# Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions David Malone, Ken Duffy, and Doug Leith Abstract—Analysis of the 802.11 CSMA/CA mechanism has received considerable attention recently. Bianchi presented an analytic model under a saturated traffic assumption. Bianchi's model is accurate, but typical network conditions are nonsaturated and heterogeneous. We present an extension of his model to a nonsaturated environment. The model's predictions, validated against simulation, accurately capture many interesting features of nonsaturated operation. For example, the model predicts that peak throughput occurs prior to saturation. Our model allows stations to have different traffic arrival rates, enabling us to address the question of fairness between competing flows. Although we use a specific arrival process, it encompasses a wide range of interesting traffic types including, in particular, VoIP. *Index Terms*—802.11, CSMA/CA, heterogeneous network, non-saturated traffic. # I. INTRODUCTION HE 802.11 wireless LAN standard has been widely deployed during recent and an incident the standard has been widely deployed during recent years and has received considerable research attention. The 802.11 MAC layer uses a CSMA/CA algorithm with binary exponential back-off to regulate access to the shared wireless channel. While this CSMA/CA algorithm has been the subject of numerous empirical studies, an analytic framework for reasoning about its properties remains notably lacking. Developing analysis tools is desirable not only because of the wide deployment of 802.11 equipment but also because the CSMA/CA mechanism continues to play a central role in new standards proposals such as 802.11e. A key difficulty in the mathematical modeling of the 802.11 MAC lies in the large number of states that may exist (scaling exponentially with the number of stations). In his seminal paper, Bianchi [1] addressed this difficulty by assuming that: 1) every station is saturated (i.e., always has a packet waiting to be transmitted); 2) the packet collision probability is constant regardless of the state or station considered; and 3) transmission error is a result of packets colliding and is not caused by medium errors. Provided that every station is indeed saturated, the resulting model is remarkably accurate. However, the saturation assumption is unlikely to be valid in real 802.11 networks. Data traffic such as web and e-mail is typically bursty in nature while streaming traffic such as voice operates at relatively low rates and often in an on-off manner. Hence, for most real traffic the demanded transmission Manuscript received November 25, 2004; revised August 15, 2005, and January 9, 2006; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Das. This work was supported by Science Foundation Ireland Grant IN3/03/I346. The authors are with the Hamilton Institute, National University of Ireland, Maynooth, Co. Kildare, Ireland (e-mail: david.malone@nuim.ie, ken.duffy@nuim.ie; doug.leith@nuim.ie). Digital Object Identifier 10.1109/TNET.2006.890136 rate is variable with significant idle periods, i.e., stations are usually far from being saturated. Indeed, to even determine if the network will be saturated for a given traffic load may require an understanding of nonsaturated operation. Thus, our aim in this paper is to derive a mathematical model of CSMA/CA that relaxes the restriction of saturated operation while retaining as much as possible of the attractive simplicity of Bianchi's model, in particular, the ability to obtain analytic relationships. In Section II, earlier approaches to nonsaturated modeling are reviewed. In Section III, the model is introduced and solved. In Section IV, its predictions are verified through ns2 simulation for homogenous stations and heterogeneous stations that have one of two distinct arrival rates. In Section V, using the model, the scope for optimizing CWmin in the nonsaturated context is investigated. As a case study, we consider voice-call pairs. In Section VI, fairness in the heterogeneous case is analyzed. In Section VII, the model's scope is discussed, along with possible variations and extensions. Concluding remarks are given in Section VIII. # II. RELATED WORK There are approaches to nonsaturated modeling other than ours. In [2], a modification of [1] is considered where a probability of not transmitting is introduced that represents a station having no data to send. The model is not predictive as this probability is not known as a function of load and must be estimated from simulation. In [3], idle states are added after packet transmission to represent bursty arrivals. The number of idle states is distributed geometrically with a parameter $\lambda$ ; however, no relationship is given between $\lambda$ and the load on the system. This model also includes a full backoff before each packet transmission, which does now allow for packet inter-arrival and 802.11's post-backoff period to overlap. This model also considers multi-rate transmissions. In [4], a Markov model where states are of fixed real-time length is introduced. As observed in the paper, the derived throughput is a monotonic function of offered load, and so the model cannot predict a pre-saturation peak in throughput. In [5], a model focusing on multirate transmission is presented, including an infinite queue with Poisson arrivals. This model is not solved analytically and is subject to limited validation. In [6], a non-Markov model is developed, but it is based on an unjustified assumption that the saturated setting provides good approximation to certain unsaturated quantities. It appears to produce inaccurate predictions. None of these previous models have considered fairness issues arising from different traffic arrival rates. The p-persistent approach of the 802.11 MAC has also been studied extensively; for recent work, see [7] and the references therein. Fig. 1. Nonsaturated Markov chain. ### III. MODEL OF NONSATURATED HETEROGENEOUS STATIONS Following the seminal paper of Bianchi [1], much of the analytic work on 802.11 MAC performance has focused on saturated networks where each station always has a packet to send. For notable examples, see [8] and [9]. The saturation assumption enables queueing dynamics to be neglected and avoids the need for detailed modeling of traffic characteristics, making these networks particularly tractable. Networks do not typically operate in saturated conditions. Internet