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Abstract In this paper, we introduce a Bayesian ap-
proach, inspired by probabilistic principal component
analysis (PPCA) (Tipping and Bishop in J Royal Stat Soc
Ser B 61(3):611–622, 1999), to detect objects in complex
scenes using appearance-based models. The originality of
the proposed framework is to explicitly take into account
general forms of the underlying distributions, both for
the in-eigenspace distribution and for the observation
model. The approach combines linear data reduction
techniques (to preserve computational efficiency), non-
linear constraints on the in-eigenspace distribution (to
model complex variabilities) and non-linear (robust)
observation models (to cope with clutter, outliers and
occlusions). The resulting statistical representation gen-
eralises most existing PCA-based models (Tipping and
Bishop in J Royal Stat Soc Ser B 61(3):611–622, 1999;
Black and Jepson in Int J Comput Vis 26(1):63–84, 1998;
Moghaddam and Pentland in IEEE Trans Pattern Anal
Machine Intell 19(7):696–710, 1997) and leads to the
definition of a new family of non-linear probabilistic
detectors. The performance of the approach is assessed
using receiver operating characteristic (ROC) analysis on
several representative databases, showing a major
improvement in detection performances with respect
to the standard methods that have been the references up
to now.

Keywords Eigenspace representation Æ Probabilistic
PCA Æ Bayesian approach Æ Non-Gaussian models Æ
M-estimators Æ Half-quadratic algorithms

1 Introduction

A reliable detection of objects in complex scenes
exhibiting non-Gaussian noise, clutter and occlusions
remains an open issue in many instances. Since the
early 1990s, appearance-based representations have met
unquestionable success in this field [4, 5]. Global
appearance models represent objects using raw 2D
brightness images (intensity surfaces), without any
feature extraction or construction of complex 3D
models. Appearance models have the ability to effi-
ciently encode shape, pose and illumination in a single,
compact representation, using data reduction tech-
niques. The early success of global appearance models,
in particular, in face recognition [5], has given rise to a
very active research field, which has resulted in the
ability of recognising 3D objects in databases of more
than 100 objects [4] or, more recently, the recognition,
with good reliability, of comprehensive object clas-
ses (cars, faces) [6] in complex, unstructured environ-
ments.

Linear, as well as non-linear models, associated to
various data reduction techniques have been proposed
to obtain parsimonious representations of large image
databases. Standard linear techniques include principal
component analysis (PCA) and independent compo-
nent analysis (ICA). Non-linear extensions have been
proposed such as non-linear-PCA, principal curves
and surfaces, non-linear manifolds, kernel-based
methods and neural networks [7–9]. In this paper, we
are interested in a particular class of global appear-
ance models, namely, probabilistic appearance mod-
els, which were introduced by Moghaddam and
Pentland [3, 10] in 1995. These models offer several
advantages:
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– They are probabilistic: they make it possible to rep-
resent a class of images and make available all the
traditional methods of statistical estimation (maxi-
mum likelihood, Bayesian approaches)

– They are linear and, thus, are suited to efficient
implementation [11]

– Although linear, they have outperformed, in terms of
detection and recognition, not only the traditional
linear approaches (PCA, ICA), but also non-linear
approaches (such as neural networks or non-linear
kernel PCA), in a recent comparison carried out by
Moghaddam [8]

In the Bayesian approach proposed in the present
paper, linear (i.e. PCA-based) data reduction techniques
are associated to non-linear noise models and non-
Gaussian prior models to derive robust and efficient
image detectors. The proposed framework unifies dif-
ferent PCA-based models previously proposed in the
literature [2, 3]. Our approach straightforwardly inte-
grates non-linear statistical constraints on the distribu-
tion of the images in the eigenspace. We show
experimentally the importance of an appropriate model
for this distribution and its impact on the performance
of the detection process. Moreover, the approach en-
ables, when necessary, to introduce robust hypotheses
on the distribution of noise, allowing to cope with
clutter, outliers and occlusions. This leads to the defini-
tion of a novel family of general-purpose detectors that
experimentally outperform the existing PCA-based
methods [2, 3].

The paper is organised as follows. Section 2 briefly
reviews existing PCA-based detection methods. Section
3 describes the different constituents of the proposed
Bayesian approach: eigenspace representation, non-lin-
ear noise models and non-Gaussian priors. Detection
algorithms and implementations are detailed in Sect. 4.
Section 5 presents a comparison between the proposed
Bayesian detector and several state-of-the-art ap-
proaches. Three databases have been used to illustrate
the contributions of the various components of the
model. An objective assessment is proposed using re-
ceiver operating characteristic (ROC) analysis, showing
the benefits of the approach.

