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This paper introduces a smooth posterior density function for inferring shapes from silhouettes. Both
the likelihood and the prior are modelled using kernel density functions and optimisation is performed
using gradient ascent algorithms. Adding a prior allows for the recovery of concave areas of the shape
that are usually lost when estimating the visual hull. This framework is also extended to use colour
information when it is available in addition to the silhouettes. In these cases, the modelling not only
allows for the shape to be recovered but also its colour information. Our new algorithms are assessed
by reconstructing 2D shapes from 1D silhouettes and 3D faces from 2D silhouettes. Experimental results
show that using the prior can assist in reconstructing concave areas and also illustrate the benefits of
using colour information even when only small numbers of silhouettes are available.
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1. Introduction

Three-dimensional reconstruction of an object that is seen by
multiple image sensors has many applications such as 3D mod-
elling [1,2] or video surveillance [3]. Shape from silhouettes meth-
ods infer the 3D shape of an object using a collection of its pro-
jected silhouette images captured from different points of view.
The best possible reconstruction (called the visual hull [4]) can be
computed using an infinite number of silhouettes captured from
all viewpoints outside the convex hull of the object. Volume-based
approaches focus on the volume of the visual hull [5–7,4] and this
formulation can be re-expressed in a probabilistic framework to
model uncertainty with a discrete cost function [8]. As an alter-
native, surface-based approaches aim to estimate a surface repre-
sentation of the visual hull from the contours of the silhouette
images [9–12], and Grauman et al. proposed a Bayesian frame-
work for inferring a 3D surface using, as a shape representation,
all contours of the silhouettes from multiple views [13]. However,
surface-based approaches are less numerically stable than volu-
metric ones and are also more sensitive to segmentation error.
Moreover, the visual hull does not capture concave regions of the
3D shape, and colour information can be used to palliate this lim-
itation [14,15].

Volume-based approaches based on voxel occupancy rely on
the optimisation of a discrete objective function [5–7,4]. The world
volume is split into elementary blocks (voxels) and each block can
project onto a pixel in the recorded silhouettes. Like the bin of a
histogram, the block is incremented each time it projects onto the
foreground part of a silhouette image. Such a representation corre-
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sponds to a histogram representation as an approximation of the
probability density function of the spatial random variable x to be
in the volume of the object. The quality of this reconstruction de-
pends on the number of camera views, their viewpoints, the voxel
resolution, and the complexity of the object. The discrete nature
of the histogram makes the approach memory demanding. More-
over, optimisation methods (e.g. exhaustive search) of such discrete
representations are limited and suboptimal compared to smooth
modellings that can be optimised with gradient ascent methods.
To alleviate this limitation, Kim et al. [16] recently proposed a
smooth Kernel Density Estimate (KDE) as another approximation
of the probability density function of the spatial random variable x
to be in the volume of the object. For simplicity, their modelling
considers a 3D object volume as seen by orthographic cameras.
Ruttle et al. [17] extended this modelling to use standard pinhole
cameras. Newton Raphson and Meanshift algorithms [16,17] can
be used efficiently to search for the maxima of these KDEs and
these are suitable for parallel programming using Graphics Pro-
cessing Units (GPU) for instance [18,19]. These smooth KDEs [16,
17] can be interpreted as likelihoods since they link the latent vari-
able (i.e. the spatial position of the object x) and the observations
(silhouettes and camera parameters). However, without prior infor-
mation about the object to be reconstructed, these modellings give
an estimate of the visual hull and are therefore unable to recon-
struct concave parts of the object.

To improve on the visual hull and recover concave regions,
we propose here to extend this smooth modelling with KDEs by
adding colour information in the likelihood and by adding prior in-
formation (Section 3). We assess our method experimentally (Sec-
tion 4) and show that our approach accurately reconstructs the
tested shapes. Accuracy, moreover, is enhanced when colour in-
formation is used. We first present our approach to model the
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Fig. 1. A 3D ray modelled by the intersection of two orthogonal planes P1 and P2. x ∈ R
3 is a position in space and xi is the spatial position of the pixel i in the image

plane P . Di(x) is the shortest Euclidean distance from the 3D ray.
likelihood function in Section 2 using observations recorded by
either orthographic or pinhole cameras [16,17,20]. This likelihood
is completed by introducing a prior model using either K-Nearest
Neighbours (KNN) [21] or Principal Component Analysis (PCA).
Both approaches are encapsulated in a multiresolution framework
to avoid local solutions. We assess the two algorithms respectively
for 2D and 3D shape inference from respectively 1D and 2D sil-
houettes.

