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Abstract

We consider a single-server first-in-first-out queue fed by a finite number of distinct sources

of jobs. For a large class of short-range dependent and light-tailed distributed job processes,

using functional large deviation techniques we prove a large deviation principle and logarithmic

asymptotics for the joint waiting time and queue lengths distribution. We identify the paths that

are most likely to lead to the rare events of large waiting times and long queue lengths. A number

of examples are presented to illustrate salient features of the results.

1 Introduction

Consider a single-server processing system with infinite waiting space that employs the first-in-first-
out (FIFO) processing policy. The server processes at a fixed rate C and there are a finite number
d ∈ N of, possibly dependent, distinguishable sources of jobs. Each source of jobs is described by their
own stationary job size and inter-arrival time sequences. We assume that the server has been running
for an infinite period of time and select an arbitrary instant, which for convenience we call time zero.

What concerns us in this paper is the likelihood that the period of time a job would have to wait
before being processed is long and/or the number of jobs from each source awaiting processing is large.
This is of practical interest when storage space for jobs awaiting processing is segregated based on job
source.

We prove logarithmic asymptotics for the likelihood of this rare event and determine most likely
paths. By comparison with simulation, we demonstrate that these asymptotic results can make good
predictions, even in an arguably non-asymptotic regime.

∗American Mathematical Society 1991 subject classifications: Primary 60K25; Secondary 60F10, 90B05.
†Keywords: Functional Large Deviations, Single Server FIFO, Waiting Time, Queue length.
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1.1 Notation and quantities of interest

For each source k ∈ {1, . . . , d}, let τk1 > 0 denote the most recent time prior to 0 that a job from
source k arrived. Label that job as −1 and those prior to it sequentially. For each n ≥ 2, let τ kn > 0
denote the time between the arrival of jobs −n and −n+ 1 and let ξkn > 0 denote the size of job −n;
that is the processor will take time ξkn/C to process job −n.

Define the sum of job sizes from −n to −1 from source k ∈ {1, . . . , d} and the vector of the summed
job sizes by:

Bk(n) :=
n
∑

i=1

ξki and ~B(n) := (B1(n), . . . , Bd(n)).

Define the total time that passes between the arrival of jobs −n and time 0 for source k ∈ {1, . . . , d}
and the vector of times by

T k(n) :=

n
∑

i=1

τki and ~T (n) := (T 1(n), . . . , T d(n)).

Define the number of jobs that have arrived from source k in the interval of length t > 0 prior to time
0, the corresponding vector, and the total number of jobs across all sources, by

Nk(t) := sup{n : T k(n) ≤ t}, ~N(t) := (N1(t), . . . , Nd(t)) and N(t) =

d
∑

k=1

Nk(t).

The total amount of work that source k brings in the interval [−t, 0) is

Ak(t) := Bk(Nk(t)), with ~A(t) := (A1(t), . . . , Ad(t)).

In the stochastic process nomenclature, {Ak(t)} is a (pure, zero-delayed) cumulative process. The
total amount of work brought by the sum of all d sources is

A(t) :=

d
∑

k=1

Bk(Nk(t)).

The waiting time of a job is the time between its arrival and the initiation of service upon it. The
waiting time ω of a virtual job (a job of zero size) inserted into the queue at time 0 can be determined
from Lindley’s recursion (see Loynes [14]) to be

ω = sup
t>0

(

A(t)

C
− t

)

. (1)

As we assume the server employees the FIFO queueing discipline, the waiting time is the same for a
virtual job from any source.

We define source k’s queue length to be the number of jobs from source k whose processing has not
completed by the time the tagged job arrives. We are interested in the queue length, ηk, for a virtual
job (a job of zero size) of type k that arrives at time 0. This is given by

ηk = Nk (sup {s : A(s) ≤ Cω}) . (2)



3

This is, perhaps, easiest to see by first considering the total queue length, η =
∑d

k=1 η
k. It is given

by the number of recently arrived jobs that would explain the waiting time:

η = N (sup {s : A(s) ≤ Cω}) .

In this paper we are interested in asymptotics for the likelihood of long waiting times and large queue
lengths. We are also interested in the most likely paths that lead to these rare events.

1.2 A brief introduction to existing work

A clear introduction to the application of large deviation methods in queueing theory can be found
in Ganesh, O’Connell and Wischik [10]. The asymptotic considered here is called the “large buffer”
or “long waiting time” asymptotic.

For a single source, when job sizes and inter-arrival times are independent sequences of i.i.d. random
variables, an example work that proves strong asymptotic results for the tail of the joint distribution
of {(ω, η1)} is Asmussen and Collamore [2], which strengthens results of Aspandiiarov and Pechersky
[3]. In many practical problems, however, it is natural to assume there is some dependence in the
job size and inter-arrival time processes. In the absence of heavy-tailed distributions and long range
dependence, with a single source logarithmic asymptotics have been proved under varying degrees of
generality:

lim
n→∞

1

n
log P(ω > n) = −δω; (3)

and lim
n→∞

1

n
log P(η1 > n) = −δη1 , (4)

so that we have the approximations P(ω > n) ≈ exp(−nδω) and P(η1 > n) ≈ exp(−nδη1) for large n.

For example, Glynn and Whitt [12] prove (3) under general large deviation assumptions. They also
treat (4) when inter-arrival times form a stationary sequence that are independent of i.i.d. job sizes.
Duffy and Sullivan [9] have since extended this result to the case where job sizes form an stationary
sequence. Related work in the multiple server setting can be found in Sadowsky and Szpankowski [19]
and Sadowsky [18]. Proving more than equation (3), the Large Deviation Principle (LDP) for {ω/n}
has been established by Ganesh and O’Connell [11] using functional techniques.

In the presence of heavy-tailed distributions or long range dependence, the dominant behavior of the
tails of the waiting time and queue length distributions is no longer exponential in n. In this case,
an example work treating the equivalent of equation (3) is Duffy, Lewis and Sullivan [6]. That paper
does not treat the case where the appropriate scale is log(n), where an example work is Mikosch and
Nagaev [15].

1.3 This work’s contribution

We treat a FIFO single-server queue fed by several (possibly dependent) sources of jobs. We consider
the joint distribution of the overall waiting time and the queue length of each source. We make
general large deviation assumptions on job-size and inter-arrival time processes. These assumptions
hold, for example, for sources with Markovian dependencies. Our assumptions exclude heavy tailed
distributions and long range dependence.
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The main contributions of this paper are the following.

• Theorems 7 and 8 prove that {ω/n, η1/n, . . . , ηd/n} satisfies the large deviation principle for a
large collection of sources of jobs.

• We deduce logarithmic asymptotics for the likelihood there is a large waiting time and a large
number of jobs from each source queued at the server. In particular, for sources whose job-sizes
and job inter-arrival times may consist of non-i.i.d. random variables and may be correlated
processes, but with sources being independent of each other, Corollary 9 proves that

lim
n→∞

1

n
log P

(

ω

n
> w,

η1

n
> q1, . . . ,

ηd

n
> qd

)

= − inf
w′≥w,q′1≥q1,...,q

′

d≥qk

K(w′, q′1, . . . , q
′
d), (5)

where K is a convex rate function that is linear on rays, which is written in terms of the rate
functions for the sources. This is illustrated with an example of sources whose job size and
inter-arrival times are correlated and are jointly driven by a Markov chain.

• Using a methodology based on functional large deviation techniques, we also determine the
most likely paths to this large waiting time and these large queue lengths. The paths are more
intricate than those conditioned solely on a large waiting time, with two different piece-wise
linear behaviors leading to the rare event; see Corollary 10, and equations (15) and (16) that
follow it.

• We demonstrate how our theorems recover known results under simplifying assumptions. We
demonstrate their novelty by treating an example where sources have Markovian dependencies.
We compare the theory’s predictions, including most likely paths, with output from simulation.

1.4 A practical motivation

In modern packet-switched networks, such as the Internet, data packets (i.e. jobs) are of variable size,
described by a number of bytes. Link speeds are given in bytes per second and, therefore, the time
taken to transmit a packet across a link is a function of its size. As the devices routing these packets
can have multiple input and output ports, they contain buffering to deal with temporary backlogs of
packets. Packets that arrive when a buffer is full are lost. An interesting and fundamental peculiarity
of engineering design is that these buffers are typically determined as a number of packets, not a
number of bytes. Thus the remaining storage space at any instant is not determined by the total
number of bytes that remain to be processed, but how many packets are awaiting processing. That
is, the remaining storage space is determined by the number of back-logged jobs, not how long it will
take to process the back-logged work.