applications, such as web-browsing, e-mail and voice over IP exhibit bursty or on-off traffic characteristics. Creating an analytic model that includes fine detail of traffic arrivals and queueing behavior, as well as 802.11 MAC operation, presents a significant challenge. We introduce a model with traffic and buffering assumptions that make it sufficiently simple to give explicit expressions for the quantities of interest (throughput per station, delay, collision probabilities), but still capture key effects of nonsaturated operation. Although our traffic assumptions form only a subset of the possible arrival processes, we will see they are useful in modeling a wide range of traffic, including voice conversations. As in [1], our fundamental assumption is that each station has a fixed probability of collision when it attempts to transmit, irrespective of its history. #### A. Per-Station Markov Model Bianchi [1] presents a Markov model where each station is modeled by a pair of integers (i,k). The back-off stage, i, starts at 0 at the first attempt to transmit a packet and is increased by 1 every time a transmission attempt results in a collision, up to a maximum value m. It is reset after a successful transmission. The counter, k is initially chosen uniformly between $[0, W_i - 1]$ , where typically $W_i = 2^i W_0$ is the range of the counter and $W_0$ is the 802.11 parameter CWmin. While the medium is idle, the counter is decremented. Transmission is attempted when k = 0. We introduce new states $(0,k)_e$ for $k \in [0,W_0-1]$ , representing a station which has transmitted a packet, but has none waiting. This is called post-backoff. The first two stages of the new chain are depicted in Fig. 1. Note that i=0 in all such states, because if i>0 then a collision has occurred, so we must have a packet awaiting transmission. We assume that for each station there is a constant probability 1-q that the station's buffer has no packets awaiting transmission at the start of each counter decrement. This enables us to derive relationships between the per-station quantities: q, the probability of at least one packet awaiting transmission at the start of a counter decrement; m, the maximum backoff stage; p, the probability of collision given the station is attempting transmission; P, the Markov chain's transition matrix; b, the chain's stationary distribution; and $\tau$ , the stationary distribution's probability that the station transmits in a slot. These relationships can be solved for p and $\tau$ , and network throughput predicted. It is important to note that the Markov chain's evolution is not real-time, and so the estimation of throughput requires an estimate of the average state duration. Later, when we discuss multiple stations, we will subscript each of these per-station quantities with a station label. Under our assumptions, we have for $0 < k < W_i$ $$0 < i \le m$$ , $P[(i, k-1)|(i, k)] = 1$ $P[(0, k-1)_e|(0, k)_e] = 1 - q$ $P[(0, k-1)|(0, k)_e] = q$ . If the counter reaches 0 and a packet is queued, then we begin a transmission. We assume there is a station-dependent probability p that other stations transmit at the same time, resulting in a collision. In the case of a collision, we must increase the backoff stage (or discard). In the case of a successful transmission, we return to backoff stage 0 and the station's buffer is empty with probability 1-q. In the case with infinitely many retransmission attempts, we need introduce no extra per-station parameters, and for 0 < i < m and k > 0, we have $$P[(0,k)_e|(i,0)] = \frac{(1-p)(1-q)}{W_0}$$ $$P[(0,k)|(i,0)] = \frac{(1-p)q}{W_0}$$ $$P[(\min(i+1,m),k)|(i,0)] = \frac{p}{W_{\min(i+1,m)}}.$$ Naturally, these transitions could be adapted to allow discards after a certain number of transmission attempts. <sup>1</sup>We discuss this assumption further in Section III-D and Section VII. The final transitions are from the $(0,0)_e$ state, where post-backoff is complete, but the station's buffer is empty. In this case, we remain in this state if the station's buffer stays empty. If a packet arrives, we have three possibilities: successful transmission, collision, or, if the medium is busy, the 802.11 MAC begins another stage-0 backoff, now with a packet. With $P_{\text{idle}}$ denoting the probability that the medium is sensed idle during a typical slot, the transitions from the $(0,0)_e$ state are $$\begin{split} P[(0,0)_e|(0,0)_e] &= 1 - q + \frac{qP_{\text{idle}}(1-p)}{W_0} \\ k > 0, \quad P[(0,k)_e|(0,0)_e] &= \frac{qP_{\text{idle}}(1-p)}{W_0} \\ k \ge 0, \quad P[(1,k)|(0,0)_e] &= \frac{qP_{\text{idle}}p}{W_1} \\ k \ge 0, \quad P[(0,k)|(0,0)_e] &= \frac{q(1-P_{\text{idle}})}{W_0}. \end{split}$$ Given the collision probability p, the idle probability $P_{\rm idle}$ and per-station parameters q, $W_i$ and m we may solve for a stationary distribution of this Markov chain. This will enable us to determine the probability $\tau$ that this station is attempting transmission in a typical slot. First, we make observations that aid in the deduction of the stationary distribution. With b(i,k) and $b(0,k)_e$ denoting the stationary probability of being in states (i,k) and $(0,k)_e$ , as b is a probability distribution we have $$\sum_{i=0}^{m} \sum_{k=0}^{W_i-1} b(i,k) + \sum_{k=0}^{W_0-1} b(0,k)_e = 1.$$ (1) We will write all probabilities in term of $b(0,0)_e$ and use the normalization in (1) to determine $b(0,0)_e$ . We have the following relations. To be in the sub-chain (1,k), a collision must have occurred from state (0,0) or an arrival to state $(0,0)_e$ followed by detection of an idle medium and then a collision, so that $b(1,0)=b(0,0)p+b(0,0)_eq(1-p)p$ . Neglecting packet discard, for i>1 we have $b(i,0)=p^{i-1}b(1,0)$ and so $$\sum_{i>1} b(i,0) = \frac{b(1,0)}{1-p} = \frac{b(0,0)p + b(0,0)_e qp P_{\text{idle}}}{1-p}.$$ (2) The keystone in the calculation is then the determination of $b(0,W_0-1)_e$ . Transitions into $(0,W_0-1)_e$ from $(0,0)_e$ occur if there is an arrival, the medium is sensed idle and no collision occurs. Transitions into $(0,W_0-1)_e$ also occur from (i,0) if no collision and no arrival occurs $$b(0, W_0 - 1)_e = b(0, 0)_e \frac{q(1 - p)P_{\text{idle}}}{W_0} + \frac{(1 - p)(1 - q)}{W_0} \sum_{i > 0} b(i, 0). \quad (3)$$ Combining (2) and (3) gives $$b(0, W_0 - 1)_e = b(0, 0)_e \frac{q(1 - pq)P_{\text{idle}}}{W_0} + b(0, 0) \frac{1 - q}{W_0}.