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Blendshape facial rigs are used extensively in the industry for facial animation of virtual humans. How- 

ever, storing and manipulating large numbers of facial meshes (blendshapes) is costly in terms of mem- 

ory and computation for gaming applications. Blendshape rigs are comprised of sets of semantically- 

meaningful expressions, which govern how expressive the character will be, often based on Action Units 

from the Facial Action Coding System (FACS). However, the relative perceptual importance of blendshapes 

has not yet been investigated. Research in Psychology and Neuroscience has shown that our brains pro- 

cess faces differently than other objects so we postulate that the perception of facial expressions will 

be feature-dependent rather than based purely on the amount of movement required to make the ex- 

pression. Therefore, we believe that perception of blendshape visibility will not be reliably predicted by 

numerical calculations of the difference between the expression and the neutral mesh. In this paper, we 

explore the noticeability of blendshapes under different activation levels, and present new perceptually- 

based models to predict perceptual importance of blendshapes. The models predict visibility based on 

commonly-used geometry and image-based metrics. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Virtual humans are becoming extremely popular in recent years 

or a range of diverse applications, such as video games, human–

omputer interfaces [1] , live streaming, virtual reality entertain- 

ent, and personalized training [2] . With the increase in inter- 

ctions with virtual humans comes the need for a greater under- 

tanding of how users perceive them, in particular their faces. 

The perception of human faces and facial expressions is a much 

tudied area in Psychology research. For virtual characters, fa- 

ial expressions are generally created by animating blendshape 

igs [3] based on FACS action units (AUs) [4] , however these rigs 

re computationally expensive for real-time applications. The ques- 

ion of importance of blendshapes is therefore of great interest to 

omputer games and other real-time applications, with the aim 

f reducing the number of blendshapes needed for animating a 
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ig [5] , or prioritising which blendshapes to include in expressions 

or example-based blendshape rig creation algorithms [6,7] , or to 

nsure facial expressions in rigs are being activated enough to be 

erceived clearly by the viewer. Additionally, algorithms that create 

r alter facial geometry are usually evaluated against ground-truth 

acial meshes using standard geometry error metrics [7] , how- 

ver, we postulate that standard error-metrics may not be suffi- 

ient to determine how perceptually different the results are to the 

round-truth. 

Due to the nature of how facial perception it is a special form 

f perception that humans are particularly attuned to [8–10] , we 

xpect that differences in perception of facial action units will not 

lign with the magnitude of displacement on the mesh caused by 

he expression. We hypothesise that small displacements in salient 

egions (e.g., eyelids) will be more perceptually noticeable than 

arger displacements in less salient regions (e.g., puffing of cheeks), 

hich may not be accurately reflected by the standard geomet- 

ic and image error metrics. We also expect that due to social 

onditioning, sex and race will affect the perception of facial ac- 

ion units. It appears that female and male faces are observed dif- 

erently, because the type and expressivity of particular emotions 

ere found to be sex specific [11–13] . In addition, it has been 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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hown that people perceive faces of their own race differently than 

ther races in certain tasks such as facial recognition [14] , so it is

ossible that perception of action units will differ across different 

ace groups. 

In this paper, we investigate the perceptual impact of a care- 

ully selected range of expressive action units at varying activa- 

ion levels across a number of characters of different race and sex. 

e then compare our qualitative perceptual results to quantitative 

etrics in order to determine whether the perceptual effect can 

e predicted directly. Geometric and image-based error metrics for 

riangle meshes are traditionally used for predicting mesh errors 

uch as watermarking, simplification or lossy compression. How- 

ver, we aim to determine if our question of perceived action unit 

mportance can be predicted by simply calculating the error be- 

ween the neutral pose and the expression blendshape, using com- 

on image and geometry error metrics. We investigate both stan- 

ard and perceptually-based metrics, calculated from either the 3D 

eometry or the rendered 2D image, and perform linear regression 

nalysis to determine if any of them can predict facial expression 

mportance well, or if a new perceptual metric specific to facial ex- 

ressions should be developed. 

We address a number of questions, such as: 

• Are certain facial action units more perceptually noticeable than 

others? 
• Does a linear increase in activation of expressions (geometry 

alterations) result in a linear perceptual response for all action 

units equally? 
• Are the same facial action units consistently noticeable across 

faces of different sex and race? 
• Can we predict the saliency of facial action units using numer- 

ical error metrics, and is there a benefit to using existing per- 

ceptually based metrics? 
• If metrics can predict saliency of facial action units, are 3D ge- 

ometry metrics better than 2D image-based metrics? 

Additionally, we tested several Generalised Linear Models in or- 

er to describe the relationship between our perceptual results and 

alculated errors. Our findings could be used for optimisation of 

lendshape rigs through blendshape reduction for facial animation 

n games. By identifying and removing blendshapes of lower visual 

aliency, we can save both memory and computation required. Ad- 

itionally, our perceptual model could be used to guide real-time 

acial animation systems to ensure virtual agents are expressing 

erceptible expressions to a precise level (e.g., medium-level smile, 

tc.). 

In this paper, we extend Carrigan et al. [15] with an online ex- 

eriment with a more diverse pool of participants in terms of gen- 

er and race ( Section 5 ) and a cross-validation test to assess how

ccurate our models are for prediction of unseen data ( Section 8 ). 

. Related work 

Our interdisciplinary research relates to work in the areas of 

sychology, Computer Vision and Computer Graphics, which we 

ill discuss in this section. 

Face perception is a very active area of study in Psychology , as 

umans have been shown to perceive faces in a different way to 

egular perception [8–10] . Work by Schwaninger et al. shows that 

aces are processed both in terms of their components as well as 

he configuration of those components [16,17] rather than purely 

olistically. 

As well, the different areas of the face have been shown to be 

mportant in terms of speech and emotion perception [18,19] . A 

reat deal of research is ongoing in the areas of face recognition, 

etection, memory, the other-race effect and the effect of experi- 
82 
nce on face perception, critical features for recognition, and social 

valuation of faces [20] . 

Another interesting property of face perception is that people 

erceive faces of their own race differently to faces of other 

aces, with studies showing an own-race recognition memory 

dvantage [21] , as well as an own-race encoding advantage [22] . 

ne explanation for this phenomenon is that people have more 

xposure to people of their own race, and there is evidence 

hat experience can mitigate these other-group effects even if 

he experience is acquired during adulthood [23] . There is also a 

eurological basis for perceptual differences of faces based on both 

hape, pigment and internal features [14,24] . Social conditioning 

ppears to play a role in face perception of different sexes as 

ell. There are sex differences in the readiness to express certain 

motions - males tend to more readily express anger [11] , while 

emales more frequently express fear and sadness [12] . Therefore, 

 female expression of anger can actually be perceived as more 

ntense than a male expressing the same intensity of anger, due 

o the violation of viewers’ expectations [13,25] . For these reasons, 

e include a diverse set of characters in our experiment, ranging 

n race and sex, to generalise our results. 

