as such, the overhead was
high. An algorithm by Arbel-Raviv and Brown [26]
employs descriptor reuse, thereby eliminating the need
for a freshly allocated descriptor for each operation.
This substantially increases the performance of each K-
CAS operation, making their new algorithm a practical
consideration when designing performant lock-free algo-
rithms.

3 Algorithm

In the following section we provide an overview of our
lock-free version of Hopscotch Hashing. The blueprint
of our data-structure is that of a concurrent set, con-
forming to the API and abstract semantics. Our algo-
rithm starts with the Purcell and Harris implementation
of lock-free quadratic probing, and uses Hopscotch’s bit-
masks to create a fix-bound probe range for the searches.
The check for uniqueness is then performed within that
fix-sized area. The combination of the two algorithms
removes the need for conditionally raising or lowering
probe bounds, and allows for Hopscotch searching, in-
sertion, and deletion in a lock-free manner. Like Pur-
cell and Harris’ quadratic probing, it allows for physical
deletion, a difficult task to perform for a lock-free algo-
rithm. We employ relocation counters at each bucket to
indicate when that bucket’s neighbourhood has experi-
enced a bucket relocation, a necessity seeing as our al-
gorithm moves entries around the table. All operations
read the relocation counter before and after to ensure
that no concurrent move operations have taken place,
thus ensuring operation consistency. Our algorithm
also makes use of multi-word-compare-and-swap or K-
CAS [1] for an atomic swap. Previous work by Kelly,
Pearlmutter, and Maguire [11] shows that an efficient
algorithm for K-CAS by Arbel-Raviv and Brown [26] is
feasible in the construction of concurrent hash-tables.

Figure 5: An example table for lock-free Hopscotch
Insertion. Our algorithm blends the Purcell-Harris state
based buckets with Hopscotch bit-map neighbourhoods,
fixing the probe bounds.
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When describing the table algorithm we start with
the Add method, as it influences the design of all other
methods. The insertion process begins by checking if the
key is already present in the table, reading the neigh-
bourhood mask, and checking relevant buckets as indi-
cated by each set bit. This check, however, is optional,
as entries are inserted eagerly and checked for unique-
ness afterwards. The algorithm then linear probes to
find an Empty bucket and claims it, marking it as Busy.
If the bucket claimed is within the neighbourhood range
of the bit-mask, then a uniqueness check begins, com-
pleting the insertion. Otherwise the claimed bucket
must be moved backwards towards its home neighbour-
hood bit-mask. To move a bucket back we use the stan-
dard Hopscotch displacement method, finding a suitable
bucket to move forward, copying its key or key-value
pair to the new bucket, marking it as live in the neigh-
bourhood bit-mask, and finally use K-CAS to swap the
bucket states and increment the moved bucket’s reloca-
tion counter to force re-reads of the neighbourhood. If
the K-CAS is successful, we remove the bit previously
corresponding to where the now moved entry previously
resided. All of these searches also take account of ongo-
ing relocations by reading relocation counters of buckets
to ensure they don’t miss a potential bucket. An illus-
tration of the table is in Figure 5.

Figure 6 gives a general overview of the insertion
process, showing the many different stages for inserting
an entry. Initially, claiming a bucket can be seen in
Figure 6a. This bucket is outside the neighbourhood
range and needs to be relocated backwards. The
algorithm scans for potential buckets, as seen in Figure
6b, for a suitable entry to move. The first entry seen is
entry E, which cannot be moved, as it would be outside
its neighbourhood range. The next entry considered is
D; moving it is legal. As the next entry, B’s location
is marked in the bit-map for D, in anticipation of its
movement. Following that, K-CAS is employed to swap
the two entries and update D’s relocation counter. The
resulting configuration can be seen in Figure 6c, where
D and B have been swapped and D’s relocation counter
has been updated. The process continues as seen in
Figure 6d. B removes itself from D’s bit-mask, and then
checks if B is within its neighbourhood range, which
it is. Lastly, the algorithm marks the bit in B’s home
neighbourhood bit-mask, and, after adding it to the
neighbourhood, the Purcell-Harris uniqueness check is
performed within that neighbourhood, making entry B