$$ We then have for $W_0 - 1 > k > 0$ , $b(0, k)_e = (1 - q)b(0, k + 1)_e + b(0, W_0 - 1)_e$ , with $b(0, k)_e$ on the left-hand side replaced by $qb(0, 0)_e$ if k = 0. Straightforward recursion leads to expressions for $b(0, k)_e$ in terms of $b(0, 0)_e$ and b(0, 0), and so we find $$\frac{b(0,0)_e}{b(0,0)} = \frac{1-q}{q} \left( \frac{1-(1-q)^{W_0}}{qW_0 - P_{\text{idle}}(1-pq)(1-(1-q)^{W_0})} \right).$$ Using these equations we can determine the second sum in (1) $$\sum_{k=0}^{W_0-1} b(0,k)_e = b(0,0)_e \frac{qW_0}{1 - (1-q)^{W_0}}.$$ The (0, k) chain can then be tackled, starting with the relation $$b(0, W_0 - 1) = \sum_{i>0} b(i, 0) \frac{(1-p)q}{W_0} + b(0, 0)_e \frac{q(1-P_{\text{idle}})}{W_0}.$$ Iteration leads to $$\begin{split} \sum_{k=0}^{W_0-1} b(0,k) &= b(0,0)_e \left[ \frac{q}{1-q} \frac{W_0+1}{2} \right. \\ &\left. \left( \frac{q^2 W_0}{1-(1-q)_0^W} + (1-P_{\text{idle}})(1-q) - q P_{\text{idle}}(1-p) \right) \right. \\ &\left. + \frac{q W_0 (q W_0 + q - 2)}{2(1-(1-q)_0^W)} + 1 - q \right]. \end{split}$$ Using (4) we can determine b(1,0) in terms of $b(0,0)_e$ : $$b(1,0) = b(0,0)_e \frac{pq^2}{1-q} \left( \frac{W_0}{1-(1-q)_0^W} - (1-p)P_{\text{idle}} \right).$$ Finally, after algebra, the normalization equation (1) gives $$1/b_{(0,0)_{e}} = (1-q) + \frac{q^{2}W_{0}(W_{0}+1)}{2(1-(1-q)^{W_{0}})} + \frac{q(W_{0}+1)}{2(1-q)}$$ $$\cdot \left(\frac{q^{2}W_{0}}{1-(1-q)^{W_{0}}} + (1-P_{idle})(1-q)\right)$$ $$-qP_{idle}(1-p) + \frac{pq^{2}}{2(1-q)(1-p)}$$ $$\cdot \left(\frac{W_{0}}{1-(1-q)^{W_{0}}} - (1-p)P_{idle}\right)$$ $$\cdot \left(2W_{0}\frac{1-p-p(2p)^{m-1}}{1-2p} + 1\right). \tag{5}$$ The main quantity of interest is $\tau$ , the probability that the station is attempting transmission. A station attempts transmission if it is in the state (i,0) (for any i) or if it is in the state $(0,0)_e$ , a packet arrives and the medium is sensed idle. Thus, $\tau = q(P_{\text{idle}})b(0,0)_e + \sum_{i>0} b(i,0)$ , which reduces to $$\tau = b(0,0)_e \left( \frac{q^2 W_0}{(1-p)(1-q)(1-(1-q)^{W_0})} - \frac{q^2 P_{\text{idle}}}{1-q} \right)_{(6)}$$ where $b(0,0)_e$ is given in (5), so that $\tau$ is expressed solely in terms of p, $P_{\rm idle}$ , q, $W_0$ , and m. Placing the station in saturation by taking the limit $q \to 1$ , the model reduces to that of Bianchi [1]. With q, $W_0$ and m fixed for each station, in order to determine the collision probability p, we must determine a relation between the stations competing for the medium; we do this in Section III-B. We discuss how to model $P_{\rm idle}$ in Section III-C and then show how q may be related to real-world offered load in Section III-D. # B. Heterogeneous Network Model Consider the case where n stations are present, labeled $l=1,\ldots,n$ . We subscript the per-station quantities from the previous section with the station label. Equation (6) gives an expression for $\tau_l$ , the per-station transmission probability, in terms of a per-station arrival probabilities $q_l$ and a per-station collision probability $p_l$ . Note that $$1 - p_l = \prod_{j \neq l} (1 - \tau_j), \quad \text{for } l = 1, \dots, n$$ (7) that is, there is no collision for station l when all other stations are not transmitting. With n stations, (6) and (7) provide 2n coupled nonlinear equations which can be solved numerically for $p_1, \ldots, p_n$ and $\tau_1, \ldots, \tau_n$ . The value $(1-p_i)(1-\tau_i)$ is the same for all $i=1,\ldots,n$ and represents the probability that the medium is idle $(1-p_i)$ is the probability that other stations are silent and $1-\tau_i$ is the probability that this station is silent). These equations imply that different stations' collision probabilities are not the same unless their transmission probabilities are equal. In the case where the stations are homogenous, the equations (7) reduce to $1-p=(1-\tau)^{n-1}$ . The length of each state in the Markov chain is not a fixed period of real time. Each state may be occupied by a successful transmission, a collision, or the medium being idle. To convert between states and real time, we calculate the expected time spent per state. To do this, we consider the probability of an idle slot (i.e., 0 stations transmitting), of successful transmissions (i.e., exactly 1 station transmitting), or of a collision (i.e., $r \ge 2$ stations transmitting), which gives $$E_{s} = (1 - P_{tr})\sigma + \sum_{i=1}^{n} P_{s_{i}} T_{s_{i}} + \sum_{r=2}^{n} \sum_{1 \le k_{1} \le \dots \le k_{r} \le n} P_{ck_{1} \dots k_{r}} T_{ck_{1} \dots k_{r}}$$ (8) where $$P_{s_i} = \tau_i \prod_{j \neq i} (1 - \tau_j)$$ is the probability station i successfully transmits; $T_{s_i}$ is the expected time taken for a successful transmission from station i, (including overhead, ACK and frame spacing); $$P_{ck_1...k_r} = \prod_{i=1}^{r} \tau_{k_r} \prod_{j \neq k_1...k_r} (1 - \tau_j)$$ is the probability that only the stations labeled $k_1$ to $k_r$ experience a collision by attempting transmission; $$P_{tr} = 1 - \prod_{i=1}^{n} (1 - \tau_i)$$ is the probability at least one station attempts transmission; and $\sigma$ is the slot-time; $T_{ck_1...k_r}$ is the expected time taken for a collision from stations labeled $k_1$ to $k_r$ (i.e., the expectation of the maximum of the transmission times for stations $k_1$ to $k_r$ , including overhead, ACK timeout and frame spacing). Once the mean state time is known, we estimate the proportion of time that the medium is used by each station for successfully transferring data: $$S_i = \frac{P_{s_i} L_i}{F_{c_i}} \tag{9}$$ where $L_i$ is the expected time spent transmitting payload data for source i. The normalized throughput of the system is then $$S = \sum_{i=1}^{n} S_i. \tag{10}$$ In order to determine the throughput and collision probability for each station and the overall throughput, one first solves (7) using (5) and (6). Then one uses (8)–(10). # C. Channel Idle Probabilities We used $P_{\text{idle}}$ to denote that the channel was found to be idle at the time a packet arrived in the $(0,0)_e$ state. If the MAC checks for a new packet at the beginning of each slot, then the probability that the medium is sensed idle is simply the probability that the next slot is empty given that our station is not transmitting, i.e., $P_{\text{idle}l} = \prod_{i \neq l}^n (1 - \tau_i) = 1 - p_l$ . For throughput calculations, which are based on the model's stationary distribution, we use this relationship. For calculations not based on the stationary distribution, such as MAC delay, it is more appropriate to use a real-time relation. The one that we adopt