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Abstract
We present a new analytical model from which a model-based controller can be derived for a cyclorotor-based wave energy
converter (WEC). Few cyclorotor-basedWEC concepts andmodels have previously been studied and only one control strategy
for the entire wave cancellation has been tested. Our model is derived for a horizontal cyclorotor with N hydrofoils and is
suitable for the application of various control algorithms and the calculation of various performance metrics. The mechanical
model is based on Newton’s second law for rotation. The cyclorotor operates in two dimensional potential flow. This paper
modeled the velocity field in detail around the turbine with N hydrofoils by explaining each velocity term and estimated the
generated torque using two methods (point source method and thin-chord method). The developed model is very convenient
for control design, using the power take off torque and hydrofoil pitch angles as control inputs. The authors of this work have
derived new, exact analytic functions for the free surface perturbation and induced fluid velocity field caused by hydrofoil
rotation. These new formulae significantly decrease the model calculation time and increase the accuracy of the results. The
new equations also provide useful insight into the nature of the associated variables, and are successfully validated against
the results of physical experiments and numerical calculations previously published by two independent research groups.
Representation of hydrofoils as both a point source and a thin chord were analysed, with both models cross-validated for the
case of free rotation in monochromatic waves.

Keywords Wave energy converter · Cyclorotor · Rotor · Wave energy · Control design · LiftWEC · Lift-based wave energy
converter

1 Introduction

Wave energy is one of the few untapped sources of renew-
able energy that could make a significant contribution to the
future energy system. Unfortunately, to date, none of the
more traditional prototypes which use buoyancy or diffrac-
tion wave forces have proven themselves to be commercially
viable. This motivates the development of new approaches to
wave energy conversion. One of the recent and most promis-
ing methods is obtaining energy from the elliptical motion
of water wave particles using a horizontal cyclorotor with
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hydrofoils. Even though this idea is more than 40 years old
(McCormick 1979), few prototypes have ever been built and
tested (Hermans et al. 1990; Scharmann 2014; Siegel 2019).
The authors of these concepts consider different control
strategies and models to satisfy their selected performance
metrics. In this work, we have derived the new formulae and
methods which can significantly simplify the calculation of
the previousmodels and provide a basis for newmodel-based
control design.

1.1 Overview of the existing prototypes and control
strategies

The first prototype concept of a lift force-based WEC, a
rotor with a single hydrofoil Rotating Wing, was tested by
Hermans et al. (1990) in the deep water basin of the Mar-
itime Research Institute, in the Netherlands (MARIN). It
was shown that the device rotates at the wave frequency
and can absorb energy from waves. Subsequent researchers
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(Scharmann 2014; Siegel 2019) noted that it is difficult to
imagine operating this concept in real panchromatic and
multi-directional waves without a control strategy.

Significant work on the development of the cyclorotor-
based WEC was conducted by the Atargis Energy Corpo-
ration (Atargis 2020). The proposed cycloidal wave energy
converter (CycWEC) is a cyclorotor with two hydrofoils.
This concept was tested as a 1:300 scale prototype, in a 2D
wave tunnel of the US Air Force Academy (Siegel et al.
2011a, 2012a, b) and as a 1:10model in a 3Dwave tank at the
Texas A&M Offshore Technology Research Center (Fagley
et al. 2012a; Siegel et al. 2012a, b). The performance metrics
which were proposed for this device are based on the radi-
ated waves or the difference betweenmeasured upstream and
downstream far-field free surface elevation. Generally, they
are based on the ability of the rotating rotor to generate waves
with the opposite phase to incoming waves. As a result, it is
possible to observe the wave absorption effect downstream,
and presume that all the wave’s energy was absorbed by the
WEC. Atargis developed a linear feedforward control algo-
rithm, which was used to adjust the shaft angular velocity
and rotor position as well as foil pitch angles (Fagley et al.
2012b).

Performance metrics and a control strategy were also
proposed in the PhD thesis of Scharmann (2014), where per-
formance metrics are calculated by direct measurement of
generator torque and speed. The experimentswere conducted
in theHamburgShipModelBasin,Germany, andhave shown
that a two-foil rotorwill have highlyfluctuating torques, since
the condition of orthogonality between rotational and wave
particle velocities cannot be maintained without allowing
discontinuous rotor displacements. This would make effi-
cient conversion from mechanical power to electrical power
demanding. The author proposed the concept of the cycloro-
tor with four hydrofoils and a robust control scheme as the
most promising approach.