In terms of perception of emotion, it has been shown that 

ot all emotions are perceived equally. Happiness is most quickly 

ecognised and least often confused with other emotions [26–28] , 

hile angry faces are more easily detected within a crowd [29] . 

or each emotional expression, specific parts of the expression ap- 

ear to be more important for the classification of an emotion [30] . 

ince particular areas of the face are important for the recogni- 

ion of emotion, different action units could potentially be more 

alient than others. The evidence supporting this suggests that spe- 

ialised areas exist in the brain (region pSTS) for the perception of 

ction units. This could indicate that action units are a necessary 

recursor to categorization of emotion [31] . In addition, particular 

ction units are responsible for the correct recognition of an emo- 

ion [32] : for happiness, this is the lip corner puller and parting of 

ips; for disgust, the most important are the raising and plucking 

f the lip. For fear, surprise, anger and sadness the regions around 

he eyes have the highest weights, with the lid raiser (exposing the 

clera of the eyes) important for fear, and the lid tightener signif- 

cantly most important for anger. Brows are important for sadness 

nd both eyes and mouth contribute significantly to the recogni- 

ion of surprise. 

There were also studies which used the information about in- 

ividual action units to generate synthetic expressions. A gradual 

ctivation of specific action units resulted in detection of an ex- 

ression [33] . Reverse engineering expressions based on percep- 

ual relevance helped with improved facial recognition in artificial 

aces [34] . There is enough evidence to suggest that action units 

lone have a perceptually significant impact on emotion categori- 

ation. However, it is unknown if certain action units are more 

alient than others because they are associated with a particular 

motional expression. 

While the mouth is understandably a significantly attended to 

rea due to its importance for emotional expression and commu- 

ication [35,36] and its size relative to other facial features, the 

yes and eyebrows can also be considered highly important despite 

heir considerably smaller size. Eyebrows are integral for emotional 

nd conversational signals [37] , and can alter the perception of the 

yes [38] , however they are important in their own right for face 

ecognition [39] and not just in relation to how they change the 

erception of eyes. 

In the field of Computer Vision , the recognition of Action Units 

rom FACS has been explored using facial component models, with 

Us being recognised with greater than 95% accuracy [40] . Com- 

uter recognition of AUs is interesting to our work as it allows us 

o see the similarities and differences between human perception 
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1 https://www.eisko.com/ 
2 https://www.3dscanstore.com/3d- head- models/ 
3 https://www.russian3dscanner.com/ 
nd computer vision. Most AUs were recognised correctly, with in- 

orrect recognition being attributed to either an additional similar 

U being recognised (e.g. both Inner and Outer Brow Raiser be- 

ng recognised when only one was present), or a similar AU be- 

ng incorrectly recognised (e.g. Jaw Drop being recognised instead 

f Lips Part). It is noted that one of the pairs of AUs that were

onfused, Cheek Raiser and Lid Tightener, are confused by humans 

s well [41] . Recognition of AUs, as well as automatic recogni- 

ion of intensity of AUs, has also been accomplished using pure 

eep learning methods [42] . The relative importance of facial fea- 

ures for recognition of emotion has been investigated by Kumar 

t al. [43] who automatically recognized the six basic emotions 

iewed at several different angle using a multi-level classification 

odel and only extracting features from relevant parts of the face 

nd then separating facial expressions into three categories: lip, 

ip-eye, lip-eye-forehead. This method allowed for a recognition 

ate of 95 . 51% , outperforming state-of-the-art multi-view learning 

ethods, showing the benefit of a segmented rather than holistic 

iew of facial perception. 

While there has been much research in the area of Psychology 

n perception of the human face, these results are rarely utilized in 

omputer Graphics to improve the quality or computation of fa- 

ial animation for real-time applications where resources are lim- 

ted. The current state of the art for high quality real-time facial 

nimation is blendshape animation [3] . A blendshape is a mesh 

epresenting a certain shape, typically a simple movement like an 

ye blink or mouth open shape. Animation is achieved by linearly 

ombining a number of these blendshapes with the neutral face 

o create an expression. There is currently no consensus on what 

lendshapes a rig should contain, with the decision being left en- 

irely to the artist. One solution is to use the Action Units from the 

acial Action Coding System [44] . In theory, FACS breaks down fa- 

ial expressions to their most basic components, making it a useful 

uideline for blendshape creation. 

Blendshapes can be costly to create, however, they can be trans- 

erred from a template rig containing the desired shapes to a tar- 

et character rig using Deformation Transfer [45] . The quality and 

ersonalisation of these blendshapes can be improved by providing 

xamples of the target character face [46] . Similar to the question 

f which blendshapes should be included in a rig, there is no con- 

ensus on which examples should be provided to best improve a 

ig. Initial perceptual research has been done in this area [6] as 

ell as a first attempt at creating an example suggestion algo- 

ithm [7] . Another method for personalising rigs is to use an ac- 

or’s performance to train an existing set of blendshapes to better 

atch the actor’s face [47] . 

Optimisation of blendshape animation can be done in a few 

ays. Reducing mesh complexity is one method [48] , however 

his causes correspondence issues between shapes. The anima- 

ion itself can be optimised by passing blendshapes [49] and an- 

mation [50] to the GPU, and using GPGPU methods [5] . The 

ost relevant optimisation method for this paper would be 

lendshape reduction, either removing blendshapes from a rig 

r from an animation. Naturally, this would reduce the expres- 

ivity of a rig and reduce the quality of animations, so iden- 

ifying salient blendshapes as we attempt to do in this work 

s important. One area in particular where this optimisation 

ethod is applicable is optimisation for level of detail, where dis- 

ance obscures the detail of the face so reduced quality is less 

erceptible. 

Mesh optimisations in graphics have traditionally been as- 

essed using error metrics, which are used to measure dissim- 

larity between ground-truth geometry and geometry after un- 

ergoing simplification, watermarking, or lossy compression, with 

he goal of avoiding perceptible differences. The types of metrics 

sed are view-dependent and view-independent , or image-based and 
83 
eometry-based (see overview by Corsini et al. [51] ). We are inter- 

sted if these metrics can be used in face-geometry perception. 

Root-mean-square error (RMS) is a commonly used model- 

ased error metric. Similarly, mean-squared-error (MSE) is used for 

mage quality measurement. However these metrics are quite sim- 

listic as they do not take into account the way in which a model 

s deformed, only measure the overall difference. This can lead to 

odels with the same error but wildly different perceptual differ- 

nce. To account for this, error metrics based on the human vision 

ystem have been proposed. 

Of special interest to our work is the Structural Similarity In- 

ex Metric (SSIM) [52] , which is a preferred image-based percep- 

ual metric since it incorporates important perceptual phenomena 

uch as contrast and luminance and also takes into account the 

tructure of objects in the scene. Also of interest is the Spatio- 

emporal Edge Difference (STED) [53] , which is a perceptual metric 

or meshes that works on edges as basic primitives as opposed to 

ertices. In our work, we investigate error metrics typically used 

or measuring mesh optimisation for the purpose of identifying 

mportance of facial blendshapes, with the aim of reducing com- 

utation for facial animation in games. 

. Stimuli creation 

We explored acquiring a range of high-resolution full-head 

eshes with semantically-matching AUs and diversity of facial fea- 

ures from open-source databases. However, to our knowledge, no 

uch set exists, therefore we created our own data-set. 

We first acquired a high-end photogrammetry-scanned template 

odel , created by Eisko 1 , a leading Digital Double company. The 

haracter had over 200 blendshapes, inspired by the FACS [4] with 

dditional shapes for emotion and speech. Our experiment charac- 

ers were a set of 6 neutral faces ( Fig. 2 ) created utilising high res-

lution scan data, from 3D Scan Store 2 . 