For example, on standard Ethernet (such as the wired connection on most PCs) there is a Maximum
Transmission Unit (MTU) [largest job size] of 1500 bytes, while on IEEE 802.11 (the wireless connec-
tion used on most laptops) the MTU is 2356 bytes. Buffers in switches and routers are determined
by a number of “pigeon holes” each capable of holding a single packet of any size up to this MTU.
When a packet arrives and is placed in a pigeon hole, it fully occupies the space, no matter how few
bytes it contains.

For some of these buffered devices, particularly high end routers, the overall buffering capability is
fixed. A network engineer can then decide how to divide buffer space between input ports (i.e. between
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sources of jobs) to ensure that the likelihood losses occur (i.e. the buffers overflow) is minimized. A
naive approach to this question would be based on the average mix of traffic that is transported through
the device. However, assuming that network capacity is well provisioned so that large backlogs are
rare events, this approach may be far from optimal. We use the model to consider this question in
Section 4.3.

1.5 Organization

The rest of this paper is organized as follows. In section 2 we remind the reader of basic results from
large deviation theory and introduce the function space we will use. In section 3 we introduce the
functional quantities of interest and state our main results; all proofs are deferred to appendix A. In
section 4 we show that the main theorem generalizes known results and present a number of examples
that illustrate salient features.

2 The large deviation principle and our functional setup

For convenience we recall the basic facts of the Large Deviation Principle (LDP), which can be found
in a standard text such as Dembo and Zeitouni [5], and introduce the function space we will use.
Let X be a Hausdorff space with Borel σ-algebra B and let {µn, n ∈ N} be a sequence of probability
measures on (X ,B). We say that {µn, n ∈ N} satisfies the LDP with rate function I : X → [0,+∞] if
I is lower semi-continuous,

− inf
x∈G

I(x) ≤ lim inf
n→∞

1

n
logµn[G] and lim sup

n→∞

1

n
logµn[F ] ≤ − inf

x∈F
I(x)

for all open G and all closed F . Furthermore, as in Varadhan’s original definition [20], we will assume
that the level sets of I , {x : I(x) ≤ α}, are compact for all α ≥ 0. Rate functions with this property
are sometimes referred to as being “good”, but all our rate functions will have this property.

We say that a process {Xn} satisfies the LDP if Xn is a realization of µn for each n. Two sequences
of random elements {Xn} and {Yn} taking values in a metric space with metric d are defined to be
exponentially equivalent if lim supn→∞ n−1 log P(d(Xn, Yn) > δ) = −∞ for all δ > 0. If two processes
are exponentially equivalent, then one process satisfies the LDP with rate function I if and only if the
other process also does.

The Contraction Principle (e.g. Theorem 4.2.16 of [5]) states that if {Xn} satisfies the LDP in X
with good rate function I and f : X → Y is continuous, where X and Y are Hausdorff, then {f(Xn)}
satisfies the LDP in Y with good rate function given by J(y) := inf{I(x) : f(x) = y}. Moreover, if
{Xn} and {Yn} are exponentially equivalent, then {f(Yn)} also satisfies the LDP with rate function
J .

Let Cd[0,∞) denote the collection of R
d-valued continuous functions on [0,∞). Let Ad[0,∞) denote

the subset of functions on [0,∞) that are absolutely continuous on [0, x] for all x < ∞. Letting φj
denote the jth component of φ, define the space

Yd :=

{

φ ∈ Cd[0,∞) : lim
t→∞

φ(t)

1 + t
exists in R

d and φ(0) = ~0

}
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and equip it with the topology induced by the norm

||φ|| = max
j=1,...,d

sup
t≥0

∣

∣

∣

∣

φj(t)

1 + t

∣

∣

∣

∣

.

Define

Yd↑ :=

{

φ ∈ Yd : φ component-wise strictly increasing and min
j=1,...,d

lim
φj(t)

1 + t
> 0

}

and, for each ~µ = (µ1, . . . , µd) ∈ R
d, define

Yd~µ :=

{

φ ∈ Yd : lim
φj(t)

1 + t
= µj

}

.

Treat Yd↑ and Yd~µ as metric subspaces of Yd. Products of these spaces are equipped with the product
topology.

The motivation for the value of these spaces in the consideration of the LDP is as follows. Given an
R
d-valued stochastic process {Xn, n ∈ N} and defining X0 := 0, the usual sample paths of its partial

sums process {
∑n
i=1 Xi, n ∈ N} defined by

Ŝn(t) :=
1

n

[nt]
∑

i=0

Xi, for t ∈ [0,∞),

are not continuous functions. They are right-continuous with left-hand limits (CADLAG functions).
However their polygonal approximations,

Sn(t) :=
1

n

[nt]
∑

i=0

Xi +

(

t−
[nt]

n

)

X[nt]+1, for t ∈ [0,∞),

are continuous. We shall call Sn a sample path.

Restricting Sn to [0, 1], Dembo and Zajic [4] generalize Mogulskii’s theorem [16] by providing broad
conditions under which {Sn, n ∈ N} satisfies the LDP with good rate function in the space of contin-
uous functions on [0, 1] equipped with the sup norm. Under their assumptions, the rate function is
given by

I(ζ) =

{
∫ 1

0
λ∗(ζ̇(t))dt if ζ ∈ Ad[0, 1],

+∞ otherwise,

where Ad[0, 1] denotes the absolutely continuous functions on [0, 1] with φ(0) = 0, λ∗ is the Legendre
transform of the scaled cumulant generating function

λ(θ) := lim
n→∞

1

n
log E[en〈θ,Sn(1)〉]

and 〈·, ·〉 is the usual inner product.

Theorem 1 of Ganesh and O’Connell [11] establishes that if Dembo and Zajic’s conditions are met and
λ is differentiable at the origin, then {Sn, n ∈ N} also satisfies the LDP in Y with good rate function

I∞(ζ) =

{ ∫∞

0
λ∗(ζ̇(t))dt if ζ ∈ Ad[0,∞) ∩ Y ,

+∞ otherwise.
(6)
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Thus the sample paths of many partial sums processes satisfy the LDP in the function space Y ,
which is indexed by the positive real line. Rate functions of the sort in equation (6) are particularly
interesting. We refer to them as of integral form with integrand λ∗.

3 Functional quantities of interest and statement main results

In this section we state our main results; proofs are deferred to appendix A. We begin with the
sample paths of job sizes and inter arrival times, { ~B(n), ~T (n)}. These are sample paths of partial
sums processes, so it is known that a large class satisfy the functional LDP. We construct the sample
paths for { ~A(t), ~N(t)} and relate them to the sample paths of { ~B(n), ~T (n)}. These are no longer
sample paths of partial sums processes, but their functional large deviation behavior can be deduced
from that for { ~B(n), ~T (n)}. We then introduce a functional queue length map. When applied to
sample paths it does not exactly match the system queue length, but we prove that the discrepancy
is insignificant on the scale of large deviations. We prove this map is continuous, which enables us
to deduce our main result. We then specialize this result to independent sources and give an explicit
form for the paths leading to large queue lengths and long waiting times.

Define by { ~Bn(·) = (B1
n(·), . . . , B

d
n(·))} and {~Tn(·) = (T 1

n(·), . . . , T dn(·))} the (polygonal approxima-
tions to the usual) sample paths of {(ξ1n, . . . , ξ

d
n)} and {(τ1

n, . . . , τ
d
n)}. As τkn > 0 for all k and n, for

each k ∈ {1, . . . , d} T kn (·) is strictly increasing and continuous. For each n we define the function
Nk
n(·) to be the inverse of T kn (·): Nk

n(T kn (t)) = T kn (Nk
n(t)) = t. It can be explicitly determined to be

the polygonal approximation to the function t 7→ Nk(nt)/n = sup{m : T k(m) ≤ nt}/n:

Nk
n(t) =

1

n
Nk(nt) +



t−
1

n

Nk(nt)
∑

i=0

τki





1

τNk(nt)+1

.

