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Abstract We present a novel and effective skeletonization
algorithm for binary and gray-scale images, based on the
anisotropic heat diffusion analogy. We diffuse the image in
the direction normal to the feature boundaries and also al-
low tangential diffusion (curvature decreasing diffusion) to
contribute slightly. The proposed anisotropic diffusion pro-
vides a high quality medial function in the image: it removes
noise and preserves prominent curvatures of the shape along
the level-sets (skeleton features). The skeleton strength map,
which provides the likelihood of a point to be part of the
skeleton, is defined by the mean curvature measure. Finally,
thin and binary skeleton is obtained by non-maxima sup-
pression and hysteresis thresholding of the skeleton strength
map. Our method outperforms the most related and the pop-
ular methods in skeleton extraction especially in noisy con-
ditions. Results show that the proposed approach is better
at handling noise in images and preserving the skeleton fea-
tures at the centerline of the shape.

Keywords Skeletonization · Feature extraction · Heat
flow · Computer vision

1 Introduction

Skeleton or medial axis (Blum 1967) is a thin version of the
shape, which is an important feature for shape description in
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image processing and computer vision. It offers simple and
compact representation of shapes while preserving its topol-
ogy. Skeletons can be used for instance to classify objects
(Aslan et al. 2008; Ward and Hamarneh 2010) or to estimate
their poses and orientations (Macrini et al. 2008). There are
different algorithms for skeletonization of shapes in images.
We review skeletonization techniques divided into two cate-
gories: the ones that are limited to the pre-segmented binary
images (Sect. 1.1) and the ones that are capable of extracting
skeletons from gray-scale images (Sect. 1.2).

1.1 Skeletonization of Binary Images

Popular techniques used for skeleton extraction in binary
images are based on thinning (Lam et al. 1992), Voronoi
diagrams (Ogniewicz and Kubler 1995), distance transform
(Arcelli and Baja 1992; Kimmel et al. 1995; Malandain and
Vidal 1998), Poisson equation (Gorelick et al. 2006), New-
ton’s law (Siddiqi et al. 1999) and Electrostatic field (Gro-
gorishin et al. 1996). Thinning (Lam et al. 1992) is a pro-
cess that deletes object boundary pixels iteratively with a
set of conditions. Complex conditions are required to termi-
nate this deleting process as well as to preserve the topol-
ogy and the connectivity of the skeleton. In Ogniewicz and
Kubler (1995), the skeleton is extracted from the Voronoi
diagram computed on the boundary of the object. This ap-
proach is theoretically well defined in a continuous space,
which means a high sampling rate of the boundary points is
required to compute a Voronoi diagram of good quality. The
Voronoi skeletons also need complex post-processing stages
to prune the branches. Recently, Krinidis and Chatzis (2009)
proposed a physics-based deformable model for skeletoniza-
tion that does not produce spurious branches.

A medial function is a scalar function that locally assigns
higher values to skeleton points than non-skeleton points.
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Many techniques use distance transform as a medial func-
tion to extract skeletons (Arcelli and Baja 1992; Kimmel
et al. 1995; Malandain and Vidal 1998). The distance trans-
form computes at each pixel position its minimum distance
to the shape boundary. However, the distance transform is
very sensitive to the small perturbations of the boundary,
since each value on shape is assigned according to the single
boundary point (nearest one). Similar to the Voronoi skele-
tons, the skeletons obtained by the distance transform need
a pruning stage if the boundary is noisy (Bai et al. 2007;
Shen et al. 2011). To overcome the limitations of the dis-
tance transform, a few smooth medial functions have been
introduced which are based on Newton’s law (Siddiqi et al.
1999), Electrostatic field (Grogorishin et al. 1996) and Pois-
son equation (Gorelick et al. 2006). These methods are tak-
ing into account several boundary points and therefore they
reflect better the global properties of the shape than the dis-
tance transform does. However all these methods presented
above require pre-segmented binary images, since they use
object boundary to compute skeletons.

1.2 Skeletonization of Gray-Level Images

Tari et al. (1997) extract skeletons from gray-scale images
by analysing the level-set curves of the edge strength func-
tion. The edge strength function is computed using the lin-
ear diffusion equation. Lindeberg (1998) treated the skele-
tonization in a similar way as edge detection in scale-space
(Witkin 1983), with automatic scale selection. Scale-space
analysis involves generating images at coarser resolution
by convolving the original image with a Gaussian kernel.
Koenderink (1984) and Hummel (1986) pointed out that the
family of derived images using the Gaussian kernel may be
equivalently viewed as the solution of the linear heat diffu-
sion equation. In linear heat diffusion, blurring is required to
be spatially invariant which makes it difficult to obtain accu-
rate locations of edges and skeleton features at coarse scales.
Linear diffusion techniques can cause loss and relocation of
skeleton features, which is an important drawback.

There are also approaches which uses gradient vector
diffusion for skeleton extraction in gray-scale images. The
first gradient vector diffusion was introduced by Xu and
Prince (1998) as a new external force model for active con-
tours in the shape extraction context. Then, this model has
been adapted for skeleton extraction (Yu and Bajaj 2004;
Le Bourgeois and Emptoz 2007). Yu and Bajaj (2004) com-
pute skeletons in gray-level images based on anisotropic
gradient vector diffusion, where the initial vector fields are
obtained by various ways to overcome noise in images.
However, gradient-based approaches, which are also used
in active contour models, are sensitive to noise (Direkoglu
and Nixon 2007). Image smoothing or some heuristics (Yu
and Bajaj 2004) can be applied to improve initial gradient

vector field. However, they can only increase the tolerance
to the noise and they are likely to lose important features
after smoothing.

1.3 Contribution

Given a smooth medial function, the curvature maxima
along the level-sets define the shape skeleton (Tari et al.
1997; Lindeberg 1998). In this paper, we propose a novel
medial function, which can be computed both for binary
and gray-scale images, based on the anisotropic heat diffu-
sion. We diffuse the image in the normal direction to the
feature boundaries and also allow the tangential diffusion
(curvature decreasing diffusion) to make small contribution.
A diffusion coefficient is used to control the relative weight
of the tangential diffusion with respect to the normal diffu-
sion, defining a family of medial functions controlled by a
unique parameter. Our approach denoises the image and ob-
ject boundary, while preserving the prominent curvatures of
the shape along the level-sets that represent skeleton loca-
tions. Once the medial function is computed with the pro-
posed anisotropic diffusion, the skeleton strength map is
then defined by the mean curvature measure. The overall
process is terminated by removing non-maxima and by us-
ing hysteresis thresholding to obtain a thin and binary skele-
ton.

