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A B S T R A C T   

Forensic DNA signal is notoriously challenging to assess, requiring computational tools to support its interpre
tation. Over-expressions of stutter, allele drop-out, allele drop-in, degradation, differential degradation, and the 
like, make forensic DNA profiles too complicated to evaluate by manual methods. In response, computational 
tools that make point estimates on the Number of Contributors (NOC) to a sample have been developed, as have 
Bayesian methods that evaluate an A Posteriori Probability (APP) distribution on the NOC. In cases where an 
overly narrow NOC range is assumed, the downstream strength of evidence may be incomplete insofar as the 
evidence is evaluated with an inadequate set of propositions. 

In the current paper, we extend previous work on NOCIt, a Bayesian method that determines an APP on the 
NOC given an electropherogram, by reporting on an implementation where the user can add assumed contrib
utors. NOCIt is a continuous system that incorporates models of peak height (including degradation and dif
ferential degradation), forward and reverse stutter, noise, and allelic drop-out, while being cognizant of allele 
frequencies in a reference population. When conditioned on a known contributor, we found that the mode of the 
APP distribution can shift to one greater when compared with the circumstance where no known contributor is 
assumed, and that occurred most often when the assumed contributor was the minor constituent to the mixture. 

In a development of a result of Slooten and Caliebe (FSI:G, 2018) that, under suitable assumptions, establishes 
the NOC can be treated as a nuisance variable in the computation of a likelihood ratio between the prosecution 
and defense hypotheses, we show that this computation must not only use coincident models, but also coincident 
contextual information. The results reported here, therefore, illustrate the power of modern probabilistic systems 
to assess full weights-of-evidence, and to provide information on reasonable NOC ranges across multiple 
contexts.   

1. Introduction 

In the forensic setting, evidentiary data is excised from a substrate by 
a series of laboratory procedures designed to extract and purify DNA. 
The DNA extract is then, typically, partitioned into one fraction that 
undergoes amplification and one fraction that is stored. For the portion 
that is amplified, a set of tens of short tandem repeats (STRs) are sub
jected to polymerase chain reaction (PCR), resulting in billions of fluo
rescently tagged synthesized fragments. The fluorescence is sized and 
binned into STR categories, which are reported as the STR alleles at a 
given locus. Since each person is expected to carry at most two STR 

alleles per locus, a perfect system would render only one (i.e., homo
zygous) or two (i.e., heterozygous) peaks per person. For samples with 
only one or two contributors and processed within a laboratory system 
with a very high signal-to-noise, limited artifacts, and no sampling ef
fects, a sufficient method to estimate the number of contributors (NOC) 
is to apply analytical and stutter ratio thresholds, count the number of 
peaks, divide by two and round up. This is often referred to as the 
Maximum Allele Count (MAC) estimate. 

Forensic samples, however, contain DNA from an unknown possibly 
large number of unidentified contributors, where the number of DNA 
copies from each are also unknown. Even if the laboratory system was 
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analytically perfect, counting the number of detected peaks to surmise 
the number of contributors (NOC) often leads to underestimation when 
the samples are complex [1,2]. As is the case in forensic operations, the 
signal is further obfuscated by allele drop-out [3], signal filters that 
promote allele drop-out [4], and large contributor numbers [5]. Thus, 
qualitatively or subjectively (i.e., by visual inspection) establishing if 
there are adequate imbalances to justify one or two fewer or greater 
contributors to the MAC estimate are difficult given the explosion in the 
genotype combinations that may explain the evidence well [6]. In the 
worst case, subjectively inferring the NOC that explains the evidence 
may have the unwanted consequence of excluding reasonable, though 
subjectively unrecognized, NOC assignments from consideration 
requiring a re-evaluation post suspect-review, which has associated is
sues [7]. 

Another source of profile infidelity is the tendency for STR loci to 
produce stutter products whose relative signal increases with respect to 
the alleles as the number of DNA copies decreases [8–10]. The tendency 
for low-copy samples to produce high relative stutter signal complicates 
the NOC interpretation because it counteracts the effects of drop-out in 
that it suggests an additional contributor need be considered as a 
plausible proposition [11,12]. 

Whatever the source of signal perturbance, there are two competing, 
though important, factors that make peak counting ill-suited to assign
ing the number of contributors: that of extraneous signal from noise and 
artifacts that bear more weight as the template mass decreases; and that 
of signal-loss which also bears more weight as the template mass de
creases. The chance of each occurring simultaneously in a profile while 
considering the frequency of the STRs in the population can be taken 
into consideration by determining the probability that the number of 
contributors, N, to the evidence, E, is n given the defense’s hypothesis: 
P(N = n|E,Hd). In Bayesian systems such as NOCIt [11,13], this quantity 
corresponds to the a posteriori probability of n contributors, APP(n), 
given the evidence and the defense’s hypothesis. 