This is a polygonal approximation as

t−
1

n

Nk(nt)
∑

i=0

τki ∈
[

0,
τNk(nt)+1

n

)

and on this interval this difference is linear in t. For each n > 0, we define ~Nn(·) = (N1
n(·), . . . , Nd

n(·)).

We also define ~An(·) = (B1
n(N

1
n(·)), . . . , Bdn(N

d
n(·))), the sample paths of the total arrivals. Noting

that [nNk
n(t)] = Nk(nt), it can be readily verified that

Akn(t) = Bkn(N
k
n(t)) =

1

n

Nk(nt)
∑

i=0

ξki +



t−
1

n

Nk(nt)
∑

i=0

τki





ξkNk(nt)+1

τk
Nk(nt)+1

.

The function ~An(·) is the polygonal approximation to the sample paths of t 7→ ~A(tn)/n. Here the
polygonal part is in [0, ξkNk(nt)+1/n).

Assumption 1 (LDP) The sample paths { ~Bn(·), ~Tn(·)} satisfy the LDP in Yd×Yd↑ with rate function
I∞ of integral form with integrand I, so that

I∞(φ1, . . . , φ2d) =

{ ∫∞

0 I(φ̇1(s), . . . , φ̇2d(s))ds if φ = (φ1, . . . , φ2d) ∈ A2d[0,∞)
+∞ otherwise.
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Assumption 1 is that the sample paths of the partial sums processes of job sizes and inter-arrival
times satisfy the LDP. As they are partial sums, they fall within the remit of Ganesh and O’Connell’s
Theorem 1 in [11] and so the assumption holds for a large class of processes. The assumption enables
us to deduce the LDP for the total arrivals up to a given time and the number of jobs from each
source which have arrived by this time. As these are not partial sums processes, we could not have
invoked Theorem 1 in [11] to justify the LDP for them directly.

Theorem 1 (Cumulative and counting processes sample path LDP) Under assumption 1, the

sample paths { ~An(·), ~Nn(·)} satisfy the LDP with rate function

J∞(φ1, . . . , φd, ψ1, . . . , ψd) = I∞(φ1(ψ
−1
1 ), . . . , φd(ψ

−1
d ), ψ−1

1 , . . . , ψ−1
d ).

We will define functions that takes sample paths to the waiting time and to estimates of the queue
lengths. They require knowledge of the sample path for the total arrival rate (summed across all
sources) and the job number sample paths for each source. However, the sum of the polygonal sample
paths of total arrivals

Ân(t) :=
d
∑

k=1

Akn(t)

is not quite the same as the polygonal sample path, An(·), to the arrivals interlaced across all sources,
which we now define. The interlaced arrival times are given by

T ∗(0) := 0 and T ∗(n) := min
k=1,...,d

inf
m≥1

{

T k(m) : T k(m) ≥ T ∗(n− 1)
}

for each n ≥ 1.

Define N∗(t) = sup{n : T ∗(n) ≤ t}. Let ξ∗n denote the job size corresponding to the arrival at time
T ∗(n) and τ∗n = T ∗(n)−T ∗(n− 1) the interlaced inter arrival times. If jobs from two or more sources
arrive simultaneously, we combine the job sizes and treat them as a single arrival at that time; this
causes no extra difficulty. We then define the (polygonal) sample paths to the interlaced arrivals by:

An(t) :=
A(nt)

n
+



t−
1

n

N∗(nt)
∑

i=0

τ∗i





ξ∗N∗(nt)+1

τ∗N∗(nt)+1

.

The cumulative arrival rate to the processor is An(·) not Ân(·), but the latter has a more convenient
representation. We overcome the discrepancy between them with an assumption that ensures that
the processes {Ân(·)} and {An(·)} are exponentially equivalent.

Assumption 2 (Exponential equivalence) For every k ∈ {1, . . . , d}

lim sup
n→∞

1

n
log P

(

sup
m

ξkm+1

1 + T k(m)
> n

)

= −∞.

If job sizes are i.i.d, then a sufficient condition for this assumption to hold (irrespective of the nature
of job inter-arrival times), is that the tail of the job size distribution decays faster than exponentially
(e.g. Weibull with parameter α > 1). Note that regardless of correlation structure, if job sizes are
bounded this assumption is trivially satisfied. If job sizes are i.i.d and independent of job inter-arrival
times, then exponential job sizes will not satisfy this criterion.
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Lemma 2 (Exp. equivalence of interlaced and summed sample paths) Under assumption 2,
the processes {An(·)} and {Ân(·)} are exponentially equivalent.

The functional representation for the waiting time is the well known map W : Y1 7→ R+ defined
by W (φ) = supt≥0{φ(t)/C − t}. The following lemma is known, but as we cannot find an explicit
reference for it, we include it for completeness. It will also help to illustrate an additional difficulty
that arises with the queue lengths.

Lemma 3 (Equivalence of waiting time and functional representation) For every m > 0,
W (Am(·)) = ω/m.

Ganesh and O’Connell prove that W is a continuous representation, so long as the queue is stable:

Lemma 4 (Ganesh and O’Connell [11]) If µ < C, then the map W is continuous on the space
Y1
µ.

We wish to consider a similar construction for a function representation of the queue length. Define
the map Qk : Y1 × Yd↑ 7→ R+ by:

Qk(φ, ~ψ) := ψk (sup {s : φ(s) ≤ CW (φ)}) . (7)

When applied to (An(·), ~Nn(·)), the map Qk is a functional analogue of ηk in equation (2) but, unlike

the waiting time, it is not exact when applied to sample paths. That is, Qk(An(·), ~Nn(·)) ≈ ηk/n, but
they are not necessarily equal. This discrepancy is caused by our use of polygonal approximation to
the usual CADLAG sample paths. The following lemma proves that as far as the LDP is concerned
the discrepancy is insignificant.

Lemma 5 (Exp. equivalence of queue lengths and the functional representation) The se-

quence {Qk(An(·), ~Nn(·)), n ∈ N} is exponentially equivalent to the sequence {ηk/n, n ∈ N}.

In order to deduce the LDP for {ηk/n, n ∈ N} from the LDP for {An(·), ~Nn(·), n ∈ N} it suffices to
show that Qk is continuous and apply the contraction principle. For the map Qk to be continuous,
the queueing system must be stable. That is, the long term average job inter-arrival time divided by
the service rate must be greater than the average job size.

Lemma 6 (Continuity of the queue length functional) Let µ ∈ R be such that µ < C, then
Qk, defined in equation (7), is continuous on (Y1

µ ∩ Yd↑ ) × Yd.

The assumption in Lemma 6 is a restriction on the long run average of the cumulative arrivals process.
The following assumption translates this into one on job sizes and inter-arrival times.

Assumption 3 (LDP plus stability) The sample paths { ~Bn(·), ~Tn(·)} satisfy the LDP with rate
function I∞ of integral form with integrand I in (Yd~µ ∩ Yd↑ ) × (Yd~ν ∩ Yd↑ ), where ~µ = (µ1, . . . , µd),
~ν = (ν1, . . . , νd) and

ρ :=

d
∑

k=1

µk
νk

< C.
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Define the map Q : Y1 × Yd↑ 7→ R+ by:

Q(φ, ~ψ) := (Q1(φ, ~ψ), . . . , Qd(φ, ~ψ)), (8)

where Qk is defined in equation (7). The map Q describes the queue length for every source at time
0. The following is our main general result.

Theorem 7 (Main result for dependent sources) If assumptions 2 and 3 are satisfied, then the
process {(ω/n, η1/n, . . . , ηd/n)} satisfies the LDP with rate function

K(w, ~q) = inf
{

J∞(~φ, ~ψ) : W (φ) = w,Q(φ, ~ψ) = ~q, ~φ ∈
(

Yd~κ ∩ Yd↑
)

, ~ψ ∈
(

Yd~ν−1 ∩ Yd↑
)

}

, (9)

where ~q ∈ R
d
+, φ =

∑d
k=1 φk, ~κ = (µ1/ν1, . . . , µd/νd) and ~ν−1 := (1/ν1, . . . , 1/νd).