The proposed method performs better than the most re-
lated diffusion methods and better than the other popular
methods in skeleton extraction especially in noisy condi-
tions. The proposed diffusion removes noise in images and
on the object boundaries, while preserving the skeleton fea-
tures at the centerline of the shape. This has been validated
both with quantitative and qualitative (visual) evaluations.
We directly diffuse images without the need of any seg-
mentation or shape extraction. We do not need to compute
edge maps or initialize boundaries of the shape like most of
the other methods in skeleton extraction. In addition, we do
not need any skeleton pruning method as a post-processing
stage, since the proposed diffusion does not produce any
spurious branches.

An earlier version of this work was presented in Di-
rekoglu et al. (2010). This paper extends further the evalua-
tions and the comparisons. In particular, we assess the accu-
racy and robustness to different noise types and noise levels
in the images, while comparing with other related methods.
We also study the effect of an increasing diffusion time and
the diffusion coefficient.

The rest of the paper is organized as follows. Section 2
introduces the proposed anisotropic heat diffusion and the
novel medial function. Section 3 presents our experimental
results and the comparisons with other techniques. Conclud-
ing remarks are in Sect. 4.



172 Int J Comput Vis (2012) 100:170–189

Fig. 1 Directions to the feature
boundary through a given point

2 Proposed Diffusion and Skeleton Extraction

In skeleton extraction, it is an important task to compute
a smooth medial function of high quality that can provide
skeleton features well and without noise. One of the main
features for skeleton point detection is curvature maxima
along the level-sets of the medial function. In this sec-
tion, we present the proposed anisotropic heat diffusion as
a novel medial function generation technique, which can
remove noise in the image and can preserve the promi-
nent curvatures of the object shape along the level-sets. In-
troductory tutorials on the heat diffusion equation are also
given in Ursell (2007) and Direkoglu (2009). The proposed
anisotropic heat diffusion equation is obtained with the fol-
lowing considerations.

Edge directions are related to the tangents of the feature
boundaries of an image I . Let η denote the direction normal
to the feature boundary through a given point (the gradient
direction), and let τ denote the tangent direction, as shown
in Fig. 1. These directions can be written in terms of the first
derivatives of the image, Ix and Iy , as

η = (Ix, Iy)√
I 2
x + I 2

y

, τ = (−Iy, Ix)√
I 2
x + I 2

y

(1)

Since η and τ constitute orthogonal directions, the rota-
tionally invariant Laplacian operator can be expressed as the
sum of the second order spatial derivatives, Iηη and Iττ , in
these directions and the linear heat conduction equation can
be written as follows,

∂I

∂t
= ∇2I = (Iηη + Iττ ) (2)

In the heat equation, ∂I/∂t represents the rate of change
of image intensity values (with respect to time) and ∇2 is
spatial Laplacian operator. Omitting the normal diffusion,
while keeping the tangential diffusion yields the well known
Geometric Heat Flow (GHF) equation (Kimia and Siddiqi
1994) as

∂I

∂t
= Iττ = (IxxI

2
y − 2IxyIxIy + IyyI

2
x )

(I 2
x + I 2

y )
(3)

GHF is an anisotropic diffusion and is widely used for
image denoising and enhancement. It diffuses along the
boundaries of image features, but not across them. It re-
moves noise in the image and preserves prominent edges. It

derives its name from the fact that, under this flow, the fea-
ture boundaries of the image evolve in the normal direction
in proportion to their mean curvature κ as given below

∂I

∂t
= Iττ = (IxxI

2
y − 2IxyIxIy + IyyI

2
x )

(I 2
x + I 2

y )3/2

(
I 2
x + I 2

y

)1/2

= κ |∇I | (4)

Thus GHF decreases the curvature of level-sets of the image
while removing noise to obtain sharp edges.

On the other hand, omitting the tangential diffusion,
while keeping the normal diffusion in the heat equation
yields

∂I

∂t
= Iηη = (IxxI

2
x + 2IxyIxIy + IyyI

2
y )

(I 2
x + I 2

y )
(5)

Normal diffusion is also an anisotropic diffusion. It dif-
fuses across the edges in the image and does not preserve
them. Because of this property, it did not take much atten-
tion for image smoothing and enhancement or for edge de-
tection. Significant application of the normal diffusion can
only be observed in Manay and Yezzi (2003) for image seg-
mentation. In this application, the normal diffusion is called
Anti-Geometric Heat Flow (A-GHF), since the diffusion is
in the orthogonal direction to the GHF.

Here, we choose the normal diffusion as a main tool for
medial function generation in binary and gray-scale images
for skeleton extraction purpose. The normal diffusion can
preserve prominent curvatures of the shapes along the level-
sets in images while removing noise, since it does not dif-
fuse along the level-sets (in tangent direction). However, we
do not completely omit the tangential diffusion and let it
contribute slightly depending on the user, since it can also
remove noise along the feature boundaries and contribute
to obtaining a smoother skeleton. The proposed anisotropic
heat diffusion problem for medial function generation is
given below,

∂I

∂t
= Iηη + c Iττ

with

∣∣∣∣∣
I (x, t = 0) = F(x), initial condition

∂I (x,t)
∂n

= 0, boundary condition

(6)

where c is the diffusion coefficient which is a positive con-
stant and which must be small to prevent excess smoothing
in the direction tangent. In our experiments c = 0.2, 0.1 or
0. x = (x, y) is the space vector and F(x) is the input binary
or gray-scale image, which represents the initial condition of
the diffusion problem. The boundaries of the image are in-
sulated with homogeneous Neuman condition, dI/dn = 0,
which means there is no heat flow in, or out of the image
domain definition. In boundary condition, n represents the
direction normal to the image boundary.