is described in Section III-E. #### D. Relating Offered Load to Model Parameters The model represents offered load using $q_l$ , the probability that a packet becomes available to the MAC in a slot. It is important to be able to relate this parameter to the the station's offered load. Taking $q_l \rightarrow 1$ models a saturated station, where a packet is always available to the MAC. For small buffers, a crude approximation in the unsaturated setting is to assume that packet arrivals are uniformly distributed across slots and set $q_l = \min(E_S/\text{mean inter-packet time}, 1)$ . If packets arrive at the MAC in a Poisson manner with rate $\lambda_l$ , then a more satisfying estimate of $q_l$ is $1 - \exp(-\lambda_l E_S)$ , the probability that one or more packets arrive in a expected slot time. It is also possible to produce an estimate of for $q_l$ that does not use mean slot times. In the model each slot is either idle, a transmission from a particular station or a collision caused by a particular combination of stations. The type of slot is considered to be independent and identically distributed, so we can write $q_l = \sum P[\text{packet becomes available}|\text{slot type}]P[\text{slot type}].$ For TABLE I PARAMETER VALUES FOR MODEL AND SIMULATION | $W_0$ | 31 | L | 364 µs | = | 500.0 bytes @ 11Mbps | |----------|------------|-------|------------|---|------------------------------------------------------| | m | 5 | $T_s$ | $944\mu s$ | = | Header + L + SIFS + $\delta$ + ACK + $\delta$ + DIFS | | $\sigma$ | $20 \mu s$ | $T_c$ | $944\mu s$ | = | $Header + L + SIFS + \delta + ACKTimeout$ | | SIFS | 10 μs | DIFS | 50 μs | = | $2\sigma + SIFS$ | | $\delta$ | $2 \mu s$ | ACK | $304\mu s$ | = | 192 bits @ 1 Mbps + 14 bytes @ 1 Mbps | example, for constant packet lengths and Poisson arrivals we can explicitly write $$q_{l} = (1 - P_{tr}) \left( 1 - e^{-\lambda_{l} \sigma} \right) + \sum_{i=1}^{n} P_{s_{i}} \left( 1 - e^{-\lambda_{l} T_{s_{i}}} \right) + \sum_{r=2}^{n} \sum_{1 \leq k_{1} < \dots < k_{r} \leq n} P_{ck_{1} \dots k_{r}} \left( 1 - e^{-\lambda_{l} T_{ck_{1} \dots k_{r}}} \right).$$ (11) With an infinite buffer and arrivals that are Poissonian, $q_l$ can be identified through the well-known M/G/1 relation [10] for the likelihood the station has a packet. This requires knowing the mean MAC delay, which we derive in Section III-E. Using a state-independent value for the probability of a packet becoming available to the MAC is an approximation for most traffic types and buffering schemes. In Section IV, we will see that it can be an accurate approximation in a number of situations. This point is explored further in the Appendix. # E. Delay We are now in a position to estimate the mean MAC delay associated with a transmission by a particular source. Consider the situation immediately after station l completes a transmission. The station begins post backoff and chooses a backoff of k, and a packet arrives after j states. Then the mean time between the packet arrival at the MAC layer and the completion of its transmission will be $$\Delta_{l} = \sum_{k=0}^{W_{0}} \frac{1}{W_{0}} \sum_{j=0}^{\infty} q(1-q)^{j} \Delta_{ljk}$$ $$\Delta_{ljk} = \begin{cases} k \geq j \ (k-j) E_{s'} + (1-p) T_{s_{l}} + p(T_{c_{l}} + K_{1}) \\ k < j \ P_{\text{idle}}((1-p) T_{s_{l}} + p(T_{c_{l}} + K_{1})) + (1-P_{\text{idle}}) K_{0} \end{cases}$$ (12) where $E_{s'}$ is the mean state length if source l is silent, $T_{c_l}$ is the mean length of a collision involving source l, $K_0$ is the mean time for l to transmit a frame beginning with a stage 0 backoff, $$K_0 = \sum_{j=0}^{\infty} \frac{2^{\min(j,m)} W_0 - 1}{2} p^j E_{s'} + \sum_{j=1}^{\infty} j p^j (1 - p) T_{c_l} + T_{s_l}$$ (13) and $K_1$ is the mean time for l to transmit beginning with a stage-1 backoff, defined similarly. Observe that this estimate involves conditioning on starting in particular states, and so is not a simple function of the stationary distribution of our model. Thus, we use an estimate of $P_{\rm idle}$ that is appropriate for the real-time nature of our calculation. By considering the conditional arrival probabilities for busy and idle slots to be proportional to the lengths of those slots, we find an estimate of $(E_{s'} - (1 - p_l)\sigma)/E_{s'}$ , which may be substituted into (12). # F. Two-Class Network Model To study fairness of the 802.11 MAC layer, we will solve the model for two groups of stations, where all stations within each group have the same station parameters including arrival rate and payload size. Suppose there are $n_1$ stations in the first class and $n_2$ stations in the second class, then we may solve for the collision probabilities $p_1$ and $p_2$ for a station in each group using (7) to produce the coupled nonlinear equations $$1 - p_1 = (1 - \tau_1)^{n_1 - 1} (1 - \tau_2)^{n_2}$$ $$1 - p_2 = (1 - \tau_1)^{n_1} (1 - \tau_2)^{n_2 - 1}.$$ Letting $T_s$ be the time for a successful transmission and $T_c$ be the time for a collision $$E_s = (P_{s1} + P_{s2})T_s + (1 - P_{s1} - P_{s2})T_c + (1 - P_{tr})\sigma$$ where $P_{si}$ is the probability that a station in class i, i = 1, 2, successfully transmits. Normalized throughput for each class is $S_1 = P_{s1}L_1/E_s$ and $S_2 = P_{s2}L_2/E_s$ , where $L_i$ is the average payload duration for a station in class i. ## IV. MODEL VERIFICATION We first consider a homogenous group of stations and then consider the heterogeneous setting where each station has one of two arrival rates. Station parameters<sup>2</sup> are shown in Table I. We compare predictions of the model from Section III with simulations using the ns2 based 802.11 simulator produced by TU-Berlin [11]. We compare model predictions with simulation for various numbers of stations and arrival rates. Queues are set as small as ns2 will permit and traffic arrivals are Poisson. We show the predictions of the model for each of the input rate relationships outlined in Section III-D. For the homogeneous case, Fig. 2 shows how collision probability depends on the total normalized offered load. Fig. 3 shows how the normalized throughput of the link depends on the total normalized offered load. Results for all three load relationships discussed in Section III-D are shown. In all cases, there is good agreement between the model and simulations. The model has captured a number of important features of the behavior, including: - the linear relationship between the offered load and throughput when well below