The formula (9) holds in broad generality and is qualitatively informative. However, to get a more
tractable quantitative handle we assume that sources are independent of each other. Note that this
does not require us to assume that jobs sizes are independent of inter-arrival times within a given
source. This enables us to obtain a refined form as each process can be time-changed independently.

Assumption 4 (Independent sources) For each pair j, k ∈ {1, . . . , d} with j 6= k, the processes
{(ξji , τ

j
i )} and {(ξki , τ

k
i )} are independent.

Note that under assumptions 1 and 4, we have

I∞(φ1, . . . , φ2d) =











∫ ∞

0

[

d
∑

k=1

Ik

(

φ̇k(s), φ̇d+k(s)
)

]

ds if φ = (φ1, . . . , φ2d) ∈ A2d[0,∞)

+∞ otherwise,

(10)

where Ik is the integrand in the rate function for {(Bkn(·), T
k
n (·))}.

Theorem 8 (Main result for independent sources) In addition to assumptions 2 and 3, assume
that assumption 4 holds and each Ik in equation (10) is convex. Define Jk(x, y) := yIk (x/y, 1/y) for
each k ∈ {1, . . . , d}. Then:

• {ω/n} satisfies the LDP with the linear rate function

Kω(w) = wδω := wC inf
z>0

zL(C + 1/z), (11)

where

L(x) := inf
(x1,...,xd):

P

d
k=1 xk=x

{

d
∑

k=1

(

inf
yk≥0

Jk(xk, yk)

)

}

(12)

is the rate function for {An(1)};

• and, with ~q = (q1, . . . , qd), {(ω/n, η
1/n, . . . , ηd/n)} satisfies the LDP with convex rate function

K(w, ~q) = inf
x≥0

inf
{~y:

Pd
k=1 yk=Cw}

{

d
∑

k=1

xJk

(yk
x
,
qk
x

)

+ xδω

}

, (13)

where K is linear on rays; that is, for any α > 0, K(αw, α~q) = αK(w, ~q).
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Comment (K linear on rays): note that K has to be linear on rays as for any α ∈ (0,∞)

lim
n→∞

1

n
log P

(

(ω, η1, . . . , ηd) > (αnw, αnq1, . . . , αnqd)
)

= α lim
n→∞

1

n
log P

(

(ω, η1, . . . , ηd) > (nw, nq1, . . . , nqd)
)

,

by change of variable.

A natural corollary to this LDP is the following logarithmic asymptotic for the tail of joint waiting
time and queue lengths distribution.

Corollary 9 (Logarithmic asymptotics for independent sources) If

inf
w′>w,q′1>q1,...,q

′

d>qd

K(w′, q′1, . . . , q
′
d) = inf

w′≥w,q′1≥q1,...,q
′

d≥qd

K(w′, q′1, . . . , q
′
d), (14)

(a sufficient condition for which is that (w, q1, . . . , qd) is in the effective domain of K) then

lim
n→∞

1

n
log P

(

(ω, η1, . . . , ηd) > (nw, nq1, . . . , nqd)
)

= − inf
w′>w,q′1>q1,...,q

′

d>qd

K(w′, q′1, . . . , q
′
d).

Comment (finite waiting space): Taking an infimum over w in equation (14) results in the logarithmic
asymptotic for the likelihood of dropped jobs when there is waiting space qkn for each source k: the
lower bound is automatic, as the queue lengths with infinite waiting space path-wise dominate those
with finite waiting space; the upper bounds follow as paths in a small neighborhood around those
identified in Theorem 8 would cause overflow when there is finite waiting space and they have the
correct asymptotic likelihood.

The following corollary on the most likely paths that lead to this rare event is in the spirit of Anan-
tharam [1], who treats paths to a large waiting time over a finite time horizon for the queue with
i.i.d. job size process that is independent of an i.i.d. inter-arrival time process. Note that, when
constraining only on waiting time, the most likely paths are simpler.

Corollary 10 (Most likely paths for independent sources) Assume the that infima for K(~q) in
equations (13) and (12) are obtained at unique (x∗, y∗1 , . . . , y

∗
d, z

∗) ∈ (0,∞)d+2 and (a∗1, . . . , a
∗
d, b

∗
1, . . . , b

∗
d) ∈

(0,∞)2d, where
∑d
k=1 a

∗
k = C(z∗ + x∗)/z∗, so we have that

K(~q) =

d
∑

k=1

(

x∗Jk

(

y∗k
x∗
,
qk
x∗

))

+ z∗

(

d
∑

k=1

Jk(a
∗
k, b

∗
k)

)

.

Define the following piecewise linear functions for each k ∈ {1, . . . , d}:

φ̂k(t) =







y∗kt/x
∗ if t < x∗

y∗k + (t− x∗)a∗k if x∗ ≤ t < x∗ + z∗

y∗k + z∗a∗k + (t− x∗ − x∗)µk if t ≥ x∗ + z∗

and

ψ̂k(t) =







qkt/x
∗ if t < x∗

qk + (t− x∗)b∗k if x∗ ≤ t < x∗ + z∗

qk + b∗kz
∗ + (t− x∗ − z∗)νk if t ≥ x∗ + z∗
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where (µk, νk) is the unique pair such that Jk(µk , νk) = 0. Then, for any ε > 0,

lim
n→∞

P

(

( ~An, ~Nn) ∈ Bε

(

φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d

)

|

W (An) ≥ w,Q1(An, ~Nn) ≥ q1, . . . , Q
d(An, ~Nn) ≥ qd

)

= 1,

where Bε(φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d) is the ball of radius ε around (φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d) in Y2d. That is,

these (φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d) are the most likely paths that lead to the rare event.

This corollary implies that given we observe a long waiting time and large queue lengths [i.e. (ω >
wn, η1 > q1n, . . . , η

d > qdn)], that when n is large, with ρ :=
∑

µk/νk, the most likely path to this
event for the waiting time satisfies:

ω(t) ≈























0 if t ≤ −n(x∗ + z∗),
n(x∗ + (x∗ + t/n)x∗/z∗) if − n(x∗ + z∗) ≤ t ≤ −nx∗,
wn+ t(w/x∗ − 1) if − nx∗ ≤ t ≤ 0,
wn− t(C − ρ) if 0 ≤ t ≤ wn/(C − ρ),
0 if t ≥ wn/(C − ρ),

(15)

while for each queue, the path will satisfy

ηk(t) ≈























0 if t ≤ −n(x∗ + z∗),
nx∗b∗k + tx∗b∗k/(x

∗ + z∗) if − n(x∗ + z∗) ≤ t ≤ −nx∗,
nqk + t(qk/x

∗ − z∗b∗k/(x
∗ + z∗)) if − nx∗ ≤ t ≤ 0

qkn− t(C − ρ)qk/ω if 0 ≤ t ≤ wn/(C − ρ),
0 if t ≥ wn/(C − ρ),

(16)

These paths have five piecewise linear parts, with the waiting time and queue lengths all switching
modes at the same time. In the first there part is no queue build up until t = −n(x∗ − z∗). From
t = −n(x∗ + z∗) to t = −nx∗ the sources combine to generate sufficient volume of arrivals so that
at t = −nx∗ the workload will take until t = 0 for the server to process, allowing the queue lengths
and waiting time to build up from t = −nx∗ to t = 0. Between t = 0 to t = wn/(C − ρ), the server
processes the backlog of work and from then on the queues are empty. We will demonstrate these
distinct regimes in the Section 4.

4 Examples

4.1 Simplification of the rate function, K(w, ~q), under additional assump-

tions

We consider the form of the rate function K(w, ~q) in equation (13) under a series of simplifying
assumptions to demonstrate that Theorems 7 and 8 generalize existing results.
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1. If we only concern ourselves with the waiting time, then

inf
~q
K(w, ~q) = inf

x≥0
inf

{~y:
P

d
k=1 yk=Cw}

{

d
∑

k=1

x inf
qk

Jk

(yk
x
, qk

)

+ xδω

}

= inf
x≥0

{

xL

(

Cw

x

)

+ xδω

}

= wδω.

For example, this formula could be deduced from results in [12].