The skeleton strength map (SSM) is the likelihood for
each pixel to be a skeleton point. In our algorithm, the SSM
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is the mean curvature measure of the level-sets that is com-
puted after terminating diffusion,

SSM = κ(x, ts) = ∇ ·
( ∇I (x, ts)

|∇I (x, ts)|
)

(7)

where the SSM < 0 represents SSM for brighter regions
and the SSM > 0 represents SSM for darker regions. ts is
the number of iterations (diffusion time). For binary images
without any noise, the proposed diffusion can be terminated
automatically when the maximum intensity value becomes
less than a threshold (such as less than 0.99). For noisy im-
ages the selection of ts depends on user and it is determined
from the noise level in the image. The overall process is
completed by non-maxima suppression to make SSM thin,
and hysteresis thresholding to observe binary skeleton.

3 Experimental Results and Discussions

In this section, we first present the qualitative evaluations,
then the quantitative evaluations and finally illustrate some
examples on gray-scale images.

3.1 Qualitative (Visual) Evaluations

We present the comparison of the proposed diffusion with
distance transform, Poisson equation and Gaussian filtering
based techniques for medial function generation. The com-
parison is done on a flower shape image of size 228 × 226,
which is a pre-segmented binary image with perturbations
on the boundary as shown in Fig. 2.

Figures 3(a)–(f) show the medial function generation on
the flower shape object by the distance transform (a), Pois-
son equation (b), Gaussian filtering (c), the proposed diffu-
sion with c = 0.2 (d), the proposed diffusion with c = 0.1
(e) and the proposed diffusion with c = 0 (f). The first
column in Figs. 3(a)–(f) show the medial function on the
flower shape object by the algorithms. The second column
in Figs. 3(a)–(f) illustrate the level-sets of the medial func-
tions. The third column in Figs. 3(a)–(f) show the computed
SSM < 0, which represents the negative values of the mean
curvature measure of the level-sets. In this evaluation, the
SSM < 0 shows the quality of a medial function for skeleton
extraction. The last column in Figs. 3(a)–(f) illustrates the
SSM < 0 and the object in the same image.

Fig. 2 Flower shape image of
size 228 × 226 with
perturbations on the boundary

The distance transform (Arcelli and Baja 1992; Kimmel
et al. 1995; Malandain and Vidal 1998) computes at each
shape point its nearest distance to the shape boundary. Since
the distance transform assigns each value on shape accord-
ing to the single boundary point, it is observed that the level-
sets obtained by the distance transform, especially near the
boundary, are not smooth and sensitive to the small pertur-
bations of the boundary as shown in Fig. 3(a). It is also seen
that the SSM < 0 is affected by noisy boundary and it creates
branches on the skeleton. The distance transform is limited
to pre-segmented binary images, since it depends on shape
boundary.

The Poisson equation arises in gravitation and electrostat-
ics. It is a linear diffusion with a steady state and a unique
solution that has been introduced for shape representation
and skeleton extraction (Gorelick et al. 2006). In Fig. 3(b),
it is observed that level-sets in the interior regions of the
object are very smooth and the curvatures that define the
skeleton locations are almost lost. The level-sets close to the
boundary of the object are also affected by the noise on the
boundary. The SSM < 0 is quite blurry in the regions inside
the flower shape and the skeleton features are lost. There is
also noise close to the object boundary. Similarly to the dis-
tance transform, the Poisson equation requires the extraction
of the shape boundary and therefore can only be applied to
binary images.

Gaussian scale-space (Lindeberg 1998) is also used for
skeletonization that can be applied to both binary and gray-
scale images. Gaussian filtering can be equivalently viewed
as the solution of linear heat diffusion equation, which is a
direction and space invariant diffusion. Figure 3(c) shows
the medial function generation by the linear diffusion after
diffusion time ts = 250. From the level-sets, it is observed
that linear heat diffusion removes noise on the boundary.
However, it also smoothes prominent curvatures of the shape
and causes blurry skeleton features, which are almost lost
(SSM < 0). If we increase the diffusion time, we will lose
skeleton features more. On the other hand if we decrease
diffusion time, the diffusion may not be enough to generate
a medial function and to remove noise on the boundary.

Figure 3(d) shows the proposed diffusion for skeleton ex-
traction with c = 0.2 and ts = 250, which is equal to the dif-
fusion time in the linear heat flow in Fig. 3(c). It is observed
that the proposed diffusion removes noise on the boundary
and preserves prominent curvatures of the shape along the
level-sets, which represent skeleton features. The SSM < 0
highlights skeleton points very well in comparison to the
Poisson equation and Gaussian filtering. In addition, there
is no noise close to the object boundary in comparison to
the distance transform and Poisson equation. Figure 3(e) and
(f) also show the proposed diffusion with parameter values
c = 0.1 and c = 0, respectively. The diffusion time ts = 250,
which is same as the diffusion time in the linear heat flow
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Fig. 3 Comparison of the
proposed diffusion (d, e, f) with
the distance transform (a),
Poisson equation (b) and
Gaussian filtering (c) with their
medial functions (1st column),
their level sets (2nd column),
their negative values of the
mean curvature of the level sets
(SSM < 0), and SSM < 0
superimposed with the original
shape

in Fig. 3(c) and same as the diffusion time in the proposed
diffusion with parameter value c = 0.2 in Fig. 3(d). From
the level-sets, it is observed that as the value of diffusion

coefficient decreases, prominent curvatures become sharper,
while removing noise. Choosing parameter values c = 0.2
and c = 0.1 provides a smoother skeleton than c = 0, since
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Fig. 4 Obtaining thin and
binary skeleton for c = 0.2.
(a) Non-maxima suppression
skeleton strength map
(SSM < 0), (b) binary skeleton
after hysteresis thresholding,
(c) skeleton with shape
boundary

a small amount of tangential diffusion smoothes along the
level sets.

Once we obtain the SSM < 0 with c = 0.2, which is
shown in the third column of Fig. 3(d), the overall process is
completed by non-maxima suppression to make the skeleton
thin and hysteresis thresholding to obtain a binary skeleton
as illustrated in Fig. 4(a) and (b), respectively. Figure 4(c)
also shows the skeleton and shape of the object in the same
image.