One of the goals of this experiment was to obtain results that 

ould be generalisable across different character faces, therefore 

e attempted to create a diverse set of stimuli by including 2 

haracters of each Asian, Black, and White race. Within each race 

roup, there was 1 female and 1 male character. 

.1. Blendshape transfer 

In order to obtain a range of expressions for each of our exper- 

ment characters, we used the Russian 3D Scanner 3 Wrap 3.4 to 

ransfer the topology of our template model to each of the neu- 

ral characters, using some feature points as guidance so that the 

emantics of the topology remained the same. We then used this 

rapped mesh to warp the blendshapes of our template model to 

he experiment characters, thereby creating 6 new character rigs 

ith equal topology and blendshapes. These characters can be seen 

n Fig. 2 . We chose not to include any hair on the characters as

e are exclusively interested in facial features and wanted to avoid 

istracting elements. 

.2. Action unit selection 

In order to keep the experiment from having too many vari- 

bles, we carefully chose 11 blendshapes from the character’s set 

f 200 for the experiment (see Fig. 1 ). Since our work is aimed

t character animation, we selected AUs that were particularly rel- 

vant for conversing virtual humans. AUs were chosen that were 

reviously shown to be important for emotion (AUs 2, 4, 5, 12, 

https://www.eisko.com/
https://www.3dscanstore.com/3d-head-models/
https://www.russian3dscanner.com/
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Fig. 1. The blendshapes set used in our experiment, shown on the Asian Female 

character at full activation (1.0). 

Fig. 2. Neutral faces of the characters used in our experiment. Left: white, middle: 

black, right: asian faces. Top row shows the female faces, while the bottom row 

shows the male faces. 
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5, 26, 38 [32,54] ), speech (AUs 18, 26 [55] , and those necessary

or realistic and natural motion (AU 43 [56] ). The cheeks have 

lso been found to be important for facial recognition [57] , so 

n order to fully cover potentially important features we also in- 

luded cheek AUs 34 and 35. We also attempted to include oppo- 

ite movements in each area, e.g. smile and frown. 

.3. Activation levels 

We are interested in whether the increase in onset of an AU 

inearly affects its perceptual importance, or whether there is a 
84 
oint at which the AU becomes more noticeable. For this reason, 

e investigate each AU at a number of different levels of activa- 

ion. For each of these expressions, we show 5 activation levels: 

.2, 0.4, 0.6, 0.8, 1.0, with 1.0 being the maximum activation of 

hat expression performed by the actor during the scanning pro- 

ess. In terms of blendshapes, this is simply a linear interpolation 

rom the neutral face to the blendshape, with 1.0 being the fully 

ctivated expression (e.g. eyes fully closed) and each intermediate 

tep being a transition from neutral to that expression, e.g., 0.4 of 

he eyes closed expression would be eyes almost half closed. 

. Experiment 1: Laboratory 

We chose to develop a real-time experiment system in Unreal 

ngine 4 for flexibility, and the fact that adjustments could be 

ade easily to all characters without having to re-render a large 

et of images. Additionally, so that we could utilize pre-built ad- 

anced lighting and shading for realistic virtual character visuali- 

ation. For each trial of the experiment, we displayed the Neutral 

xpression on the left and the stimulus on the right, and asked the 

articipants to answer “How different are the expressions?” using 

 slider. The slider ranged from 1 defined as “No Difference” to 

 defined as “Extremely Different”. Participants were aware that 

he left image was always neutral. After each trial, a 1 second fo- 

us cross was displayed. We chose the Likert scale instead of a 

wo-alternative forced-choice paradigm, in order to determine the 

elative saliency of AUs and activation levels, rather than simply 

hether the activation levels were noticed or not. The amount of 

ime given to view each stimulus was not limited, although partic- 

pants were asked to answer as quickly and accurately as possible. 

At the beginning of the experiment, participants conducted a 

raining session, where they completed 11 trials showing the full 

ctivated blendshapes on the template character, which was not 

sed in the main experiment. The idea of the training session was 

o calibrate participants to the most extreme examples of each AU. 

Three hundred and sixty trials were shown to participants in 

andom order, 12 AUs (including Neutral) × 5 activation levels ×
 characters. To avoid the experiment becoming too long, we used 

nly one repetition of each character. 

.1. Participants 

Twenty participants volunteered for the experiment (3 female, 

6 male, 1 prefer not to answer; 8 were in the age range 18–27, 10

n 28–37, and 2 in 38–47). All reported medium or high familiarity 

ith computer graphics and video games. As the experiment char- 

cters varied in race, and there is a perceptual effect of one’s own 

ace and perception of other races [21,22] , we asked the partici- 

ants to disclose their race (5 Asian, 13 White, 0 Black, 2 Other). 

ue to the fact that this was an in-laboratory experiment, recent 

estrictions related to the COVID-19 pandemic meant that we were 

nable to recruit a larger or more diverse sample of participants. 

owever, we address this shortcoming in our Online Experiment 

 Section 5 ). 

.2. Perceptual experiment results 

We ran a 4-way repeated measures ANOVA on the Percep- 

ual Difference results with the within factors Sex, Race, Action 

nit, and Activation Level. Due to the imbalance between partic- 

pant race and sex groups, we did not include these between- 

roups factors in the analysis. In order to meet the assumptions 

or ANOVA, we analysed the data for sphericity violations and ap- 

lied Greenhouse-Geisser corrections to the degrees of freedom 

see Table 1 ). We also conducted the KolmogorovSmirnov analy- 

is for the normality of residuals per each level of the factors and 
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Table 1 

ANOVA interactions with dependent variable “Difference” from the percep- 

tual results. (AU = Action Unit, ∗ represents significant p-values, F ∗ stand for 

Greenhouse-Geisser correction for violations of sphericity). Effects sizes are 

reported in the last column ( η2 
p ). 

Factor F(DFn, DFd) = F-value p -value η2 
p 

Sex F(1, 19) = 1.727 0.2 0.08 

Race F(2, 38) = 4.192 0.02 ∗ 0.18 

Action Unit F ∗(2.93, 55.58) = 123.8 0.00 ∗ 0.86 

Activation F ∗(1.21, 22.90) = 158.2 0.00 ∗ 0.89 

Sex-Race F(2,38) = 7.826 0.001 ∗ 0.29 

Sex-AU F(11, 209) = 2.99 0.001 ∗ 0.14 

Race-AU F(22, 418) = 6.885 0.00 ∗ 0.27 

Sex-Activation F(4, 76) = 2.887 0.03 ∗ 0.13 

Race-Activation F(8, 152) = 1.581 0.14 0.08 

AU-Activation F(44, 836) = 19.29 0.00 ∗ 0.50 

Sex-Race-AU F ∗(6.73, 127.86) = 5.301 0.00 ∗ 0.22 

Sex-Race-Activation F(8, 152) = 2.031 0.046 ∗ 0.10 

Sex-AU-Activation F(44, 836) = 0.979 0.5 0.05 

Race-AU-Activation F(88, 1672) = 1.592 0.001 ∗ 0.07 

Sex-Race-AU-Activation F(88, 1672) = 1.68 0.00 ∗ 0.08 

Table 2 

The AUs ordered by average perceptual difference. 