The reviews of cyclorotor-based WECs conducted by dif-
ferent authors (Scharmann 2014; Folley andWhittaker 2019;
Ermakov and Ringwood 2021) have shown that a cycloro-
tor may have a wide range of possible actuators and may be
suitable for different strategies of wave energy extraction. A
significant analysis of lift-based wave energy converters and
their potential was subsequently conducted by Folley and
Whittaker (2019). A classification was developed, based on
the specific method of generating lift and the motion of the
body. The work reported in Folley andWhittaker (2019) pro-
vided the inspiration for the LiftWEC project (2020), which
is also dedicated to cyclorotor-based WEC development.

1.2 Overview of modelling approach

We present a new analytical model, which can provide the
basis for the control design of a cyclorotor-basedwave energy
converter. Our model is derived for a horizontal cyclorotor
with N hydrofoils. It is relatively simple, fast, and suitable
for control design. This was achieved using new analytical
formulae, which were derived by the authors and validated
with the numerical and experimental results,whichwere pub-
lished in previous research (Hermans et al. 1990; Siegel et al.
2011a, b). These new formulae significantly decrease the cal-
culation time and increase the accuracy of the results, as
well as providing useful insight into the nature of the sys-
tem behaviour. Our model is suitable for the derivation and
testing of new control methods and supports various per-
formance metrics. The developed model is very convenient
for control design, using power take off (PTO) torque and
hydrofoil pitch angles as control inputs.

Our Sect. 2 presents the mechanical model which is based
on Newton’s second law for rotation, and balances the prod-
uct of the rotor’s acceleration and inertia with the torques
caused by the lift and drag forces generated on the hydro-
foils. It also introduces the two most direct real-time control
inputs: PTO torque and pitch angle.

The hydrodynamic model is described in Sect. 3. The
cyclorotor rotation is considered in a two-dimensional poten-
tial field of incoming monochromatic waves, and waves
generated by the rotating foils.Newequations for the free sur-
face elevation, causedby the rotating foils, and corresponding
fluid velocities resulting from incoming and radiated waves,
are presented.

In our Sect. 4, we present the validation of the new for-
mulae with the results of previous research for far-field
free surface elevation. Robust agreement with numerical and
experimental tests was achieved.

Approximate methods for the determination of the lift and
drag forces are considered in our Sect. 5. To determine the
lift and drag forces, it is necessary to define the interaction
between the hydrofoils and the overall relative fluid veloc-
ity, consisting of the incoming wave-induced hydrodynamic
velocities, velocities of the waves generated by the rotating
hydrofoils, and the rotational velocity of the rotor. Two pos-
sible models of hydrofoils, as a both point source and a thin
chord, are presented.

Our Sect. 6 outlines the numerical methods and solutions
for the developed models and some results. The presented
Fig. 6 of the angular velocity for free motion illustrate the
ability of the rotor to rotate with the frequency of the incom-
ing monochromatic waves.

Our conclusion sums up the presented elements of the
model and calculated examples of its application, and dis-
cusses future possible applications of the model for various
types of rotor and rotor design optimisation.
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2 Mechanical model of the rotor

We consider wave propagation in the Cartesian coordinate
system, and the rotor rotation in polar coordinates Fig. 1.
The rotational centre of the cyclorotor is located on the x
axis and submerged by y0. Then, the position of hydrofoils
i = 1, 2, . . . n can be determined as:

xi (t) = R cos(θ(t) + 2π(i − 1)/n) (1)

yi (t) = y0 − R sin(θ(t) + 2π(i − 1)/n) (2)

where (xi , yi ) is the position of hydrofoil i , R is the opera-
tional radius, and θ(t) is the polar angle, which determines
the position of the foils in the selected time moment ti .