a member of the table.
Contains and Remove remain relatively simple,

both loading the relocation counters of the neighbour-
hood being examined, along with the bit-mask. Con-
tains simply checks all buckets indicated by the bit-

mask and successfully finishes if a key or key-value is
found. If an entry isn’t found, yet the relocation counter
has changed, the method is performed again, return-
ing an unsuccessful result if no change in the relocation
counter is seen. Remove follows the same process as
Contains, except once an matching entry is found it is
put into a Busy state via a CAS. If successfully put into
a Busy state, then the key is removed, the relevant bit
unset in the neighbourhood bit-mask, and the bucket
marked as Empty for reuse. Remove can also optionally
compress probe chains by moving entries further away
closer to the original bucket, optimising cache usage.
A basic code walk-through follows, which outlines the
most important parts of the algorithm.

A - Contains

All line references relate to the code in Figure 7
The Contains method is relatively unchanged from the
blocking version. Contains need not worry about inter-
leaving FindCloserBucket calls interfering with its cor-
rectness, as a relocation counter check simply restarts
the method if a change is detected. Contains calcu-
lates the initial starting bucket and loads the current
relocation counter on lines 2 - 4. Next it loads the cur-
rent bit-mask for the original bucket, examining all bits
set and calculating all indices to examine for key mem-
bership (lines 7 - 11). Lines 13 - 16 load the state
of the bucket, check whether the bucket is a Member,
and subsequently proceed to check the key for a match.
Following an unsuccessful search, lines 23 - 28 reload
the relocation counter to check for a change, returning
false if there hasn’t been one, and running again if
there was.

B - Add

All of the following code lines refer to Figure
8. Add can be broken down into four sections, one
optional and the other three necessary. The first and
optional section is to check if the key already exists
in the table. The second section involves claiming an
Empty bucket, the third involves moving that bucket
to within neighbourhood range if necessary, while the
fourth performs an exclusiveness check once the bucket
is within range. Dealing with the first section, Add
performs a general preamble for hash tables on lines
2 - 4, calculating hash values and loading relocation
counters. On line 6 Add can run an optional check
of the table, to ensure the item being inserted is not
already in the table. The code is more or less identical
to that of Contains so we leave it out here. Next, in the
second section (lines 8 - 17), the algorithm attempts
to reserve an Empty bucket as Busy up to some defined
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(a) Bucket 7 is claimed and marked as Busy. The bucket
is outside the neighbourhood range and must be moved
back.

(b) Find a closer bucket and swap it with bucket 7,
adding the bucket to the bit-mask and incrementing the
relocation counter when swapping.

(c) Updated table after swapping buckets 5 and 7. The
relocation counter at bucket 5 has been changed.

(d) Confirm bucket 5’s uniqueness in the table, making
the state of bucket 5 Member and adding it to bucket 2’s
bit-map.

Figure 6: States of lock-free Hopscotch inserting element B.

probe limit. This limit is a user provided parameter. It
represents the probe distance tolerated before a table
resize is necessary. The same limit exists in the original
blocking Hopscotch Hashing.

The third section checks whether the user distance
has been violated, causing a resize if so (lines 22 and 36
- 37. If the bucket claimed is within the MAX DISTANCE,
the algorithm checks if the distance is within neighbour-
hood range on line 26, moving the claimed bucket back-
wards until it is in range. The algorithm moves the
bucket closer by calling FindCloserBucket on line 27,
updating the reserved bucket and its offset every iter-
ation until the bucket is within range. If the method
FindCloserBucket returns and no progress has been
made, the table is considered saturated and a call to
resize is made on line 30. Once it is within neighbour-
hood range, the bucket has its key written and state
updated on lines 34 - 35. The fourth and final section
is a slightly modified Purcell-Harris uniqueness check,
which instead searches within a fixed bound probe, loop-
ing on a relocation counter in case of concurrent reloca-
tion. The last modifications are to check the relocation
counter before and after the exit point in the original
Purcell-Harris method. The retry mechanism is identi-
cal to the likes of Contains and Remove.