3.1.1 Impact of Diffusion Time ts

We investigate the impact of the diffusion time (number of
iterations) on the proposed diffusion, on the linear diffusion
method (Lindeberg 1998), as well as on the Anisotropic Gra-
dient Vector Diffusion (AGVD) method (Yu and Bajaj 2004)
for comparison purpose. In AGVD method, the initial gra-
dient vector field is obtained using some heuristics to over-
come noise in the image, as described in their original paper.
Then the anisotropic diffusion is applied to the initial vector
field, where the diffusion coefficients, in each direction, are
determined based on the angle information between the cen-
tral vector and the surrounding vectors. A skeleton strength
map is computed from the diffused vector field, and finally
non-maxima suppression and hysteresis thresholding is ap-
plied to obtain binary skeleton. There are two parameters,
K and ts , in the AGVD, where the K controls the amount
of diffusion in each direction together with the angle infor-
mation, and the ts is the diffusion time (iterations). In addi-
tion, the definition of the skeleton strength map (SSM) in
the AGVD is different from the definition of the SSM in
the proposed image diffusion. In our algorithm, the SSM is
the mean curvature measure after the proposed image dif-
fusion, and the SSM for the brighter regions is denoted by
the SSM < 0. In AGVD, the SSM for the brighter regions
is computed using the diffused vector field with a heuristic
formulation. The SSM obtained by the AGVD model will be
denoted by SSAG in the evaluations.

The comparison is done on a binary image of human
shape of size 350 × 335 that is shown in the first column
of Fig. 5(a). Figures 5(a)–(d) show the SSM < 0 for the
linear diffusion (a) the SSAG for the AGVD method with
K = 4 (b), the SSM < 0 for the proposed diffusion with

c = 0.2 (c) and the SSM < 0 for the proposed diffusion with
c = 0 (d). In Figs. 5(a)–(d), the images from left to right
show the skeleton strength maps for brighter regions with
respect to increasing diffusion times ts = 300, 500, 700 and
900. In linear diffusion, it is observed that as ts increases, the
skeleton features become blurry and some parts such as the
head, shoulders, hands, upper legs and feet are almost lost.
In AGVD, some parts such as the head become blurry, as
well as the skeleton grows outside the shape from the hand
and from the feet. In the proposed diffusion with c = 0.2, it
is observed that as the number of iterations increases, skele-
ton features are preserved. It is also seen that the proposed
diffusion with parameter value c = 0 preserves the skeleton
features better than the proposed diffusion with parameter
value c = 0.2. However, choosing c = 0 is more sensitive to
the small variations on the boundary than choosing c = 0.2.
It is better to keep a small amount of tangential diffusion
(c = 0.2 or c = 0.1), since it helps to handle small pertur-
bations and noise on the boundaries. Once the SSM < 0 is
computed after the proposed diffusion with parameter val-
ues c = 0.2 and ts = 300, thinning (non-maxima suppres-
sion) and hysteresis thresholding is applied to obtain a bi-
nary skeleton as shown in Fig. 6(a). Figure 6(b) also shows
the skeleton with the superimposed object shape.

3.1.2 Noisy Images

Our algorithm is also assessed on noisy images. The same
experiments are conducted using the linear diffusion (Lin-
deberg 1998) and using the AGVD (Yu and Bajaj 2004)
for comparison purpose. For all of the diffusion models,
we compute the skeleton strength map for the brighter re-
gions and then apply non-maxima suppression and hystere-
sis thresholding to obtain thin and binary skeleton. The
thresholds to obtain the binary skeleton are determined by
a root mean square (RMS) estimate of the noise. The non-
maxima suppression image is thresholded by the scaled
mean value of the skeleton strength map of the brighter re-
gions that is proportional to signal to noise ratio (SNR). For
the proposed diffusion and the linear diffusion, the upper
and the lower thresholds are determined as given below,

TH = sT × 1

MN

M∑
x=1

N∑
y=1

(SSM < 0)x,y, TL = TH /2 (8)
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Fig. 5 Comparison of the proposed diffusion with linear diffusion and
AGVD with respect to increasing diffusion time (ts ) on binary image
of a human shape of size 350 × 335. In Figs. (a)–(d), the images from

left to right show the skeleton strength maps for the brighter regions
with respect to increasing diffusion times ts = 300, 500, 700 and 900,
respectively

Fig. 6 Thin and binary skeleton obtained using the proposed diffusion
with c = 0.2 and ts = 300. (a) Binary skeleton after non-maxima sup-
pression and hysteresis thresholding, (b) skeleton with shape boundary

where M × N is the size of the image SSM < 0 and sT is
a scale factor for threshold selection, which is a positive
constant with value 9 in our experiments. The ratio between
high, TH , and low, TL, thresholds is 2. For the AGVD, the
SSM < 0 in Eq. (8) is replaced by SSAG and the same pa-
rameter values are used to determine the thresholds. These
parameter values are determined experimentally to provide
thresholds not higher than the maximum intensity values of
the skeleton strength map for the brighter regions, but high
enough to filter out noise.

Figure 7 shows skeleton extraction for the binary image
of a human shape after adding salt and pepper noise. The
first column in Fig. 7(a) shows the salt and pepper noise cor-
rupted image with density = 0.3. Figures 7(a), 7(b) and 7(c)
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Fig. 7 Experimentation with
respect to salt and pepper noise
(density = 0.3) in the binary
image of size 350 × 335. For
each method, the skeleton
strength map for brighter
regions, the binary skeleton and
the binary skeleton
superimposed to the original
human shape are illustrated

show the skeletonization of the noisy image using the pro-
posed diffusion (ts = 720 and c = 0.2), the linear diffu-
sion (ts = 720) and the AGVD (K = 2 and ts = 300) re-
spectively. Here, ts values, for each method, are user de-
fined and they are determined experimentally to deal with
noisy instances of the image. For each method, the skele-
ton strength map for the brighter regions, the binary skele-
ton and the skeleton with the original shape of the subject
is illustrated. Our proposed diffusion (c = 0.2) extracts the
skeleton of the object without any dislocation and without
missing any part of the subject. On the contrary, in linear
diffusion it is observed that the skeleton features are not as
strong as the skeleton features obtained by the proposed dif-
fusion. For instance the skeleton of the shoulders, hands and
feet are not detected. In linear diffusion, decreasing diffu-
sion time ts would limit the ability of the method to remove
the noise in the image. While increasing the diffusion time
would cause more loss of skeleton features. Note that both
the linear diffusion and the proposed diffusion methods de-
tect skeletons on the background because the image is noisy.
The AGVD cannot detect the skeleton of the shape, because
AGVD uses gradient-based information which is very sen-
sitive to the noisy conditions.