AU Name Difference AU Name Difference 

Mouth Open 5.97 Eyes Opened 3.15 

Eyes Closed 5.2 Cheeks Puffed 2.77 

Smile Lips Closed 4.18 Mouth Frown 2.56 

Eyebrows Up 3.56 Frown 2.22 

Lips Protude 3.55 Nostrils Dilated 1.78 

Cheek Inhaled 3.24 Neutral 1.42 

f

a

A

u

4

w

e

e

A  

g

f

W  

R

P  

f

o

4

i

l

r

S

l

4

h

w

0  

n

Fig. 3. Main effect of AU from our experiment. 
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ound that not all residuals were distributed normally, however, we 

ssumed sufficient robustness of ANOVA for these violations. The 

NOVA results can be seen in Table 1 . We ran post-hoc analysis 

sing Tukey’s HSD tests throughout. 

.2.1. Character sex & race 

There was no main effect of the Sex of the character. There 

ere some smaller interactions showing some individual differ- 

nces in the models, but no interesting trends. 

We found a main effect of character Race, where shape differ- 

nces were less perceptible for Black characters overall than for 

sian characters ( p < 0 . 02 ). An interaction between Race and Sex

ave further insight that shape differences were more perceptible 

or the Asian Female character than other characters except for the 

hite Male ( p < 0 . 03 for all). There was an interaction between

ace and Activation Level, which showed the Frown and Cheeks 

uffed ( p < 0 . 02 ) were the main AUs affected. This implies that dif-

erences in the cheek and frown expressions were less perceptible 

n Black characters. 

.2.2. Activation level 

A main effect of Activation Level showed a significant increase 

n perceived differences as the activation increased, as expected. 

There was no difference across all characters and AUs at the 

owest Activation Level of 0.2. However, some characters were 

ated as relatively more different at higher Activation Levels. 

pecifically, Asian Female at 0.6 Activation Level was rated simi- 

arly to the AUs of some characters at the 0.8 level. 

.2.3. Action units 

Mouth Open, Eyes Closed, and Smile Lips Closed appeared to 

ave a higher perceptual effect since the perceived differences 

ere significantly higher when compared to all other AUs ( p < 

 . 02 ). Nostrils Dilated had the smallest effect since it was not sig-

ificantly different from the Neutral. See Fig. 3 and Table 2 . 
85 
Further interactions showed that Mouth Open was significantly 

ore different than most other shapes ( p < 0 . 005 ). Eyes Closed

ere also prominent on some characters, while Nostrils Dilated 

nd Frown were not different from Neutral, for some characters. 

Mouth Frown was the only AU to be rated significantly differ- 

ntly between the sexes ( p < 0 . 05 ), with the female characters be-

ng rated as more different. This could potentially be related to 

he inverse effect of gender stereotyping increasing saliency of un- 

xpected emotions seen in previous work (i.e., that females are 

erceived as more angry than males) [13] . We also found inter- 

ctions with Race, as well as interactions with Race and Sex (see 

able 1 ). While we observed many significant differences from 

ost-hoc tests, we did not observe any meaningful patterns. 

. Experiment 2: Online 

Our online experiment was devised to investigate the effect of 

articipant race on perception of model race (i.e., the other-race 

ffect [21,22] ) with a larger and more diverse pool of participants. 

We rendered out images of the stimuli and used an online form 

or presentation. To make the experiment shorter, we used only the 

ull activation level (1.0) for AUs. One hundred and forty-four tri- 

ls were shown to participants in random order, 12 AUs (including 

eutral) × 6 characters × 2 sides (right, left). 

For each trial of the experiment, we displayed the neutral 

xpression side-by-side with the stimulus, and counterbalanced 

hether the stimulus was displayed on the left or right hand side. 

articipants were asked to answer “How different are the expres- 

ions?” by selecting a radio-button. The radio buttons ranged from 

 defined as “Not Different” to 5 defined as “Extremely Different”. 

.1. Participants 

In order to reject participants that were not concentrating on 

he experiment, we checked our data where ‘No Difference’ was 

ot selected above a chosen threshold for the 12 trials where the 

eutral face was displayed on both the left and right. 

After removal of 24 users that failed our attention test, 120 par- 

icipants completed the experiment (40 White, 40 Black, 40 Asian, 

ith 20 Male and 20 Females in each race group). 

Since the experiment was conducted online, we did not have 

ontrol of screensize so we included a question on the form for 

articipants to report their monitor screen-size. 17 participants 

iewed the stimuli on a screen size of8–12”, 63 on 13–17”, 24 on 

8–23”, 15 on 24–26”, and 1 on screen of 27 and above. 

.2. Results 

In order to evaluate if smaller screen sizes made perceiving ge- 

metric differences more difficult, we first conducted an ANOVA 
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ith between factor Screen Size and within factor AU. The nor- 

ality assumption for our data was tested using Shapiro-Wilk test 

nd found that none of the residuals were normally distributed. 

herefore, a non-parametric analysis with Aligned Rank Transfor- 

ation (ART) was used, since it allows interaction effects to be 

nalysed (unlike the non-parametric Friedman’s test alternative) 

nd does not require assumptions for ANOVA to be met. Post-hoc 

ests ( α = . 05 ) with Tukey’s adjustment were conducted to check 

ignificance for pairwise comparisons. 

We did not find a main effect of Screen Size or an interaction 

ith AU, confirming that the size of participants’ screen did not 

ffect their judgments. 

.2.1. Race 

A mixed model non-parametric ANOVA was then conducted to 

etermine if there was an interaction between participant race 

nd character race, considering the within-group factors charac- 

er AU, and Race and between-groups factor participant Race. A 

ain effect of participant Race was found ( F (2 , 117) = 10 . 17 , p <

 . 0 0 01 ), where White participants rated differences overall lower 

han Asian or Black participants ( p < 0 . 04 in both cases). An in-

eraction between participant Race and AU ( F (2 , 4095) = 5 . 70 , p =
 . 0 0 0 ) was found but a closer look at the post-hoc comparisons

id not reveal many significant differences, except for White par- 

icipants giving significantly lower ratings for the Neutral AU com- 

ared to Black and Asian participants ( p < 0 . 05 ). 

A main effect of character Race also occurred ( F (2 , 4095) = 

 . 94 , p = 0 . 008 ), where differences shown on Asian characters

ere rated higher than differences shown on Black charac- 

ers, as before. A main effect of AU ( F (2 , 4095) = 773 . 09 , p =
 . 0 0 0 ), and interactions between AU and character Race occurred 

 F (22 , 4095) = 11 . 63 , p = 0 . 0 0 0 ), which followed the same trends

s before - differences were rated higher for Neutral AU and lower 

or Smile Lips Closed and Frown for White characters compared to 

ther two races. Higher differences were found for Eyebrows Up, 

yes Open AUs and lower for Mouth Frown and Cheeks Puffed 

or Black characters compared to the same AUs of other races 

 p < 0 . 05 , for all). 

Importantly, we found no interactions between the participant 

ace and character Race, implying that an ‘other-race’ effect did 

ot occur, and results on character race were consistent across par- 

icipants. 