2. Modelling the likelihood

Our modelling for the likelihood originates from the following
equation:

λ + F (x,Θ) = ε ∼ pε(ε) (1)

where

• x is the latent spatial variable of interest: x ∈ R
2 is a spatial

random variable in a plane (slice) when considering 2D shape
inference from 1D silhouettes, and x ∈ R

3 is in the 3D space
when performing 3D shape inference from 2D silhouettes.

• F is a given link function modelling the relation between the
spatial position x and the information collected by the camera
noted Θ (see Section 2.1).

• The observed random variable, Θ , is the projection of x in
the image planes and many observations have been captured
with the multiple cameras in the form of silhouette images.
The camera parameters are all assumed to be known. The set
{Θi}i=1,...,n collects all observations from all pixels captured
from different viewpoints.

• The random variable ε with distribution pε represents the
noise that affects Θ . This distribution pε is the normal dis-
tribution with mean zero and variance h2 in this paper.

• λ is an additive auxiliary variable in Eq. (1). Indeed Eq. (1)
allows us to write:

pλ|Θ,x(λ|Θ,x) = pε

(
λ + F (x,Θ)

)
The case of interest in this application is when λ = 0.

The joint density function of x and λ can be modelled by (as-
suming independence of Θ and x):

pλ,x(λ,x)

=
∫

pλ|Θ,x(λ|Θ,x)px|Θ(x|Θ)pΘ(Θ)dΘ (Bayes)

=
∫

pε

(
λ + F (x,Θ)

)
px|Θ(x|Θ)pΘ(Θ)dΘ
(
pε = pλ|Θ,x see Eq. (1)

)
= px(x)

∫
pε

(
λ + F (x,Θ)

)
pΘ(Θ)dΘ (independence)

= px(x)EΘ

[
pε

(
λ + F (x,Θ)

)]
(expectation) (2)

The joint density function of λ and Θ corresponds to the prior
px(x) multiplied by an expectation that can be approximated by
using the Strong Law of Large Numbers [22]:

p̂λ,x(λ,x) = 1

C
px(x)︸ ︷︷ ︸
prior

·
n∑

i=1

pε

(
λ + F (x,Θi)

)
πi

︸ ︷︷ ︸
when λ=0, lik(x)

(3)

The observation Θi collected on pixel i has a weight πi defined as
πi = 0 for a background pixel and πi = 1 for a foreground pixel
as defined by the binary silhouette images. The normalisation con-
stant C is defined as C = ∑n

i=1 πi . Note that this modelling also
allows the handling of non-binary silhouettes if one chooses to
use non-binary weights {πi}i=1,...,n . Inference about x can then
be performed by exploring the likelihood lik(x) or the posterior
p̂λ,Θ(λ = 0,x) when a prior is available. The term lik(x) can be
understood as an average of likelihood functions computed with
one observation at a time. More information about this inferential
framework can be found in [23]. Next, we introduce explicit link
functions F for two types of cameras.

2.1. Camera models

The definition of the link function F depends on the chosen
camera model. In our framework, we consider two types of cam-
eras: orthographic and pinhole. Orthographic camera models are
not faithful representations of real cameras but they provide a
connection with the Radon Transform (Section 2.1.1). Section 2.1.2
presents the link function for the pinhole camera model. Exper-
imental results for 3D shape inference from silhouettes recorded
by a pinhole camera using the cost function lik(x) are shown in
Section 4.1.

2.1.1. Orthographic camera
The function F links the information recorded in the image

with the 3D spatial position x. Fig. 1 illustrates this relationship:
each pixel i is characterised by a ray and all positions x onto this
ray project exactly on this pixel. The further away position x is
from the ray, the less influence the data recorded at pixel i has.
To model this, we choose the Euclidean distance between the ray
and x noted Di(x) = F (x,Θi) where Θi corresponds to all known
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Fig. 2. One 2D slice of an object is shown in the bottom row, left. Three 1D silhouettes have been observed (top row) and used to estimate the likelihood (middle, bottom
row: the blacker the colour of the map at x = (x, y), the higher the value of lik(x)). The estimated visual hull (shown bottom row, right) can be then extracted (Section 2.3).
The contour of the estimated visual hull is used as the initial estimate of our algorithms (Section 3). Note that as more silhouettes are captured, the estimate converges
towards the visual hull (e.g. Fig. 3 below shows lik(x) computed with 36 silhouettes).
parameters associated with pixel i (normal vectors are noted as n1i
and n2i , and spatial position of pixel i is noted as xi ):

Di(x)2 = d2
1 + d2

2

= (
nT

1i(x − xi)
)2 + (

nT
2i(x − xi)

)2
(4)

By setting one of the coordinates of x to be equal to a constant,
the cost function lik(x) can then be visualised in a 2D slice of the
object. As an illustration, Fig. 2 shows this cost function with x ∈
R

2 in a slice where the 1D silhouettes correspond to a single line
in the binary 2D silhouette image. Pintavirooj et al. have proposed
to solve shape from silhouettes using the inverse Radon Transform
for reconstruction in a stack of 2D slices [24] and Kim et al. have
shown how inference with the smooth cost function lik(x) in 2D
slices outperforms the discrete inverse Radon Transform approach
[16].