C - Remove

All of the following code lines refer to Figure 9.
Remove is near identical to Contains, except that when
a key match happens, the method tries to CAS the state
variable from Member to Busy (lines 17 - 18). Line
21 is where one could optionally compress the other
entries backward, closer to their original bucket. Lines
24 - 26 remove the key from the table, remove the bit
from the bit-mask, and set the bucket back to Empty for
reuse. The algorithm for the preamble on lines 2 - 4
and relocation counters on lines 35 - 40 is the same as
seen in Contains.

D - Find Closer Bucket

All of the following code lines refer to Figure
10. The goal of FindCloserBucket (FCB) is to
move back some bucket marked as Busy with an-
other bucket which is already a member of the ta-
ble. The use-case is when the Add method claims
a bucket inside the MAX DISTANCE, but outside the
NEIGHBOURHOOD DISTANCE. In this case, displacing a
bucket already in the table is necessary. Like other
methods, FCB loops while there is a relocation counter
discrepancy, since another FCB has run and potentially

50
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

12
/0

7/
21

 to
 7

8.
17

.1
26

.1
97

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



1 fn Contains(key: K) -> bool {
2 key hash = hash(key);

3 ob = key hash % size;

4 rc before = table[ob].rc;

5 while(true) {
6 // Load the neighbourhood bit-mask

7 bm = table[ob].bm;

8 while(bm != 0) {
9 // Find lowest set bit

10 lsb = lowest set bit(bm);

11 index = ob + lsb;

12 // Purcell Harris bucket check.

13 , state = table[index].vs;

14 if(state == Member) {
15 if(table[index].k == key) {
16 return true;

17 }
18 }
19 // Remove the bit just checked.

20 bm = XOR(bm, 1 << lsb);

21 }
22 // Check the relocation counter

23 rc after = table[ob].rc;

24 if(rc before == rc after) {
25 return false;

26 }
27 // Check bit-mask again

28 rc before = rc after;

29 }
30 }

Figure 7: Pseudo-code for Contains

disrupted the result. Lines 6 - 7 calculate the max-
imum distance a bucket can be moved, and create a
new K-CAS descriptor. The loop on line 8 examines
each bucket in an earlier position than the one being
relocated. The loop on line 11 examines the current
bucket’s bit-mask for a candidate to swap, and checks
if that move is worthwhile. Swapping is conditional on
two criteria. The first is that moving the candidate
entry keeps it within its neighbourhood, the second is
that the entry being swapped actually moves closer to
its home neighbourhood. The first criterion is ensured
by definition, as the loop’s variables are initialised to
all be legal swaps (lines 6 - 8). The second criterion is
checked on line 15 to ensure the swap actually moves
the bucket closer to home.

Once a candidate bucket has been identified, its bit-
mask is marked to include the destination bucket (line
21). Lines 23 - 28 fill out the descriptor with all the
information needed to swap the two buckets and incre-
ment the relocation counter. The K-CAS function is
invoked on line 27, either atomically swapping the two
buckets, or else failing. Failing to swap the buckets re-
sults in the candidate’s bit-mask having the destination
bit unmarked, and the method is restarted. If the call

1 fn Add(key: K) -> bool {
2 key hash = hash(key);

3 ob = key hash % size;

4 rc before = table[ob].rc;

5 // Part 1: Run an optional read of the table...

6 ...

7 // Part 2: Reserve a bucket

8 rb = ob;

9 offset = 0;

10 for(; offset < MAX DISTANCE; rb++, offset++) {
11 retry:

12 v, s = table[rb].vs;

13 if(s == Empty) {
14 if(CAS(&table[rb].vs,

15 {v, Empty}, {v + 1 , Busy})) {
16 break;

17 } else { goto retry; }
18 }
19 }
20 // Part 3: Is the reserved bucket within -

21 // general range?

22 if(offset < MAX DISTANCE) {
23 // Is the reserved bucket within -

24 // neighbourhood range?

25 before rb = rb;

26 while(offset >= NEIGHBOURHOOD DISTANCE) {
27 rb, offset = FindCloserBucket(rb, offset);

28 // No closer bucket found, resize.

29 if(rc == before rb) {
30 resize();

31 ...