Taking the time derivatives of (1) and (2), we can obtain
the vector of the rotational velocity VR = {(VR)x , (VR)y}:

(VRi )x = −R θ̇ (t) sin(θ(t) + 2π(i − 1)/n) (3)

(VRi )y = −R θ̇ (t) cos(θ(t) + 2π(i − 1)/n) (4)

where θ̇ (t) is the angular velocity.
The mechanical model of the rotor is based on Newton’s

second law for rotation and balances the product of the rotor’s
acceleration and inertia with the torques caused by the tan-
gential forces generated on the hydrofoils. It makes it directly
connectedwith a rotational generator, which exerts an oppos-
ing torque, T :

I θ̈ (t) =
N∑

i=1

FTi R − T (5)

where I—the inertia of the cyclorotor, θ̈ (t)—the angular
acceleration, FTi—tangential forces generated on the hydro-
foil i due to the interaction with incoming waves, they can
be manipulated by pitching the hydrofoils and changing the
attack angle α. The PTO torque T is used both to take rota-
tional energy from the system to generate electrical energy,
or supply energy to increase rotational speed. In the second
case, we presume the ability of PTO to switch to a motor-
ing mode. The balance equation (5) is presented in a basic
form. A more advanced model can be obtained by including
additional terms which represent the mechanical damping
from the shaft which connects the foil and the central PTO,
or entrained fluid inertia caused by added fluid mass. Such
effects are omitted in this initial treatment, for simplicity.

As an example performance function, we use captured
energy in a traditional form used in wind, tide and wave
energy metrics. It is defined as maximisation of the time
integral of the product between angular velocity θ̇ (t) and
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0

Fig. 1 The principal scheme of the cyclorotor with three hydrofoils:
VW—wave-induced fluid velocity, y0—submergence of the rotor, θ—
polar coordinates of the hydrofoils, VR—rotational speed of the foils,
VHM—instant radiation from the moving foil and VHW—the wake
which is left behind, V̂—the overall relative to hydrofoil fluid velocity,
α—the attack angle, FL, FD, FT—lift, drag and tangential forces

PTO torque on the time interval [0, T ].

J =
∫ T

0
T (t)θ̇(t)dt → Max. (6)

3 The hydrodynamic model

We consider the rotation in two-dimensional potential flow
which includes incoming monochromatic or panchromatic
waves, as well as radiated waves generated by the rotating
rotor, and viscous losses.

As an example of incoming waves, we present Airy waves
which were used in the study of Siegel et al. (2011b), which
can be described by the following velocity potential:

ΦW(x, y, t) = Hg

2ω
eky sin(kx − ωt) (7)

where H is the wave height, ω is the wave frequency, k is the
wave number, and g is the acceleration due to gravity.

The components of the wave-induced velocityVW can be
found as a gradient from the potential:

VW = ∇ΦW(x, y, t) = {
(VW)x , (VW)y

}
. (8)
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From these partial derivatives, we get the components of
the wave induced velocity:

(VW)x = ekygHk

2ω
cos(kx − tω) (9)

(VW)y = ekygHk

2ω
sin(kx − tω). (10)

Oneof the challenges in thedevelopment of the cyclorotor-
basedWEC is the estimation of thewaves radiated by rotating
hydrofoils. In previous works (Hermans et al. 1990; Schar-
mann 2014; Siegel 2019), the hydrofoil, from the far-field,
was modelled as a single moving point vortex in infinitely
deep water. This vortex can be represented by a complex
potential which satisfies the kinematic and dynamic bound-
ary condition on the free surface (Wehausen and Laitone
1960):

F(z, t) = Γ (t)

2πi
Log

[
z − c(t)

z − c̃(t)

]

+ g

πi

∫ t

0

∫ ∞

0

�(τ)√
gk

e−ik(z−c̃(τ )) sin
(√

gk(t − τ)
)
dkdτ

(11)

where c(t) = x(t) + iy(t) is the position of the hydrofoil,
c̃(t) is the complex conjugate of c(t), k is the wave number
and �(t)—is the circulation of the vortex, or the line integral
of the fluid velocity along a closed path.