Figure 8 shows more results with the human silhouette
corrupted with salt and pepper noise (density = 0.3). Fig-
ure 8(a) shows the computed binary skeletons (four exper-

iments with the same noise level) with the proposed diffu-
sion, where the skeleton of the subject is consistently well
extracted in all experiments (Fig. 8(a)). On the other hand,
the linear diffusion keeps breaking the skeleton and losing
some parts as shown in Fig. 8(b), and the AGVD fails to
detect the skeleton in the noisy images (Fig. 8(c)).

Figure 9 shows skeleton extraction in the grey-scale im-
age of human shape after adding Gaussian noise. The first
column in Fig. 9(a) shows the Gaussian noise corrupted im-
age with mean 0 and standard deviation 40. In the origi-
nal grey-scale image, the intensity value of the object re-
gion is 170 and the intensity value of background is 100.
Figures 9(a), 9(b) and 9(c) illustrate the skeleton extraction
with the proposed diffusion (c = 0.2 and ts = 720), with the
linear diffusion (ts = 720) and with the AGVD (K = 2 and
ts = 720), respectively. For each method, we illustrate the
skeleton strength map for the brighter regions, the binary
skeleton and the skeleton with the original shape of the sub-
ject. While the proposed diffusion extracts well the skeleton
of the subject, linear diffusion generates blurry skeleton fea-
tures and some parts are then lost after thinning and thresh-
olding (Fig. 9(b)). The AGVD cannot deal with the noise
in the image, and so cannot extract the skeleton of the sub-
ject. All methods also extract skeletons in the background
because of the noise.
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Fig. 8 More experimentation
with respect to salt and pepper
noise (density = 0.3) in the
human shape binary image of
size 350 × 335

Fig. 9 Experimentation with
respect to Gaussian noise
(mean = 0 and standard
deviation = 40) in the grey-scale
image of size 350 × 335. For
each method, the skeleton
strength map for brighter
regions, the thin and binary
skeleton and the binary skeleton
with the subject shape in the
same image is illustrated
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Fig. 10 More experimentation
with respect to Gaussian noise
(mean = 0 and standard
deviation = 40) in the human
shape grey-scale image of size
350 × 335

Figure 10 shows four more skeletons extracted from the
grey-scale image corrupted by Gaussian noise (same noise
level: mean 0 and standard deviation 40). Note how the
skeleton of the human shape is consistently well extracted
in all experiments leading to a similar skeleton for our pro-
posed approach (Fig. 10(a)). In comparison, linear diffusion
and AGVD miss parts in the skeletons of the human shape
(Fig. 10(b)). The skeleton obtained by the AGVD is very
distorted.

3.2 Quantitative Evaluations

Based on the definition of the skeleton (Blum 1967), a skele-
ton point must be the center of a maximal disk/ball contained
in the shape. Let r(s) denotes the radius of the maximal disk
B(s, r(s)) centered at a skeleton point s. The reconstruction
of a shape using its skeleton is given by:

R(S) =
⋃
s∈S

B
(
s, r(s)

)
(9)

where R(S) is the reconstructed shape and S represents the
skeleton. To evaluate the quality of the extracted skeleton, a
reconstruction error rate (RER%) between the reconstructed
binary shape and the original binary shape is computed as
follows:

RER% = Area(O) − Area(R(S))

Area(O)
× 100 (10)

where Area(·) denotes the area of the shape and it is mea-
sured in pixels. O represents the image that contains the
original binary shape and R represents the image that con-
tains the reconstructed binary shape. Note that similar eval-
uation method for skeleton extraction has been used by Shen
et al. (2011) and by Hassouna and Farag (2005).

In quantitative evaluations, first we investigate the impact
of diffusion time on the proposed diffusion, and compare
with the linear diffusion and the AGVD on the noise free
wave shape binary image (Sect. 3.2.1). Second, the effect
of a Gaussian noise on the boundaries of a ring shape ob-
ject in the binary image is assessed for the proposed dif-
fusion, while comparing with the other diffusion methods
(the linear diffusion and the AGVD), as well as with the
popular and recent works (Bai et al. 2007 and Shen et al.
2011) in skeletonization of the binary images (Sect. 3.2.2).
Third, we have experiments with the increasing salt and pep-
per noise in the binary image, where we measure both the
performance of the proposed diffusion and the other dif-
fusion methods which can achieve skeletonization without
the need of any boundary initialization (Sect. 3.2.3). Finally,
we evaluate the performances of the proposed diffusion and
other diffusion methods on a grey-scale ring shape object
which is corrupted by increasing Gaussian noise in the im-
age (Sect. 3.2.4). The details of the evaluations are given in
the following subsections.
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3.2.1 Effect of Diffusion Time

The diffusion time ts is an important parameter in diffusion
process and in diffusion based skeletonization techniques. It
affects the solution of the heat diffusion problem and con-
sequently the result of the skeleton extraction. We investi-
gate the impact of diffusion time on the proposed diffusion
and compare with the linear diffusion and the AGVD in the
original noise free binary image of the wave shape, where
the size of the image is 562 × 222. This is a good synthetic
shape to show both visually and quantitatively the perfor-
mance of the diffusion methods in preserving the skeleton
on the centre of the shape with increasing diffusion time.
The evaluation is conducted at several diffusion times as fol-
lows:

1. First we extract the thin and binary skeleton of the
wave shape in the image (thresholds are determined with
Eq. (8)).

Fig. 11 Quantitative evaluation with respect to increasing diffusion
time (ts ) on a wave shape object

2. Then for each skeleton point we compute the radius of
the maximal disk contained in the original shape.

3. And subsequently reconstruct the wave shape (Eq. (9)).
4. Finally, we compute the reconstruction error rate (RER%)

(Eq. (10)).