2 PCA-based statistical detection

Detection, classification and recognition algorithms that
use PCA-based subspace representations [3, 5] first relied
on the computation of simple, Euclidean distances be-
tween the observed image and the training samples. The
quadratic distance to the centre of the training class
(sum of squared differences (SSD)) or the orthogonal
distance to the eigenspace (distance from feature space
(DFFS)) have, thus, first been used [3, 5]. None of these
distances, however, is satisfying: the first one assigns the
same distance to all images belonging to a hyper-sphere,
while the second gives the same measure for all obser-

vations distributed on spaces which are parallel to the
eigenspace. It is, therefore, easy to generate examples
that would make these methods fail. A significant
improvement has been obtained by recasting the prob-
lem in a probabilistic framework [1, 3, 10, 12]. Mog-
haddam and Pentland [10] proposed a statistical
formulation of PCA based on multivariate Gaussian (or
mixture-of-Gaussians) distributions. The resulting
probabilistic model embeds distance information both in
the eigenspace and in its orthogonal. Experimental re-
sults by Moghaddam and Pentland [3] and Moghaddam
[8] have shown the major contribution of this approach,
not only by comparison with SSD and DFFS, but also
comparatively to methods based on non-linear repre-
sentations, such as non-linear PCA or kernel PCA [8].
Tipping and Bishop [1, 12] and Roweis [13] have recently
proposed, in independent but similar works, other
probabilistic interpretations of PCA, probabilistic PCA
and sensible PCA, respectively. These rely on a latent
variable model which, assuming Gaussian distributions,
yields the same representation as Moghaddam and
Pentland [3, 10].

Most of the time in eigenspace methods, the noise
distributions have been considered as Gaussian. As is
well known, such a hypothesis is seldom verified in
practice. Therefore, standard detection and recognition
methods based on Gaussian noise models are sensitive to
gross errors or outliers stemming, for instance, from
partial occlusions or clutter. M-estimators, introduced
by Huber [14] in robust statistical estimation, are for-
giving about such artifacts. They have, in particular,
been used to develop PCA-based robust recognition
methods [2]. More recently, an alternative to M-esti-
mation, based on random sampling and hypotheses
testing, was proposed to address the problem of robust
recognition [15].

Another important limitation of standard methods
concerns the a priori modelling of the distribution of the
learning images in the eigenspace. In standard PCA-
based approaches, these densities are generally consid-
ered as Gaussian [1–3] or uniform, although they are
often non-Gaussian (see Sect. 3.5 and [4]). This strongly
biases the detection towards the mean image. Thus,
modelling complex in-eigenspace distributions remains a
key issue for the practical application of eigenspace
methods. The first approach proposed to address this
problem in the field of visual recognition was described
by Murase and Nayar [4]. Murase and Nayar have used
an ad hoc B-spline representation of the non-linear
manifold corresponding to the distribution of training
images in the eigenspace. Locally linear embedding [9],
mixtures of Gaussians [3, 12] and other more compu-
tationally involved non-linear models [8] have also been
considered more recently. Non-linear generalisations of
PCA have been developed using auto-associative neural
networks [16] or self-organising maps [17]. Neural net-
works, however, are prone to over-fitting and require the
definition of a proper architecture and learning scheme.
The notion of a non-linear, low-dimensional manifold
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passing ‘‘through the middle of the data set’’ was for-
malised in [18] for two dimensions. Extensions to a
larger dimension (which is far from being trivial) have
been recently proposed, such as non-linear PCA [19] or
probabilistic principal surfaces [20], but their imple-
mentation remains involved. Another approach that has
become popular in the late 1990s is kernel PCA [21],
where an implicit non-linear mapping is applied to the
input by means of a Mercer kernel function, before a
linear PCA is applied in the mapped feature space. The
approach is appealing because its implementation is
simpler, since it uses only linear algebra, but the optimal
choice of the kernel function is still an open issue.

In this paper, we propose an alternative to these
non-linear representations that preserves the linearity of
the underlying latent variable model (thus, preserving
computational simplicity). The proposed Bayesian
framework generalises most PCA-based models previ-
ously proposed in the literature. Our approach com-
bines linear data reduction techniques (to preserve
computational efficiency), non-Gaussian models on the
in-eigenspace distribution (to represent complex vari-
abilities) and robust hypotheses on the distribution of
noise (to cope with clutter, outliers and occlusions).
The proposed representation is described in the next
section.

3 Detection: a Bayesian approach

3.1 Principle of detection

Figure 1 illustrates the general principle of the detection
method [3]. The image is analysed in a raster scan
manner: at each position (i, j), an observation vector, y,
is extracted from a window. The localisation of the
modelled pattern is obtained by computing, for each
position (i, j) of the window, the likelihood P yjBð Þ of the
observation vector, according to a learned model, B: The
likelihood computed for the window centred at (i, j) is
stored in a likelihood map at the same location (i, j).
When the scene has been completely scanned, a simple

thresholding of the likelihood map is used to determine
whether or not one or several objects are present in the
scene and to find out their location.

3.2 A Bayesian framework for the detection

The observation vector y can be decomposed using two
independent random vectors as follows:

y ¼ f cð Þ þ w ð1Þ

We consider here that the relation f between the obser-
vation y and a latent vector c is known (see Sect. 3.3).
We assume that c captures most of the information of
the class B: Vector w represents the (modelling, obser-
vation) noise on the reconstruction f(c).

Likelihood The likelihood of the observation P yjBð Þ is
computed by integrating the joint distribution of (c, y)
with respect to c:

P yjBð Þ ¼
R
P y; cjBð Þdc

¼
R
P yjc; Bð ÞP cjBð Þdc ð2Þ

In this expression, the first term P yjc; Bð Þ ¼ P wjBð Þ is
the noise distribution. The second term P cjBð Þ is the
prior distribution of the latent variables (distribution in
the eigenspace). For computational efficiency, it is
desirable to have a simple analytical expression of the
likelihood (Eq. 2). Unfortunately, except for some par-
ticular cases, e.g. Gaussian noise and Gaussian a priori
[1], the analytical expression of P yjBð Þ is generally not
tractable.