2.1.2. Pinhole camera
For the pinhole camera, the function F (x = (x, y, z),Θ =

(θ1, θ2, P )) is defined as [17]:

F (x,Θ) =
(

F1(x,Θ) = θ1 − x P11+y P12+z P13+P14
x P31+y P32+z P33+P34

F2(x,Θ) = θ2 − x P21+y P22+z P23+P24
x P31+y P32+z P33+P34

)
(5)

where P holds the camera matrix parameters that are known. The
observation Θi for pixel i corresponds to its pixel position in the
image (θ1i, θ2i) and its camera parameters Pi . Reconstruction with
the likelihood with a pinhole camera has been assessed on the
Middlebury dataset [25,17] and additional results are presented in
Section 4.1.

2.2. Extension to colour

The use of colour in volumetric reconstruction methods is also
well studied in the context of shape carving and of reconstruct-
ing the photo hull [14,15]. Indeed, using photo-consistency from
multiple view points can also help in recovering concavities. Our
modelling is extended to use both colour and silhouette informa-
tion for the inference of a coloured 3D shape. In order to take
colour into account, RGB values of the pixels are converted to
chromaticity values since chromaticity red and green are more in-
variant to lighting conditions [26,27]. The conversion equation is
as follows:

r = R

R + G + B
, g = G

R + G + B
(6)

Two additional Gaussian probabilities of chromaticity red r and
green g are added to the likelihood of the KDEs. The colour KDE is
then generalised as:

p̂λxrg(λ = 0,x, r, g) ∝ pxrg(x, r, g)

×
n∑

i=1

exp

(−F (x,Θi)
2

2h2
− (r − ri)

2

2h2
r

− (g − gi)
2

2h2
g

)
πi

︸ ︷︷ ︸
lik(x,r,g)

(7)

where (h,hr,hg ) are the bandwidths of the Gaussian kernels for
the spatial and colour domains. Such modelling allows for not only
the recovery of shapes but also of shapes’ surface colours (photo
hull).

2.3. Optimisation

The cost function lik(x) is a KDE computed using n observa-
tions. As n becomes larger, i.e. when more images are collected,
the computation of lik(x) at a spatial position x becomes more
intensive. In practise, we consider only the kernels with the obser-
vations (pixels) in the vicinity of the projection of x in each camera
view. This reduces the number of computations needed to evalu-
ate lik(x) at x. The contour of the convex hull of the object can
then be recovered using lik(x) computed on a grid spanning the
2D slice [17]. Alternatively, gradient ascent techniques can also be
used to find this convex hull [16,17]. In particular, the Meanshift
algorithm has been used for optimising both the likelihood lik(x)

(and lik(x, r, g)) and the posteriors when using an orthographic
camera model. Newton Raphson algorithms have been used when
using a pinhole camera [17,28].
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Fig. 3. View of lik(x = (x, y)) computed for the ALOI object (see Fig. 2) with 36
silhouettes. The contour is extracted and the feature vector collects all spatial po-
sitions x1, . . . ,xM around the contour and also the colour when available (Sec-
tion 3.1). At the start of the algorithms, this contour extracted from the likelihood
is the first guess X̂(0) .

3. Modelling of the posterior

Two modellings for the prior are proposed to complement the
likelihood, one using KNN (Section 3.2.1) and one using PCA (Sec-
tion 3.2.2). This prior is currently designed for shapes in 2D; 3D re-
construction is consequently performed using a stack of 2D slices.
First, we start by describing our shape representation (Section 3.1)
and our prior (Section 3.2). Resulting posteriors are presented in
Section 3.3 and the multiresolution approach in Section 3.4. Re-
sulting algorithms for inference of shape are summarised in Sec-
tion 3.5.

3.1. Shape description

The shape is described by a sequence of connected points. The
points are chosen uniformly along the contour in an anti-clockwise
direction (see Fig. 3). Note the sequence of points is normalised
by subtracting the mean of the points coordinates and by dividing
by their respective variance. This is a standard pre-processing step
for obtaining a representation that is invariant to translation and
scale. Our shape descriptor contains not only the ordered list of 2D
points {xi = (xi, yi)}i=1,...,M but also its local angles {αi}i=1,...,M : αi

is the angle between the vectors xi − xi+1 and xi − xi−1. We define
the function f as:

f (X) =

⎡
⎢⎢⎢⎢⎣

α1
α2
α3
...