Figure 11 shows the RER% with respect to an increasing
diffusion time. In the proposed diffusion, two different con-
duction coefficients (c = 0 and c = 0.2) are experimented.
The selected diffusion times (ts ) are: 100, 300, 500, 700,
900 and 1100. The minimum diffusion time is ts = 100,
since the linear diffusion and the proposed diffusion start to
form reasonable medial functions after ts = 100 in this ex-
periment. It is observed that as the diffusion time increases,
the RER% of the linear diffusion increases. Our results il-
lustrates that the linear diffusion is very sensitive to diffu-
sion time selection and it does not preserve the centeredness
of the skeleton. The centeredness is not preserved and the
skeleton is not accurate in the linear diffusion: the tangen-
tial diffusion causes curvature shrinkage which relocates or
lose skeleton features. On the contrary, the proposed diffu-
sion can preserve the centeredness of the skeleton better than
the linear diffusion, since the proposed diffusion has slight
contribution of the tangential diffusion. The proposed dif-
fusion with c = 0.2 achieves better than the linear diffusion
but worse than the proposed diffusion with c = 0. Choosing
the conduction coefficient higher causes more contribution
of the tangential diffusion that increases the reconstruction
error. The AGVD with K = 2 can also preserve the skele-
ton on the center of the shape with respect to increasing
iteration. The proposed diffusion with c = 0 achieves the
smallest as well as the most stable reconstruction error rate
(1–2 %). This shows that choosing a small conduction co-
efficient removes the dependence on the diffusion time ts
in skeleton extraction. Figures 12(a), 12(b) and 12(c) show
some visual results for the proposed diffusion (a), the linear
diffusion (b), and the AGVD (c) on the wave shape object
with respect to diffusion times ts = 200, 500, 900 and 1100.

Fig. 12 Experimentation on wave shape image of size 562 × 222 with respect to increasing diffusion time (ts )
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In Figs. 12(a), 12(b) and 12(c), the skeleton and the object
shape (blue colour) are illustrated in the same image (at each
diffusion time).

3.2.2 Gaussian Noise on the Boundary

We experiment the proposed image diffusion with respect to
increasing Gaussian noise on the boundary of the ring shape
object in a binary image of size 200 × 200. The proposed
diffusion is compared to the most related diffusion models
(i.e. linear diffusion and the AGVD) as well as to the popular
and recent techniques (Bai et al. 2007 and Shen et al. 2011)
in skeletonization of the binary images that need to initialize
the boundaries of the shape. The ring shape binary image is
a synthetic image. The skeleton of the ring shape should be
a circle at the centre of the ring. If the skeleton (the circle)
shape changes, it means the skeleton of the object is affected
by the noise on the boundary. The amount of the sensitivity
to the boundary noise can be measured with the RER%, and
it is very simple to observe visually the changes of the circle
shape.

The method, which is proposed by Bai et al. (2007), is
based on using the Euclidean Distance (ED) map and the
skeleton pruning using the Discrete Curve Evolution (DCE).
This method will be denoted by ED + DCE in our evalua-
tions. First, they select a skeleton seed point as a global max-
imum of the Euclidean distance map, and then the remainder
of the skeleton points is decided by growing scheme. During
this process, the redundant skeleton branches are eliminated
by the DCE. In DCE based skeleton pruning, the object
boundary is represented by a finite polygon, and the DCE
eliminates the noisy points on the boundary by recursively
removing polygon vertices with the smallest shape contribu-
tion. As a result, the DCE remains a subset of vertices that
best represents the shape of the contour. The parameter N is
the number of vertices in the simplified boundary polygon
and N ≥ 3.

Recently, Shen et al. (2011) proposed another method for
skeleton growing and pruning, called Bending Potential Ra-
tio (BPR), in which the decision regarding whether a skele-
tal branch should be pruned or not is based on the context of
the boundary segment that corresponds to the branch. The
parameter T is the measure of the BPR. When the value of
the T increases, there are fewer branches in the skeleton.
The BPR pruning method can be applied to any input skele-
ton. In their work, they mainly use the Euclidean Distance
(ED) transform for the skeleton growing, and combine with
the BPR for skeleton pruning. This method is denoted by
ED + BPR in the evaluations.

The selected noise levels (standard deviations with
mean = 0) of the Gaussian noise are: 0.5, 1, 1.5, 2, 2.5, 3
and 3.5. The ring shape objects, after the Gaussian noise
corruption on the boundaries, are shown in Fig. 14(a). The
evaluation is conducted at each noise level as follows:

1. First the thin and binary skeleton of the noisy ring shape
object in the image is extracted (thresholds for the diffu-
sion models are determined with Eq. (8)),

2. Then for each skeleton point, the radius of the maxi-
mal disk contained in the original shape (noise free ring
shape) is computed.

3. Next, the ring shape is reconstructed (Eq. (9)),
4. Finally the RER% is computed (Eq. (10)).

Before the comparison to the other techniques, we test
the proposed image diffusion with different conduction co-
efficient values (i.e. c = 0, 0.1, 0.2 and 0.3), while keeping
the diffusion time constant that is ts = 500. The conduction
coefficient controls the amount of contribution of the tan-
gential diffusion. The performance of the proposed diffu-
sion with different conduction coefficient values are shown
in Fig. 13(a). The graphs include error bars representing the
mean and standard deviation computed after repeating the
experiment five times. It is observed that as the conduction
coefficient increases, it shifts the skeleton offset from the
ideal center, when there is no noise or small amount of noise
(i.e. <1.5) on the boundary. On the other hand, when there
is a higher amount of noise (i.e. ≥1.5), it is better to have
a conduction coefficient with a higher value (i.e. c = 0.2
or c = 0.3) since it can remove the noise and preserve the
skeleton features better on the ideal center.

Figure 13(b) compares the RER% of the proposed im-
age diffusion and of the other methods with respect to the
increasing standard deviation of the Gaussian noise on the
boundary. The conduction coefficient is c = 0.2 for our
method and the diffusion time is ts = 500. For the linear dif-
fusion, the diffusion time is ts = 300. In AGVD, K = 1 and
the diffusion time is ts = 300. In ED + DCE based skele-
ton pruning, N = 3. The parameter N is the number of ver-
tices in the simplified boundary polygon and it cannot be less
than 3, which means we should observe 3 skeleton branches
on the skeleton of the ring. In ED + BPR based skeleton
pruning, T = 10. The parameter T is the threshold for the
BPR and it is determined experimentally to remove all the
branches on the skeleton of the ring shape. Note that all of
the parameters in this evaluation are determined experimen-
tally to achieve the best results for each method.