2. If we restrict our interest to considering the tail of the queue length distribution of a single
source k ∈ {1, . . . , d}, then, with ~q = (q1, . . . , qd), rate function for the {ηk/n} is:

Kk(q) := inf{K(w, ~q) : qk = q}

= q inf
x≥0

{

inf
y
Ik (y, x) + xδω

}

=: qδk, (17)

where δω defined in equation (11) is the exponent in the tail of the waiting time distribution.
Thus the large deviation lower and upper bounds tell us that the tail of the queue length
distribution of any individual source satisfies:

lim
n→∞

1

n
log P(ηk > n) = −δk.

That is, for large n, P(ηk > n) ≈ exp(−nδk). For example, related result appear in [19][18].

3. Finally, if there is only one source of jobs present, the service rate C is set to one and job sizes
for this source are independent of inter-arrival times, so that I1(x, y) = Iξ(x)+Iτ (y) (with Iξ , Iτ
convex), then

K1(q) = qδ1

= q inf
y≥0

inf
a≤y

inf
z≥0

{

zIξ

(y

z

)

+ zIτ

(

y − a

z

)

+ Iτ (a)

}

= q inf
z≥0

inf
y≥0

{

zIξ

(y

z

)

+ (z + 1)Iτ

(

y

z + 1

)}

,

where the last equality comes at a = y/(z+1) as Iτ is convex. Thus, with a single source formed
of a job size process that is independent of a job inter-arrival time process,

lim
n→∞

1

n
log P(η1 > n) = − inf

z≥0
inf
y≥0

{

zIξ

(y

z

)

+ (z + 1)Iτ

(

y

z + 1

)}

.

This recovers a result of Duffy and Sullivan [9], which was proved using arguments based directly
on distributions. That result is itself a generalization of a theorem of Glynn and Whitt [12].
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4.2 Specific processes

Even for partial sums processes whose rate functions are known, one cannot expect to get explicit
solutions for equations (13) and (12). However, because of convexity, simple and efficient numerical
techniques can be employed to determine the infima.

1. Bernoulli job sizes and independent exponential service times. To calculate the rate function,
for many stochastic processes {Xn} whose averages {

∑n
i=1 n

−1Xi} satisfy the LDP it can be
easiest to first calculate their scaled cumulant generating function (sCGF):

λ(θ) = lim
n→∞

1

n
log E

(

exp

(

θ

n
∑

i=1

Xi

))

.

Their rate function I is then given by the Legendre-Fenchel transform of λ:

I(x) = sup
θ

(θx − λ(θ)). (18)

For example, if Xn is i.i.d., clearly λ(θ) = log E(exp(θX1)). We use this with Bernoulli and
exponentially distributed random variables.

Assume that {ξkn} forms a Bernoulli sequence such that P(ξkn = Ak) = 1− pk and P(ξkn = Bk) =
pk, where Ak < Bk. Then µk = (1 − pk)Ak + pkBk and

λ(θ) = log E(eθξ
k
1 ) = log ((1 − pk) exp(θAk) + pk exp(θBk)) ,

using equation (18) it can readily be shown that

Iξk (x) =

{

(Bk−x)
Bk−Ak

log
(

(Bk−x)
(1−pk)(Bk−Ak)

)

+ (x−Ak)
Bk−Ak

log
(

(x−Ak)
pk(Bk−Ak)

)

if x ∈ [Ak, Bk]

+∞ otherwise.

If job inter-arrival times for source k ∈ {1, . . . , d} are i.i.d. and exponentially distributed with
rate 1/νk then their rate function is readily calculated from the sCGF

λ(θ) = log E(exp(θτk1 )) = log

(

1

1 − θνk

)

to be

Iτk (x) =
x

νk
− 1 − log

(

x

νk

)

.

Thus Jk(x, y) = yIξk (x/y) + yIτk(1/y) equals











Bky−x
Bk−Ak

log
(

Bky−x
(1−pk)(Bk−Ak)

)

+ x−Aky
Bk−Ak

log
(

x−Aky
pk(Bk−Ak)

)

+ 1
νk

− y + y log(yνk) if x/y ∈ [Ak, Bk]

+∞ otherwise.

Consider this system with two sources, parameterized as follows: A1 = 0.1, B1 = 1.1, p1 =
0.5, ν1 = 1.2 and A2 = 0.1, B2 = 0.2, p2 = 0.7, ν2 = 0.4. This gives ρ = 0.925 and we set C = 1,
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Figure 1: Bernoulli job sizes and exponential job inter-arrival times. Rate functions for the likelihood
one queuelength is x times the other: infwK(w, x, 1) and infwK(w, 1, x) against x.
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Figure 2: Bernoulli job sizes and exponential job inter-arrival times. Predicted paths for ω(t), η1(t)
and η2(t) from equations (15) and (16) are overlaid with large excursions observed in simulation.

so the system is stable. Numerically solving equation (13) gives: δ1 = 0.25, δ2 = 0.9, δω = 0.236,
where these quantities are defined in equations (17) and (11). Note that these values are quite
different to each other, despite the inter-dependency that comes about by sharing a common
FIFO processor.

Figure 1 plots infwK(w, x, 1) and infwK(w, 1, x) against x. This captures the likelihood that
given one queue length is long, the other is x times as long (without conditioning on the waiting
time). This plot illustrates the asymmetry in the likelihood of these rare events. Note that
arg inf{x : infwK(w, x, 1)} determines the most likely ratio of η1/η2 given that η2 is large.

We simulated this queueing system, processing of 2 million jobs from each source. Figure 2 plots
the time history around the largest η2 excursion observed. For this excursion we overlay the
most likely paths as predicted by theory in equations (15) and (16). These are matched solely
by setting n to the largest value of η2; everything else is predicted by theory. The parameters for
the η1(t) path are taken from the most likely ratio of η1/η2 given that η2 is large. Similarly, for
the ω(t) path we choose parameters determined by the most likely path given that η2 is n. Both
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the predicted times at which queue length and waiting time behavior change and the heights
achieved at those times match well with the observed path. We have seen this for a large range
of source statistics.

2. An example with correlated job sizes and inter-arrival times. To calculate the rate function for
certain partial sums processes {n−1

∑n
i=1 Xi} it can be easiest to first calculate the rate function

for the empirical laws {n−1
∑n

i=1 δXi} (where δx is the probability measure with mass 1 at x
and zero elsewhere) in the weak topology on the space of probability measures. If the random
variables Xn are bounded, then the rate function for {n−1

∑n
i=1Xi} can be determined by the

contraction principle.

In [7], Duffy and Metcalfe calculate the empirical law rate function for the two state Markov
chain {Xn, n ≥ 1} with transition matrix:

(

1 − α α
β 1 − β

)

, where α, β ∈ (0, 1).

Let {0, 1} denote the two states, then the empirical law rate function H is infinite unless the
measure has the form Υ = (1 − c)δ0 + cδ1, in which case

H(Υ) = H(c) =







−(1− c) log(1 − α+ αK) − c log(1 − β + β/K) if c ∈ (0, 1),
− log(1 − β) if c = 1,
− log(1 − α) if c = 0,

where

K =
−αβ(1 − 2c) +

√

(αβ(1 − 2c))2 + 4αβc(1 − α)(1 − β)(1 − c)

2α(1 − β)(1 − c)
.

From this we can calculate the rate function for the partial sums process {n−1
∑n

i=1 f(Xi)} by
the contraction principle. For source k, when the Markov chain is in state 0 a job of size πk0
is generated with an inter-arrival time to the next job of υk0 and when the chain is in state 1
a job of size πk1 is generated with an inter-arrival time of υk0 , with πk1 > πk0 . That is the state
of the Markov chain completely determines both the job inter-arrival time and size, making the
cumulative arrival process highly correlated. Then:

Jk(x, y) =







H

(

πk2 (y − υk1 ) + πk1 (υk2 − y)

(πk2 − πk1 )(υk2 − υk1 )

)

if y ∈ [υk1 , υ
k
2 ] and x =

y(πk2 − πk1 ) + πk1υ
k
2 − πk2υ

k
1

υk2 − υk1
,

+∞ otherwise,

and

inf
y>0

Jk

(

y,
qk
x

)

=











H

(

πk2
(

qk

x − υk1
)

+ πk1
(

υk2 − qk

x

)

(πk2 − πk1 )(υk2 − υk1 )

)

if x ∈ [q/υk2 , q/υ
k
1 ],

+∞ otherwise.

