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a b s t r a c t

The Euclidian distance between Gaussian Mixtures has been shown to be robust to perform point set
registration (Jian and Vemuri, 2011). We propose to extend this idea for robustly matching a family of
shapes (ellipses). Optimisation is performed with an annealing strategy, and the search for occurrences is
repeated several times to detect multiple instances of the shape of interest. We compare experimentally
our approach to other state-of-the-art techniques on a benchmark database for ellipses, and demonstrate
the good performance of our approach.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Estimating the parameters of a shape is a problem that arises in
different fields in computer vision. The problem is usually classified
according to the parameters to be estimated, the knowledge or
information about the shape and the type of observations that have
been collected. Jian and Vemuri [1] proposed a method for estimating
registration parameters between sets of points based on the L2 dis-
tance between density functions. Each data set is used for modelling a
GMM. The transformation parameters between the two sets are
computed by minimising the Euclidean distance (L2) between those
two density functions. This metric has the advantage of having closed
form solution when the density functions are Gaussian mixtures. We
have explored this metric and the modelling of the GMM when esti-
mating rigid transformation and for morphable model fitting [2–4].
We have shown how using non-isotropic Gaussians to represent
shapes better can be beneficial for the robustness and accuracy of the
results [5]. Following our previous work we propose here:

� To extend the framework based on L2 to estimate a parametric
family of curves (i.e. ellipses).

� To propose a multidimensional modeling for the density func-
tions in order to include additional information available with
little impact on the computational efficiency of the approach.

� We propose a method for detecting multiple instances of an
ellipse. This method is applied to ellipse detection in 2D point
clouds and images. We evaluate the performance of our method
with comparison to the state-of-the-art [6–10].
The remaining of the paper is structured as follows. In Section 2
we review the most relevant methods for estimating ellipses
classified according to the strategy used. In Section 3 we propose
our L2-based method for estimating the parameters of an ellipse.
Section 5 extends our work to higher dimensional space allowing
the integration of additional shape information. A second exten-
sion of our framework is presented in Section 4.2 for estimating
multiple instances of ellipses. The experiments performed and
results obtained are discussed in Section 6. Comparison with the
state-of-the-art techniques is also provided in order to assess our
proposed method. Finally, the conclusions of our work are pre-
sented in Section 8.
2. Literature review

Ellipse fitting is a challenging problem that arises in several
fields. Some examples of applications are segmentation of cells
[11], study of galaxies [12], medical diagnostics [13], camera cali-
bration and face detection among others [14,15]. As many appli-
cations as there are of fitting ellipses there are also a great number
of algorithms proposing solutions to this problem [16]. They are
commonly classified in three categories: Least Square based
methods, Hough Transform based methods and the most recent
approach known as edge contour following methods.

2.1. Least Square based methods

Least Square based methods are usually classified into two cate-
gories according to the cost function to optimise. Those categories are
(1) methodsminimising a geometric error and (2) methodsminimising
an algebraic error [17–20]. The minimisation of the geometric error are
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Ellipse represente d with N = 20 samples from the parametric

curve (Eq. 2) with th angular distance Δ = 2π
N between two points.
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(h = 1, N = 10) (h = 1 , N = 15) (h = 1 , N = 30)

g

Fig. 1. Representation of an ellipse with GMMs computed using different values of orthogonal bandwidth h and various sampling rate N.
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regarded as the most accurate methods for ellipse fitting and various
computational schemes have been proposed [21]. However, those
methods have several drawbacks. They need several iterations for
solving the non-linear optimisation problem and they are very sensi-
tive to noise. Therefore, the convergence of those methods is not
guaranteed. Moreover, the convergence often depends on the accuracy
of the initialisation.

Algebraic methods on the other hand are easier to implement
and computationally efficient. However, the main problem of
those methods is that they do no guarantee the result which will
be an ellipse. A normalisation process is required in order to
enforce the solution [22,23]. For instance, Szpak et al. [24] propose
a penalty function that guaranteed an ellipse when using the
Sampson distance. However, the result is then biased by the nor-
malisation scheme chosen. Algebraic methods are less robust with
respect to geometric methods when the data is coming from a
small segment of an ellipse. Furthermore, accuracy of the results of
those methods often depends on the initialisation. A method for
finding a reasonable starting guess for those algorithms is pro-
posed in [25].