Approximated likelihood Another solution, which we
adopt in this paper, consists of approximating the dis-
tribution P yjBð Þ: Several approximations have been
proposed in the Bayesian framework to compute such
distributions [22, 23]. The approximation we use, pro-
posed in [23], is based on the hypothesis that P y; cjBð Þ
peaks sharply where the latent variables c are the most
probable:

ĉ ¼ arg max
c
P y; cjBð Þ

The likelihood of the observation P yjBð Þ may then be
approximated by the height of the peak multiplied by its
‘‘width’’ rpeak:

P yjBð Þ ffi rpeakmax
c
P y; cjBð Þ

/ P yjĉ; Bð ÞP ĉj Bð Þ
ð3Þ

This approximation, which confuses the distribution and
its mode, is linked to other standard methods used in
Bayesian inference, such as Laplace’s method [22] (see
also [7], p. 92). It is usually a good approximation, in
particular, in the Gaussian case, and leads to good
detection results, even in non-Gaussian cases. It is,
moreover, justified a posteriori by our experimental re-
sults.

Fig. 1 Detection process: extraction of the observation vector at
each pixel location (left). Computation of the log-likelihood
(centre). Thresholding of the log-likelihood map to locate the
object (right)
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Computational complexity Assuming the relation
shown in Eq. 1, then Eq. 2 or Eq. 3 provide a generic
way to compute the likelihood of the observations
y for the class of interest B: Whatever the function f
and the assumptions for P wjBð Þ and P cjBð Þ; comput-
ing P yjBð Þ with Eq. 2 or Eq. 3 can be performed
using simulation methods [22]. However, as explained
in Sect. 3.1, the likelihood P yjBð Þ has to be computed
for each observation window extracted from the
image. Due to their computation costs, those
simulation methods are, therefore, ill-suited in prac-
tice.

In order to show the potential of our approach, we
limit hereafter the application of this method as follows.
First, the relation f in Eq. 1 is chosen to be linear (see
Sect. 3.3). Second, the distributions of the noise w and
the informative vector c are limited to several hypotheses
that we present in detail in Sects. 3.4 and 3.5, respec-
tively. These restrictions allow us to define efficient
algorithms for the computation of the likelihood P yjBð Þ
in Sect. 4.

3.3 Linear projection model f

3.3.1 Eigenspace decomposition

In a preliminary (training) phase, a representative set
(database) B of grey-scale images xk, k=1,...,K, of
dimension N pixels, is collected by selecting views cor-
responding to the different appearances of the objects to
be modelled. Data are collected in vector form by con-
sidering the lexicographic ordering of the picture ele-
ments. The sample mean l of the training set is defined
as:

l ¼ 1

K

XK

k¼1
xk ð4Þ

The covariance matrix of the training database is esti-
mated by:

R ¼ 1

K

XK

k¼1
xk � lð Þ xk � lð ÞT ð5Þ

It is symmetric, positive semi-definite and may be diag-
onalised: S=UNLNUN

T. In this expression, UN is the
matrix collecting the N orthonormal eigenvectors of S.
LN is the diagonal matrix of the corresponding N ei-
genvalues. Each training sample x can, thus, be written
as the sum of the sample mean l and a linear combi-
nation of J eigenvectors (ordered as columns in matrix
U), with a reconstruction error wr:

x ¼ lþUcþ wr ¼ lþ
XJ

j¼1
cjuj þ wr ð6Þ

The eigenvectors uj associated to the J largest eigen-
values are selected in Eq. 6, yielding the standard PCA

representation. Equation 6 is the basis of the non-stan-
dard statistical model we develop in the next section.

3.3.2 Observation model

Our observation model corresponds to a non-standard
statistical interpretation of PCA, inspired by the latent
variable representation proposed by Tipping and Bishop
in the Gaussian case [1]. More precisely, we consider
that the observation y can be reconstructed from the
eigenvectors as follows:

y ¼ lþ
XJ

j¼1
cjuj þ wr ð7Þ

Here, w is the sum of the classical reconstruction error wr

(due to the truncation of the representation to J eigen-
vectors) and of an observation noise wo produced by the
recording system, possible occlusions or textured back-
ground (clutter). In standard probabilistic PCA [1, 3],
the latent variables cj are uncorrelated and follow a
Gaussian prior. The same holds for the noise term w. In
the non-standard model proposed here, we relax these
assumptions by allowing non-Gaussian prior models as
well as non-Gaussian (robust) noise models. The pro-
posed representation, thus, no longer corresponds to
standard probabilistic PCA and, in particular, the
parameters of the model (corresponding to the eigen-
vectors uj) are no longer maximum likelihood estimates,
as in [1]. On the other hand, the benefit of the proposed
approach is its ability to better represent the complex
distributions that may occur in real cases.