Consider this system with two sources having parameters: α1 = 3/16, β1 = 1/16, ν1
1 = 0.00001, ν1

2 =
0.5, π1

1 = 0.0072, π1
2 = 0.27 and α2 = 3/16, β2 = 1/16, ν2

1 = 0.00008, ν2
2 = 0.7, π1

1 = 0.16, π1
2 =

0.22. These parameters make job arrivals very bursty. We have ρ = 0.978 and set C = 1.

Figure 3 is the analogue of Figure 1, capturing the likelihood that given one queue length is
long, the other is x times as long. Despite the strong correlation structure in the sources here,
the results display the same features.
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Figure 3: Markov driven job sizes and inter-arrival times.Rate functions for the likelihood one queue-
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Figure 5: Markov driven job sizes and inter-arrival times. Predicted most likely paths to rare events.

Again we simulated this system with 2 million jobs from each source. We empirically observed
the frequency with which {η1 > x, η2 > ax} for a range of values of x and a ∈ {1, 2, 3}. Corollary
9 predicts that log freq {η1 > x, η2 > ax} should be approximately −x infq1>1,q2>aK(q1, q2) for
large x. Figure 4 demonstrates the accuracy of this approximation by plotting these frequencies.
Note that for large values of x, the tail of the empirically observed curves drop suddenly. This
is due to a finite amount of data from simulation. Running the simulations for longer results in
a similar drop off, but for larger x values. Again, we have observed similar output for a range
of process statistics.

Figure 5 demonstrates the variability in the nature of the predicted most likely paths for the
queue lengths and waiting time, as a function of the conditioning event. Here, for large n, we
condition on η1/n exceeding q1 and η2/n exceeding q2. Note the predicted sharp changes at the
time x∗, which can result in either an increase or decrease.

4.3 An application

We return to the question in section 1.4: how can one divide input buffer space between sources to
ensure that the likelihood losses occur (any buffer overflows) is minimized?

Consider the case where we have a buffer that can store a maximum of N MTU sized packets. One
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must divide up this storage space, where the divided space is allocated on a per-source basis. In other
words, we wish to choose {αk, k ∈ {1, . . . , d}} so that source k can buffer αkN packets, subject to the

constraint that 1 =
∑d

k=1 αk.

Two naive rules for splitting the buffer space would be based on: (1) ratios of the mean arrival rates of

the sources; or (2) ratios of the mean inter-arrival times. Rule (1) gives αk = (µk/νk)/(
∑d
j=1(µj/νj)),

while rule (2) gives αk = (1/νk)/(
∑d

j=1(1/νj)), where µk and νk are defined in assumption 3.

From the large deviations analysis and the comment on finite waiting space after Corollary 9, we know
that for each source k, we have

lim
n→∞

1

n
log P(ηk > n) = −δk,

where δk is defined in equation (17). By the principle of the largest term (Lemma 1.2.15 [5]),

lim
n→∞

1

n
log P

({

η1 > α1n
}

∪ . . . ∪
{

ηd > αdn
})

= − min
k=1,...,d

αkδk.

Thus, from a large deviation approach, we wish to identify the collection of non-negative real numbers
αk that maximizes the minimum of αkδk, as this would ensure that for large N the likelihood any
source is experiencing loss is minimized.

Lemma 11 We have that

max

{

min
k=1,...,d

αkδk : 1 =

d
∑

k=1

αk

}

=

(

d
∑

k=1

1

δk

)−1

,

where this maximum is obtained with

αk =
1

δk

(

d
∑

k=1

1

δk

)−1

.

For the two Markov sources in section 4.2 we chose N = 100 and ran simulations for the buffer divided
as (α1N, (1 − α1)N), for a range of α1 and observed the percentage of dropped packets (lost jobs)
over the course of the simulation. The same traffic traces were used in every simulation. Figure
6 plots these empirically observed values as a function of α1/(1 − α1). The vertical lines show the
α1/(1− α1) values suggested by the two naive rules and the large deviation rule. Rule (1) is furthest
from minimizing the probability of job loss due to lack of storage space. Rule (2), based on mean
inter-arrival times, is better. However the value suggested by the large deviation analysis does best.
We have seen similar outcomes for a range of source statistics.

A Proofs

Proof of Theorem 1: cumulative and counting processes sample path LDP.

Proof: Lemma 3 of Duffy and Rodgers-Lee [8] proves that f : Y1 × Y1
↑ 7→ Y1 × Y1

↑ , f(φ, ψ) =

(φ(ψ−1), ψ−1), is continuous. As f(Bkn, T
k
n ) = (Akn, N

k
n), the result follows from an application of the

contraction principle, using the fact that ψ 7→ ψ−1 is one to one in Y1
↑ .
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�

Proof of Lemma 2: exponential equivalence of interlaced and summed sample paths.

Proof: We have that

||Ân(·) −An(·)|| ≤ sup
t>0

1

1 + t

∣

∣

∣

∣

Ân(t) −
A(nt)

n

∣

∣

∣

∣

= sup
t>0

1

1 + t

d
∑

l=1



t−
1

n

N l(nt)
∑

i=0

τ li





ξlN l(nt)+1

τ l
N l(nt)+1

≤ sup
t>0

1

1 + t

d
∑

l=1

ξlN l(nt)+1 ≤

d
∑

l=1

sup
m≥1

ξlm+1

1 + T l(m)
.

As

P

(

d
∑

l=1

sup
m≥1

ξlm+1

1 + T l(m)
> δn

)

≤ max
k=1,...,d

P

(

sup
m≥1

ξlm+1

1 + T l(m)
>
δ

d
n

)

,

exponential equivalence then follows from assumption 2 and the principle of the largest term (Lemma
1.2.15 [5]).

�

Proof of Lemma 3: equivalence of waiting time and functional representation.

Proof: Let m > 0 be given and consider:

sup
t>0

(

Am(t)

C
− t

)

= sup
t>0

(

A(mt)

Cm
+

(

t−
T ∗(m)

m

)

ξ∗m+1

Cτ∗m+1

− t

)

.



21

The supreumum over t must be attained at interlaced arrival times, as the polygonal approximation
less service process is linear between job arrivals. Thus recalling the definition of the waiting time, ω,
from (1),

sup
t>0

(

Am(t)

C
− t

)

=
ω

m
.

�

Proof of Lemma 5: exponential equivalence of queue lengths and the functional representation.

Proof: We know that W (Am(·)) = ω/m. Define σ := sup{s : A(s) ≤ Cω} and consider

σm := sup

{

s : Am(s) ≤
Cω

m

}

=
1

m
sup







s : A(s) +



s−

N∗(s)
∑

i=0

τ∗i





ξ∗N∗(s)+1

τ∗N∗(s)+1

≤ Cω







.

As Nk
m(·) is non-decreasing and Nk

m(t) ∈ [N(mt)/m, (N(mt) + 1)/m),

Qk(Am(·), ~Nm(·)) = Nk
m(σm) ∈

[

Nk
m

( σ

m

)

−
1

m
,Nk

m

( σ

m

)

)

⊂

[

Nk(σ) − 1

m
,
Nk(σ) + 1

m

)

.

Thus
∣

∣

∣

∣

Qk(Am(·), ~Nm(·)) −
ηk

m

∣

∣

∣

∣

≤
1

m
,

and {Qk(An(·), ~Nn(·))} and {ηk/n} are exponentially equivalent.

�

Proof of Lemma 6: continuity of the queue length functional.

Proof: Assume that (φn, ψn) → (φ, ψ) in (Y1
µ ∩ Y↑) × Y1. Define the positive real valued function

σ(φ) := sup{s : φ(s) ≤ CW (φ)}. We have that

|σ(φn) − σ(φ)| ≤ |sup{s : φn(s) ≤ CW (φn)} − sup{s : φ(s) ≤ CW (φn)}|

+ |sup{s : φ(s) ≤ CW (φn)} − sup{s : φ(s) ≤ CW (φ)}|

=
∣

∣φ−1
n (CW (φn)) − φ−1(CW (φn))

∣

∣+
∣

∣φ−1(CW (φn)) − φ−1(CW (φ))
∣

∣ ,

where φ−1
n (φn(t)) = φn(φ

−1
n (t)) = φ−1(φ(t)) = φ(φ−1(t)) = t. As φn → φ in Y1

µ ∩ Yd↑ , φ−1
n → φ−1 in

Y1
1/µ ∩ Yd↑ . In particular, φ−1 is continuous and φ−1

n converges to φ−1 uniformly on compact sets. As

W (φn) →W (φ), σ is continuous. It remains to show that ψn(σ(φn)) → ψ(σ(φ)), but as σ(φn) → σ(φ)
and ψn → ψ uniformly on compact sets, this follows immediately. Thus Qk is continuous.