32 }
33 }
34 table[rb].k = key;

35 table[rb].vs = {v, Inserting};
36 } else {
37 // We need to resize the table.

38 resize();

39 ...

40 }
41 // Part 4: Modified Purcell-Harris

42 // exclusivity check.

43 ...

44 }

Figure 8: Pseudo-code for Add

succeeds, then the bit where the candidate used to be
is unmarked from its bit-mask and the new bucket is
returned on lines 35 and 36. Lines 42 - 44 check for
a relocation counter discrepancy, restarting the method
if one is detected.

4 Proof Of Correctness and Progress

4.1 Correctness We present a simple sketch proof
of correctness using lemmas to build up our proof argu-
ment. Each method will be evaluated for linearisabil-
ity [7]. If every method is linearisable, then the entire
object is linearisable. We deal with every code point in
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1 fn Remove(key: K) -> bool {
2 key hash = hash(key);

3 ob = key hash % size;

4 rc before = table[ob].rc;

5 while(true) {
6 // Load the neighbourhood bit-mask

7 bm = table[ob].bm;

8 while(bm != 0) {
9 // Find lowest set bit

10 lsb = lowest set bit(bm);

11 index = ob + lsb;

12 retry:

13 // Purcell Harris bucket check.

14 , state = table[index].vs;

15 if(state == Member) {
16 if(table[index].k == key) {
17 if(CAS(&table[index].vs,

18 {v, Member}, {v, Busy})) {
19 // Optionally: shift entries to -

20 // closer bucket

21 ...

22 // Remove key and the bit, -

23 // mark bucket as Empty

24 table[index].key = Nil;

25 table[ob].bm.fetch xor(1 << lsb);

26 table[index].vs = {v + 1, Empty};
27 return true;

28 } else { goto retry; }
29 }
30 }
31 // Remove the bit just checked.

32 bm = XOR(bm, 1 << lsb);

33 }
34 // Check the relocation counter

35 rc after = table[ob].rc;

36 if(rc before == rc after) {
37 return false;

38 }
39 // Check bit-mask again

40 rc before = rc after;

41 }
42 }

Figure 9: Pseudo-code for Remove

every method, highlighting the particular linearisation
point in the algorithm and in the code.

The sketch of our proof argument is as follows. Both
Contains and Removes read the relocation counters,
then the bit-mask neighbourhood, and perform a com-
bination of Hopscotch and Purcell-Harris state-based
reads. After an operation is performed, the relocation
counter is re-read, and the operation is performed again
if a relocation is detected. Both methods can therefore
be considered in isolation, as any abnormalities caused
by moving entries around the table are dealt with by the
relocation counters. A linearisable Add method must
not fail to insert a key where there isn’t one, and must
not succeed in inserting a key where there already is one.

1 fn FindCloserBucket(rb: u64, offset: 64) -> {u64, u64} {
2 rv, rs = table[rb].vs;

3 while(true) {
4 begin:

5 // Move back as far as possible

6 dist = NEIGHBOURHOOD DISTANCE - 1;

7 desc = create descriptor();

8 for(cb = rb - dist; cb < rb; cb++, dist--) {
9 rc before = table[cb].rc;

10 bm = table[cb].bm;

11 while(bm != 0) {
12 lsb = lowest set bit(bm);

13 i = ob + lsb;

14 // Check bucket only if advantageous to move

15 if(i >= rb) { break; }
16 iv, is = table[i].vs;

17 // Is this bucket a candidate?

18 if(is == Member) {
19 table[rb].k = table[i].k;

20 // Mark our bucket as active

21 table[cb].bm.fetch or(1 << dist);

22 // Prepare the K-CAS descriptor

23 desc.add(&table[cb].rc, rc before,

24 rc before + 1);

25 desc.add(&table[i].vs, {iv, is},
26 {iv, Busy});
27 desc.add(&table[rb].vs, {rv, rs},
28 {rv, Member});
29 if(!K CAS(desc)) {
30 // Turn off our bit preemptively turned on

31 table[cb].bm.fetch xor(1 << dist);

32 goto begin;

33 }
34 // Unmark the now moved bucket, continue on.