2.2. Hough Transforms

The Hough Transform is a well known approach to detect
ellipses [26–28]. It is based on a voting system where each edge
pixel of an image is considered. This voting procedure is carried
out in a parameter space, from which candidate ellipses are
obtained as local maxima in an accumulator space that is explicitly
constructed based on the parameters of the ellipse. Several algo-
rithms have been proposed to improve performance of the HT
method [29,9,30]. Some approaches explore the inclusion of
additional information such as the directional property of the
pixels [31,32]. Unfortunately, those methods are easily affected by
possible noise in the image. A different strategy that improves the
computational complexity of the HT is to sub-sample the data set.
For instance, Kiryati et al. [33] used the Probabilistic Hough
Transform (PHT) where just a portion of the edge pixel of an image
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is used. Xu et al. [34] on the other hand, proposed the Randomised
Hough Transform (RHT) which used randomly chosen n-tuples of
data points. This method was originally designed for detecting
circles but it was extended to ellipses by McLaughlin et al. [10].
The Randomised Hough Transform serves as a powerful variant of
the standard Hough Transform that exploits the geometric prop-
erties of ellipses in order to speed up the detection process [35,36].
Despite its simplicity and efficiency, the RHT performs poorly if the
target ellipses overlap (or mutually-occlude) with each other.

A general advantage of Hough Transform based methods is that
they do not require connectivity in between consecutive edge
pixels. This makes these algorithms useful when the observation is
a sparse set of points. The main drawback is that they are very
sensitive to the choice of the quantisation of the parametric space.
Incorrect quantisation leads to the detection of false ellipse or
missing the true ellipse. Furthermore, the performance of the HT
algorithms deteriorate when the number of ellipses in the image
increases.

2.3. Edge following methods

Edge following methods exploit the connectivity between edge
pixels to detect ellipses [8,7,11,6,37]. The main strategy of these
methods is to detect arcs and then group them in order to detect
the ellipses. Kim et al. [8] and Mai et al. [7] connect pixels by line
fragments fromwhere the arcs are computed. The grouping of arcs
becomes a critical process since errors in that stage would be
propagated to the ellipse detection step. Chia et al. [6] introduce
some improvements by introducing a self-correction stage where
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Fig. 2. Perspective visualisation of gθ (also shown in Fig. 1(c)). Our Gaussian mix-
ture model gθ creates a ridge forming the ellipse. The height of the ridge is not quite
even and varies depending on the choice of bandwidth h, and the parameters θ.
Hellipse provides an estimate of the height of the ridge.

Original image Normal 

Fig. 3. Observations extracted from the image (a). We use the edge map and the gradien
(b) we show the map of the normal vector associated to the edge map. In (c) we show
the grouping process is corrected using a feedback loop. In other
words, low confidence ellipses are replaced by a set of better
hypothetical ellipses obtained by combining arcs from different
groups. Those methods are considered as the most successful in
detecting multiples of ellipses in digital images. However, they
only work when there is connectivity along the edge pixels. On the
other hand, if the observations are a sparse set of data points, this
strategy is inadequate.
3. Ellipse detection using the L2 distance

We propose a strategy using the Euclidian distance L2 between
GMMs for robustly estimating the parameters of an ellipse
occurring on a 2D point cloud or an image. Gaussian mixture
models are used to represent shapes for both the observations
(denoted f ) and the ellipse model (denoted gθ) with θ being the
parameters that define the ellipse θ¼ ½γ; a; b; xo; yo� (where the
centre of the ellipse is ðxo; yoÞ, the semi-minor and semi-major
lengths a and b respectively and γ the angle of rotation of the
ellipse with respect to the horizontal axis). The parameters of the
ellipse can then be estimated by minimising the Euclidean dis-
tance between the two density functions f and gθ . This can be
expressed as follows:

θ̂ ¼ arg min
θ

CðθÞ ¼L2ðθÞ ¼ J f �gθ J
� � ð1Þ

In the next two sections we describe the modelling of those
density functions f and gθ .