�
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Proof of Theorem 7: main result for dependent sources.

Proof: Theorem 1, Lemma 2, Lemma 4 and Lemma 6 show that the map

(~φ, ~ψ) 7→ (φ1(ψ
−1
1 ), . . . , φd(ψ

−1
d ), ψ−1

1 , . . . , ψ−1
d )

7→

(

d
∑

k=1

φk(ψ
−1
k ), ψ−1

1 , . . . , ψ−1
d

)

7→

[

W

(

d
∑

k=1

φk(ψ
−1
k )

)

, Q

(

d
∑

k=1

φk(ψ
−1
k ), ψ−1

1 , . . . , ψ−1
d

)]

is continuous. Thus an application of the contraction principle, using and the exponential equivalence
in Lemma 2 and Lemma 5, gives

K(w, ~q) = inf

{

I∞(~φ, ~ψ) : W

(

d
∑

k=1

φk(ψ
−1
k )

)

= w,Q

(

d
∑

k=1

φk(ψ
−1
k ), (~ψ)−1

)

= ~q

}

= inf
{

J∞(~φ, ~ψ) : W (φ) = w,Q(φ, ~ψ) = ~q, ~φ ∈ (Yd~κ ∩ Yd↑ ), ~ψ ∈ (Yd~ν−1 ∩ Yd↑ )
}

where φ =
∑d
k=1 φk, ~κ = (µ1/ν1, . . . , µd/νd) and ~ν−1 := (1/ν1, . . . , 1/νd).

�

Proof of Theorem 8: main result for independent sources.

Proof: Starting from the result in Theorem 7, we first show under assumptions 3 and 4 that J∞ is
of integral form with integrand

J(x1, . . . , xd, n1, . . . , nd) =
d
∑

k=1

Jk(xk , nk),

where Jk(xk , yk) = ykIk (xk/yk, 1/yk). Consider (φ1, . . . , φd, ψ1, . . . , ψd) such that J(φ1, . . . , φd, ψ1, . . . , ψd) <
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∞. Then using equation (10)

J∞ (φ1, . . . , φd, ψ1, . . . , ψd) = I∞
(

φ1(ψ
−1
1 ), . . . , φd(ψ

−1
d ), ψ−1

1 , . . . , ψ−1
d

)

=

∫ ∞

0

[

d
∑

k=1

Ik

(

φ̇k(ψ
−1(s))

ψ̇k(ψ−1(s))
,

1

ψ̇k(ψ−1(s))

)]

ds

=

d
∑

k=1

[

∫ ∞

0

Ik

(

φ̇k(ψ
−1(s))

ψ̇k(ψ−1(s))
,

1

ψ̇k(ψ−1(s))

)

ds

]

=

d
∑

k=1

[

∫ ∞

0

Ik

(

φ̇k(s)

ψ̇k(s)
,

1

ψ̇k(s)

)

ψ̇k(s)ds

]

=

d
∑

k=1

[∫ ∞

0

Jk

(

φ̇k(s), ψ̇k(s)
)

ds

]

=

∫ ∞

0

[

d
∑

k=1

Jk

(

φ̇k(s), ψ̇k(s)
)

]

ds,

where Jk(x, y) = yIk (x/y, 1/y) and we used the substitutions s 7→ ψk(s).

Moreover, if Ik is convex, then Jk is convex. This can be seen by considering, for α ∈ [0, 1],

Jk(αx1 + (1 − α)x2, αy1 + (1 − α)y2) = (αy1 + (1 − α)y2)Ik

(

αx1 + (1 − α)x2

αy1 + (1 − α)y2
,

1

αy1 + (1 − α)y2

)

.

Set γ = αy1/(αy1 + (1 − α)y2), note that γ ∈ [0, 1] as y1, y2 ≥ 0, and thus

αx1 + (1 − α)x2

αy1 + (1 − α)y2
= γ

x1

y1
+ (1 − γ)

x2

y2
and

1

αy1 + (1 − α)y2
= γ

1

y1
+ (1 − γ)

1

y2
.

Hence, using the convexity of Ik(x, y),

Jk(αx1 + (1 − α)x2, αy1 + (1 − α)y2) ≤ αy1I1

(

x1

y1
,

1

y1

)

+ (1 − α)y2I1

(

x2

y2
,

1

y2

)

= αJk(x1, y1) + (1 − α)Jk(x2, y2).

as required. It is also the case that infx Jk(x, y) is a convex function (e.g Theorem 5.3 of [17]) and as
L is defined as an inf-convolution of convex functions, it too is convex (e.g. Theorem 5.4 of [17]).

We will see that K(~q) breaks into two parts. Firstly we have the “cost” of having the cumulative
arrivals over an interval of length t− s consume the service available over an interval of length t. The
second part is the “cost” of having source k produce qk jobs in an interval of length s while all the
sources combine to generate a waiting time w. The rate function identifies the most likely t and s for
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which this will happen. For ~φ ∈ Yd define φ =
∑d

k=1 φk, then

K(w, ~q) = inf
(~φ,~ψ)

{

J∞(~φ, ~ψ) : W (φ) = w,Q1(φ, ~ψ) = q1, . . . , Q
d(φ, ~ψ) = qd

}

= inf
(~φ,~ψ)

{J∞(~φ, ~ψ) : sup
t

(φ(t)/C − t) = w,

ψ1(sup{s : φ(s) ≤ Cw}) = q1, . . . , ψd(sup{s : φ(s) ≤ Cw}) = qd}

= inf
x≥0

inf
(~φ,~ψ)

{

J∞(~φ, ~ψ) : sup
t

(φ(t) − Ct) = Cw, φ(x) = Cw,ψ1(x) = q1, . . . , ψd(x) = qd

}

≥ inf
x≥0

inf
t≥x

inf
(~φ,~ψ)

{

J∞(~φ, ~ψ) : φ(t) − φ(x) = Ct, φ(x) = Cw,ψ1(x) = q1, . . . , ψd(x) = qd

}

≥ inf
x≥0

inf
t≥x

inf
(~φ,~ψ)

{

J∞(~φ, ~ψ) : φ(t) − φ(x) = Ct, φ(x) = Cw,ψ1(x) = q1, . . . , ψd(x) = qd

}

≥ inf
x≥0

inf
t≥x

inf
(φ,~ψ)

{

d
∑

k=1

(∫ x

0

Jk(φ̇k(s), ψ̇k(s))ds

)

+

∫ t

x

L
(

φ̇(s)
)

ds :

φ(t) − φ(x) = Ct, φ(x) = Cw,ψ1(x) = q1, . . . , ψd(x) = qd}

≥ inf
x≥0

inf
t≥x

inf
~y:

Pd
k=1 yk=Cw

{

d
∑

k=1

xJk

(yk
x
,
qk
x

)

+ (t− x)L

(

Ct

t− x

)

}

(19)

= inf
x≥0

inf
{~y:

Pd
k=1 yk=Cw}

{

d
∑

k=1

xJk

(yk
x
,
qk
x

)

+ inf
z≥0

zL

(

C(z + x)

z

)

}

where we are using Jensen’s inequality to get (19).

To show the lower bound is obtained we construct a collection of absolutely continuous functions
(φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d) with φ̂ :=

∑d
k=1 φ̂k that are in the set {(φ, ~ψ) : Q1(φ, ~ψ) = q1, . . . , Q

d(φ, ~ψ) =

qd}. Moreover, by construction I(φ̂1 . . . , φ̂d, ψ̂1, . . . , ψ̂d) will be arbitrarily close to the lower bound.
Thus K(~q) has the form given in equation (13).