35 table[cb].bm.fetch xor(1 << lsb);

36 return { i, offset - dist };
37 }
38 // Remove the bit just checked.

39 bm = XOR(bm, 1 << lsb);

40 }
41 // Check the relocation counter

42 rc after = table[ob].rc;

43 if(rc before != rc after) {
44 goto begin;

45 }
46 }
47 // Return the same bucket and offset to indicate failure.

48 return { rb, offset };
49 }
50 }

Figure 10: Pseudo-code for FindCloserBucket

The only part which makes a key a member of the table
is the uniqueness check. This last component of Add,
the uniqueness check, has to deal with concurrent Add
calls moving entries around. It is the only component
capable of spuriously making a key a Member, or deleting
it. The first section is a linear probe to claim an Empty

bucket as Busy, claiming it via a CAS. Once a bucket is
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in the Busy state, it can only transition to another state
by the thread that marked it as Busy. In other words,
the thread has pseudo ownership of the bucket. The lin-
ear probing algorithm is simple and doesn’t create any
difficulty in reasoning about the concurrent correctness
of the algorithm. All that matters is that a bucket is
moved from Empty to Busy. The second stage is to move
that claimed bucket to within neighbourhood range if
not already inside. Moving is achieved by linearly prob-
ing towards the claimed bucket and atomically swapping
it with a valid bucket found along the way. The probing
for another bucket is performed from the max distance
the bucket could move, that is, from a “neighbourhood
distance” away. The atomic swap is accomplished by
K-CAS so that swapping has no visible intermediate
state and can retry if the operation fails. Swapping in-
crements the relocation counters for the home bucket,
forcing both Contains and Remove to re-run if neces-
sary. Once the entry is moved within neighbourhood
range, a uniqueness check is performed. The check is
near identical to that found in the Purcell-Harris ta-
ble, the only difference being a single extra step. The
method must check the relocation counter before at-
tempting to commit an entry to a Member state, as a
relocation could lead to an incorrect result (relocating
the entry already in a Member state and thus missed by
the uniqueness check) and so the method would need to
be restarted as per Contains and Remove.

Lemma 1: Contains is Linearisable.

Proof: Contains initially loads the relocation count on
line 4, creating a basic snapshot of the bucket. The
bucket’s bit-mask is loaded on line 7, and each entry is
checked. Contains loads the key on line 15, and is the
linearisation point for a successful Contains call. If a
matching key is not found, then the relocation counter
is checked again on line 23 to ensure a matching key
hasn’t been moved around during the search. This
re-load indicates whether the snapshot was invalidated
during the search, and is the linearisation point for an
unsuccessful Contains call. All code paths in Contains
have linearisation points and thus Contains is
linearisable.

Lemma 2: Add is Linearisable.

Proof: Add is composed of three primary parts and
one optional part. The first optional operation can cut
Add short by determining that a key is already present
in the table, and returning false. The optional check
has the same linearisation points at Contains. Once a
bucket is marked as Busy on line 13 - 14, the
algorithm moves the bucket into the appropriate range

with repeated calls to FindCloserBucket. If
FindCloserBucket fails to find a bucket, then the table
is considered saturated and a resize commences. Once
the bucket is within range, the key is written into the
bucket and the state is changed to Inserting. Once
the bucket has transitioned to Inserting, then a
modified Purcell-Harris exclusivity check is run. There
is only one modification point, that being to check the
bucket relocation counter before attempting to mark a
key as a Member. However, this modification doesn’t
change the linearisation point, just whether the
method retries. All code paths in Add have
linearisation points and thus Add is linearisable.

Lemma 3: Remove is Linearisable.

Proof: Remove is similar to Contains, except a CAS is
attempted on the bucket state to move it from Member

to Busy. The CAS on line 17 represents the
linearisation point for a successful remove. Remove
has the same linearisation points as Contains when
searching for an entry. All code paths in Remove have
linearisation points and thus Remove is linearisable.

Lemma 4: FindCloserBucket is Linearisable.