3.4 Noise models P wjBð Þ

The classical noise distribution model is the Gaussian
model with a diagonal covariance matrix [1]:

P yjc; Bð Þ / exp � y�l�Uck k2
2r2

g

h i

¼ exp � 1
2

PN

n¼1

wn
rg

� �2� � ð8Þ

The Gaussian hypothesis is not satisfactory when
observations are corrupted by non-linear artifacts,
occlusions or clutter. In these cases, large residual values
wn (i.e. outliers) are generated, which are highly improb-
able under theGaussian assumption. In order to take into
account the possible occurrence of outliers, Black and
Jepson [2] proposed the use of robust, M-estimators in
eigenspace models [14]. These models take into account
outliers by replacing the Gaussian distribution with:

P yjc; Bð Þ / exp � 1

2

XN

n¼1
q

wn

rg

� �2
" #

ð9Þ

where q is a non-quadratic function, which may, more-
over, be non-convex [2, 14, 24].
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3.5 Prior models in eigenspace P cjBð Þ

Uniform distribution The simplest model considers a
uniform distribution of the latent variables in eigen-
space:

P cjBð Þ ¼ constant

This corresponds to the absence of prior knowledge on
the eigenspace distribution.

Gaussian distribution Another standard hypothesis
consists of assuming that the distribution of the latent
variables is Gaussian:

P cjBð Þ ¼
exp � 1

2 c
TK�1c

� �

QJ
j¼1

ffiffiffiffiffiffiffiffiffi
2pkj

p

where the J variances kj in the diagonal matrix L are the
eigenvalues computed during the training phase. This is
equivalent to associating a Gaussian model with PCA,
as in [1, 3].

Other prior distributions Although classical, the
Gaussian assumption may be inappropriate for model-
ling real distributions. As an illustration, we consider
three examples of training databases. The first database
is an excerpt from the Columbia Object Image Library
(COIL) database, the other two contain European road
sign images (used in our application). Figure 2 shows a
few sample images from the COIL data set, which is
made of 72 grey-scale images of the object ‘‘duck’’ [25]
from different viewing angles.

The second database considers a single object rotat-
ing in the image plane (one image every 2�, see Fig. 3).
Since the object under concern is the mean image of the
white triangular European road signs, the database is
called AVG.

The third database is composed of colour images of
43 (yellow and white) triangular road signs, rotating in
the image plane (one image every 10�, see Fig. 4), and is
called A43.

Figure 5 presents the distribution of the training
images projected onto a 3D eigenspace for the COIL
and A43 databases. We can notice that the distributions

in the eigenspace are not Gaussian in either case. In the
case of the COIL database, we obtain a low-dimensional
non-linear manifold that can be parameterised by object
pose [4]. In the case of the A43 database, we can observe
two distinct clouds that correspond to the yellow road
signs on one side and to the white signs on the other side.
This variability is the main one and is captured by the
first principal component, u1. The circles that appear
in the plane defined by (u2, u3) are typical in the case
of image plane rotation variability [26] (see also Fig. 6
for the case of the single-object database AVG and
Sect. 5.2).

Although extensions to Gaussian mixture models [3,
12] can bring some flexibility to the standard represen-
tation, parametric models rely on the knowledge of the
form of the underlying densities and might fail to fit the
distributions actually encountered in practice [7]. In
contrast, non-parametric density estimation methods are
an efficient tool for modelling arbitrary distributions
without making assumptions about the forms of the
densities. We apply the Parzen window method, with
Gaussian kernels, to the projections of the training
images in the eigenspace:

P cjBð Þ ¼ 1

K

XK

k¼1

1
ffiffiffiffiffiffi
2p
p

rP

� �J

exp
� c� ckk k2

2 rPð Þ2

" #

ð10Þ

We recall that K is the number of training images in the
learning set B and that J is the dimension of the

Fig. 2 Sample training images from the COIL database [25]

Fig. 3 AVG database: the mean image of the white traffic signs is
learned with its rotation in the image plane (h denotes the rotation
angle)

Fig. 4 Some of the A43 database training images
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eigenspace. The parameter rP, called bandwidth, which
controls the resolution of the pdf model, is set experi-
mentally.

4 Detection algorithms

Using approximation shown in Eq. 3 implies maxi-
mising the distribution P y; cjBð Þ with respect to c.

This can be seen as a problem of reconstruction onto
the eigenspace, in the sense of maximum a posteriori
(MAP) estimation:

ĉ ¼ argmax
c
P y; cjBð Þ

¼ argmax
c
P yjc;Bð Þ � P yjBð Þf g ð11Þ

According to Eq. 3, the likelihood of the observation is
approximated by:

P yjBð Þ / P yjĉ; Bð Þ � P ĉjBð Þ

We shall now consider different assumptions for the
noise distribution P yjc; Bð Þ and for the prior P cjBð Þ:
We derive an expression or algorithms for the estimation
of ĉ and the computation of � lnP yjBð Þ: We begin by
the Gaussian noise assumption, making a link with
standard detectors associated to probabilistic PCA.
Then, we present non-Gaussian noise models and come
up with some robust detectors. Finally, the most general
case obtained by considering non-Gaussian models both
for the noise distribution and for the prior is presented
in Sect. 4.3.

4.1 Standard detection methods

In this paragraph, we consider the classical Gaussian
hypothesis for the noise distribution.