αM

⎤
⎥⎥⎥⎥⎦ with X =

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
...

xM

⎤
⎥⎥⎥⎥⎦ (8)

where M is the number of sampled points to describe the shape.
Note that X and f (X) are not invariant to rotation, i.e. choosing
a different starting point x1 = (x1, y1) on the shape will lead to
other vectors X′ and f (X′) that will be cyclic permutations of X
and f (X). Note also that the representation f (X) is, however, in-
variant to scale changes on X.

Colour information can also be added when available in the
shape descriptor such that the chrominance information (Eq. (6))
for each location xi on the contour also appears in the descrip-
tor X. The spatial coordinates (x, y) and chromaticity values (r, g)

are used to create the feature vector and, therefore, the dimension
of the feature vector is 4 × M , where M is the number of points
on the contour.
3.2. Shape prior modelling

Having a training database of N shape exemplars, a standard
approach is to compress the information in the training database
and extract a small basis of functions to accurately reconstruct any
shape X with a small error. We propose two bases of functions,
KNN (Section 3.2.1) and PCA (Section 3.2.2), that can be used for
reconstruction. The exemplars {Xe

j} j=1,...,N used for training are all
normalised as described in Section 3.1 to remove the effects of
scale and translation.

3.2.1. Shape prior modelling using KNN
The distance metric between shapes X and Y is defined as fol-

lows:

d(X,Y) =
M∑

i=0

∣∣αX
i − αY

i

∣∣ (9)

This metric is an absolute distance between f (X) and f (Y) and
is used to find the nearest neighbours. We define our basis of
functions {Uk}k=1,...,K by selecting the K exemplars of the train-
ing database that will be at the shortest distance of a shape X. To
be insensitive to rotation, we also consider all cyclic permutations
of the exemplars. For instance, considering the first exemplar Xe

1,

we find its cyclic permutation m (noted Xe(m)
1 ) to have the mini-

mum distance d(X,Xe(m)
1 ) defined by:

m̂1 = arg min
m

{
d
(
X,Xe(m)

1

)}
(10)

Having computed all best distances between X and the N exem-
plars:{

d
(
X,Xe(m̂1)

1

)
,d

(
X,Xe(m̂2)

2

)
, . . . ,d

(
X,Xe(m̂N )

N

)}
(11)

the K exemplars with the shortest distances are then selected.
The reconstruction XU is defined on the basis of these selected
K -nearest neighbours (noted Uk):

XU =
K∑

k=1

ωk Uk (12)

The weights {ωk}k=1,...,K are calculated as follows:

ωk = 1

(K − 1)

(
1 − dk

dsum

)
with

dsum =
K∑

k=1

d(X,Uk) and dk = d(X,Uk) (13)

Note that the weights sum to 1,
∑K

k=1 ωk = 1. The reconstruction
XU approximates the observed shape X but at a normalised scale
since the exemplars in the training database are all normalised.

3.2.2. Shape prior modelling using PCA
The PCA-based representation has been widely used to model

shapes such as faces [29,30] and also in Active Appearance/Shape
Model [31–34]. PCA allows a shape to be approximated by a linear
combination of eigenvectors of the covariance matrix computed
using the exemplars. To remove the effect of rotation, we select

the best cyclic permutation X
e(m̂ j)

j of the exemplar Xe
j first for each

exemplar. The covariance matrix is computed with the N exem-

plars {X
e(m̂ j)

j } j=1,...,N and its first K eigenvectors associated with
the K highest eigenvalues are computed with singular value de-
composition [35]. The reconstruction XU of a normalised shape X
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is computed as the linear combination of the mean shape μ and
the K eigenvectors:

XU = μ +
K∑

k=1

ωk Uk with ωk = 〈X − μ|Uk〉 (14)

where the mean is μ = 1
N

∑N
j=1 X

e(m̂ j)

j and Uk is the eigenvector
associated with the kth highest eigenvalue. The disadvantage of the
PCA-based method is that the normalisation step to remove the
effects of translation and scaling is required for the current obser-
vation X to become as similar as possible to the training database

{Xe(m̂i)

i }i=1,...,N . Note, that using KNN with our shape descriptor
does not require these normalisation steps to be taken between
the observation X and training database.