.2.2. Sex 

A mixed model non-parametric ANOVA was conducted, consid- 

ring the within-group factors AU, and character Sex and between- 

roups factor participant Sex. There was no main effect of partic- 

pant Sex, or character Sex, or interaction between them. An in- 

eraction between participant Sex and AU ( F (11 , 2714) = 9 . 72 , p =
 . 0 0 0 ) showed that some AUs were perceived differently by male

nd female participants. Male participants perceived greater dif- 

erences for Neutral, Mouth Open, and Eyes Closed, while female 

articipants rated Mouth Frown higher ( p < 0 . 05 for all). An in-

eraction between AU and character Sex ( F (11 , 2714) = 4 . 37 , p =
 . 0 0 0 ) showed similar effects as in Experiment 1. For females,

he differences were higher for Neutral and Mouth Frown AUs, 

hile differences were higher for males compared to female char- 

cters for Smile Lips Closed ( p < 0 . 05 for all). There was also

 3-way interaction between AU, participant Sex and character 

ex ( F (11 , 2714) = 1 . 85 , p = 0 . 041 ), where only one difference was

ound in post-hoc tests for the Neutral AU - male participants rated 

emale characters higher than female participants ( p < 0 . 04 ). 
86 
.3. Discussion 

Our online experiment confirmed our findings from the labora- 

ory study on a larger sample size, and added the fact that our 

esults are generally consistent across participants, regardless of 

ex or race. Since our laboratory experiment was conducted in a 

ore controlled environment and tested more variables than the 

nline experiment, we use this data for our subsequent model fit 

 Section 7 ). 

. Error metrics 

We investigate here the relationship between numerical error 

etrics and perception. We calculate each metric for each Activa- 

ion Level of each AU, for each character. Each metric is calculated 

etween the neutral face and the activated AU. 

.1. Geometric error metrics 

Root-Mean-Square We calculate the RMS error between two 

eshes by getting the sum across all N vertices of the square root 

f the average of the square of each (x, y, z) component of each 

elta vertex δ� v n (difference between that vertex position in the 

lendshape mesh and the same vertex in the neutral mesh): 

RMS = 

N ∑ 

n =1 

√ 

1 

3 

δ� v T n δ� v n = 

1 √ 

3 

N ∑ 

n =1 

‖ δ� v n ‖ (1) 

Spatio-Temporal Edge Difference STED is a perceptual metric for 

ynamic meshes which focuses on local and relative changes of 

dge length by measuring the standard deviation of relative edge 

ength around each vertex, rather than global mesh difference. The 

odel parameters have been tuned such that its results best match 

erceptual data. For details and implementation, please refer to 

he paper by Vasa and Skala [53] , and an overview by Corsini 

t al. [51] . 

.2. Image error metrics 

To calculate our image metric results, we took screenshots of 

ach stimulus during the experiment and cropped out a large 

mount of the empty space surrounding each head. An example 

f the crop can be seen in Fig. 2 . MSE and SSIM were calculated

sing scikit-image [58] . 

Mean-Squared-Error We calculate MSE by getting the per-pixel 

verage error between images A and B , where N is the total num- 

er of pixels in the image, and 

�
 x A n is the n th pixel of image A. 

MSE = 

1 

N 

N ∑ 

n =1 

�
 x A n − �

 x B n (2) 

Structural Similarity Index Metric SSIM is calculated as defined 

y Wang et al. [52] and using the default suggested parameters. 

t is designed to model the response of the human vision system 

nd should correlate better to our perceptual results than standard 

SE. SSIM measures similarity between 0 and 1 rather than dis- 

imilarity: we invert this metric (i.e. 1-SSIM → SSIM) for better 

omparison with our other metrics where appropriate. 

. Model fit 

To find the best model describing the relationship between per- 

eptual results and the calculated errors, several Generalised Linear 

odels were tested and compared using Akaike Information Crite- 

ion (AIC) that combines the log-likehood (best fit) penalised by 

he model complexity (as measured by the number of parameters 

o estimate in the model) for selection of the best model [59] . The



R. McDonnell, K. Zibrek, E. Carrigan et al. Computers & Graphics 100 (2021) 81–92 

Table 3 

Model comparison with AIC ↓ to explain the perceived difference (columns 2 and 

3). Best link function reported between Identity (Id), log and sqrt. The lowest AIC 

for each metric are displayed in bold. Deviances (all with Poisson distribution and 

best link function) for models are shown column 4. A good model has a deviance 

in the interval [0; χ2 
0 . 95 ] with χ2 

0 . 95 reported in column 5. 

AIC ↓ is D ∈ [0; χ2 
0 . 95 ] ? 

Model Gaussian Poisson Deviance D χ2 
. 95 

Activ 29,700 (Id) 28,440 (Id) 7650 7396 

Activ ∗AU 24,880 (Id) 24,690 (Id) 3852 7374 

Activ ∗AU + Sex:Race 24,860 (Id) 24,680 (Id) 3827 7368 

Activ ∗AU 

∗Sex ∗Race 24,820 (Id) 24,760 (Id) 3681 7252 

STED 28,704 (Id) 27,346 (Id) 6551 7396 

STED 

∗AU 24,850 (sqrt) 24,680 (sqrt) 3844 7374 

STED 

∗AU + Race:Sex 24,832 (sqrt) 24,670 (sqrt) 3823 7368 

STED 

∗AU 

∗Sex ∗Race 24,781 (sqrt) 24,742 (sqrt) 3676 7252 

RMS 27,965 (Id) 26,903 (Id) 6109 7396 

RMS ∗AU 24,878 (Id) 24,688 (Id) 3852 7374 

RMS ∗AU + Race:Sex 24,853 (Id) 24,673 (Id) 3827 7368 

RMS ∗AU 

∗Sex ∗Race 24,810 (Id) 24,749 (Id) 3683 7252 

SSIM 29,534 (Id) 28,075 (Id) 7280 7396 

SSIM 

∗AU 26,287 (Id) 25,591 (Id) 4753 7374 

SSIM 

∗AU + Race:Sex 25,505 (sqrt) 25,112 (log) 4264 7368 

SSIM 

∗AU 

∗Sex ∗Race 24,799 (sqrt) 24,758 ( log ) 3680 7252 

MSE 29,920 (Id) 28,678 (Id) 7884 7396 

MSE ∗AU 26,940 (log) 26,120 (log) 5277 7374 

MSE ∗AU + Race:Sex 25,933 (Id) 25,384 (Id) 4536 7368 

MSE ∗AU 

∗Sex ∗Race 24,839 (Id) 24,776 (Id) 3698 7252 

Table 4 

ANOVA interactions with dependent variable “Difference” and within factors 

RMS, Sex, Race and AU. 

Df Sum Sq Mean Sq F value Pr( > F) 

RMS 1 11125.30 11125.30 6174.53 0.00 

AU 11 5114.03 464.91 258.02 0.00 

Sex 1 3.56 3.55 1.97 0.16 

Race 2 24.91 12.45 6.91 0.001 

RMS:AU 10 2103.48 210.35 116.74 0.00 

RMS:Sex 1 7.98 7.98 4.43 0.035 

AU:Sex 11 30.06 2.73 1.52 0.118 

RMS:Race 2 21.93 10.96 6.09 0.002 

AU:Race 22 132.01 6.00 3.33 0.00 

Sex:Race 2 36.30 18.15 10.07 0.00 

RMS:AU:Sex 10 10.55 1.05 0.59 0.827 

RMS:AU:Race 20 63.22 3.16 1.75 0.02 

RMS:Sex:Race 2 6.87 3.43 1.91 0.149 

AU:Sex:Race 22 140.94 6.41 3.56 0.00 

RMS:AU:Sex:Race 20 58.88 2.94 1.63 0.037 

Residuals 7062 12724.35 1.80 NA NA 
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Table 5 

ANOVA interactions with dependent variable “Difference” and within factors 

STED, Sex, Race and AU. 