The ED+DCE and the ED+BPR methods perform sim-
ilarly and as the noise increases on the boundary the RER%
increases for these methods. Indeed, they both use Euclidean
distance map as a medial function that is sensitive to the
boundary deformations. The distance transform is sensitive
to the small perturbations of the boundary, since each value
on shape is assigned according to the single boundary point
(nearest one). Although the DCE and the BPR can be effec-
tive skeleton pruning methods, the centeredness of the skele-
ton is determined by the distance transform. Figure 14(e)
and (f) show some of the results for the ED + DCE and for
the ED + BPR, respectively. The skeleton and the original
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Fig. 13 Quantitative evaluation with respect to increasing Gaussian
noise on the boundary. (a) The proposed image diffusion with differ-
ent conduction coefficient values (i.e. c = 0, 0.1, 0.2 and 0.3), while

keeping the diffusion time constant that is ts = 500. (b) The proposed
image diffusion is compared to the other methods

object shape (in blue colour) are shown in the same image.
The skeletons (circle shapes) are distorted after the standard
deviation is 1. The ED + DCE and the ED + BPR performs
better than other techniques when the standard deviation is
inferior to 1. However when the noise increases (standard
deviation superior to 1), our proposed diffusion performs
better than these two methods, since they are sensitive to
noise.

The proposed diffusion is robust in extracting a consis-
tent skeleton when the standard deviation is inferior to 2.
For higher level of noise, the skeleton starts to dislocate.
Although the skeleton dislocates with increasing noise, the
skeleton shape is a smooth circle. When there is no noise or
low noise, i.e. standard deviation: 0, 0.5 and 1, the proposed
diffusion shifts the skeleton and cause around 2 % error,
since we have a small amount of contribution of the tangen-
tial diffusion, i.e. c = 0.2, in this experiment. The proposed
diffusion also outperforms the linear diffusion with ts = 300
until standard deviation is equal to 2. The proposed diffusion
can remove noise on the boundary and preserve skeleton lo-
cation up to a certain level of noise. On the other hand, the
linear diffusion can remove noise but also relocate skele-
ton and cause reconstruction error. This is a consequence of
the full contribution of the tangential diffusion in the lin-
ear diffusion. In addition, choosing the diffusion time less
than ts = 300 (in this experiment) may not be enough to re-
move noise and generate a medial function. Figures 14(b)
and (c) illustrate visual results for the proposed diffusion
(c = 0.2 and ts = 500) and visual results for the linear diffu-
sion (ts = 300), respectively. It is observed that both meth-
ods can keep the circle shape skeleton smooth at different
noise levels.

The proposed image diffusion also performs better than
the AGVD at all noise levels. The AGVD is more sensitive
to the noise on the boundary, and the skeleton is broken at
some noise levels as shown in Fig. 14(d).

3.2.3 Salt and Pepper Noise in the Image

The proposed image diffusion, the linear diffusion and the
AGVD are assessed with respect to an increasing salt and
pepper noise in the binary image. Note that we cannot assess
the ED + DCE and the ED + BPR methods in this case,
because these methods need to know the boundary of the
shape. The selected noise levels (densities) are: 0.1, 0.2, 0.3,
0.4, 0.5 and 0.6. The salt and pepper noise corrupted ring
shape binary images are shown in Fig. 16(a). The evaluation
is conducted at each noise level as follows:

1. The skeletons in the noisy image are extracted. In this
case, there are also some skeletons detected in the back-
ground because of the noise: Figs. 16(b), (c) and (d) show
detected skeletons using the proposed diffusion, the lin-
ear diffusion and the AGVD, respectively.

2. Then for each skeleton point inside the original ring
shape object (which is shown with blue colour in the
skeleton images), we compute the radius of the maximal
disk contained in the original shape (in blue colour).

3. The ring shape is then reconstructed (Eq. (9)),
4. The RER% is computed (Eq. (10)).

Figure 15(a) shows the performances of the algorithms. The
graphs include error bars representing the mean and stan-
dard deviation computed after repeating the experiment five



Int J Comput Vis (2012) 100:170–189 183

Fig. 14 Skeletonization of the ring shape image of size 200 × 200 with respect to increasing Gaussian noise on the boundary

times. The linear diffusion is computed with two diffu-
sion times ts = 300 and with ts = 500. Our proposed dif-
fusion (c = 0.2, ts = 500) outperforms the linear diffusion
(with ts = 300 and ts = 500) and the AGVD (K = 2 and
ts = 300). The proposed diffusion can preserve skeleton lo-
cation up to high noise levels. The AGVD cannot handle
the salt and pepper noise in the image and extracts very dis-
torted skeletons. As the noise increases, the RER% increases
for the AGVD. The linear diffusion can remove noise in the
image but does not preserve skeleton locations at the center
of the shape, which causes reconstruction error.

3.2.4 Gaussian Noise in the Image

Finally, we evaluated the performance of the linear diffu-
sion, the AGVD and the proposed diffusion on a grey-scale

ring shape object with respect to increasing Gaussian noise
in the image. The selected noise levels (standard devia-
tions with mean = 0) are: 10, 20, 30, 40, 50 and 60. The
Gaussian noise corrupted grey-scale images are illustrated
in Fig. 17(a). The evaluation is conducted at each noise level
as follows:

1. First we extract the skeletons in the noisy image. Fig-
ures 17(b), (c) and (d) show detected skeletons respec-
tively using the proposed diffusion, the linear diffusion
and the AGVD at each noise level.

2. Then for each skeleton point inside the original ring
shape object (shown with blue colour in the skeleton im-
ages), we compute the radius of the maximal disk con-
tained in the original shape (in blue colour).