4.1.2 Gaussian noise, uniform prior

Let us first make the assumption of a uniform distri-
bution of the eigenspace components, P cjBð Þ: The joint
likelihood is, hence, reduced to the noise distribution (as
shown in Eq. 8) and the likelihood of the observation
can be expressed as:

P yjBð Þ / exp � y� l�Uĉk k2

2r2
g

" #

ð12Þ

The corresponding estimate ĉ is the least squares solu-
tion, i.e. the projection of the observation onto the
eigenspace:

Fig. 5 Distribution of the latent variables c of the training images
in a 3D eigenspace

Fig. 6 Distribution of the latent
variables c in the first two
planes of the eigenspace for the
AVG database. The circular
pattern is typical when learning
image plane rotation variability
[30]
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ĉ ¼ UT y� lð Þ

Taking the cologarithm of Eq. 12, we obtain the usual
similarity measure called DFFS [10], corresponding to
the orthogonal Euclidean distance between the obser-
vation and the eigenspace. This detector is renamed as
GU, to recall the hypotheses: Gaussian noise distribu-
tion and uniform prior distribution in the eigenspace:

GU yð Þ ¼ y� l�Uĉk k2 ð13Þ

4.1.2 Gaussian noise, Gaussian prior

The latent variables are now assumed to follow a
Gaussian prior: the random J-dimensional vector c, is
normally distributed with zero mean and covariance
matrix L. This matrix is diagonal and collects the J
principal eigenvalues kj computed during the learning
phase by PCA. The likelihood is expressed as:

P yjBð Þ / exp � y� l�Uĉk k2

2r2
g

" #

� exp � ĉ
TK�1ĉ
2

" #

ð14Þ

where rg is estimated as described in [3]. The MAP
estimate is given by:

ĉ ¼ IJ þ r2
gK
�1

� ��1
UT � y� lð Þ

where IJ is the J·J identity matrix. Since IJ and L are
diagonal, the computation of the estimate is straight-
forward. Taking the cologarithm of Eq. 14 yields the
following detector, called GG (Gaussian–Gaussian):

GG yð Þ ¼ y� l�Uĉk k2

r2
g

þ
XJ

j¼1

ĉj

 �2

ki

This expression is similar to the one proposed by
Moghaddam [3] and Tipping [1].

4.2 Robust detection methods

In the following paragraphs, P yjc; Bð Þ is no longer as-
sumed to be Gaussian in order to take into account
outliers.

4.2.1 Robust noise model, uniform prior

For an easier presentation of the algorithms, the distri-
bution of c is first assumed to be uniform:
P cjBð Þ ¼ constant. According to Eq. 9, the MAP energy
can be written, up to an additive constant, as:

J cð Þ ¼
XN

n¼1
q

wn

rp

� �

ð15Þ

Using the half-quadratic theory [27], we introduce an
augmented energy, denoted J �; depending on an
additional variable b and having the same minimum as
J :

J cð Þ ¼ min
b
J � c; bð Þ ¼

XN

n¼1
q�

wn

rq
; bn

� �( )

The augmented energy is minimised alternately w.r.t. c
and b. The minimum w.r.t. b for a fixed value of c is
given by an analytic expression. The minimum w.r.t. c
for a fixed value of b is computed using linear tech-
niques [27]. Two expressions of J � have been pro-
posed, leading to two different algorithms, which will
now be presented.

ARTUR or location step with modified weights The first
form of augmented energy is:

J A c; bA

 �

¼
XN

n¼1
bA

n
wn

rq

� �2

þ w bAn

 �

This expression leads to the so-called iterative reweighted
least squares algorithm, whose step (m) can be written
as:

w mð Þ ¼ y� l�Uc mð Þ

8n 2 1; . . . ; Nf g; bA mþ1ð Þ
n ¼

q0
w

mð Þ
n
rq

� �

2
w

mð Þ
n
rq

c mþ1ð Þ ¼ UTBA mþ1ð ÞU

 ��1

UTBA mþ1ð Þ y� lð Þ

�
�
�
�
�
�
�
�
�
�

ð16Þ

where BA(m+1) is the diagonal matrix that collects the
weights bn

A(m+1). This algorithm is widely used [28], in
particular, in robust recognition [2, 24]. However, the
matrix products and matrix inverse in Eq. 16 involve
costly computations.

LEGEND or the location step with modified residuals
[29] The second form of augmented energy is:

J L c; bL

 �

¼
XN

n¼1

wn

rq
� bLn

� �2

þ n bL
n


 �
ð17Þ

This expression leads to the so-called iterative least
squares algorithm with modified residuals:

w mð Þ ¼ y� l�Uc mð Þ

8n 2 1; . . . ; Nf g; bL mþ1ð Þ
n ¼ wn 1�

q0
w

mð Þ
n
rq

� �

2
w

mð Þ
n
rq

0

@

1

A

c mþ1ð Þ ¼ UT y� l� rqbL mþ1ð Þ
 �

�
�
�
�
�
�
�
�
�
�

ð18Þ

Both algorithms are equivalent to the ones proposed by
Huber [14]. The latter is, as far as we know, seldom used
in practice, although it has some attractive properties
when reconstructing on an orthogonal basis. It can be
shown that one step of LEGEND produces a smaller
energy decrease than one step of ARTUR, which implies
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a slower convergence rate. On the other hand, each step
of LEGEND involves much less computation since it is
tantamount to a simple projection. In our application,
the LEGEND algorithm turned out to be faster than
ARTUR in terms of computation time [29].