As all the functions in the infimum are convex and convex functions are continuous on the inte-
rior of where they’re finite, given ε > 0 we can select a points (x∗, y∗1 , . . . , y

∗
d, z

∗) ∈ (0,∞)d+2 and

(a∗1, . . . , a
∗
d, b

∗
1, . . . , b

∗
d) ∈ (0,∞)2d with

∑d
k=1 a

∗
k = C(z∗ + x∗)/z∗ and

∑d
k=1 y

∗
k = Cw, such that

d
∑

k=1

(

x∗Jk

(

y∗k
x∗
,
qk
x∗

))

+ z∗

(

d
∑

k=1

Jk(a
∗
k, b

∗
k)

)

is no greater than

inf
x≥0

inf
{~y:

Pd
k=1 yk=Cw}

{

d
∑

k=1

xJk

(yk
x
,
qk
x

)

+ inf
z≥0

zL

(

C(z + x)

z

)

}

+ ε.

Let (µk, νk) be such that J(µk, νk) = 0 for each k ∈ {1, . . . , d}. Set φ̂(t) =
∑d
k=1 φ̂k(t) and for each

k ∈ {1, . . . , d} define the functions (φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d) through their derivatives

d

dt
φ̂k(t) =







y∗k/x
∗ if t < x∗

a∗k if x∗ ≤ t < x∗ + z∗

µk if t ≥ x∗ + z∗
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and

d

dt
ψ̂k(t) =







qk/x
∗ if t < x∗

b∗k if x∗ ≤ t < x∗ + z∗

νk if t ≥ x∗ + z∗.

We have (φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d) ∈ (Yd~µ ∩Yd↑ )× (Yd~ν ∩Yd↑ ), W (
∑d

k=1 φ̂k) = Cw, Qk(φ̂, ψ̂1, . . . , ψ̂d) = qk

for every k ∈ {1, . . . , d} and J∞(φ̂1, . . . , φ̂d, ψ̂1, . . . , ψ̂d) is within ε of our lower bound. Thus it is
possible to arbitrarily well approximate the lower bound, and the result follows.

To see that K(w, ~q) is linear on rays, consider the expression in equation (13) for K(αw, α~q) and make
the substitution x′ = x/α to get αK(~q).

To get the result for {ω/n}, one contracts out by projection to get Kω(w) = inf~qK(w, ~q).

�

Proof of Corollary 9: logarithmic asymptotics for independent sources.

Proof: As K is convex, it is continuous on the interior of the set where it is finite. Thus the result
follows applying the large deviation lower bound to {(ω, η1, . . . , ηd) > (nw, nq1, . . . , nqd)} and large
deviation upper bound to {(ω, η1, . . . , ηd) ≥ (nw, nq1, . . . , nqd)}.

�

Proof of Corollary 10: most likely paths for independent sources.

Proof: We appeal to a sub-result of Theorem 3.1 (b) of Lewis, Pfister and Sullivan [13]. This states
that if {Xn} satisfies the LDP with rate function I and the closed set D is such that

lim
n→∞

1

n
log P(Xn ∈ D) = − inf

x∈D
I(x) > −∞, then lim

n→∞
P(Xn ∈ GD | Xn ∈ D) = 1,

where GD is any neighborhood of {x ∈ D : I(x) = infy∈D I(y)}.

For ~φ = (φ1, . . . , φd), define φ :=
∑d

k=1 φk. In order to deduce the corollary, it suffices to show that

S1 :=
{

(~φ, ~ψ) ∈ Y2d : W (φ) ≥ w,Q1
(

φ, ~ψ
)

≥ q1, . . . , Q
d
(

φ, ~ψ
)

≥ qd and J∞(~φ, ~ψ) = K(~q)
}

equals

S2 :=
{

(~φ, ~ψ) ∈ Y2d : (~φ, ~ψ) = (
~̂
φ,
~̂
ψ) apart from on a set of Lebesgue measure 0

}

.

Clearly S2 ⊂ S1. Assume (~φ, ~ψ) ∈ S1 Let Ξ be such that

(

φ̇1, . . . , ψ̇d

)

(s) 6=

(

d

dt
φ̂1, . . . ,

d

dt
ψ̂d

)

(s) for s ∈ Ξ.

However J∞(~φ, ~ψ) = J∞(
~̂
φ,
~̂
ψ) and therefore
∫ ∞

x∗+z∗
J

(

d

dt
φ̂1(s), . . . ,

d

dt
ψ̂d(s)

)

ds = 0,



26

as J(x1, . . . , xd, y1, . . . , yd) = 0 if and only if (x1, . . . , yd) = (µ1, . . . , µd, ν1, . . . , νd), it must be the case
that

∫

Ξ∩[z∗+x∗,∞) ds = 0, as otherwise

∫ x∗+z∗

0

J(φ̇1(s), . . . , ψ̇d(s))ds <

∫ x∗+z∗

0

J

(

d

ds
φ̂1(s), . . . ,

d

ds
ψ̂d(s)

)

ds

which would violate equation (19). Thus Ξ ⊂ [0, z∗ + x∗].

As the minimizing points (x∗, y∗1 , . . . , y
∗
d, z

∗) ∈ (0,∞)d+2 and (a∗1, . . . , a
∗
d, b

∗
1, . . . , b

∗
d) ∈ (0,∞)2d are

unique, by Jensen’s inequality it must be the case that

φk(x
∗) = y∗k, φk(x

∗ + z∗) = y∗k + z∗ak, ψk(x
∗) = qk, and ψk(x

∗ + z∗) = qk + z∗bk.

Again by Jensen’s inequality, given this constraint, J(~φ, ~ψ) = K(~q) only if (~φ, ~ψ) = (
~̂
φ,
~̂
ψ) almost

everywhere, so that S1 = S2.

�

References

[1] V. Anantharam, How large delays build up in a GI/G/1 queue, Queueing Systems Theory Appl.
5 (1989), no. 4, 345–367.

[2] S. Asmussen and J. F. Collamore, Exact asymptotics for a large deviations problem for the
GI/G/1 queue, Markov Process. Related Fields 5 (1999), no. 4, 451–476.

[3] S. Aspandiiarov and E. A. Pechersky, A large deviations problem for compound Poisson processes
in queueing theory, Markov Process. Related Fields 3 (1997), no. 3, 333–366.

[4] A. Dembo and T. Zajic, Large deviations: from empirical mean and measure to partial sums
process, Stochastic Process. Appl. 57 (1995), no. 2, 191–224.

[5] A. Dembo and O. Zeitouni, Large deviation techniques and applications, Springer, 1998.

[6] K. Duffy, J. T. Lewis, and W. G. Sullivan, Logarithmic asymptotics for the supremum of a
stochastic process, Ann. Appl. Probab. 13 (2003), no. 2, 430–445.

[7] K. Duffy and A. P. Metcalfe, The large deviations of estimating rate functions, J. Appl. Probab.
42 (2005), no. 1, 267–274.

[8] K. Duffy and M. Rodgers-Lee, Some useful functions for functional large deviations, Stoch. Stoch.
Rep. 76 (2004), no. 3, 267–279.

[9] K. Duffy and W. G. Sullivan, Logarithmic asymptotics for unserved messages at a FIFO, Markov
Process. Related Fields 10 (2004), no. 1, 175–189.

[10] A. Ganesh, N. O’Connell, and D. Wischik, Big queues, Lecture Notes in Mathematics, vol. 1838,
Springer-Verlag, Berlin, 2004.

[11] A. J. Ganesh and N. O’Connell, A large deviation principle with queueing applications, Stoch.
Stoch. Rep. 73 (2002), no. 1-2, 25–35.



27

[12] P. W. Glynn and W. Whitt, Logarithmic asymptotics for steady-state tail probabilities in a single-
server queue, J. Appl. Probab. 31A (1994), 131–156, Studies in applied probability.

[13] J. T. Lewis, C.-E. Pfister, and W. G. Sullivan, Entropy, concentration of probability and condi-
tional limit theorems, Markov Process. Related Fields 1 (1995), no. 3, 319–386.

[14] R. M. Loynes, The stability of a queue with non-independent interarrival and service times, Proc.
Cambridge Philos. Soc. 58 (1962), 497–520.

[15] T. Mikosch and A. V. Nagaev, Large deviations of heavy-tailed sums with applications in insur-
ance, Extremes 1 (1998), no. 1, 81–110.
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