The potential F(z, t) in (11) consists of two parts. The
first term on the right-hand side of (11) the instantaneous
(momentary) radiation and has a singularity at the source
point c(t). For this reason, it can not be used to describe
the state in the close vicinity of the foil. The second term
on the right-hand side of (11) describes the fluid velocity
wake caused by the moving vortex. In the study by Hermans
et al. (1990), this term is calculated numerically, using double
integration over the wave number k and the time parameter
τ . A very similar approach is employed in the work of Siegel
et al. (2011b), where it was integrated using second order k
and τ marching techniques.

The authors of this work have solved the integral over k
analytically in the form of the Dawson function D[x] (Daw-
son 1897):

F(z, t) = Γ (t)

2πi
Log

[
z − c(t)

z − c̃(t)

]

+
√
g

πi

∫ t

0
Γ (τ)D

[ √
g(t − τ)

2
√
i(z − c̃(τ ))

]
dτ (12)

where

D(x) = e−x2
∫ x

0
ey

2
dy. (13)

This representation is valid only when Im[z − c̃(τ )] <

0 or y + yi < 0, which is always true for the area under
consideration, since y < 0 and yi < 0. This new formula
significantly decreases the calculation time and increases the
accuracy of the results, since all the wave numbers k are now
covered and we only need to find one integral with defined
limits.

The velocity of the waves radiated by a rotating hydrofoil
can be found using the following equation:

VH = ∂F(z, t)

∂z
= (VH )x − i (VH )y . (14)

The velocity field VH of the waves radiated by the hydro-
foil also consists of the instantaneous (momentarily) radiated
waves VHM and wakes VHW which were left on the hydro-
foil’s path:

VH = VHM + VHW. (15)

The components of the velocity field caused by the hydro-
foil i at the point j are:

(VHM)x =
�i (t)yi

((
x j − xi

)2 − (
y j 2 − y2i

))

π

(((
x j − xi

)2 − (
y j 2 − y2i

))2 + 4
(
y j

(
x j − xi

))2
)

(16)

(VHM)y = 2�i (t)y j yi
(
x j − xi

)

π

(((
x j − xi

)2 − (
y j 2 − y2i

))2 + 4
(
y j

(
x j − xi

))2
)

(17)

(VHW)x = −
∫ t

0

�i (τ )
√
g

2π
cos

(
x j − xi [τ ])

(
−

√
g(t − τ)

(
y j + yi [τ ])2

+
(
g(t − τ)2 + 2

(
y j + yi [τ ]))

(−y j − yi [τ ])5/2
D

[ √
g(t − τ)

2
√−y j − yi [τ ]

])
dτ

(18)

(VHW)y =
∫ t

0

�i [τ ]√g

2π
sin

(
x j − xi [τ ])

(
−

√
g(t − τ)

(
y j + yi [τ ])2

+
(
g(t − τ)2 + 2

(
y j + yi [τ ]))

(−y j − yi [τ ])5/2
D

[ √
g(t − τ)

2
√−y j − yi [τ ]

])
dτ.

(19)

The complex potential F(z, t) can also be presented in
the form of the sum of the velocity potential ΦH and stream
function ΨH as:

F(z, t) = ΦH (x, y) + iΨH (x, y). (20)

Thus, the new velocity potential for waves radiated by
the hydrofoil, which was derived by the authors from (11),
using representation (20) and Dawson function (13), has the
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following form:

ΦH (x, y) = Γ (t)

2π
arctan

[
2yi (xi − x)

(x − xi ) 2 + (
y2 − y2i

)
]

+
∫ t

0

Γ [τ ]√g

π

⎛

⎜⎝
(−1)1/4D

[
(−1)3/4

√
g(t−τ)

2
√

(x−xi [τ ])+i(y+yi [τ ])
]

√
(x − xi [τ ]) + i (y + yi [τ ])

+
(−1)3/4D

[
(−1)1/4

√
g(t−τ)

2
√

(x−xi [τ ])−i(y+yi [τ ])
]

√
(x − xi [τ ]) − i (y + yi [τ ])

⎞

⎟⎠ dτ (21)

and, despite the presence of the complex terms, the value of
the function in (21) is always real. In addition, for caseswhere
multiple (square) roots of a variable are taken, the following
development ultimately utilises only the square of the root,
making it immaterial which of the roots is taken.