The estimate ĉ is considered in both cases after
convergence of the algorithm. It is computed with the
Geman-McClure’s function q (GM, see Table 1). Since
this function is non-convex, we use a continuation
strategy: the non-convexity is gradually introduced by
successively considering the following functions: HS
(hyper-surfaces, convex), HL (Hebert and Leahy) and
finally GM, as proposed in [24] (see Table 1, for the
expression of the different q functions). The scale
parameter, rq, is estimated in a preliminary off-line
step using the training images [24]. Hence, the method
does not require any user interaction for parameter
tuning.

The cologarithm of the likelihood may be written in
this case as:

RU yð Þ ¼ min
c

XN

n¼1
q

wn

rq

� �

¼ J ĉð Þ ð19Þ

It can be interpreted as a robust version of the DFFS
and will be referred to as RU (for robust uniform).

4.2.2 Robust noise model, Gaussian prior

Assuming a Gaussian a priori distribution in the eigen-
space, the previous energy becomes:

J cð Þ ¼
XN

n¼1
q

wn

rq

� �

þ
XJ

j¼1

cj

 �2

ki
ð20Þ

The minimisation algorithms are similar to Eqs. 16 and
18, except for the estimation of c(m+1), which becomes
for ARTUR:

c mþ1ð Þ ¼ UTBA mþ1ð ÞUþ r2
qK
�1

� ��1
UTBA mþ1ð Þ y� lð Þ

and for LEGEND:

c mþ1ð Þ ¼ IJ þ r2
qK
�1

� ��1
UT y� l� rqbL mþ1ð Þ
� �

Once again, the estimate is the value obtained after
convergence. The cologarithm of the likelihood may be
expressed as:

RG yð Þ ¼ min
c

XN

n¼1
q

wn

rq

� �

þ
XJ

j¼1

cj

 �2

kj

( )

ð21Þ

4.3 Detection using non-Gaussian distributions

We now consider the most general case where neither the
noise distribution nor the prior is considered as Gauss-
ian. In this case, P cjBð Þ is estimated from the training
database, using Parzen window estimates, as described
in Sect. 3.5. However, the MAP estimation of c

according to Eq. 3:

ĉMAP ¼ argmax
c
P yjc; Bð ÞP cjBð Þf g ð22Þ

is more involved, due to the more complex shape of the
prior distribution. Therefore, we resort to a second
approximation: we first compute the maximum likeli-
hood estimate of c:

ĉML ¼ argmax
c
P yjc; Bð Þf g ð23Þ

and then we approximate the likelihood of the obser-
vation by:

P yjBð Þ / P yjĉML; Bð ÞP ĉML; Bð Þ ð24Þ

Such an approximation is, of course, only valid when the
peaks of P y; ĉMLjBð Þ and P ĉjBð Þ coincide, which is
clearly not the case in general. However, we believe that
it is justified in our case since the maximum likelihood
reconstructions are already satisfactory, especially with
a robust noise model [2]. Let us emphasise that the
introduction of a non-Gaussian prior term in Eq. 24
implements a very useful constraint for the computation
of P yjBð Þ; which is not taken into account by standard
methods. This significantly improves the performance of
the detection process, as shown by experimental results
(see Sect. 5).

This latter detector will be referred to as robust non-
Gaussian (RNG). In the most general case, when the
prior distribution is modelled by Parzen windows with
Gaussian kernels, the negative log-likelihood can be
expressed as:

RNG yð Þ ¼ min
c

1

2

XN

n¼1
q

wn

rq

� �( )

� log
XK

k¼1
exp � ĉML � ckk k2

2 rq

 �2

" #" #

ð25Þ

The variance rq weights the influence of the a priori in
the eigenspace with respect to the robust likelihood
term.

5 Experimental results

This section is devoted to the assessment of the different
detectors described previously by using the three data-
bases presented in Sect. 3.5: COIL, AVG and A43. Test
images have been created from occurrences of the ob-
jects of interest by embedding the objects in various
textured backgrounds, with large occlusions (see for

Table 1 Robust q functions used in continuation [24]

Acronym q(x) Convexity

HS 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

� 2 Convex
HL log(1+x2) Non-convex
GM x2/(1+x2) Non-convex
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instance Figs. 7 and 11). ROC curves enable an objective
comparison of the different detectors. These are plots of
the true positive rate against the false alarm rate. In our
case, the former is defined as the ratio of correct deci-
sions to the total number of occurrences of the objects,
while the latter is the ratio of the number of incorrect
decisions to the total number of possible false alarms
(i.e. the locations where no object is present in the im-
ages—roughly, the size of the images · the number of
images). The correctness of detection is assessed using
the following rule: since the exact position of the object
of interest is known, the detection is considered to be
correct if it occurs in the 8-neighbourhood of the true
solution (i.e. a 1-pixel tolerance in accuracy). Note that
the detection is performed by simple thresholding of the
likelihood map, without any kind of post-processing.
For better visualisation, the ROC curves presented
hereafter are plotted on a semi-logarithmic scale.

Table 2 reviews the different proposed detectors.
Their acronyms recall the underlying hypotheses about
the noise model and the distribution of latent variables
(i.e. in-eigenspace distribution). The detector proposed
by Moghaddam and Pentland in [3], based on a
Gaussian model, has also been implemented and tested.

5.1 Importance of a robust noise model

This first experiment compares the detectors based on
Gaussian and non-Gaussian noise assumptions. Let us
recall that the latter allows the presence of outliers in the
observations.

We use the COIL database with J=5. The test set
collects 21 scenes (300·200 pixels each) containing 57
occurrences of the objects of interest, with partial
occlusions and cluttered background (see Fig. 7).