Proof: FindCloserBucket attempts to atomically swap
the current bucket in a state of Busy with another
bucket already marked as a Member. The method
begins by linearly probing from a certain distance
away to find a candidate bucket. The bit-mask is
checked for possible buckets; buckets which move the
bucket being relocated further from its home are
excluded (lines 11 - 15). Once a candidate has been
identified, the bucket being relocated is added to the
candidate bucket’s bit-mask (line 21) in anticipation of
the bucket swap. The swapping of the buckets is
executed on line 29 by K-CAS. A failed K-CAS means
that the bucket has either been deleted or moved by a
concurrent call, requiring the preemptively set bit to
be unset and the method restarted. If the K-CAS
succeeds, then this is the linearisation point of a
successful call to FindCloserBucket. The method must
also remove the old location just moved from the
bit-mask, returning the new offsets. If no candidate
buckets are found during the linear probe, then the
method returns the old offsets. The linearisation point
for a failed call is the last check of the relocation
counters on line 43. All code paths in
FindCloserBucket have linearisation points and thus
FindCloserBucket is linearisable.

Theorem 1: The hash table is Linearisable.

Proof: Each method of the hash table is linearisable as
per Lemma 1, 2, 3, and 4. Hence the hash table is
linearisable.
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4.2 Progress Progress, like correctness, will be ar-
gued informally, as the base table of Purcell-Harris al-
ready has strong progress arguments accompanying its
publication. Both Contains and Remove methods can
be made re-run if run concurrently with a FindCloser-
Bucket call relocating an entry from its relevant neigh-
bourhood. This re-run, however, implies the success of
another call, thus achieving system progress and lock-
freedom. Remove tries to CAS the state variable into
Busy from Member, potentially restarting if the CAS
fails. Failure here means the success of another Re-
move or a relocation in FindCloserBucket ; either way,
progress has been achieved. FindCloserBucket has the
same behaviour as Contains and Remove, that is, re-
running if any relocation counters have been changed
since the initial snapshot. FindCloserBucket also re-
runs if the call to K-CAS fails. Such failure only occurs
if another method changed the state variable (Remove
or another FindCloserBucket), meaning some other pro-
cess made progress. The main components of the Add
method are also lock-free. A simple linear probe with
a CAS loop will contend with other linear probes, but
the failure of one means the success of another, meeting
the standards of lock-freedom. Finally, as per standard
Purcell-Harris, the uniqueness check is lock-free. Our
extra step of checking the relocation counter forces the
method to run again, which implies that some other
method has made progress on the object, again ensur-
ing lock-freedom. On the whole, we argue that since all
methods are lock-free, then the object as a whole must
be lock-free.

5 Performance and Discussion

In this section we detail the performance and imple-
mentation of our algorithm. All of our code is made
freely available online [8]. This includes lock-free Hop-
scotch Hashing, implementations of alternative compet-
ing algorithms (either coded by us or obtained via on-
line sources), and microbenchmarking code which allows
readers to replicate our results.

5.1 Experimental Setup For our experiments we
opted to use a set of microbenchmarks stressing the
hash-table under various capacities and workloads. Our
benchmarks were run on a 4 CPU machine, with each
CPU (Intel(R) Xeon(R) CPU E7-8890 v3) featuring
18 cores with two hardware threads, and a total of
512 GiB RAM. The machine ran Ubuntu 14.04 with
a Linux Kernel version of 3.13.0-141. Each thread was
pinned to a specific core for the duration of the test,
and threads were scaled in increments of 9, from 9
to 144 threads. When scaling the number of threads,
care was taken to pin the thread to an unused core

instead of exercising HyperThreadingTM. We avoided
the use of HyperThreadingTM for as long as possible,
scheduling threads to another NUMA CPU to avoid
its use. HyperThreadingTM was only used after ev-
ery core on each CPU had one thread pinned to it
HyperThreadingTM.
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Figure 11: Single thread performance relative to Locked
Hopscotch Bit-Map.

The hash-table algorithms benchmarked include
both blocking Hopscotch Hashing with fixed-size bit-
masks (HSBM Locked), the relative offset variant
with probe-chain compression (HSC Locked) [10], the
Purcell-Harris Quadratic Probing (PH QP) hash-table
[5], and our lock-free Hopscotch Hashing (HSBM Lock-
Free).