In the case of the potential flow, the free surface pertur-
bation can be found from the dynamic boundary condition.
For example, the elevation of the free surface caused by the
Airy wave has the following form:

ηw = −1

g

(
∂ΦW

∂t

)

y=0
= H

2
cos(kx − ωt). (22)

Now, we can obtain the perturbation of the free surface
caused by the rotating hydrofoil i using Eq. (21):

ηhi = −1

g

(
∂ΦHi

∂t

)

y=0
(23)

and the overall elevation of the free surface can be presented
in the form of the linear sum:

η = ηw +
n∑

i=1

ηhi . (24)

4 Model validation via free surface
displacement

In this section, we validate the results obtained from (21) and
(23) for the heights and periods of the waves generated by
a single rotating hydrofoil, against results obtained experi-
mentally and numerically by previous researchers (21).

In the research work by Hermans et al. (1990), the authors
derive an analytical equation that can be used to compute
the heights of waves generated by a foil which rotates at
a constant rate. This equation is only valid for relatively
large values of t , i.e. when stable periodic wave generation
is achieved. The authors solved the system (11) and (23)
numerically and the calculated results were compared with

the experimental data. The experiments were conducted in
the deep water basin of MARIN. The prototype consisted
of a single hydrofoil with chord length l = 0.1 m, operating
radius R = 0.14m, submerged depth of y0 = −0.271mwith
thewaveprofilemeasured at a point located at x = 1.8m.The
circulation was defined as � = π |ωR| l tan(α). Figure 2b
shows the published results from Hermans et al. (1990) for
the free surface elevation at the measurement point for a foil
rotating with ω = 6.91 rad/s and α = 0.576 rad. It can be
seen that good agreement between the amplitude and period
of the radiated waves was obtained Fig. 2.

In total, two validations were conducted with the results
published in the works of Siegel et al. (2011a, b). The first
case corresponds to the results of the 1:300 scale experiment
which was conducted in the 2D wave tunnel of the US Air
Force Academy (Siegel et al. 2011a). Figure 3b presents the
upstream (blue line) and downstream (green line) free sur-
face elevation caused by the single rotating hydrofoil. The
experimental setup has the following parameters: rotor rota-
tion period Tr = 0.55 s, blade pitch α = −7.5◦, operational
radius R = 6 cm, chord length S = 5 cm, submergence
y0 = −7.5 cm. We have determined the lift coefficient as
CL = −0.65 and the circulation as � = CLωRS/2. The
numerical simulation, with the use of new formulae, shows
good agreement with the amplitude and period of the exper-
imentally radiated waves, as seen in Fig. 3.

The last validation case is the comparison with the numer-
ical simulation presented in Siegel et al. (2011b). The
parameters were normalised by a period of T = 9 s and wave
length λAiry = 126.5m. The single hydrofoil rotor has radius
R/λAiry = 0.15, submergence depth |y0|/λAiry = 0.18, and
circulation �T /λ2Airy = 5.6 ∗ 10−3. All waves are evaluated
at x = ±3λAiry and at time t/T = 30 after the start of the
cycloidal WEC.

The numerical results obtained in Siegel et al. (2011b) are
presented in Fig. 4b, where the upstream (black line) and
downstream (grey line) are in very good agreement with our
numerical results, shown in Fig. 4a.

Figures 3 and 4 also show that the amplitude of upstream
radiated waves (blue and grey lines) are more than ten times
less than the amplitude of the waves radiated downstream
(green and black lines). Assuming that the downstream radi-
ated waves have the same amplitude as incoming wave,
but opposite phase, we can achieve complete wave energy
absorption (Siegel 2019). As a result, the interaction between
the upstream radiated waves and the incoming waves can be
ignored, due to the significant amplitude differences. This
effect allows us to reliably forecast the wave-induced fluid
velocity. Thus, the derived equations (21) can be very ben-
eficial for the calculation of the most recent performance
metrics proposed by Siegel (2019), which are based on wave
radiation and cancellation effects.
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Fig. 2 The elevation of the free
surface at a measurement point
located 1.8 m downstream: a
obtained with the use of the new
equation, b obtained in Hermans
et al. (1990) experimentally
(solid line) and numerically
(dashed line)