3. The ring shape is then reconstructed (Eq. (9)).
4. Finally the RER% is computed (Eq. (10)).
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Fig. 15 (a) Quantitative evaluations with different noise types in images. (a) Evaluation with respect to increasing salt and pepper noise in the
binary image. (b) Evaluation with respect to increasing Gaussian noise in the grey-scale image

Fig. 16 Skeletonization of the ring shape image of size 200 × 200 with respect to increasing salt and pepper noise in the image

Figure 15(b) shows the RER% with respect to increasing
Gaussian noise in the image. The graphs include error bars
representing the mean and standard deviation computed af-
ter repeating the experiment five times. The linear diffusion
has parameters ts = 300 and ts = 500, our diffusion is ex-
perimented with ts = 500 and c = 0.2, and the AGVD is

experimented with ts = 300 and K = 2. The results with the
Gaussian noise are similar to the results obtained with the
salt and pepper noise. The proposed diffusion outperforms
the linear diffusions (ts = 300 and ts = 500) and the AGVD.
Indeed the linear diffusion can remove noise in the image
but does not preserve skeleton features at the center. The
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Fig. 17 Skeletonization of the ring shape image of size 200 × 200 with respect to increasing Gaussian noise in the image

Fig. 18 Skeletonization of shapes from the MPEG-7 shape dataset in the same image

tangential diffusion relocates the curvature maxima and vi-
olates centeredness of the skeleton. On the other hand, the
AGVD uses a gradient-based algorithm, which is sensitive
to the noisy conditions.

3.3 Multiple Objects in a Binary Image

Figure 18 shows skeletonization of multiple objects in a bi-
nary image of size 509 × 880, using the proposed diffusion
with c = 0.1 and ts = 250. These shapes are from MPEG-7
dataset (Latecki et al. 2000). Figure 18(b) is the SSM < 0,
and Fig. 18(a) is the skeletons with the objects in the same
image. It is observed that the proposed algorithm can detect
skeletons of the multiple objects in the image.

3.4 Gray-Scale Images

Experimental results also show that our algorithm can ex-
tract skeletons in gray-scale images. Figure 19(a) shows a
human brain image of size 413 × 404. Figure 19(b) shows
the SSM < 0 that is computed after proposed anisotropic
diffusion with parameter values c = 0.2 and ts = 60. The
SSM < 0 represents the skeleton strength map of the brighter
regions in the image. The binary skeleton computed from the
SSM < 0 is shown in Fig. 19(c). The SSM > 0 represents
the skeleton strength map of the darker regions is shown in
Fig. 19(d). The binary skeleton obtained from the SSM > 0
is illustrated in Fig. 19(e). It is observed that skeletons of the
brighter and the darker regions are detected.
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Fig. 19 Skeletonization of
gray-scale brain image of size
413 × 404. (a) The human
brain, (b) skeleton strength map
for brighter regions (SSM < 0),
(c) binary skeleton for SSM < 0,
(d) skeleton strength map for
darker regions (SSM > 0),
(e) binary skeleton for SSM > 0

Figure 20 shows skeleton extraction in a gray-scale im-
age of size 245 × 829. In this image (see Fig. 20(a)), there
is a cheetah that is lying down, as well as tree branches
and leaves in the background. Figure 20(b) is the SSM < 0
(for brighter regions) that is computed after proposed dif-
fusion with parameter values c = 0.1 and ts = 60. Fig-
ure 20(c) shows the binary skeleton that is obtained from the
SSM < 0. Here, skeleton curves are illustrated with a black
color, since it is easier to see and realize them on brighter re-
gions. It is observed that skeletons of the brighter regions are
detected. Especially, one can see the skeleton curves of the
brighter regions on the body, head, tail and limbs of the chee-
tah. Skeleton curves around black spots and around nose and
eyes are extracted. Skeletons of the brighter regions in the
background between tree branches and leaves are detected.
The skeleton strength map of the darker regions, SSM > 0,
is shown in Fig. 20(d). The binary skeleton computed from
the SSM > 0 is shown in Fig. 20(e). Here, skeleton curves
are illustrated with a white color to realize them better on
darker regions. Skeletons of the darker regions, on the body,
head, tail and limbs of the cheetah, are extracted. Skeletons
of the tree branches and leaves, which are darker regions in
the background, are well extracted.

Figure 21 also shows skeletonization of a gray-scale im-
age of size 431 × 348. This is an image of a traffic sign
on the street, which represents the presence of a school
(see Fig. 21(a)). There is also grass in the background. Fig-
ure 21(b) shows the SSM > 0 (for darker regions) that is
computed after proposed diffusion with parameter values
c = 0.1 and ts = 70. Figure 21(c) is the binary skeleton

that is obtained from the SSM > 0. Here, skeleton curves
are illustrated with a white colour. It is observed that skele-
tons of the darker regions are detected in the image. Es-
pecially, one can see the skeleton curves of human shapes
on the traffic sign. There are also skeleton curves detected
on the traffic sign because of shadows and changing illu-
mination conditions. Skeleton of the grass is also detected,
which represents the textured nature of the grass. The skele-
ton strength map of the brighter regions, SSM < 0, is illus-
trated in Fig. 21(d). The binary skeleton computed from the
SSM < 0 is in Fig. 21(e). Here, skeleton curves are shown
with a black colour to observe them better on bright regions.
It is seen that skeletons of the brighter regions are extracted
on the traffic sign and in the background as well.

4 Conclusions and Future Work

We have presented a novel and effective skeleton extrac-
tion algorithm based on the anisotropic heat flow analogy.
A medial function of high quality is computed with the pro-
posed anisotropic diffusion. Then, the skeleton strength map
(SSM) is defined with the mean curvature measure. Finally,
non-maxima suppression and hysteresis thresholding is ap-
plied to obtain a thin and binary skeleton. The proposed
anisotropic image diffusion provides high quality skeleton
features and preserves the skeleton features at the center-
line of the shape, while denoising the image and the object
boundaries. The proposed diffusion outperforms the most
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Fig. 20 Skeletonization of a
gray-scale cheetah image of size
245 × 829. Skeletons of the
brighter and the darker regions
are detected

related diffusion based methods and the other popular meth-
ods in skeleton extraction especially in noisy conditions. Re-
sults also show that our technique can be applied to both bi-

nary and gray-scale images without the need of any shape
extraction, boundary initialization or skeleton pruning. In
future work, we will focus on developing mechanisms for
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Fig. 21 Skeleton extraction in a gray-scale traffic sign image of size
431 × 348. (a) The traffic sign represents the presence of a school,
(b) skeleton strength map for darker regions (SSM > 0), (c) binary

skeleton for SSM > 0, (d) skeleton strength map for brighter regions
(SSM < 0), (e) binary skeleton for SSM < 0

automatically selecting the diffusion time and the conduc-
tion coefficient. We will extend our approach to 3D volumes
for curve skeleton extraction.
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