3.1. Modelling the ellipse gθ

A point uðjÞ on an ellipse with parameter θ can be computed
with the following parametric equation:

uðjÞ ¼
cos γ � sin γ
sin γ cos γ

 !
a cos τj
b sin τj

 !
þ

xo
yo

 !
ð2Þ

given τjA ½0;2π�. The model gθ uses N¼20 equally spaced points
from the ellipse fuðjÞgj ¼ 1;…;20 to define a non-isotropic GMM for gθ:

gθðxÞ ¼
XN
j ¼ 1

wj N ðx;μj;Σ jÞ ð3Þ

where N ðx;μj;Σ jÞ indicates the Normal density function for ran-
dom vector x (here xAR2), with mean μj and covariance matrix Σj.
The mean μj can be chosen as the mean between consecutive
vertices ðuðjÞ;uðjþ1ÞÞ. The covariance matrix Σ j ¼QT

j ΛjQ j is com-
puted using a rotation matrix Q j ¼ ½ n!1j j n!2j� composed of two
orthogonal unit vectors, n!2j that has the same direction as the
vector defined with consecutive vertices ðuðjÞ;uðjþ1ÞÞ on the
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t of the image to compute the position and orientation of the points of interest. In
the computed observation fðvi ;ψ iÞgi ¼ 1⋯;n AR3.



Fig. 5. Computing the error rate Eq. (16). Figure (a) shows in blue the true ellipse
(observation) and in red dots the estimated one. The black region in
figure (b) represents the area of the difference in between the two ellipses. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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contour, and n!1j its orthogonal unit vector (see Fig. 1(a) for
illustration). The diagonal matrix Λj is set to:

Λj ¼
h2 0
0 h2tj

 !
ð4Þ

where parameter htj ¼ JuðjÞ �uðjþ1Þ J and the parameter h that
controls the fuzziness in the normal direction to the contour is set
by the user. The weights are computed as wjphtj h subject toPN

j ¼ 1 wj ¼ 1. Fig. 1(b)–(d) shows an ellipse represented by several
GMMs for various values of the orthogonal bandwidth h. Fig. 1(e)–
(g) shows the impact of the number N of Gaussians: if too few
points are taken, the GMM representation does not provide an
even ridge along the contour of the ellipse (e.g. Fig. 1(e)). The
choice N¼20 was found to be a good choice for capturing the
shape of the ellipse and adding more Gaussians in the mixture gθ
does not change much the model (e.g. Fig. 1(c) and (g)).

3.2. Modelling the observations f

The GMM f modelling the observations, depends on the infor-
mation available and the structure of the observations. For
instance, lets assume we have as observation a set of points
fvðiÞgi ¼ 1;…;n. In this case there is no information about how those
points are connected. Therefore, we define the GMM using iso-
tropic covariance matrices, with the mean of each Gaussian chosen
as the observation itself vi ¼ vðiÞ, 8 i:

f ðxÞ ¼ 1
n

Xn
i ¼ 1

N ðx; vi;h2 IÞ ð5Þ

When observations are extracted from an image I ðx; yÞ, we can use
the edge pixel locations fvðiÞgi ¼ 1;…;n as found by an edge detector
(e.g. Canny [38]). In addition, the gradient of the image ∇I ¼
ðIx; IyÞT is also available and can be used to model non-isotropic
covariance matrices. In this case the GMM for f can be expressed as
follows:

f ðxÞ ¼
Xn
i ¼ 1

wi N ðx; vi;Σ iÞ ð6Þ

The mean vi is chosen as the edge pixel location vðiÞ and the cov-
ariance Σ i ¼QT

i ΛQ i is computed with Q i ¼ ½ n!1i j n!2i� where the
orthogonal unit vector is available from the gradient n!1i ¼ ∇I ðviÞ

J∇IðviÞ J
and the tangent vector at location vi is

n!2i ¼
1

J∇I ðviÞJ
IyðviÞ
�IxðviÞ

 !

The diagonal matrix Λ is

Λ¼ h2 0
0 h2t

 !

where ht can be chosen proportional to the width of the pixel (i.e.
ht¼1 is the distance between two neighbouring pixels on the
image grid). h controls the fuzziness in the normal direction to the
curve and is set by the user. The weights are computed as wiphth
subject to

Pn
i ¼ 1 wi ¼ 1.
noise σ = 0.1 noise σ = 0
Fig. 4. Figure shows three examples of observation used in the experiments. The ellips
; xo; yo� ¼ ½0;3;5;0;0� corrupted using Gaussian noise with standard deviation σ equal to
3.3. Parsimonious representation of the density functions

The parameters θ of the ellipse are estimated by minimising
the Euclidean distance between f and gθ expressed as

J f �gθ J
2 ¼ J f J2þ Jgθ J

2�2〈f jgθ〉 ð7Þ
The term J f J2 does not depend on θ and is not computed. The
terms Jgθ J

2 and 〈f jgθ〉 have an analytical solution using the fol-
lowing result between two Normals:

〈N ðμ1;Σ1ÞjN ðμ2;Σ2Þ〉¼N ð0;μ1�μ2;Σ1þΣ2Þ ð8Þ
The computational complexity of the multivariate Normal (8) is in
the order of d3 where d is the dimension of the random vector x
modelled by f and gθ . Using the Gaussian mixture parameters
(means, weights, covariances) of gθ as explained in Section 3.1, the
term Jgθ J

2 is a sum of N2 weighted Normals:

Jgθ J
2 ¼

XN
j ¼ 1

XN
k ¼ 1

wjwk N ð0;μj�μk;Σ jþΣkÞ ð9Þ

The computational complexity of Jgθ J
2 is about N2 � d3. Similarly

the term 〈f jgθ〉 can be computed as the sum of n� N weighted
Normals:

〈f jgθ〉¼
Xn
i ¼ 1

XN
k ¼ 1

wiwk N ð0;μi�μk;Σ iþΣkÞ ð10Þ

with weights wi, means μi and covariances Σi computed as
explained in Section 3.2. The computational complexity of 〈f jgθ〉 is
about N � n� d3 and computation cost can be limited by con-
trolling efficiently the values of N, n and d. In Section 5, x is aug-
mented to a higher dimensional space (R3 as an alternative to R2)
and we show experimentally how this additional dimension
allows more powerful detection results (cf. Section 6.2). For such
low values of dimensions d¼2,3, the computational cost remains
tractable. In the case of the GMM defined for the ellipse gθ we
control the number of Gaussians used (N¼20) without compro-
mising much the representation of the ellipse (cf. Fig. 1). The GMM
defined for the observation f on the other hand depends on the
data available. This data can be sub-sampled in order to decrease
the number of Gaussians. The sub-sampling can be done directly
on the image (reducing resolution) or by sub-sampling the edge
map. In this case we select the connected edges automatically
using a standard image processing algorithm in matlab
(bwboundaries). The data can then be sub-sampled using a
.3 noise σ = 0.5
es were computed using the target ellipse for which the parameters are θ¼ ½γ; a; b
0.1, 0.3 and 0.5 respectively.



0.1 0.2 0.3 0.4 0.5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Proposed Method
Robust Fitting Method

0.1 0.2 0.3 0.4 0.5
0.01

0.02

0.03

0.04

0.05

0.06

0.07
Proposed Method
Algebraic best fit
Geometric best fit 

Ours Vs [41] Ours Vs [22,40]

Fig. 6. Mean Error (y-axis) obtained for the data sets perturbed with 5 different standard deviation of noise (σ from 0.1 to 0.5, x-axis). In (a) we compare our proposed
method (green star) versus a recent robust ellipse fitting algorithm reported by Yu et al. [41] (blue square). In (b) our proposed method (green star) is compared with two
standard ellipse fitting algorithms [22,40]. The red triangle represents the algorithm which cost function minimises the algebraic distance while the blue dot is the well
known Least Square method that is based on the minimisation of a geometric distance. (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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uniform rate along the connected edges in the edge map. Since the
structure of the observation is preserved by the connectivity of the
edge map a non-isotropic modelling can be used. This modelling
with non-isotropic covariances helps to preserve the information
contained on the data while reducing the number n of observa-
tions to use.
4. Algorithms for ellipse detection

We first present an algorithm to fit one ellipse in the observed
data (Section 4.1). In a similar fashion as Jian and Vemuri [1], the
optimisation is performed in a simulated annealing framework to
avoid local solutions and limit the influence of the starting guess
on the optimisation. Section 4.2 proposes a strategy for finding
multiple instances of ellipse that can occur in the observations.



Fig. 9. Robustness to outliers: the red dots are the observations, the estimated ellipse with Least Squares (Blue), Direct Fit (black) and the proposed method (green). (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

direct fit Least Square our method
Fig. 10. Results with pseudo-outliers: two (partial) ellipses perturbed with noise σ ¼ 0:1 (observations in red). (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this paper.)
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4.1. Ellipse detection with annealing

The only free parameter to set when computing L2 is the
orthogonal bandwidth h used in the GMMs f and gθ . This para-
meter plays two important roles in the proposed estimation fra-
mework. First, it affects the description of the shape. It controls the
fuzziness in the normal direction to the curve and secondly it
affects the convexity of the cost function. The optimisation is
performed using Gradient based optimisation Algorithms (GA)
depending on the choice of the initial guess θð0Þ and the ortho-
gonal bandwidth h:

θ̂’GA CðθÞ;θð0Þ
;h

� �
ð11Þ

The larger the value for h the smoother the cost function. There-
fore, to make our approach not sensitive to the initial guess θð0Þ,
we use a simulated annealing framework where the orthogonal
bandwidth h is the temperature decreased with a geometric rate
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Fig. 11. Examples from the dataset [6] used for testing the algorithm. This dataset contains 6 sets of 50 images and each set contains a different number of occluded ellipses
from 4 to 24.