3.3. Posterior and inference

Having a current guess of the contour noted X̂(t) , we can com-
pute the reconstruction X(t)

U = [x(t)
U1

, . . . ,x(t)
U M

]. We model a prior

using X(t)
U to allow for the estimation of the refined shape at

(t + 1). Each of the M points of X(t+1) = [x(t+1)
1 , . . . ,x(t+1)

M ] is

updated individually. Let us consider the first point x(t+1)
1 . The like-

lihood is modelled using the KDE (Eq. (3)) and the prior for x(t+1)
1

is modelled given X(t)
U and X̂(t):

post
(
x(t+1)

1

) ∝ lik
(
x(t+1)

1

) × prior
(
x(t+1)

1 |X(t)
U , X̂(t)) (15)

The reconstruction X(t)
U is converted into M − 1 unit vectors

{n(t)
m }m=2,...,M such that n(t)

m is orthogonal to the line defined by

(x(t)
U1

,x(t)
Um

). We assume that the update x(t+1)
1 is in the neigh-

bourhood of the line orthogonal to n(t)
m and going through the

point x̂(t)
m . This can be translated into the following equation:

n(t)T
m

(
x(t+1)

1 − x̂(t)
m

) = εp (16)

where εp ∼N (0,h2
p) is the error with normal distribution (mean 0,

variance h2
p). In a similar fashion as the likelihood, the prior is

modelled using a KDE:

prior
(
x(t+1)

1

∣∣X(t)
U , X̂(t)) ∝

M∑
m=2

exp

(
− (	nT

m(x(t+1)
1 − x̂(t)

m ))2

2h2
p

)
(17)

We use only slopes from the reconstruction and therefore this
method is invariant to scale difference between the shape X̂(t) and
the normalised reconstruction X(t)

U . Since both the likelihood and
the prior are KDEs, the posterior distribution is also a KDE and a
gradient ascent algorithm is used here to maximise the posterior:

x̂(t+1)
1 = arg max

x(t+1)
1

{
post

(
x(t+1)

1

)}
(18)

This is repeated for each point in the contour such that the esti-
mated update is computed:

X̂(t+1) = [
x̂(t+1)

1 , . . . , x̂(t+1)
M

]
The shape of the initial guess X̂(0) is the result of the estimation
using only the likelihood [16] (Fig. 3).

3.4. A coarse-to-fine strategy

In order to converge iteratively towards a good solution even
if the starting guess X̂(0) (e.g. the convex approximation to the
shape) is far from it, we need to be careful when modelling the
prior. Indeed at the start, the reconstruction X(0)
U may not be very

accurate. To avoid this problem, we construct a Gaussian shape
stack whose concept is introduced in Lefebvre and Hoppe [36]. The
Gaussian stack is constructed by smoothing the exemplar shapes
in the prior set using increasing bandwidths (noted h(t)

e ) without
downsampling the shapes as is usually done in Gaussian pyramids.
This stack is computed using the convolution with a Gaussian
(with bandwidth h(t)

e ) on all exemplars in the training database
from large to small bandwidths as a smoothing factor. We note
She(t)

prior to be the set of exemplars smoothed with a Gaussian of

bandwidth h(t)
e . The bandwidth h(t)

e decreases at each iteration of
the algorithm as follows:

h(t)
e = αthmax until he � hmin with α = 0.9 (19)

where hmax = 13, hmin = 1 and hmax is selected experimentally.
This procedure allows us to achieve a coarse-to-fine strategy in
modelling the prior. Fig. 4 shows how an exemplar shape evolves
from a smooth convex shape to a more structured one as the
bandwidth he decreases. The reconstruction at time t , X(t)

U , that is
approximated from the selected exemplars in the training database
is then iteratively refined to get more accurate shape estimates.

3.5. Algorithms

The estimation procedure using KNN is summarised in Algo-
rithm 1:

Algorithm 1 Shape from Silhouettes using KNN prior

Computation of an initial guess X̂(0) of the shape at time t = 0 with the likelihood
[16]
Init he(0) = hmax = 13
repeat

Select the K nearest exemplars of X̂(t) in She (t)
prior and compute X(t)

U (Eq. (12))
for i = 1 → M do

Model the prior for x(t+1)
i (Eq. (17))

x̂(t+1)
i = arg max

x(t+1)
i

{post(x(t+1)
i )}

end for
t ← t + 1
he(t) = αt hmax with α = 0.9

until he(t) � hmin = 1

The estimation procedure using PCA is summarised in Algorithm 2:

Algorithm 2 Shape from Silhouettes using PCA prior

Computation of an initial guess X̂(0) of the shape at time t = 0 with the likelihood
[16]
Init he(0) = hmax = 13
repeat

Compute PCA using exemplars in She (t)
prior and select the K eigenvectors associ-

ated with the highest eigenvalues. Normalise X̂(t) and compute X(t)
U (Eq. (14)).

for i = 1 → M do
Model the prior for x(t+1)

i (Eq. (17))

x̂(t+1)
i = arg max

x(t+1)
i

{post(x(t+1)
i )}

end for
t ← t + 1
he(t) = αt hmax with α = 0.9

until he(t) � hmin = 1

The proposed prior is updated iteratively so that concavity infor-
mation can be introduced progressively using the Gaussian stack.
The prior is also refined at each step by choosing the nearest
neighbours of the current estimate (KNN) and by recalculating the
eigenvectors (PCA). Both our approaches refine the selection of
these components iteratively during the estimation. This strategy
differs from standard approaches where the reconstruction is com-
puted as a linear combination of K fixed pre-selected components.
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Fig. 4. Multiresolution approach: variations of one of the exemplars in the training database w.r.t. he .