Df Sum Sq Mean Sq F value Pr( > F) 

STED 1 8909.20 8909.20 4959.53 0.00 

AU 11 8879.79 807.25 449.38 0.00 

Sex 1 0.6 0.6 0.33 0.563 

Race 2 27.51 13.76 7.66 0.00 

STED:AU 10 591.92 59.19 32.95 0.00 

STED:Sex 1 10.49 10.49 5.84 0.016 

AU:Sex 11 34.24 3.11 1.73 0.060 

STED:Race 2 16.42 8.21 4.57 0.010 

AU:Race 22 116.68 5.30 2.95 0.00 

Sex:Race 2 26.00 13.00 7.24 0.00 

STED:AU:Sex 10 9.72 0.97 0.54 0.862 

STED:AU:Race 20 65.08 3.25 1.81 0.015 

STED:Sex:Race 2 5.76 2.88 1.60 0.201 

AU:Sex:Race 22 165.56 7.53 4.19 0.00 

STED:AU:Sex:Race 20 59.37 2.97 1.65 0.034 

Residuals 7062 12686.04 1.80 NA NA 

Table 6 

ANOVA interactions with dependent variable “Difference” and within factors 

SSIM, Sex, Race and AU. 

Df Sum Sq Mean Sq F value Pr( > F) 

SSIM 1 6135.88 6135.88 3393.49 0.00 

AU 11 8500.78 772.8 427.4 0.00 

Sex 1 204.14 204.14 112.9 0.00 

Race 2 615.25 307.62 170.13 0.00 

SSIM:AU 11 924.91 84.08 46.5 0.00 

SSIM:Sex 1 23.57 23.57 13.03 0.00 

AU:Sex 11 405.87 36.9 20.41 0.00 

SSIM:Race 2 113.56 56.78 31.4 0.00 

AU:Race 22 484.94 22.04 12.19 0.00 

Sex:Race 2 645.41 322.7 178.47 0.00 

SSIM:AU:Sex 11 97.8 8.89 4.92 0.00 

SSIM:AU:Race 22 148.01 6.78 3.72 0.00 

SSIM:Sex:Race 2 148.00 74.00 40.93 0.00 

AU:Sex:Race 22 297.97 13.54 7.49 0.00 

SSIM:AU:Sex:Race 22 100.09 4.55 2.52 0.00 

Residuals 7056 12758.19 1.80 NA NA 

Table 7 

ANOVA interactions with dependent variable “Difference” and within factors 

MSE, Sex, Race and AU. 

Df Sum Sq Mean Sq F value Pr( > F) 

MSE 1 4736.38 4736.387 2620.34 0.00 

AU 11 8523.97 774.906 428.71 0.00 

Race 2 599.75 299.875 165.90 0.00 

Sex 1 33.00 0.330 0.18 0.67 

MSE:AU 11 2162.63 196.603 108.77 0.00 

MSE:Race 2 133.16 66.580 36.83 0.00 

AU:Race 22 1098.38 49.926 27.62 0.00 

MSE:Sex 1 137.96 137.969 76.33 0.00 

AU:Sex 11 126.47 11.497 6.36 0.00 

Race:Sex 2 266.21 133.105 73.64 0.00 

MSE:AU:Race 22 547.68 24.894 13.77 0.00 

MSE:AU:Sex 11 136.11 12.373 6.85 0.00 

MSE:Race:Sex 2 25.38 12.690 7.02 0.00 

AU:Race:Sex 22 123.35 5.607 3.10 0.00 

MSE:AU:Race:Sex 22 232.52 10.569 5.85 0.00 

Residuals 7056 12754.04 1.807 NA NA 
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odel with the lowest AIC is deemed the best model (amongst 

hose tested) for explaining the observations. A χ2 test for the de- 

iance is then used to assess if this selected ‘best’ model is actually 

 good model for explaining the data [59] . Poisson and Gaussian 

istributions were tested in combination with several link func- 

ions (identity, log, and square root) [59] . We found that the Pois- 

on distribution captures the discrete nature of the perceived dif- 

erence best and provides lower AICs than with the Gaussian dis- 

ribution in the many models tested including the ones shown in 

able 3 . 

.1. Variable selection with ANOVA 

Tables 4 , 5 , 6 and 7 shows ANOVA results for the models

etric ∗AU ∗Sex ∗Race with Metric corresponding to RMS, 

TED, SSIM and MSE respectively (see also Appendix A ). These 

ables show the importance of each variable and their inter- 

ctions when fitting a model with Gaussian distribution and 

dentity link function with perceived difference as the depen- 

ent variable (some of these models have their AICs reported 
87 
n Table 3 ). As can be seen by the high values for Sum Sq., a

arge amount of the perceived difference is explained using the 

etric and the blendshapes (AU) along with their interactions 

etric ∗AU . These results imply the relationship between the 

erceived difference and the metrics (geometric or image based) 

re AU-specific, and using an AU-specific model is necessary for 

ood prediction. We note that MSE and SSIM alone have less 

xplanatory power than RMS and STED variables (see lower Sum 
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Fig. 4. Model-fit for perceived difference using geometry metrics RMS (a-b), STED (c-d), and image metrics MSE (e-f) and SSIM (g-h) as per models listed in Table 3 . The 6 

virtual characters behave in a similar fashion when using STED (c) and are well captured with the simpler model (d) corresponding to the average model fit across the 6 

virtual characters for each AU. 
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Table 8 

Comparing RMSE (full dataset) and K-fold cross-validation predic- 

tion error (measured with RMSE.CV averaged over 5 replications re- 

ported with standard error of less than 10 −3 )). 

Model RMSE RMSE.CV 

STED 

∗AU 1.355 1.359 

STED 

∗AU + Race:Sex 1.353 1.358 

STED 

∗AU 

∗Sex ∗Race 1.328 1.354 

RMS ∗AU 1.358 1.362 

RMS ∗AU + Race:Sex 1.355 1.359 

RMS ∗AU 

∗Sex ∗Race 1.330 1.358 

SSIM 

∗AU 1.497 1.501 

SSIM 

∗AU + Race:Sex 1.425 1.431 

SSIM 

∗AU 

∗Sex ∗Race 1.328 1.356 

MSE ∗AU 1.566 1.571 

MSE ∗AU + Race:Sex 1.497 1.503 

MSE ∗AU 

∗Sex ∗Race 1.332 1.361 

8

p

s

n

d

f

t

w

8

h

r

(

w
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r
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q. in the tables). These ANOVA tables explain the comparison 

hown in Table 3 where AICs of models shown are either using 

nly the metrics ( Metric = STED/RMS/SSIM/MSE), the full models 

 Metric ∗AU 

∗Sex ∗Race), the ones considering interactions between 

etrics and blendshapes ( Metric ∗AU), and the models that include 

ex and Race as additional contributing variables. Note that when 

hese two variables (e.g. terms Sex:Race or Sex ∗Race ) appear 

n the fitted models, the models become character specific for 

ur experiment (c.f. the 6 characters used shown Fig. 2 for which 

ndividual fitted lines appears and overlaps at times in Fig. 4 (a), 

c), (e) and (g)). 