Fig. 12. Example of the results of our algorithm for detecting multiples ellipses using 3D GMMs (middle row) and 2D GMMs (bottom row) where orientation information is
not used. The original images are shown on the top row. As can be seen, the results deteriorate significantly when the orientation information is not used.
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(controlled by parameter β) starting from hmax and is stopped
when the bandwidth is smaller than hmin. The use of simulated
annealing helps in converging to the global solution. This opti-
misation is summarised in Algorithm 1.

Algorithm 1. One ellipse detection.

u

Re r
quire: hmax, hmin, β and θð0Þ
nit h¼ hmax and θ̂ ¼ θð0Þ

eat

θ̂’GA CðθÞ; θ̂ ;h
� �

h’β � h
ntil hrhmin

eturn θ̂
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Fig. 13. Example of the results obtained when applying our algorithm to data sets containing 4, 8, 12, 16, 20 and 24 occluded ellipses respectively (observations in blue,
ellipse detected in red, false positive in green). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 14. Testing on synthetic images containing occluded ellipses. In (a) we report the values obtained for the Recall while in (b) the results for precision. Each set (from 4 to
24) was evaluated using 50 images. For comparison we report the results obtained using the approaches proposed by Chia et al. [6], Mai et al. [7], Kim et al. [8] and the Hough
transform based methods RHT and SHT proposed by [10] and [9] respectively.
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Fig. 15. Testing of our algorithm on 50 synthetic images, each containing 4 occluded ellipses. The overlap error varies from 0.05 to 0.55.

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5 Iteration 6
Fig. 16. Example of detection of multiples instance (i.e. coins). Illustration of the iteration of the proposed method for detecting multiple instances of a shape.
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Fig. 17. Normalised score gθ̂ ðviÞ=Hellipse of each observation vi in the updated set Sf of being part of the detected shape θ̂ (see Eq. (12) and Algorithm 2).

C. Arellano, R. Dahyot / Pattern Recognition 58 (2016) 12–26 21
4.2. Multiple ellipse detection

The goal is to estimate a set of ellipses E ¼ θ̂1;…:;θ̂s

n o
that

represent all the s ellipses that occur in the observations. We
propose an iterative algorithm based on the following steps:

1. Global estimation: This step estimates the parameters of the
shape θ̂ given a set of observations by minimising the cost
function proposed in Eq. (1). The general algorithm that solves
this problem is described in Section 4.1 (cf. Algorithm 1).

2. Update of the observation f: Once an instance θ̂ of the shape is
detected all the observations associated with that shape are
removed. The remaining observations are then used to detect
the following instances of the shape. The updated set of
observations Sf keeps Gaussians that have mean that have poor
score in the estimated model gθ̂ :

viASf if gθ̂ ðviÞot1 � Hellipse ð12Þ

gθ̂ ðviÞ is the probability density function value for the observa-
tion vi and estimated ellipse parameters θ̂ . t1 is a threshold
between 0 and 1 chosen by the user and Hellipse is the average
height of the ridge of the ellipse model:

Hellipse ¼
1
N

XN
j ¼ 1

gθ̂ ðμjÞ ð13Þ

Fig. 2 illustrates this height Hellipse of the ridge, and any
observation vi that are not high enough on that ridge remains
in the observation set.
Those two steps are iterated until all instances of the shape are
found: the algorithm is stopped when the updated set Sf has less
than a given proportion t2 of points left compared to the original
set S of observations (cf. Algorithm 2). The values for the threshold
t1 and t2 have been set to 0.3 and 0.1 respectively in this work. In
other words the algorithm will stop when the remaining obser-
vations are less than 10% of the original observed data. Notation
jS j indicates the cardinal of set S.
5. Augmenting dimensionality d of the GMMs

We show here how to consider additional information about
the shape of interest by augmenting the dimensionality of the
density functions f and g. In a similar fashion as the Hough
transform for finding lines in images [39], we propose to use both
the vertices and the orientations of the shape. For instance in
images, the means of the GMM are the vertices (edge pixel loca-
tions) and their orientations vi ¼ fðvðiÞ;ψ iÞgi ¼ 1⋯;n with angle ψi

computed with the gradient of the image:

ψ i ¼ arc tan
IyðvðiÞÞ
IxðvðiÞÞ

� �
ð14Þ

The covariance matrix Σ i ¼QΛQT is similar to the one defined in
Section 3.2 but augmented in one dimension such as Q:

Q ¼ n!1i j n!2i BT

B 1

 !