Fig. 3 The elevation of the free surface at the measurement points located downstream (gray line) and upstream (black line): a obtained with the
use of the new equation, b obtained experimentally by Siegel et al. (2011a)

Fig. 4 The elevation of the free surface at the measurement points located downstream (black line) and upstream (grey line): a obtained with the
use of new equation, b obtained in Siegel et al. (2011b) numerically

5 Approximate determination of lift and
drag forces

Modelling of the hydrofoil interaction with the wave veloc-
ity field is a challenging problem. Accurate determination
of the attack angle, circulation, lift and drag forces requires
significant high-fidelity computation, such as computational
fluid dynamics (CFD).All these do notmake the high-fidelity
models suitable for control design. In this section, we con-

sider twopossible approximatemodels for lift anddrag forces
which can be used for the control design.

5.1 Point source representation

This is a very basic representation which considers the
hydrofoils as point sources. For this case, the lift and drag
coefficients should be considered not as physical values,
but more as tuning parameters. These best-fit approximate
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coefficients can be obtained from numerical simulation or
experimental tests.

These parameters depend on the system inputs, which can
be measured or tracked in real time:

1. The rotational velocityVR and position of the rotor θ can
be measured and controlled

2. The wave-induced fluid velocityVW can be reliably pre-
dicted in real time due to the minimal upstream radiation

3. The velocity of waves radiated by the hydrofoils VH can
be calculated relatively easily; however, we cannot define
the instantaneous radiated waves (VHM)i in the small
vicinity of the point source i , due to the singularity high-
lighted in Sect. 3.

Thus, we consider the generation of the lift and drag
forces as the result of the rotation of the hydrofoil i with
an overall relative velocity V̂i, representing the vector dif-
ference between the wave-induced fluid velocity VWi and
the cyclorotor rotational velocity VRi , plus the sum of the
wakes caused by the hydrofoil rotation VHW and instanta-
neous radiation from the other foils VHM as:

V̂i = VWi − VRi +
N\i∑

j

VHM j +
N∑

j

VHW j . (25)

The attack angle αi (t) can be found as the angle between
the cyclorotor rotational velocity VRi and overall relative
velocity V̂i:

αi (t) = arcsin

(
(VRi )x ∗ (V̂i )y − (VRi )y ∗ (V̂i )x

|VRi ||V̂i |

)
+ γi

(26)

where γi is the hydrofoil pitch angle, which can be adjusted
in real time.

For the point source representation, we use the following
approximation: FL lift and FD drag forces which act on a
particular hydrofoil depend on the lift and drag coefficients
CL(α) and CD(α), hydrofoil chord length S, fluid density ρ

and overall relative velocity V̂ at a hydrofoil position (xi , yi ):

FL = 1

2
ρ CL|V̂ |2 S, (27)

FD = 1

2
ρ CD|V̂ |2 S. (28)

The circulation � can be determined using the following
equation:

� = 1

2
CL |V̂ | S. (29)

Fig. 5 The thin-chord hydrofoil representation: the numeration of the
sections starts from the leading edge of the foil,● black points represent
the boundaries of the segment, blue arrows are normal to the segments,
▲ red triangles are the position of the lump-vortices,■ blue squares are
collocation points, ★ orange star is the additional point which is used
to calculate the strength of the vortex which will be left by the moving
foil (colour figure online)

The tangential force FT can now be presented as a com-
bination of the lift FL and drag FD forces:

FT = FL(α) sin (α − γ ) − FD(α) cos (α − γ ) . (30)

5.2 Thin-chord hydrofoil representation

A more advanced approach than the point source model
describes the hydrofoil as a thin chord. We use the vortex
panel representation described in Katz and Plotkin (2001)
for an unsteady thin airfoil using the lumped-vortex element
method. This method was employed in Siegel et al. (2011b)
for a thin hydrofoil panel representation in order to analyze
the near field of the hydrofoil. The foil chord is divided into
m linear segments Δli , with the boundaries of these seg-
ments shown by the black points in Fig. 5. The lump-vortex
is placed at each quarter segment (i.e. 1/4Δli ) with collo-
cation points placed at three quarters of each segment (i.e.
3/4Δli ). We have selected the lumped-vortex element in the
form of the instantaneous radiation VHM Eqs. (16) and (17)
which satisfies the free surface condition, where {xi , yi } are
the coordinates of the vortex position and {x j , y j } are the
coordinates of the collocation points. This vortex panel rep-
resentation allows us to define the fluid circulation �i in the
vicinity of the foil and, as a result, the pressure difference
Δpi between the panel sides. The additional m + 1 point is
added, at the trailing edge of the foil, to calculate the strength
of the wake vortex left by the hydrofoil at each time step. For
each segment, the normal ni and tangential τ i vectors are
defined.