saturation; - the behavior of throughput as predicted by Bianchi's model and simulation at high offered loads (corresponding to saturation); $^2\mathrm{Note}$ that the 802.11 standards do not specify a length for ACKTimeout. Thus, the length of a collision may depend on whether a station was involved in the collision (including a vendor selected ACKTimeout) or was an onlooker (then using EIFS). We choose $T_c=T_s$ , following the spirit for the 802.11 standard. For a model of what occurs when they are set differently in a saturated situation, see [9]. Fig. 2. Collision probability as the traffic arrival rate is varied. Results for the three load relationships (uniform, Poisson, and conditional) presented in Section III-D are shown Fig. 3. Throughput as the traffic arrival rate is varied. At rates below those shown, there is agreement between the model and simulation. Results for the three load relationships (uniform, Poisson, and conditional) presented in Section III-D are shown. Fig. 4. Delay in the MAC as a function of collision probability. for larger numbers of stations the maximum throughput is achieved before saturation in both the model and simulation. The point at which this maximum occurs is relatively insensitive to the number of stations; 12 class 1 stations, 24 class 2 stations Fig. 5. Per-station throughput for two classes of stations offering different loads, $n_1=12,\,n_2=24$ . a complex transition from under-loaded to saturated with a sudden increase of collision probabilities from a low level toward their saturated values. We note that although there are numerical differences between the predictions of each input rate relationship, the results are qualitatively similar. As expected, assuming uniformly Fig. 6. Normalized per-station throughput and collision probability, where $n_1 = 12$ , $n_2 = 24$ , and the offered load of a class 2 station is 1/4 of a class 1 station. spaced arrivals results in higher throughput predictions, whereas the technique that considers the possibility of longer than average slots results in lower throughput predictions. We have observed similar results in other situations. For clarity, we will use the relationship assuming Poisson arrivals over a mean slot time for the remainder of this paper. As a function of collision probability, average delays experienced by a single station are independent of the number of stations. Thus, Fig. 4, which shows simulated and estimated delays, includes values from all validation experiments. The estimated delays in Fig. 4 are determined by (12). The term $K_0$ from (13), which does not account for post-backoff, is also shown. The similarity of the estimated delay and $K_0$ suggests that the $K_0$ dominates. Both are accurate for small collision probabilities but become mild underestimates for high collision rates. For the heterogeneous setting of where stations are divided into two classes with each class having a different arrival rate, Fig. 5 shows the model's normalized throughput prediction for a station in each class, with $n_1 = 12$ and $n_2 = 24$ . The throughput is plotted against normalized arrival rate for a station in each class. We take a representative slice through this surface along the line where the arrival rate to the second group is 1/4 of that of the first group. Fig. 6 shows predicted and simulated throughputs and collision probabilities against overall normalized offered load. There is good match between predicted and observed throughputs, although the simulated collision probabilities are slightly lower than the model predicts. The collision probabilities of a station in each class are always close, but not the same. As commented after (7), this is expected because of an asymmetry in the system: a station in class 1 sees 11 other class-1 stations and 24 class-2 stations; a station in class 2 sees 12 class-1 stations and 23 class-2 stations. We have taken a large number of slices for ranges of values of $n_1$ and $n_2$ . For smaller numbers of users, we have found that while the predicted throughputs are accurate, the predicted collision probabilities are typically underestimates. For larger number of stations, the estimates' accuracy increases. As a case study, we consider the predictions of the model in a situation that represents VoIP traffic in an ad hoc network. Parameters for the voice calls are taken from [12]: 64 kb/s on-off Fig. 7. Throughput for station-pairs sending 64 kb/s on-off traffic streams. traffic streams where the on and off periods are distributed with mean 1.5 seconds. Periods of less than 240 ms are increased to 240 ms in length, to reproduce the minimum talk-spurt period. Traffic is between pairs of stations; the on period of one station corresponds to the off period of another. When modeled, we treat each pair of stations as a single transmitter. Fig. 7 shows the predicted and simulated throughput, as the number of station pairs is increased. It can be seen that the model makes remarkably accurate throughput predictions. #### V. THROUGHPUT EFFICIENCY The value of the CWmin parameter, $W_0$ , plays a key role in the performance of the 802.11 MAC. In saturated networks, where every station always has a packet, intuitively it is clear that a CWmin that is too large results in the medium being idle when it could be used for transmission and thus reduced throughput efficiency. Conversely, if CWmin is too small, then competing stations are more likely to attempt transmission at the same time, resulting in increased collision rates, and this again Fig. 8. Throughput for two stations as the offered load is varied for CWmin = 32 and with CWmin optimized. Results for various payload sizes L are also shown. Fig. 9. Throughput for 10 stations as the offered load is varied for CWmin = 32 and with CWmin optimized. Results for various payload sizes L are also shown. leads to a reduction in throughput efficiency. Hence, there exists a value of CWmin (dependent on the number of stations) that maximizes throughput efficiency.