Fig. 18. This figure shows results of detection of ellipses in images. In the first column (a) we show the original image. The second column (b) shows the data (edges)
extracted from the image and used as input for our algorithm. In the third column (c) we show the ellipses obtained (in red) and superposed with the input data. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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with B¼ ½0;0�. The diagonal matrix of bandwidths Λ is defined as
follows:

Λ¼
ht 0 0
0 h 0
0 0 hψ

0
B@

1
CA

where hψ is the bandwidth associated with the orientation of the
shape that has been included as an extra dimension. An example of
the data extracted from an image is shown in Fig. 3. The domain of the
density functions f and g is not limited to the spatial domain. It can be
augmented by including extra information about the shape of interest.
Increasing the dimension of the GMM can increase the amount of
information about the shape to encode. We illustrate this idea using
orientation as additional information. However, it can be extended to
any other information about the shape such as colour, illumination,

gradient, or motion among others.
Algorithm 2. Multiple ellipse detection.
Re
r

sþ

C

θ
U
u

r

quire: t1, t2, β, hmin, hmax, Sf ¼ S, s¼0 and θð0Þ

epeat
þ

ompute CðθÞ ¼ J f �gθ J
^
s ¼ arg minθ CðθÞ� �

estimated with Algorithm 1
pdate Sf

ntil jSf jot2 jS j
eturn E ¼ fθ̂1;…; θ̂sg
6. Experiments and results

In Section 6.1 we assess the detection of one ellipse in 2D point
clouds against state-of-the-art techniques [40,22,41]. In Section 6.2
we assess the problem of detecting multiples ellipses in images
against state-of-the-art techniques [6–10]. The latent parameters to
estimate are the centre of the ellipse ðxo; yoÞ, the semi-minor and
semi-major lengths a and b respectively and γ the angle of rotation
of the ellipse with respect to the horizontal axis (θ¼ ½γ; a; b; xo; yo�).
With the exception of the experiment reported in Section 6.1, the
starting guesses θð0Þ for the optimisation are randomly chosen in all
experiments such that the ellipse defined by θð0Þ should be con-
tained in the bounding box where observations are.

6.1. Ellipse detection in 2D point clouds

In this section we evaluate the sensitivity to noise and the
robustness of our proposed method when detecting an ellipse in
2D point clouds.

6.1.1. Sensitivity to noise
We define for this experiment a target ellipse (ground truth)

centred at the origin and without rotation. The semi-major length
equal to 5 and semi-minor length equal to 3. The ellipse is cor-
rupted using five levels of Gaussian noise with standard deviation
from 0.1 to 0.5. For each level of noise we take 50 points from the
ellipse. For each level of noise we generate 50 data sets to perform



Fig. 19. Example of false positive: global minimum of our cost function (shown in
green) does not correspond to the expected ellipse (shown in red). (For inter-
pretation of the references to colour in this figure caption, the reader is referred to
the web version of this paper.)
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the experiments. Fig. 4 shows three data sets (used as observation)
using level of noise 0.1, 0.3 and 0.5 respectively.

We run our algorithm using the following settings: hmax ¼ 0:9, hmin

¼ 0:2 and the geometric decreasing rate for the bandwidth β¼ 0:8.
The initialisation for all the experiments is θð0Þ ¼ ½0;1;1;0;0�, which is
basically a circle centred on the origin with radio equal to 1. We
compute the error between the estimated ellipse (given by θ̂) and the
target (observation) using the normalised area of the symmetric dif-
ference [41]. This metric for error between the true ellipse Et and the
fitted ellipse Ef is defined as follows:

Error¼ SEt [Ef �SEt \Ef

2SEt
ð15Þ

where SEt [Ef �SEt \Ef is the area of the symmetric difference and SEt
denotes the area of the true ellipse (cf. Fig. 5). In order to compute this
error rate, we use the function phantom in Matlab to create an image
containing an ellipse. The image is represented by assigning a value
equal 1 to all pixels inside the ellipse and zero otherwise. One image It
is created using the parameters of the target ellipse (observation). The
second image If is created using an estimated ellipse. The symmetric
difference between those two ellipses is computed as a function of the
number of pixels with a value equal to 1 after adding the two images.
The error rate in Eq. (15) is then re-expressed as follows:

Error rate¼ pixelðItþ If ¼ 1Þ
2 pixelðIt ¼ 1Þ ð16Þ

The results obtained for all the data sets are reported in Fig. 6.
In the left plot (a) we compare the results obtained using our
proposed method (green stars) and the method proposed by Yu
et al. [41].
In Fig. 6(b) we compare our method with the Non-Linear Least
squares [40] and using the direct ellipse fitting algorithm [22]. In
both cases the error between the estimated ellipse and the true
ellipse is better minimised using our proposed method. The
standard deviation of the error is also reported in Fig. 7.

6.1.2. Robustness to outliers
A second experiment is performed to evaluate the robustness

of the algorithm to outliers. We use the same data as in the pre-
vious experiment (for all levels of noise) but adding 10% of extra
points randomly distributed. As it is shown in Fig. 8, our proposed
method does maintain its performance. On the contrary, the error
obtained using the direct fitting and the Least Square methods
increase [40,22]. Those methods are very sensitive to outliers
while our proposed method keeps its robustness. Examples of the
data used in the trial and the estimated ellipses are shown in
Fig. 9. The results are similar when the outliers correspond to
another ellipse present in the data. Examples of this case with
pseudo-outliers are shown in Fig. 10. The mean error for our
proposed method when 50 trials are tested is 0.0133 with a
standard deviation of 0.0012. Those values are in correspondence
with the values obtained when no outliers at all are presents in the
data set. This shows the robustness of the proposed algorithm for
fitting ellipses to noisy data sets.

6.2. Detecting multiples ellipses in images

In this section we explore the problem of detecting multiple
ellipses in digital images. We use the position and orientation of
the edge map of the images as information vi ¼ fðvðiÞ;ψ iÞgi ¼ 1⋯;n.
This information is encoded in a multidimensional density func-
tion (as described in Section 5).

We use the benchmark data set provided by Chia et al. [6] for
testing. This data contain 6 sets of synthetic images. Each set is
created using a different number (4, 8, 12, 16, 20 and 24) of
occluded ellipses. Each set contains 50 images with a resolution of
300�300 pixels. Fig. 11 shows a few examplar images from that
dataset. Input data for our algorithm is computed by using the
Canny edge detector of Matlab with its default parameters. The
normal vectors are computed using the convolution function with
default parameters and applied in both directions of the image
ðx�yÞ.

The detection evaluation is performed using the overlap error.
This error is computed using the detected ellipse Ed and the true
ellipse Et as follows:

OverlapErrorðEd;EtÞ ¼ 1�SEd \Et

SEd [Et
ð17Þ

An ellipse is considered detected when the overlap error is less
that 0.05. A common index for detector evaluation is the F-
measure. The F-measure combines the precision and recall of the
detector. Precision is defined as follows:

P ¼Number of correctly detected ellipses
Total number of ellipses detected

ð18Þ

and the Recall is:

R¼ Number of correctly detected ellipses
Total number of ellipses present in the test image

ð19Þ

One of the advantages of our algorithm is its simplicity in terms of
parameter setting. The only relevant value to set is the bandwidths
used for the density function (hmax ¼ 7 and hmin ¼ 1) and the
threshold used for updating the observation t1 ¼ 0:3 and t2 ¼ 0:1
(cf. Section 4.2). We define the covariance matrices as described in
Section 5. In order to optimise the efficiency of the algorithm the



Fig. 20. GMMs (only considering 2D information) for the observation (a) and for the ellipse model as initial guess (b) for the example shown in Fig. 19. The top row was
computed using bandwidth h¼10 while at the bottom the bandwidth h¼1 was used.
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number of Gaussians in the mixture representing the observation
is reduced as described in Section 3.3.

Fig. 12 shows the results obtained when applying our algorithm
to images containing 4 occluded ellipses. In these cases all the
instances of the ellipses are detected (second row). The third row
show results of our algorithm when using only 2D Gaussian
Mixtures (i.e. the information about orientation is not included in
the GMMs). As can be seen, results with 3D GMMs are better than
with 2D GMMs. Our modelling is flexible such that dimensions can
be added to incorporate features that describe and discriminate
the shape of interest better, and Fig. 12 shows how this can help
improve the performance of our algorithms.