Fig. 5. Shape from silhouette reconstruction using the likelihood lik(x) (modelled with x ∈ R
3). From top to bottom: original objects, one silhouette, reconstruction from

respectively 3, 6 and 36 camera views (i.e. silhouettes).
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4. Experimental results

Section 4.1 shows the 3D reconstruction using only the like-
lihood with real images captured on a turning table. Section 4.2
assesses our methods for the reconstruction of 2D shapes from 1D
silhouettes. Section 4.3 extends our approaches to 3D shape infer-
ence from 2D silhouettes.

4.1. 3D reconstruction using lik(x)

Fig. 5 shows the 3D reconstructions computed using the likeli-
hood lik(x) (with a pinhole camera model) on real objects captured
with a turning table. The inference is directly performed in the 3D
space (x ∈ R

3). Note how the concavity is not recovered: as more
camera views are available, the reconstruction converges towards
the visual hull. This reconstruction using the likelihood has been
assessed and compared with the Middlebury dataset [25,17] us-
ing silhouettes. Inference with our gradient ascent algorithms has
shown to be advantageous in terms of both memory requirements
and computation time [17,28].

4.2. 2D shape reconstruction using KNN

This experiment assesses our approach for 2D shape reconstruc-
tion from 1D silhouettes using a projective camera model.

4.2.1. Training and test databases
The 2D shapes that model the prior are the contours of 6 ob-

jects taken from the ALOI database [37]. Each object class has
seven images recorded from different viewing angles [0◦,15◦,30◦,
45◦,60◦,75◦,90◦] which are divided into the test database Stest

(angles [15◦,45◦,75◦]) and the training database Sprior (angles
[0◦,30◦,60◦,90◦]) (see Fig. 6). The training database Sprior is used
to approximate the prior for the shape with KNN. The total num-
ber of exemplars in the training set Sprior is N = 6 × 4 = 24. The
exemplar Xe is sampled into M = 360 points to represent its con-
tour.

4.2.2. Observations
The observed silhouettes correspond to 1D binary signals: the

contours in Stest are back-projected using orthographic projection
in different directions. These projections are computed using the
Radon Transform that are then thresholded to give binary silhou-
ettes. These binary 1D silhouettes are used to compare the recon-
structions inferred using the likelihood and the ones inferred using
the posterior. Colour information on the foreground is also used to
design one of the posteriors and we assess next its benefits com-
pared to using only the silhouettes.

4.2.3. Experiments
In this section we compare the following 2D reconstructions:

• X̂1 inferred using the likelihood computed with the silhouettes
as observations,

• X̂2 inferred using the posterior (KNN K = 2) computed with
the silhouettes as observations,

• X̂3 inferred using the posterior (KNN K = 2) computed with
the silhouettes and the foreground colour as observations.

Having the ground truth shape O, the Euclidean distance di =
‖X̂i − O‖, ∀i = 1,2,3 is computed to assess the reconstructions.
The distances are computed for all shapes in the test set Stest and
their averages over all the shapes, di , are computed with their
standard errors. Fig. 7 shows d1, d2 and d3 w.r.t. the number of
views (number of projections or 1D silhouettes available). The dis-
tance d1 can only decrease up to a point where the visual hull
Fig. 6. Databases of 2D shapes at the highest resolution used for training and test-
ing our algorithms. All cyclic permutations of these exemplars are also taken into
account to allow the reconstruction process to be insensitive to rotations. When
colour information is used, the colour on the contours in the original images of the
ALOI database [37] is used.

Fig. 7. Euclidean distance plot with standard error w.r.t. the number of camera
views: d1 (blue), d2 (red) and d3 (green). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this arti-
cle.)

is recovered since only the likelihood is used. The distance d2

is lower than d1 because the posterior allows for the recovery
of concave regions of the shape. This is only the case, however,
when a sufficient number of views are available (superior to 7)
and we note that the standard errors of d2 are quite large when
very few cameras are used. Indeed, if the shape cannot be well
discriminated from different viewing angles using only silhouette
information, it becomes hard to choose the optimal exemplars (the
K neighbours) to compute the prior. Also, there are sometimes
problems in finding the best cyclic permutation of an exemplar
Xe(m̂) which can be misleading when trying to create the prior for
the shape. However, we note that the performance of the recon-
struction X̂2 is better than X̂1 computed with the likelihood when
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Fig. 8. Reconstructions: groundtruth O (red), X̂1 (green), X̂2 (blue) and X̂3 (yellow).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

more than 7 cameras are used. When adding colour information,
d3 is the smallest overall indicating that X̂3 is the best reconstruc-
tion regardless of the number of cameras used.