The following system of linear algebraic equations is used
to define the circulation components �i :

m+1∑

i=1

�i
(
VHM(i, j) · ni

) = −(V̂i · ni ) j = 1 . . .m (31)
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with the additional m + 1 equation representing the Kelvin
condition:

m+1∑

i=1

�i = �(t − Δt) (32)

where �(t − Δt) is the circulation measured at the previous
time step.

The solution of the system (31) and (32) determines the
values of the circulation �i on each of the intervals Δli , the
overall circulation caused by the hydrofoil:

� =
m∑

i=1

�i (33)

and intensity of the wake �m+1.
The difference between pressures on proximal and distal

surfaces (relative to the axis of rotation) of the segment Δli
can be obtained from:

Δpi = ρ

⎡

⎣ �i

Δli

(
V̂i · τ i

)
+ ∂

∂t

i∑

j=1

� j

⎤

⎦ . (34)

Thus, the lift and drag forces can be defined from (34) as:

FL =
m∑

i=1

ΔpiΔli cosβi , (35)

FD =
m∑

i=1

ΔpiΔli sin βi (36)

where βi is the angle between the segment and the tangent to
the rotation trajectory, drawn through the connection point of
hydrofoil chord and operational radius R. The total tangential
force can now be defined using Eq. (30).

The system (27), (28), (35) and (36) can be solved for
CL and CD and the corresponding angle of attack can
be found from Eq. (26). However, due to the complex,
non-homogeneous fluid velocity field in the vicinity of the
hydrofoil, the system does not have a unique solution for
lift and drag coefficients at the single point source where the
attack angle is defined. The determination ofCL andCD, and
the corresponding angle of attack, for the selected point on
the foil requires a number of simulations runs to find the best
statistical fit for these coefficients e.g. using least squares.

6 Numerical solutionmethods and some
results

In this section, we present the results of numerical simula-
tions obtained with the use of the point source and thin-chord

representations already outlined in Sects. 5.1 and 5.2, respec-
tively. Our main goal is to illustrate the capabilities of the
developed models and assess their possible applicability to
control design.As an example,we consider the rotorwith two
hydrofoils which is similar to the CycWEC prototype tested
by Atargis in a 3D wave tank at the Texas A&M Offshore
Technology Research Center. The selected rotor has foils
with chord length S = 0.75 m, operational radius R = 1 m,
submergence depth y0 = 2 m, inertia I = 500 kg m2.

We present an asymmetric rotor, with pitch angles γ1 = 7◦
and γ2 = −7◦. This configuration ensures convergence with
thewave frequency and achievement of a stable periodic solu-
tion. Unfortunately, the results presented in Siegel (2013) do
not allowus to reliably determine the lift (and especially) drag
coefficients for the curved hydrofoils of type NACA0015,
which were tested in these very specific conditions. We have
selected the lift and drag coefficients using the point source
method from the publicly available (Sheldahl and Klimas
1981) for symmetric thinner hydrofoils of type NACA0012
for Re = 2 × 106. The similar value was used in Ansys
simulations of the CycWEC conducted by Caskey (2014).
The thinner NACA0012 hydrofoils allow us to have a better
agreementwith the thin-chordmodel. For the case of the thin-
chord profile, the camber which can be described by equation
for the shape of a four-digit NACA foil NASA (2020) was
taken:

y = 0.2969
√
x−0.1260x−0.3516x2+0.2843x3−0.1015x4

(37)

where xε[0, 1].
Weconsider the freemotion inmonochromaticwaveswith

height H = 0.9 m, length L = 9.75 m and period T = 2.5 s.
Initially, the hydrofoil rotor’s chord is parallel to the free
surface, i.e. θ(0) = 0, and the angular velocity is equal to
the wave frequency, i.e. θ̇ (0) = ω.