.2. Best metric? 

In the geometry domain, all fitted models are good models as 

er their deviance reported in Table 3 [59] . However, we note 

hat the perceptual metric STED achieves a lower AIC (marginally) 

n comparison to the standard metric RMS (see Table 3 ). Simi- 

arly, in the image domain, the perceptual metric SSIM achieves a 

ower AIC (marginally) in comparison to the standard metric MSE 

 Table 3 ). All fitted models are good models as per their deviance

eported in Table 3 with the exception of the simplest one using 

nly MSE [59] . This shows that MSE has less explanatory power 

han SSIM for explaining the perceived difference, which is not sur- 

rising since it does not account for structural fidelity of the image. 

We found that the perceptual image metric SSIM (measured in 

 2D projective space) is not as powerful as even the standard ge- 

metry metric RMS (measuring the deformation in 3D) for explain- 

ng the perceived difference. 

This is interesting, as our participants viewed the stimuli as a 

D projection, however their recorded perceived difference is bet- 

er explained by geometric metrics computed from 3D meshes. A 

otential explanation may be that because faces are very familiar 

bjects, a 3D representation is automatically imagined or inferred 

y participants when viewing 2D facial images. Despite this, having 

 model fitted using image metrics can be useful for prediction of 

erceived difference when geometry metrics are not available (e.g., 

or facial photograph comparisons). 
88 
. Model prediction 

One application of our models can be to predict the viewer’s 

erceived difference for a given character’s deformation (as mea- 

ured by geometric or image metrics) from its neutral pose. We 

ote y an actual perceptual difference (data point) and ˆ y its pre- 

iction by one of our models. Prediction errors are computed with 

ormula error = ˆ y − y for each N data point and these are expected 

o be centered on 0. The RMSE = 

√ ∑ 

i er ror 2 
i 

N is a global score that 

e use here for assessing our models. 

.1. RMSE & Cross validation 

A K-fold cross-validation test (K = 10) was conducted to assess 

ow accurate the models are for prediction on unseen data. We 

eport in Table 8 RMSE values with this cross validation strategy 

RMSE.CV) as well as the RMSE of the model when fitted to the 

hole data (Column RMSE) as a baseline. Table 8 shows that the 

redictive precision are about identical for models using geomet- 

ic metrics (STED or RMS) in combination or not with factors Sex 

nd Race. On the other hand, models using image metrics (MSE 
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Fig. 5. For model RMS ∗AU, boxplots of errors = ̂  y − y are represented from left to right w.r.t. Perceptual difference y , Activation and blendshapes. Histogram of perceived 

differences from all collected responses from participants is also shown (top left). Histogram of collected responses per Activation level is also shown (top middle) for 

comparison and this flat distribution is also observed when counting responses w.r.t. AU (as per our experiment design explained in Section 3.3 and 4 ). 
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r SSIM) perform better with these additional factors that help to 

ompensate for the image metrics lacks of explanatory power in 

he models. We note that the models Metrics ∗AU 

∗Sex ∗Race fitted 

ith all the data slightly over-fit (i.e. RMSE.CV is systematically 

igher than RMSE by about 0.03). 

.2. Error analysis 

We analyse these prediction errors in more detail to check their 

istribution. As a representative result, Fig. 5 shows the box plots 

f these prediction errors for the model RMS ∗AU for each level of 

erceived difference, Activation level, and for each blendshape. We 

ote that boxplots have median value close to 0 for these errors 

hen shown w.r.t. Activation and blendshapes. Fig. 5 (left) shows 

he box plots of these prediction errors for each perceived differ- 

nce level as reported by participants (x-axis). In this case, we note 

hat for low level of perceived difference at 1, the model provides a 

lightly systematic over-estimated prediction ( ̂  y > y ). On the other 

and, for high levels of perceived difference between level 5 to 9, 

he model provides a under-estimated prediction ( ̂  y < y ). Partici- 

ants are not using evenly the Likert Scale for rating their per- 

eived difference (cf. histogram in Fig. 5 (top left)) and 82% of col- 

ected perceived difference data is in fact on the levels 1 to 5. Our 

odels provide mainly good performance for reported differences 

n levels 1 to 5 where most of the data is. 

. Discussion 

In this paper, we presented the first experiment on percepti- 

ility of facial action units, and the relationship with numerical 

etrics describing the displacements. Our main contribution is our 

erceptual models for perceptibility of facial action units which we 

emonstrated through cross-validation could predict perceptual re- 

ults from unseen data. Our model will provide a starting point for 

he development of a universal perceptual error metric suitable for 

uman faces. Our GitHub repository 4 is provided (data and mod- 

ls in R-code), allowing others to build on our data investigating a 

arger range of faces, viewpoints, and facial action units. 

Our other contribution is the results of our experiments which 

nswer our questions from before. Firstly, we found that some fa- 

ial action units were more perceptually noticeable than others, 

nd provide a table showing the order of importance ( Table 2 ). This

erceptual ordering will be useful for game developers for tasks 
4 https://roznn.github.io/facial-blendshapes/ 

d
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hat require an order of blendshapes, such as level-of-detail blend- 

hape reduction methods [5] , or example creation for blendshape 

ransfer [7] . By removing blendshapes of lower saliency, game de- 

elopers can reduce memory usage and computation time. 

We noted that diversity is missing from much of the psychol- 

gy and computer vision research on recognition and perception 

f faces. Therefore, we included Asian, Black, and White characters 

ith various skin tones to determine if our model could generalize 

cross characters with different appearances. In general, there were 

o large differences at a per-Race or per-Sex level, implying that 

ur results were generally consistent across characters. However, 

e did find an effect of Race (see Section 4.2.1 ), which showed 

hat certain expressions were less perceptible on our Black charac- 

ers. We felt that this result may have been due to our predomi- 

antly European and Asian participant pool in the Laboratory ex- 

eriment, indicating that differences in perception of Black charac- 

ers could be caused by the other-race effect [21,22] . However, we 

ested a more diverse participant pool in our Online Experiment, 

hich showed that the result was not due to the other-race effect. 

We also hypothesized that male and female faces would be ob- 

erved differently, but did not find much evidence for this, except 

hat the Mouth Frown AU was more noticed on the female than 

n the male faces in our laboratory experiment. We believe this 

ould be related to the inverse effect of gender stereotyping in- 

reasing saliency of unexpected emotions, in this case the Mouth 

rown could have been perceived as anger. Our online experiment 

onfirmed this effect and additionally found that male smiles (as- 

ociated with happiness) were rated as more salient than female 

miles, which is consistent with previous work by Hess et al. [13] . 

nterestingly, this was not affected by the sex of the participant. 

With regard to activation level, we found an equally-spaced lin- 

ar relationship between perceptual difference and activation level 

or most AUs. Additionally, we found that almost all AUs were not 

erceptibly different from the Neutral at our lowest activation level 

0.2), with the only exceptions being Eyes Closed and Mouth Open, 

hich were the AUs with the highest perceived difference overall. 

owever, there were some AUs that remained imperceptibly differ- 

nt from Neutral at higher activation levels. For example, Cheeks 

uffed and Mouth Frown only became significantly different at 0.6 

ctivation, Frown at 0.8, and Nostrils Dilated at 1.0. 