The 2D reconstructions are shown in Fig. 8. In general, con-
cavities are well recovered using the posteriors compared to the
likelihood unless there are not enough clues (in the observations)
to guide the selection of the best exemplars. Overall the results
show that the posteriors are able to recover the concave parts of
the object and perform better than the likelihood.

Fig. 9 shows the reconstructions X̂3 at different resolutions of
our algorithm. Concavity is introduced iteratively by decreasing the
smoothing parameter he . We can see that the reconstruction is
very close to the ground truth (i.e. corresponding smoothed ex-
emplar) at each resolution level.

4.3. 3D face reconstruction using PCA

In this section, the prior is modelled using PCA as the eigenvec-
tors are known to be an excellent basis to represent faces, both for
2D images [38] and 3D scans [39].
4.3.1. Database
We used the 3D Basel face model [39] which was created us-

ing 200 registered faces acquired with a structured light scanner
(Fig. 10). Synthetic faces can be generated from random model co-
efficients as proposed by Paysan et al. [39]. For our experiments,
a total of 44 faces were created from the 3D Basel face model:
9 faces are used for the test set Stest and 35 faces (N = 35) are for
the training set Sprior . To create silhouettes in multiple views, the
3D faces are projected in several directions using an orthographic
projection. The 3D faces have been split into 70 horizontal slices.
A 3D reconstruction is then computed by stacking the estimated
horizontal 2D reconstructions along the Z -axis. The faces only cor-
respond to a truncated head (see Fig. 11) where the back of the
head is ignored. This truncation makes the alignment in rotation
easier in our algorithm (i.e. contrary to Section 4.2, there is no real
ambiguity in the projections and therefore the prior is not prone
to error in finding the best cyclical permutation of the exemplars).
The novelty in this experiment is to adapt the 2D shape inference
scheme proposed in this paper for 3D shape inference. In particu-
lar we need the selected prior for each 2D stack.

4.3.2. Modelling the 3D prior
The shape descriptor is redefined as follows for the PCA priors:

X = [S1;S2; · · · ;Ss] (20)

where Si is the contour described by M = 360 points in the 2D
ith slice and s is the total number of the 2D slices (here s = 70).
The order of the 2D slices to create the feature vector is from top
to bottom and the sequence of the points for the slice is in an
anti-clockwise direction (Fig. 11). The 3D prior XU in Algorithm 2
for the 3D faces is computed at each resolution by finding the best
rotations of all the 3D exemplars in Sprior to align them with the
current 3D reconstruction X̂. Then PCA is computed for each slice
using the aligned exemplars and only K = 3 eigenvectors are used
to update the prior in each slice.

4.3.3. 3D reconstructions of faces
In this section, we compare the following 3D reconstructions:

• X̂4 inferred using the posterior (PCA K = 3) computed with
the silhouettes as observations,

• X̂5 inferred using the posterior (PCA K = 3) computed with
the silhouettes and the foreground colour as observations.
Fig. 9. From left to right: coarse-to-fine evolution of the reconstructions X̂3 (red) with the ground truth (green) at the same resolution level. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Examples in the Basel face model [39].
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Fig. 11. 3D face decomposed into 2D oriented slices.

36 orthographic binary projections (2D silhouettes) were used in
this experiment in addition to foreground colour information for
computing X̂5. Fig. 12 presents some 3D reconstruction results
with their error surfaces. The error surfaces show the distances be-
tween the points of the reconstructions and the closest polygon in
the mesh of the ground truth. The average height of the 3D heads
in the database is 150 mm and the error ranges from 0 mm to
10 mm in the error surfaces.
Table 1
Means and standard deviations (in mm) of the absolute error between the ground
truth GT and the reconstructions, X̂4 and X̂5, and also the PCA mean μ (see Fig. 12
for the error surfaces computed for faces (1)–(3)).