A discrete-time is considered and the time period T is
separated into the set of n small intervals Δti = {ti , ti+1}.
It is assumed, that at each small interval Δti , the rotational
velocity θ̇i is constant. Then, the kinematic parameters of the
rotor, at the next time step, can be found from this scheme:

θi+1 = θi + θ̇iΔti + θ̈iΔti
2/2 (38)

θ̇i+1 = θ̇i + θ̈iΔti , (39)

θ̈i+1 =
(

n∑

i=1

FTi [�i , θi , θ̇i , αi ] R − Ti

)
/I . (40)

All the results were obtained using the finite difference
method for differentiation and the trapezoidal rule for inte-
gration. All calculations were conducted in WolframMathe-
matica. It takes 4 and 103 s, in real time, to simulate a 1-min
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Fig. 6 The ratio between
angular velocity and wave
frequency for the point source
(blue dotted line) and the thin
chord (red line): a within the
first minute and b after
synchronisation (colour figure
online)

Fig. 7 Torque values for the
point source (blue dotted line)
and the thin chord (red line): a
within the first minute and b
after synchronisation (colour
figure online)

scenario for the point sourcemodel and the thin-chordmodel,
respectively, using a laptop with 6 cores, running at 2.2 GHz.

The results of the calculations are presented in Figs. 6
and 7. We can see that the angular velocity θ̇ starts to con-
verge with the wave frequency ω. Stable periodic rotation
was achieved, and the point source and thin-chord model
transient behaviours are synchronised with the wave period
T after 150 s.

The curved hydrofoils, represented by the thin-chord
model (red line), experience much less fluctuation of the
torque sign (Fig. 7) than the straight foils (blue line) rep-
resented by the point source model. It can be seen that
the changes of the torque value are in agreement with the
incoming wave periods. This effect can be observed as the
additional low frequency content for the curved foils on
Fig. 7a (red line). We can also see more significant torque
value fluctuation for the point source model in Fig. 7a (blue
line). These changes cause the notable low frequency content
for the point source model rotational rate shown in Fig. 6a. It
can be concluded that straight foils are much more sensitive
to fluid velocity field changes caused by incoming waves.

The visible difference in the angular velocity amplitudes
(Fig. 6b) can be resolved by adjusting the values of lift and
drag coefficients, which were originally obtained for aero-
foils in unidirectional flow. This is a simple task due to the
linear dependence of the torque on CL, CD. The authors
obtained acceptable agreement of the amplitudes predicted
by the point source and chord models by multiplying the
coefficients, determined for the aerodynamic case, by 0.6 (as
a tuning parameter). However, these fitting coefficients will
work only for this particular scenario, and a more advanced
study of the best fit coefficients, across a broader range of

operational conditions, is needed. Despite the hypothetical
nature of the presented lift and drag coefficients, we can pre-
sume that the real value of these foil coefficients,with rotation
in omnidirectional fluid flow, should be significantly smaller
than the values which were obtained in the ideal conditions
of aero tubes for unidirectional flow.

7 Conclusion

The developed models are validated and fast lending them-
selves to the control design. For example, the point source
model is suitable for model predictive control (Faedo et al.
2017), since it takes approximately 4 s to calculate a 1-
min forecast. Customised coding would likely reduce this
computational time by an order of magnitude. However, the
conducted numerical simulations have shown that the lift
and drag coefficients for hydrofoils should be smaller than
the coefficients obtained for aerofoils. Thus, lift and drag
coefficients should be defined for the selected operational
conditions using the thin-chord model, or from more accu-
rate CFD simulations. Themodel is suitable for development
of various control strategies which target different perfor-
mance metrics, such as the wave cancellation proposed by
Siegel (2019) or the maximisation of the power coefficient
(6) proposed by Scharmann (2014). The new derived exact
analytical formulae for free surface elevation, and perturba-
tion in fluid velocity, caused by a rotating foil can also help
developers of existing and new cyclorotor concepts. The pre-
sented equations can describe rotors with various numbers of
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foils and configurations, leading to a potential use in the opti-
misation of cyclorotor design.
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