However, when increasing the number of ellipses in the image the
results deteriorate. An example is shown in Fig. 13 where the white
and black image corresponds to the input image (first and third row).
The blue dots correspond to the observations taken from the input
image. The red ellipses are the ellipses correctly detected while the
green ellipses are detections that do not properly represent the
observation. When more than 20 ellipses are present, the proportion
of correctly detected ellipses is very small.

We analyse the metrics of recall and precision when evaluating
all images in the data set. The results are reported in Fig. 14
(performance of state-of-the-art algorithms are also reported for
comparison [6–10]). Fig. 14 suggests that our method outperforms
methods based on the Hough Transform [9,10]. Methods based on
connected edges, on the other hand, show better performance
than our algorithm. The algorithm proposed by Chia et al. [6]
shows outstanding performance and it is able to detect a high
number of ellipses. However, it only works when the observations
are a set of connected edges. In contrast, our algorithm does not
have any limitation and it can still be used when the observation is
a sparse data set of points.

Additionally in Fig. 15 we show the performance of the detector
when relaxing the overlap error in between the detected ellipse
and the true ellipse. This experiment was performed using the set
of images containing 4 occluded ellipses. Additional advantages of
our proposed method are its feasibility including any extra infor-
mation that can be added as an additional dimension of the GMM.
The process of detecting multiples instances of an ellipse is shown
in Fig. 16. At each step the score of each observation of being part
of the estimated ellipse is computed and it used for updating the
set of observations. Fig. 17 is showing these scores at each iteration
of our Algorithm 2, and as can be noticed there is a clear separa-
tion between observations belonging to the candidate ellipse (high
scores with max value of 1) and the other observations that do not
(scores close to 0). The threshold t1 on these scores is chosen
t1¼0.3 in an ad hoc fashion. Note also that because L2 is robust, it
does not matter if a few observations are misclassified by our
choice of threshold t1. More examples are shown in Fig. 18. The
first two examples use the iterative algorithm for detecting mul-
tiples ellipses. The last row on the other hand shows the result
when applying our algorithm for detecting faces.
7. Limitations and discussion

We have shown that our method detect well an ellipse when it
is represented with a large enough proportion of the observations.
Experimental results illustrate the robustness of our method to
outliers, pseudo-outliers and noise. However, the performance
deteriorate as more instances of ellipses (creating more pseudo-
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outliers hence reducing the proportion of inliers each time
Algorithm 1 is run as part of Algorithm 2) occur in the observation
set, as shown in Section 6.2. This is a common problem that most
methods fail to overcome: all methods we have compared with are
decreasing their precision performances when increasing the
number of ellipse instances in the observations.

On occasions, due to a particular repartition of outliers, the
global solution of our cost function may not correspond to the
expected ellipse but only a random ellipse formed by the obser-
vations. An example is shown in Fig. 19 where the global solution
does not represent the ellipse we expect to detect: our cost
function for the false positive (green) is smaller (minimum of the
L2 distance) than for the true ellipse (red). Fig. 20 shows the
corresponding 2D GMM for the observations and the ellipse model
for two different bandwidth. The large difference in height
between both GMMs make the Euclidian L2 distance less suited in
this case. We have shown however that in general our framework
with the L2 distance between GMMs compares very well with
current alternative methods for ellipse detection and that its
performance can be improved by adding extra dimensions carry-
ing more information (such as edge orientation that is used in this
paper) as shown in Fig. 12.
8. Conclusion

In this paper we have shown an algorithm based on L2 distance
between probability density functions for estimating the para-
meters of an ellipse. We evaluate the algorithm when detecting an
ellipse on a set of 2D data points and when detecting multiples
instances on an image. In the latter case we use multidimensional
modelling for the GMM where the position of the contour pixels
and its orientation are considered. We used the proposed algo-
rithm to detect multiple ellipses in a benchmark data set. Results
compared with state-of-the-art shows the promising performance
of our algorithm. Our approach is only outperformed by recently
proposed techniques that incorporate pixel connectivity in their
descriptors to find ellipses. Future work will look at how this
connectivity information could also be used in our representation
of shapes with GMMs for robust matching with L2.

We have proposed here a bottom-up greedy approach to
multiple instance detection. This strategy was chosen due to the
fact that we assume there is no information about the number of
instances the shape appears in the image. However, when such
information is available it could be included in the model by fixing
the number of parameters to estimate.
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