A number of workload configurations were used in
graphing the results. Two load factors of 60% and
80% were chosen, along with four read/write workload
configurations, namely 90% reads to 10% updates, 80%
reads to 20% updates, 70% reads to 30% updates, and
60% reads to 40% updates. Updates consist of balanced
insertions and deletions. All workload configurations
were benchmarked at the specified load factors. We
sized the tables at 225, as carried out in [6]. This
meant that the table wouldn’t fit into the cache, thus
highlighting the effective cache use achieved by each
algorithm. No memory reclaimer was used, as none was
necessary. We used the numactl command to mitigate
any negative NUMA memory effects. This command
specified that allocation could only be carried out on
the RAM banks closest to the running CPUs once they
came into use following increased thread counts.

Concurrent benchmarking has been refined over the
years. We strive to perform a like for like compari-
son, hence our load factors, read/write workloads, and
testing process are similar to a number of other pre-
vious concurrent hash-table publications [11], [6], [10].
The process was carried out as follows. Each thread
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Figure 12: Performance graphs for low update rate.

called a random method with a random argument from
some predefined method and key distribution. All
threads were synchronised before execution on the data-
structure, and executed for a specified amount of time,
rather than a specific number of iterations. Each thread
counted the number of operations it performed on the
structure during the benchmark. The total amount of
operations per microsecond for all threads was then
graphed, showing throughput. Each experiment was
run five times for 10 seconds each, and the average of
each result was computed and plotted. All of our algo-
rithms were written in C++11, and compiled with g++
4.9.4. The compiler had O3 level of optimisation, and
also targeted the specific processor architecture it was
being run on.

5.2 Results The results are listed in Figures 12 and
13, showing the throughput as a function of concurrent
threads. Each graph shows the throughput of each
algorithm at a lower thread count of 1 - 4 thread(s),
so as to better understand the lower scaling. As
the number of threads increases, they cross NUMA

boundaries at multiples of 18. These boundaries are
marked by faint grey lines and a background shading
in each figure. Once the number of threads exhausts
all physical cores, it begins to use HyperThreadingTM

at 72+ threads. The graphs have another faint red line
and background shading to indicate when a new CPU
activates HyperThreadingTM.

We attempt to identify common trends in all graphs
before addressing the specifics of each benchmark re-
sult. The common pattern is that, at low thread counts,
all algorithms are very competitive in terms of perfor-
mance. The algorithms typically stay close together in
performance up until the number of threads scheduled
requires the use of another CPU (18 < threads). There
are several “kinks” in the graph which are common
throughout. All algorithms suffer performance penal-
ties when using an extra CPU (18 < threads, 36 <
threads, and 54 < threads). The penalty is either a
dip in overall performance or a reduction in the slope
of the performance line. As the number of threads in-
creases, all algorithms demonstrate continued slowing in
performance, with the angle of the line decreasing fur-
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Figure 13: Performance graphs for higher update.

ther when HyperThreadingTM is engaged (72+ threads).
The reader should also note that the throughput scaling
in each graph is different. In Figure 11 we highlight the
performance of each algorithm using only 1 thread rel-
ative to the locked bit-map Hopscotch implementation.
The results show that the lock-free algorithms perform
significantly worse when using a single thread. This
would hint that the majority of “work” being done is
for scalability when more threads are scheduled.

Another common trend is that, as load factor
increases, the performance of a table decreases. As the
table fills up with entries, the cost of each operation
also increases. The number of collisions goes up, more
entries need to be checked, and generally more work
is done. The Purcell-Harris table is hit particularly
hard by an increase in load factor. The quadratic
probing algorithm needs to check substantially more
entries than the equivalent Hopscotch tables, leading to
a severe drop in performance as load factor increases. As
the update rate climbs, the performances of all tables
drop, matching the typical expectation for concurrent
objects. The locking Hopscotch tables are hit the

hardest from the increase in update ratio, doing best
under the lightest updates, with lock-free Hopscotch
doing the worst. The reason the lock-free algorithms
fare worse at light update rates is that they do more
work that allows for greater scalability under heavier
load. Lastly, the reader will notice the large jumps in
the performance of both locked variants of Hopscotch
Hashing. The reason here is that the number of locks is
set to the number of active threads, as per the original
paper [10]. We, however, apply an optimisation which
increases the number to the closet power of two. As a
result, thread counts near but just under a power of two
suffer a performance drop, while those just after see a
large increase: the total amount of concurrency in the
hash-table has doubled, while the amount of threads has
only increased by 9.