Figure 7 presents the likelihood maps computed with
the GU, GG, RU and RNG detectors on two test
scenes. For information, the mean computation time for
a single likelihood map is about 1 min for the GG
detector, 5 min for RU and RNG and 11 min for RG on
an AMD 750 MHz PC using a non-optimised C pro-
gram. In Fig. 7, the pixels outside the rectangular frame
correspond to positions where complete observations
could not be extracted. Visually, the results of GU and
GG are quite similar. The RU detector leads to stronger
peaks, allowing a better localisation of the objects
of interest. The RNG detector, which integrates a
non-Gaussian prior on the latent variables c, leads to a
likelihood map that is visually similar to the RU map.

This visual impression is confirmed by the corre-
sponding ROC curves, shown in Fig. 8, from which all
detectors may be compared. Let us first notice that the
GG detector and the Gaussian detector proposed by
Moghaddam and Pentland in [3] have led to the same
results in all our experiments, so we will only display one
curve for both detectors in the rest of the paper. As
expected, the RU detector exhibits significantly higher
true positive rates than the standard Gaussian noise GU
detector. Besides, Gaussian and uniform prior models
on the latent variables c lead to very similar results. This
is hardly surprising since the distribution in the eigen-
space is neither uniform nor Gaussian, as already illus-
trated in Fig. 5.

A non-Gaussian prior distribution is taken into ac-
count in the RNG detector (see Eq. 25), which is based
on a non-Gaussian noise model and on a Parzen window
estimate of the prior density. As can be seen, the intro-
duction of an appropriate prior in the RNG detector
slightly improves the results of RU (see Figs. 7 and 8).
Overall, the RNG model leads to the best results—sig-
nificantly better than detectors based on Gaussian
assumptions only.

Remark As it can be expected, sample size and feature
dimensionality have a significant impact on the pro-
posed technique. Their influence on statistical pattern
recognition methods based on learning is indeed now
well documented. Diminishing the sample size or the
feature dimensionality generally degrades the recogni-
tion performance. The ROC curves in Fig. 9 illustrate
the influence of J for the RU detector. Degradation of
the observation, i.e. noise, affects the results in the same
way. We already noticed this in the case of object rec-
ognition [24]. This is illustrated in Fig. 10 where a zero-
mean Gaussian noise with a standard deviation of
20 has been added to the analysed scenes, resulting in a
22-dB signal-to-noise ratio (SNR). For a 80% true
positive rate, the false alarm rate is about 0.15% for
the noiseless test set, while it is about 0.26% in the
noisy case.

5.2 Importance of the prior model (I)

This second experiment shows that a careful modelling
of the prior distribution in the eigenspace may be of
great benefit to detection performances.

The tests have been conducted using the AVG
training database, with J=20, considering 18 colour
scenes (300·200 pixels each) containing 29 occur-
rences of triangular traffic signs. Two of them are pre-
sented in Fig. 11. A specificity of this test is that a trap,
corresponding to the mean of the AVG training data-
base, has been introduced in I17 (circular pattern on
the left).

The mean image does not look at all like a triangular
traffic sign. Nevertheless, it is a trap for the GU, GG
and RU detectors, which do not take into account the

Table 2 Proposed detectors and their underlying assumptions

P cjBð Þ

Uniform Gaussian Non-Gaussian

P wjBð Þ Gaussian GU(DFFS) GG –
Robust RU RG RNG
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particular form of the underlying distribution in eigen-
space. This is due to the fact that the mean image be-
longs to the eigenspace and, hence, minimises the
reconstruction error, whatever the noise model, Gauss-
ian or robust. As can be seen, the mean is detected in

scene I17 by the RU detector with an even higher like-
lihood value than the two other true targets (see
Fig. 11). The robust RU detector is also misled by the
grass areas in I2. The performance of the different
detectors are summarised Fig. 12: the Gaussian detec-

Fig. 7 Examples of test scenes
and their log-likelihood maps
computed using the GU, GG,
RU detectors and the complete
model RNG. Bright intensities
correspond to a high likelihood
value. COIL database, J=5
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tors (GU, GG) yield similar poor results, in general. The
robust RU detector only brings a slight improvement,
with the ROC curves remaining unsatisfactory.

A significant improvement is obtained by intro-
ducing an adequate (prior) model of the eigenspace
distribution, associated to a robust noise model. Since

Fig. 8 Receiver operating
characteristic (ROC) curves for
standard Gaussian detectors
(GU, GG or Moghaddam and
Pentland [3, 10]); robust noise
model (RU and RG, which can
hardly be distinguished);
complete RNG model. COIL
database, J=5

Fig. 9 Receiver operating
characteristic (ROC) curves for
the robust detector RU for
different values of J, COIL
database

Fig. 10 Influence of
observation noise
(SNR=22 dB) on the robust
detector RU, COIL database,
J=10
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this particular database is composed of a single object
rotating in the image plane, it is not necessary to
resort to Parzen windows estimation for the prior
density. Indeed, the analytic expression of P cjBð Þ is
known in this case [26]: the eigenvalues are double
(k2j=k2j�1) and, in each plane associated to a pair of
eigenvectors, the coordinates of the training images in

the eigenspace are circularly distributed, with radius
R2=k2j+k2j�1 [29]. More precisely:

P cjBð Þ /
Y

J
2

j¼1
exp � 1

2c
c2j�1

 �2 þ c2j


 �2 � k2j � k2j�1

�
�
�

�
�
�

� �

ð26Þ

Fig. 11 Log-likelihood maps
for scenes I2 and I17. Bright
intensities correspond to a high
likelihood value. AVG
database, J=20
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This is illustrated in Fig. 6. This remark also explains
the circular shapes observed on the right side of Fig. 5.
In this particular case, the detector RNG is defined by:

RNG yð Þ ¼ min
c

XN

n¼1
q

wn

rq

� �( )

þ 1

c

X
J
2

j¼1
ĉ2j�1

 �2 þ ĉ2j


 �2 � k2j � k2j�1

�
�
�

�
�
�

ð27Þ

where c plays the same role as rq in the general case. As
expected, the performance of the complete RNG model
are, by far, the best in this experiment (see Figs. 11 and
12).

5.3 Importance of the prior model (II)

This last experiment is another illustration of the
importance of an accurate modelling of the eigenspace
distribution, this time in the case of a more general form
of the underlying pdf.

The A43 training database is used, with J=30. The
detection test is performed over 27 colour scenes
(300·200 pixels each) containing 58 occurrences of
traffic signs (samples are shown Fig. 13).

The likelihood maps computed with RU for scenes I2
and I17 show the poor performance of this detector in this
case (visually, it is only slightly better than the non-ro-
bust detectors, GU and GG). The positions of the objects
of interest cannot be distinguished easily. This impres-
sion is confirmed by the ROC curves presented Fig. 14
for detectors GU and RU. The results using a Gaussian
prior (detectors GG and RG) are identical, and are,
therefore, not depicted here. Once again, the uniform or
Gaussian assumptions on the prior are obviously not
adapted to the true distribution in the eigenspace (see
Fig. 5), which explains the poor results given by these

detectors. Using a robust noise model slightly improves
the results, but they remain mediocre: detecting 80% of
the objects yields a 68% false alarm rate!

For the RNG detector, as already explained, the dis-
tribution in the eigenspace is modelled using Parzen
windows with Gaussian kernels (see Sect. 4.3). We use the
approximation in Eq. 23: the likelihood is computed using
a robust ML estimate of the latent variables c. Besides, a
high weight is given to the prior term. The corresponding
detection maps are presented Fig. 13. They allow an easy
localisation of the target objects, which appear as bright
spots on the likelihood maps. Figure 14 shows the cor-
responding ROC curve. One can readily see the
improvement brought by the complete RNGmodel:more
than 70% of the objects of interest are detected before the
first false alarms appear. An accurate model for the dis-
tribution in the eigenspace is, therefore, essential.

6 Conclusion

In this paper, we have presented a novel Bayesian ap-
proach for object detection using global appearance-
based representations. The proposed framework com-
bines non-Gaussian noise models with general, non-lin-
ear assumptions about the distribution of latent
variables in the eigenspace. Non-Gaussian noise models
yield robust estimators, which can deal with severely
degraded occurrences of objects. A key feature of the
proposed approach is its ability to embed non-linear
priors on the eigenspace in a linear latent variable rep-
resentation. This significantly improves the perfor-
mances of the detector in critical situations.

This work finally unifies several standard detection
methods proposed in the literature and leads to the
definition of a new family of probabilistic detectors able
to cope with complex object distributions and adverse
situations, such as cluttered backgrounds, partial
occlusions or corrupted observations.

Fig. 12 Receiver operating
characteristic (ROC) curves for
standard Gaussian detectors
(GU, GG or Moghaddam and
Pentland [3, 10]); robust noise
model (RU); complete RNG
model. AVG database, J=20
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7 Originality and contribution

In this paper, we are interested in a particular class of
appearance-based representations [4, 5], namely proba-
bilistic appearance models [3, 10]. They can represent

large classes of images and make available all the tra-
ditional methods of statistical estimation.

Our Bayesian model is inspired by the latent variable
representation proposed by Tipping and Bishop [1] in
the Gaussian case (namely, probabilistic PCA, or PPCA
for short). The originality of our approach is that it

Fig. 13 Examples of likelihood
maps (bright intensities
correspond to a high likelihood
value). A43 database, J=30

330



explicitly takes into account general, non-Gaussian
forms of the underlying distributions, both for the prior
and for the observation model. In particular, it
straightforwardly integrates non-linear models for the
distribution of the images in the eigenspace. Thus, it
deviates from standard PPCA, and, in particular, the
parameters of the models are no longer maximum like-
lihood estimates. The benefit of our approach is its
ability to better represent the complex distributions that
may occur in practical applications. The proposed
framework also unifies the main PCA-based models
mentioned in the literature [2, 3].

The performance of the approach has been assessed
using receiver operating characteristic (ROC) curve
analysis on several representative databases. The
experimental results clearly show the impact of an
appropriate model for the in-eigenspace distribution on
the performances of the detection process. Moreover,
the approach also enables, when necessary, to introduce
robust hypotheses on the distribution of noise, allowing
to cope with clutter, outliers and occlusions, which is
also illustrated by the experimental results.

The main contribution of the paper is, thus, the
definition of a novel family of general purpose detectors
that experimentally compare favourably with several
state-of-the-art PCA-based detectors recently described
in the literature.
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