<sup>3</sup> In a network with saturated stations, it is known that the default 802.11b value of CWmin, $W_0=32$ , does not optimize network throughput. In [1], Bianchi determines an approximate value of CWmin that optimizes throughput. Throughput efficiency in unsaturated conditions is more complex and less well understood. For example, it is known that efficiency can be significantly higher in the unsaturated setting than when saturated; see Fig. 3. As we know that peak throughput occurs below saturation, we investigate what gains are potentially available by optimizing CWmin for a range of offered loads. Consider a homogenous group of stations with parameters given in Table I and three different payload sizes, 100, 500, and 1000 bytes. Using the model, we search for the value of CWmin predicted <sup>3</sup>While we focus on throughput efficiency, we note that the average MAC delay is closely related to throughput in the saturated case. Time on the medium can be used to count down, for collisions or transmissions. Maximum throughput corresponds to minimizing the time spent during collisions and counting down. This, in turn, minimizes the time between successful transmissions. In particular, the least average MAC delay is achieved by tuning CWmin for highest throughput. to produce optimal throughput. We compare this with the fixed value of CWmin, 32, from 802.11b. Fig. 8 shows the throughput and optimal CWmin value for two stations. We can see that the default value of CWmin is too large and that for moderate loads by reducing CWmin throughput is increased. The optimized throughput increases linearly with offered load until levelling off. The unoptimized throughput is always less than optimized throughput, even when both stations are heavily loaded. With a normalized offered load of 2, the gain in throughput is 9% for 100-byte payloads, 5% for 500-byte payloads, and 3% for 1000-byte payloads. Figs. 9–11 show the results for 10, 20, and 40 stations, respectively. For light loads prior to the peak throughput, tuning CWmin does not result in a significant increase in throughput, but does create a linear relationship between offered load and throughput. Once the offered load is greater than peak throughput for CWmin = 32, however, the default value of CWmin is too low, resulting in loss of throughput through collisions. Observe that the optimal throughput plateaus at the peak throughput, implying that the optimum unsaturated throughput is no better than the optimum saturated throughput achieved by Fig. 10. Throughput for 20 stations as the offered load is varied for CWmin = 32 and with CWmin optimized. Results for various payload sizes L are also shown. Fig. 11. Throughput for 40 stations as the offered load is varied for CWmin = 32 and with CWmin optimized. Results for various payload sizes L are also shown. tuning CWmin. We have seen the same effects using the standard parameters from 802.11 and 802.11g, as well as 802.11b shown here. Using the sort of reasoning that is employed in [13], we consider that in a multi-access network of n homogenous independent stations there will be some transmission probability that will produce optimum throughput. In the case of 802.11, this transmission probability can be controlled by adjusting the load or adjusting CWmin. As long as the optimal transmission probability can be reached, the optimal throughput will be the same regardless of how it is achieved. As a case study of the efficiencies available through tuning CWmin, we return to the scenario introduced at the end of Section IV of VoIP traffic between stations in a peer-to-peer network. Voice call parameters are taken from [12]. Using our model, we calculated values of CWmin that optimize throughput. We then conducted simulations using these values of CWmin, and the resulting throughput is shown in Fig. 12. It can be seen from Fig. 12 that while tuning CWmin increases throughput by up to 10% for larger numbers of voice calls, the benefits are much less for smaller numbers of calls. <sup>4</sup>This explanation was suggested to us by an anonymous reviewer. In the context of voice traffic, it is important to consider the delays experienced by a frame in the MAC layer as well as throughput. Fig. 12 also shows the delays for these simulations and mean plus 1.96 times the variance of the MAC delay, corresponding to a 95% confidence interval for normally distributed data. From Fig. 12, we see that the MAC delay (associated with channel contention and collisions) quickly increases when the number of voice calls rises above 10. The horizontal line marked in this figure indicates the inter-packet spacing of a single voice call; hence queueing delays quickly become unacceptable for quality of service (QoS) as the MAC delay approaches this value. While tuning CWmin reduces the MAC delay's mean and variance, it has only a marginal effect for numbers of voice calls for which the delay lies below the packet duration, and hence appears to offer limited practical benefit. We conclude that while the optimal CWmin is a complex function of the traffic and the network, performance is relatively insensitive to adjustments in CWmin and the default value of 32 for 802.11b is not far from optimal in a variety of situations. Fig. 12. Throughput and average MAC delays for station-pairs sending 64 kb/s on-off traffic streams. # VI. FAIRNESS Having validated the two-class model in Section IV, we consider the model's predictions regarding protocol fairness. As a working definition of fairness, we consider the network to be fair if each station achieves a long-term throughput that is either at least 1) its demand or 2) a 1/n share of the total achieved throughput. With $n_1=5$ and $n_2=15$ , Fig. 13 shows the normalized throughput of a station in each class against the normalized offered load of a station in each class. Station parameters are those given in Table I, but with 1500-byte payloads. Taking a slice along the line where the offered load from stations in both classes are equal, shown in Fig. 14, demonstrates fairness in this case. The collision probabilities and throughputs of all stations are equal. Taking slices through Fig. 13 when the offered loads of stations in each class differ, however, reveals long-term unfairness that is different to the well-studied short-term issue [14]–[16]. We fix the normalized arrival rate in class 1 per-station to be each of the four values 0.01, 0.02, 0.05, and 0.1 and vary the arrival rate per-station in class 2. Note that when class-1 stations offer 0.1 normalized load, although they are not saturated the offered load exceeds the network's capacity, even when no class-2 stations are present. Overall normalized throughput and per-station collision probabilities are shown in Fig. 15. Collision probabilities of stations in each class are approximately equal, with a maximum difference of 5% for the lowest class-1 offered load (0.01) and heavily loaded class-2 stations. At higher loads, the overall channel throughput is insensitive to the class-1 arrival rate, but the bandwidth share does depend on the class-1 arrival rate; this is shown in Fig. 16 where normalized throughput for a source in each class is shown against normalized offered load per source for a station in class 2. In Fig. 16(a)–(c), the network is underloaded for small class-2 offered load, so that the class-1 stations are not adversely affected by class 2. When the class-2 stations offer the same load as class-1 stations, the system is homogeneous and each station 5 class 1 stations, 15 class 2 stations Fig. 13. Per-station throughput for two classes of stations offering different loads, $n_1=5,\,n_2=15.