Each performance graph is grouped by the update
rate and load factor. Accordingly, we analyse the
performance according to that grouping. The following
analysis refers to the figures in Figure 12. A mixed
bag of winners is evident, as every table switches out
for first place depending on the load factor or update
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rate. Generally, at lower update rates locked Hopscotch
fares well, as seen in Figures 12a and 12b. As the
update rate increases, the lock-free algorithms start to
pull ahead. Figure 12c has the lock-free algorithms
drawing for first place throughout most of the graph,
only to be bested at the last configuration. Figure
12d shows quadratic probing falling off, with lock-
free Hopscotch growing and maintaining its lead over
the locked variants in Figure 12d. We switch focus
now to the Figures in 13. Broadly speaking, at a
higher update rate the throughputs of all algorithms
are reduced. The locked variants of Hopscotch Hashing
have a significant performance drop at all load factors
and update rates. Similarly, the performance of Lock-
Free Hopscotch Hashing decreases as the load factor
goes up. The gap between Purcell-Harris Quadratic
Probing and Lock-Free Hopscotch Hashing grows, with
lock-free Hopscotch strengthening its lead at 60% and
80% load factor when the update rate increases.

As is apparent from Figures 12 and 13, lock-free
Hopscotch starts slow but ends up dominating in terms
of performance. The lock-free Purcell-Harris quadratic-
probing has a good showing, but drops significantly
in performance at the higher load factors. Although
our algorithm is slower than the locked Hopscotch and
Purcell-Harris tables at the lower updates rates, as both
the load factor and update rate increase, our algorithm
pulls ahead of the competition. Locked Hopscotch
performs best at low update rates and is very strong
at all load factors. It performs consistently at each load
factor, though suffers considerably under heavy update
rates. Overall, the lock-free Hopscotch solution finishes
either roughly 20% behind locked Hopscotch, or 50%
ahead at the highest thread count.

6 Conclusion and Future Work

We have presented a lock-free Hopscotch Hashing algo-
rithm which achieves noteworthy performance relative
to other lock-free and concurrent algorithms. To the
best of our knowledge, this is the first presentation of
such an algorithm in the literature. Our experiments
show that the approach is competitive with locked Hop-
scotch at low updates, and dominates above that. The
algorithm is relatively simple and just as portable as
competitors, needing only single word compare-and-
swap instructions. In future work we plan to create
a lock-free relative-offset variant and larger bit-mask to
potentially improve performance.
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A Appendix

A.1 Additional performance results Our testing
was performed on another machine to ensure we weren’t
fitting to a particular hardware architecture during our
benchmarking. The machine had 2 CPUs (Intel R©
Xeon R© Gold 6148) with 20 cores each, and 27.5MB
of L3 Cache. Each core had two hardware threads,

meaning the total number of threads was 80. The
machine had 192 GiB of RAM installed. Threads were
pinned exactly like our main experiments, except in
increments of 5, from 5 to 80. All of our algorithms were
compiled with clang++ 7.0 at O3 level of optimisation,
and also targeted the specific processor architecture
they were being run on. Everything else about the
testing process remained the same. The figures for
single threaded performance can be seen in Figure
14 while the results for throughput as a function of
concurrency can be seen in Figure 15. The results in
Figure 15 broadly match the same trends as seen in our
results above in Figures 12 and 13.
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Figure 14: Single thread performance relative to Locked
Hopscotch Bit-Map for the second machine.
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(b) 80% load factor @ 10%
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(c) 60% load factor @ 20%
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(d) 80% load factor @ 20%
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(e) 60% load factor @ 30%
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(f) 80% load factor @ 30%
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(g) 60% load factor @ 40%
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Figure 15: Performance graphs for the second machine.
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