None of our image or geometric metrics used alone provided 

s with good statistical models. On the other hand, the perceived 

ifference is well explained by metrics for each AU taken indepen- 

ently (as seen with the different slopes in Fig. 4 ). 

Lower AICs have been measured using more complex GLM 

odels (not reported here) using two metrics in combination with 

https://roznn.github.io/facial-blendshapes/
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Table A.9 

ANOVA interactions with dependent variable “Difference” and within factors 

Activation, Sex, Race and AU. 

Df Sum Sq Mean Sq F value Pr( > F) 

Activation 1 5.53e + 03 5532.88 3069.03 0.00 

AU 11 1.17e + 04 1064.25 590.33 0.00 

Race 2 2.49e + 01 12.46 6.91 0.00 

Sex 1 3.56e + 00 3.56 1.97 0.16 

Act.:AU 11 1.10e + 03 100.29 55.63 0.00 

Act.:Race 2 5.51e-01 0.27 0.15 0.86 

AU:Race 22 1.53e + 02 6.94 3.85 0.00 

Act.:Sex 1 5.14e-01 0.51 0.28 0.59 

AU:Sex 11 3.73e + 01 3.39 1.88 0.04 

Race:Sex 2 3.63e + 01 18.15 10.07 0.00 

Act.:AU:Race 22 6.40e + 01 2.91 1.61 0.03 

Act.:AU:Sex 11 1.22e + 01 1.11 0.61 0.82 

Act.:Race:Sex 2 4.54e + 00 2.27 1.26 0.28 

AU:Race:Sex 22 1.47e + 02 6.68 3.70 0.00 

Act.:AU:Race:Sex 22 5.74e + 01 2.61 1.45 0.08 

Residuals 7056 1.27e + 04 1.80 NA NA 
U and we believe that non linear models such as neural networks 

ay be able to learn more informative metrics computed directly 

rom vertices or pixels for predicting the perceived difference more 

ccurately (e.g. for removing the bias of predictive errors shown in 

ig. 5 ). 

Image metrics were shown to be worse at predicting perceived 

ifferences than geometry metrics, even though the viewers only 

iewed the 3D geometry from a single viewpoint (i.e., they were 

ot allowed to interact with the geometry). This implies that hu- 

ans have a strong ability to infer 3D shape of faces from a 2D 

mage, and that the pixel-based differences in the images do not 

apture these differences as well as 3D geometry comparisons. This 

s unlikely to hold true for different viewpoints besides the front 

iew, but will be interesting to investigate in future work. 

Additionally, we found that eye AUs (Eyes Closed and Eyes 

pened) were rated high in terms of perceptual difference 

 Table 2 ) despite their low error metric values, showing that hu- 

ans are relatively more sensitive to eye expressions than other 

reas of the face. Additionally, Frown was one of the least percep- 

ually different AUs, however it had medium-level geometric er- 

or values compared to other AUs, and had either the highest or 

econd-highest error using image-based metrics. These results fur- 

her highlight the need for a perceptually AU-based error metric 

or describing facial geometry alterations. 

0. Limitations and future work 

In this paper, we limited our study to static expressions of in- 

ividual AUs to avoid confounds and to establish baseline models. 

owever, it must be noted that perception of animated faces with 

ombined expressions is more complicated, particularly since spe- 

ific AUs are important for the perception of emotion (e.g., AU 7 

id Tightener for anger [32] ). It is possible that activation of AUs 

hat are considered unimportant according to our model, could be 

xtremely important for the interpretation of emotion of a virtual 

uman, which we will study in future work. Additionally, we plan 

o broaden our investigation to the full range of AUs from FACS in 

uture work. 

We used only two characters to represent White, Black, and 

sian races, for the purposes of creating material variation in the 

haracter models. We found some small effects of character race, 

owever, more character models would be needed to generalize 

ur results. Similarly, while we found few differences across our 

ample of female and male Black, White and Asian participants, it 

s possible that other factors might affect results such as partici- 

ant age, etc. 

In the future, our perceptual experiment could be replicated 

nd new models fit for individuals that have more difficulty per- 

eiving facial expressions than the general population (e.g., those 

ith Autism Spectrum Disorder [60] ). Results would allow us to 

reate custom virtual agent systems that can increase or decrease 

lendshape activation levels to ensure clear perception of action 

nits. 
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ppendix A. Additional Analysis 

ANOVA has been used as a preliminary analysis for selecting 

nd understanding the role of the independent variables in our fit- 

ed models. Here, we show some additional analysis to further ex- 

mine the ANOVA presented in the paper. 

Table A.9 shows the results of the ANOVA analysis (Gaus- 

ian distribution with Identity link function): The dependent vari- 

ble Difference is well explained (with significant level) us- 

ng Activation , AU , Race , Activation:AU , the interaction 

ctivation:Race , and to a lesser extent (cf. order of magni- 

ude the Sum Sq ) with interaction AU:Race:Sex . Note that this 

odel for explaining dependent variable Difference is not the 

est suited (cf. AICs reported in the paper showing Poisson regres- 

ion as performing best). 

Table A.10 shows the results of the ANOVA analysis with 

oisson regression model which is a better fit as reported in 

he paper (based on AIC). The dependent variable Difference 
s likewise well explained using Activation , AU , interaction 

ctivation:AU , and Race:Sex , AU:Race:Sex . 

ppendix B. Residuals 

Fig. B.6 shows the QQplot for the Poisson model RMS ∗AU : KS 

KolmogorovSmirnov test) fails indicating that simulated data from 

he model (i.e. predicted differences) does not have exactly the 

ame distribution as the collected data (actual differences). Resid- 

al distributions shown as boxplots ( Fig. 5 ) indicate that the model 

oes not capture all deterministic patterns in the data: more com- 

lex models may provide a better fit. 

https://doi.org/10.13039/501100001602
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Table A.10 

Poisson ANOVA interactions with dependent variable “Difference” and within fac- 

tors Activation, Sex, Race and AU. 

Df Deviance Res. Df Res. Dev F Pr( > F) 

NULL NA NA 7199 9388 NA NA 

Activation 1 1737.96 7198 7650.28 1737.96 0.00 

AU 11 3227.60 7187 4422.68 293.42 0.00 

Race 2 8.90 7185 4413.79 4.45 0.01 

Sex 1 3.28 7184 4410.51 3.28 0.070 

Act:AU 11 570.63 7173 3839.88 51.88 0.00 

Act:Race 2 0.15 7171 3839.73 0.076 0.93 

AU:Race 22 37.72 7149 3802.01 1.71 0.020 

Act:Sex 1 0.01 7148 3802.00 0.0028 0.96 

AU:Sex 11 10.01 7137 3791.995 0.91 0.53 

Race:Sex 2 12.33 7135 3779.67 6.164 0.002 

Act:AU:Race 22 26.54 7113 3753.13 1.21 0.23 

Act:AU:Sex 11 4.33 7102 3748.799 0.39 0.96 

Act:Race:Sex 2 2.87 7100 3745.93 1.44 0.24 

AU:Race:Sex 22 43.89 7078 3702.047 1.995 0.0037 

Act:AU:Race:Sex 22 21.04 7056 3681.008 0.96 0.518 
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Fig. B.6. QQplot for model RMS ∗AU . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.cag.2021.07.022 . 
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