$ 0.4 0,6 rmalised arrival rate (class 1 per node) Aormalised arrival rate gets the same share of bandwidth. However, when the class-2 load ramps up beyond this level, class-1 stations lose their bandwidth share. The biggest drop from bandwidth fairness occurs when class-2 stations are saturated, i.e., always have a packet $(q_2=1)$ . The percentage drop in throughput from fair share for these four class-1 offered loads are 16%, 32%, 22%, and 8% for Fig. 16(a)–(d), respectively. The network is far from being fair, with greedy stations being able to steal bandwidth. This unfairness has QoS implications. To demonstrate this, we consider a scenario representing a single voice-call between two stations competing with stations carrying TCP connections. The voice-call pair is modeled as in Section IV. The stations with TCP connections have 1500-byte payloads and are saturated. Fig. 17 shows that collision probabilities are approximately equal for the VoIP and TCP stations, but the TCP sources steal bandwidth from the VoIP calls, with five TCP flows sufficient to reduce the VoIP throughput by 50%. Note that this is despite the fair-share of the channel for the VoIP station being roughly an order of magnitude above the throughput of the VoIP station (this share is not accessible due to the nonsaturated nature of the VoIP traffic). Fig. 14. Per-station throughput and collision probabilities for two classes of stations equal offered load, $n_1 = 5$ , $n_2 = 15$ . Class 1 and 2 throughput and collision probability are the same. Fig. 15. Overall throughput and per station collision probabilities for two classes of stations with class 1 offering fixed per station load, $n_1 = 5$ , $n_2 = 15$ . # VII. MODEL SCOPE We assume a perfect physical layer (PHY), so transmission errors are caused only by collisions and do not occur because of noise on the medium. As collisions and transmission failure due to a noisy medium are treated by the MAC in the same way, it is possible as a first approximation to add an extra, independent component to the collision probabilities to model this effect. For saturated 802.11 networks, such a procedure has been carried out; see [17]. We have presented this particular model because of its accuracy, while it still remains attractively simple. Minor model variations, such as discounting carrier sense in state $(0,0)_e$ or disallowing packet arrival immediately after transmission, are easy to consider. We have also considered a model with queue-empty probabilities conditioned on being in a transmit state or a post-backoff state, described in the Appendix. Such variations perturb the numerical results, but do not result in qualitative changes in the model's predictions. It is also straightforward to consider variations which have been studied for saturated models, such as finite retry limits and per-station backoff factors [18]. Except for saturated stations, we match mean simulation offered loads to q as described in Section III-D, even for non-Poisson traffic. As demonstrated by the examples in this paper, this approximation works well if interface buffers are short, which is a reasonable assumption for delay sensitive traffic. If interface buffers are large, but the station is not saturated, the effective offered load at the MAC is increased. This can be captured by a more elaborate queueing model, or by allowing q after a transmission to depend on the backoff stage. Alternatively, the Markov chain may be extended to include buffering beyond the MAC, but not without considerable effort. ### VIII. CONCLUSION We have presented a model and analysis of the 802.11 MAC under nonsaturated and heterogeneous conditions. The model's predictions were validated against simulation and seen to accurately capture many interesting features of nonsaturated Fig. 16. Per-station throughput for two classes of stations with class 1 offering fixed per-station load, $n_1 = 5$ , $n_2 = 15$ . (a) Class 1 per-station load 0.01. (b) Class 1 per-station load 0.05. (d) Class 1 per-station load 0.1. operation, including predicting that peak throughput occurs prior to saturation. We have shown that a node can approach its saturation throughput from above or below depending on factors such as the number of nodes in the system and their relative loads. We address the question of fairness between competing flows showing, for example, that saturated data flows may significantly reduce the bandwidth available to low-rate VoIP flows. # APPENDIX MODEL WITH STATE-DEPENDENT q As an illustration of the breadth of models considered before settling on the one in Section III, here we describe the transition matrix and resultant equations for a model that uses conditional information in arrival probabilities. This model was not selected for two primary reasons: its predictions are similar to the selected one, and there are added computational complexities. The variable $q_{\rm idle}$ is the probability of arrival during a state transition known to consist of an idle slot, $q_{\rm busy}$ is the probability of arrival during a state transition known to consist of a busy slot, and $q_{\rm ave}$ is the probability of an arrival during a state transition without conditional knowledge. Thus, $q_{\rm ave} = q_{\rm idle}P_{\rm idle} + q_{\rm busy}(1-P_{\rm idle})$ . The transition probabilities are as follows. A typical, k>0, $(0,k)_e$ transition can consist of any sort of medium state. Thus, $q_{\rm ave}$ is used and $$0 < i \le m$$ , $P[(i, k-1)|(i, k)] = 1$ $P[(0, k-1)_e|(0, k)_e] = 1 - q_{\text{ave}}$ $P[(0, k-1)|(0, k)_e] = q_{\text{ave}}$ . The state after a station attempts transmission is always a long slot so that, for 0 < i < m and k > 0, we have $$\begin{split} P[(0,k)_e|(i,0)] &= \frac{(1-p)(1-q_{\text{busy}})}{W_0} \\ P[(0,k)|(i,0)] &= \frac{(1-p)q_{\text{busy}}}{W_0} \\ P[(\min(i+1,m),k)|(i,0)] &= \frac{p}{W_{\min(i+1,m)}}. \end{split}$$ Fig. 18. Collision probability and throughput for paper and conditioned q model. normalised total offered load $$\begin{split} 1/b_{0,0} &= \frac{(1-q_{\text{busy}})}{q_{\text{ave}}} + 1 \\ &+ \frac{1}{W_0} \left( \frac{(W_0-1)W_0}{2} + \frac{q_{\text{busy}}(1-P_{\text{idle}})(1-q_{\text{busy}})}{W_0 q_{\text{ave}}^2} \right. \\ &\qquad \times \left( \frac{(W_0-1)W_0}{2} - \frac{(1-q_{\text{ave}})\left(1+(W_0-1)(1-q_{\text{ave}})^{W_0}-W_0(1-q_{\text{ave}})^{W_0-1}\right)}{q_{\text{ave}}^2} \right) \\ &\qquad \qquad + \frac{1-q_{\text{busy}}}{q_{\text{ave}}} \left( -W_0 + \frac{1-(1-q_{\text{ave}})^{W_0}}{q_{\text{ave}}} \right) \right) \\ &\qquad \qquad + \frac{W_0 p(1-(2p)^m)}{1-2p} + \frac{p(1+W_0(2p)^m)}{2(1-p)}, \end{split}$$ For the remaining transitions from $(0,0)_e$ , a mixture of conditional information gives $$\begin{split} &P[(0,0)_e|(0,0)_e] = 1 - q_{\text{ave}} \\ &P[(0,0)|(0,0)_e] = q_{\text{idle}} P_{\text{idle}} \\ &P[(0,k)|(0,0)_e] = \frac{q_{\text{busy}}(1 - P_{\text{idle}})}{W_0}. \end{split}$$ Solving for the stationary distribution, we get a normalization in terms of $b_{(0,0)}$ , as shown in the equation above, and finally we solve for the transmission probability, $\tau = b_{(0,0)}/(1-p)$ . Fig. 18 illustrates the minor differences between this model's predictions and that from Section III. Thus, as this model is more computationally involved, there seems little advantage in employing it instead of the model presented in the main body of this paper. normalised total offered load #### ACKNOWLEDGMENT The authors thank the anonymous reviewers for their detailed comments and suggestions that helped to clarify this work's presentation. #### REFERENCES - G. Bianchi, "Performance analysis of IEEE 802.11 distributed coordination function," *IEEE J. Sel. Areas Commun.*, vol. 18, no. 3, pp. 535–547, Mar. 2000. - [2] G.-S. Ahn, A. T. Campbell, A. Veres, and L.-H. Sun, "Supporting service differentiation for real-time and best-effort traffic in stateless wireless ad hoc networks (SWAN)," *IEEE Trans. Mobile Computing*, vol. 1, no. 3, pp. 192–207, Jul.-Sep. 2002. - [3] M. Ergen and P. Varaiya, "Throughput analysis and admission control in IEEE 802.11a," *Mobile Networks and Applications*, vol. 10, no. 5, pp. 705–706, Oct. 2005. - [4] A. N. Zaki and M. T. El-Hadidi, "Throughput analysis of IEEE 802.11 DCF under finite load traffic," in *Proc. 1st Int. Symp. Control, Communications and Signal Processing*, 2004, pp. 535–538. - [5] G. R. Cantieni, Q. Ni, C. Barakat, and T. Turletti, "Performance analysis under finite load and improvements for multirate 802.11," *Comput. Commun.*, vol. 28, no. 10, pp. 1095–1109, Jun. 2005. - [6] O. Tickoo and B. Sikdar, "A queueing model for finite load IEEE 802.11 random access," in *IEEE Int. Conf. Communications*, Jun. 2004, vol. 1, pp. 175–179. - [7] L. Bononi, M. Conti, and E. Gregori, "Runtime optimization of IEEE 802.11 wireless LANs performance," *IEEE Trans. Parallel and Distrib.* Syst., vol. 15, no. 1, pp. 66–80, Jan. 2004. - [8] R. Battiti and B. Li, Supporting service differentiation with enhancements of the IEEE 802.11 MAC protocol: models and analysis University of Trento, Italy, Tech. Rep. DIT-03-024, May 2003. - [9] J. W. Robinson and T. S. Randhawa, "Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function," *IEEE J. Sel. Areas Commun.*, vol. 22, no. 5, pp. 917–928, Jun. 2004. - [10] S. Asmussen, Applied Probability and Queues, 2nd ed. New York: Springer, 2003. - [11] S. Wiethölter and C. Hoene, Design and verification of an IEEE 802.11e EDCF simulation model in ns-2.26 Technische Universität Berlin, Germany, Tech. Rep. TKN-03-019, 2003. - [12] A. P. Markopoulou, F. A. Tobagi, and M. J. Karam, "Assessing the quality of voice communications over Internet backbones," *IEEE Trans. Networking*, vol. 11, no. 5, pp. 747–760, Oct. 2003. - [13] D. Bertsekas and R. Gallager, *Data Networks*. Englewood Cliffs, NJ: Prentice-Hall, 1987. - [14] C. E. Koksal, H. Kassab, and H. Balakrishnan, "An analysis of short-term fairness in wireless media access protocols," in *Proc. ACM SIG-METRICS*, Jun. 2000, pp. 118–119. - [15] G. Berger-Sabbatel, A. Duda, M Heusse, and F. Rousseau, "Short-term fairness of 802.11 networks with several hosts," in *Proc. 6th IFIP IEEE Int. Conf. Mobile and Wireless Communications (MWCN)*, Oct. 2004, pp. 263–274. - [16] A. Kumar, "Analysis and optimisation of IEEE 802.11 wireless local area networks," in Proc. 3rd Int. Symp. Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WIOPT), Apr. 2005, p. 151. - [17] Q. Ni, T. Li, T. Turletti, and Y. Xiao, "Saturation throughput analysis of error-prone 802.11 wireless networks," *J. Wireless Commun. Mobile Comput.*, vol. 5, no. 8, pp. 945–956, 2005. - [18] Y. Xiao, "An analysis for differentiated services in IEEE 802.11 and IEEE 802.11e wireless LANs," in *Proc. IEEE Int. Conf. Distributed Computing Systems*, 2004, pp. 32–39. **David Malone** received the B.A.(mod), M.Sc., and Ph.D. degrees in mathematics from Trinity College, Dublin, Ireland. During his time as a postgraduate, he became a member of the FreeBSD development team. He is a Research Fellow at the Hamilton Institute of the National University of Ireland, Maynooth, working on wireless networking. His interests include wavelets, mathematics of networks, IPv6 and systems administration. He is a coauthor of *IPv6 Network Administration* (O'Reilly, 2005). **Ken Duffy** received the Ph.D. degree in mathematics from Trinity College, Dublin, Ireland, in 2000. He is a member of faculty at the Hamilton Institute of the National University of Ireland, Maynooth. His current research interests are in applied probability and stochastic modeling inspired by applications in telecommunication networks. **Douglas Leith** graduated from the University of Glasgow, U.K., in 1986 and received the Ph.D. degree, also from the University of Glasgow, in 1980 In August 2001, he moved to the National University of Ireland, Maynooth, to assume the position of SFI Principal Investigator and to establish the Hamilton Institute (www.hamilton.ie), of which he is Director. His current research interests are focused on the area of communications networks, including the analysis and design of network congestion control and distributed resource allocation in wireless networks.