X̂4 X̂5 μ

(1) mean 2.258 2.1836 3.329
(1) std 1.7246 1.7108 4.2664

(2) mean 2.3504 2.2651 3.1239
(2) std 1.6866 1.6555 3.9391

(3) mean 2.4344 2.2633 2.5122
(3) std 1.825 1.802 3.4992

Table 1 shows the means and standard deviations of the er-
rors (shown as error surfaces in Fig. 12) when comparing the re-
constructions with the ground truth. We have also computed the
mean and standard deviation of the errors when comparing the
average face μ given by PCA with the ground truth. We note that
using K = 3 principal components, both reconstructions X̂4 and X̂5
Fig. 12. 3D face reconstruction: groundtruth (GT, left), the estimates (middle) (X̂4 is on top of X̂5 in each case), the corresponding error surfaces |X̂4 − GT | and |X̂5 − GT |
compared with the error with the PCA mean |GT − μ| (right). The colour scale for all the error surfaces is also shown ranging from 0 mm (blue) to 10 mm (red).
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Fig. 13. Colour rendering: groundtruth (left), 3D face reconstruction X̂5 with colour rendering (middle) and its colour error surfaces (right).
are closer to the ground truth than the mean face. Moreover, us-
ing colour information allows the reconstruction X̂5 to be closer to
the ground truth than the estimate X̂4.

Artefacts Note that discontinuous circular bands appear on the sur-
face of the reconstructions due to the 2D slice representation of
the prior modelling (Fig. 12). However, simple post-processing like
vertical smoothing can easily remove these discontinuities.

4.3.4. Rendering of the estimated colour
When using colour information, not only is the spatial loca-

tion estimated but also the chrominance information at that lo-
cation. Fig. 13 shows the estimated colour textures on the 3D
reconstructed surface results. The texture error surface is also
shown. Only chrominance information is estimated in our algo-
rithm, so we use the intensities of the approximated prior to
convert the chromaticity -red and -green into the RGB colour
space for visualisation purposes only. Then the RGB colour dif-
ferences between the ground truth and the reconstruction re-
sults are calculated to visualise the error surfaces. In Fig. 13,
the colour textures are well estimated globally and well matched
with the estimated shapes. However, it is more difficult for the
methods to estimate colour information in some tiny regions of
more complicated shapes and colour patterns such as parts of
the mouth and the upper eye. To deal with this problem, the
contour on each slice should be described with more points M
to get a higher level of detail but this would increase the com-
putation time. The Rapidform-XOR software [40] has been used
for rendering the 3D reconstructions and coloured 3D reconstruc-
tions.
4.4. Discussion

We have shown first that shape from silhouettes is able to re-
cover concavities when prior information is used for inference and
second, that colour information can also be taken into account to
improve the overall reconstructions. The cost functions used for
inference are smooth and differentiable and are suitable for opti-
misation using gradient ascent techniques.

The proposed priors have been designed using standard ideas
for reconstructing a contour on a basis of selected components.
Depending on the nature of the database, we have proposed to
compute these components either using PCA or KNN. For instance,
faces (Section 4.3) are very well reconstructed with PCA with only
K = 3 components. For comparison, similar reconstruction results
have been obtained using KNN but with K = 23 components in
this experiment.

In the first experiment (Section 4.2), KNN was the most efficient
method and this can be understood by the fact that any shape
in the test set will be best explained by the K = 2 neighbours
from the prior set that correspond to the same object as viewed
from a slightly different angle. For instance, the duck viewed at
angle 15◦ in the test set is very close to the two ducks viewed
at angles 0◦ and 30◦ in the training set (Fig. 6). Note that the
proposed algorithms can then be adapted to any other strategy for
finding the best components.

The prior is currently modelled in 2D and this can be a limi-
tation only if the solution from the likelihood (used as an initial
guess for the posterior) is not well aligned with the model in 3D
space. In practise, using only silhouette information is not the best
approach for processing accurate 3D reconstruction because well
segmented binary silhouettes are difficult to collect and also be-
cause the optimal solution in a perfect setting is the visual hull
(a convex approximation of the 3D shape and not the shape itself).
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The likelihood can be improved further by taking into account
more information from the sensor to recover concavities: for in-
stance Ruttle et al. [41] used the depth information recorded by
the Kinect camera to extend the KDE for the likelihood. Note that
depth information also eases the segmentation of more reliable bi-
nary silhouettes for 3D reconstruction with shape from silhouettes
methods.

5. Conclusion and future work

This paper has proposed KDEs of posterior density functions
to infer shape from silhouettes. Optimisation is performed using
gradient ascent algorithms suitable for parallel processing [18,19].
Two methods have been proposed to model the prior (PCA and
KNN) and the reconstructions using these posteriors have shown
that concavities can be well recovered when using prior informa-
tion. The posterior has been extended to use colour information
both on the likelihood and the prior. This last modelling method
offers the best performance in particular when few camera views
are available. Current efforts aim at extending the framework to
consider other types of data (e.g. depth data) to improve the like-
lihood, to tackle the problem of inacurate camera parameters [41]
and to investigate inference of 3D shape with prior information
but without point correspondence [42].
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