In complementary work, applying reasonable assumptions Slooten 
and Caliebe [14] demonstrated that a Likelihood Ratio (LR), which here 
we call fullLR, can be evaluated where the NOC is treated as a nuisance 
variable rather than the commonly used approximation that solely 
considers a single “best” estimate of the NOC. That is, for electrophe
rogram, E, with N unknown contributors, Hp being the prosecution’s 
hypothesis and Hd being the defense’s hypothesis, if it is assumed that 
the a priori distribution of the number of contributors is the same under 
both hypotheses in the absence of any data, i.e., P

(
N = n|Hp

)
= P(N =

n|Hd) for all n, and that the posterior probability of the NOC given the 
defense’s hypothesis is positive for all possible NOCs, P(N = n|E,Hd) > 0 
for all n, then the LR that treats the NOC as a nuisance variable satisfies 

fullLR(E) =
∑

n

(
P
(
E|Hp,N = n

)

P(E|Hd,N = n)
P(N = n|E,Hd)

)

=
∑

n
LR(E|N = n)P(N = n|E,Hd)

Their finding was reduced to practice in Ref. [11] where the fullLR 
was calculated using NOCIt’s APP(n) coupled with the computational 
tool CEESIt that evaluates the likelihood ratio given there are n con
tributors, LR(E|N = n) [15]. In that work it was demonstrated that the 
fullLR can be determined without application of an AT by using NOCIt’s 
APP(n) to articulate a range of n that describe the data. Unsurprisingly, 
the n associated with APP(n) values near 0 do not need to be included to 
obtain a precise computation since they are implausible and it is suffi
cient to renormalize APP(n) accordingly. 

Building on the results of [11], we continue by exploring the effects 
of case-related information. That is, we assess the effect on the APP 
when conditioning on an assumed contributor with a known genotype. 
This has operational implications since computing the fullLR condi
tioned on case information, I, requires the APP be conditioned on I also. 
Following the derivation from [11], we see that 

fullLR(E|I) =
P
(
E
⃒
⃒I,Hp

)

P(E|I,Hd)

=
∑

n

P
(
E
⃒
⃒I,Hp,N = n

)
P
(
N = n

⃒
⃒I,Hp

)

P(E|I,Hd)
⋅

P(E,N = n|I,Hd)

P(E|I,Hd,N = n)P(N = n|I,Hd)

=
∑

n

P
(
E
⃒
⃒I,Hp,N = n

)

P(E|I,Hd,N = n)
⋅
P
(
N = n

⃒
⃒I,Hp

)

P(N = n|I,Hd)
⋅P(N = n|E, I,Hd)

=
∑

n
LR(E|I,N = n)APP(n|I),

where: E is the evidence (i.e., the electropherogram); Hp and Hd are the 
prosecution and defense hypotheses, respectively; LR(E|I,N = n)≜P

(
E|I,

Hp,N = n
)/

P(E|I,Hd,N = n) is the likelihood ratio given case informa
tion I (such as a specified contributor) and that there are n total con
tributors; and APP(n|I)≜P(N = n|E, I,Hd) is the APP conditioned on case 
information I. In this derivation, we assume that P

(
N = n|I,Hp

)
= P(N =

n|I,Hd) for all n, i.e., that the prior distribution on the number of con
tributors before seeing the data is the same under both the prosecution 
and defense hypotheses. 

In what follows, we evaluate the impact of setting I such that we 
condition on there being: no assumed contributor, Ino; one known 
contributor who happens to be the major donor, Imaj; and one known 
contributor who happens to be a minor donor to the mixture, Imin. We 
evaluate the influence of I on several APP features such as the breath of 
the distribution, shifts in the APP’s mode, sensitivity of the number of 
plausible NOCs, and the probability assigned to incorrect NOC, 
∑

n∕=TrueNOCAPP(n|I). The results make clear that it is necessary for the 
contexts, I, in LR(E|I,N = n) and APP(n|I) to be coincident. They also 
elucidate how the APP distribution concentrates more around the true 
number, shifts or broadens with contextual information, and whether 
contextual information has significant bearing on the range of potential 
NOC values that best describes the evidence. 

2. Description of NOCIt’s APP and the fullLR when conditioned 
on a known contributor 

The way in which NOCIt calculates the APP conditioned on case 
information I is similar to the way in which NOCIt calculates the APP 
without conditioning on an assumed contributor, as previously 
described [11], which is available in the larger ValiDNA 4.1.5 software 
suite. The difference is that all probability calculations are now per
formed in the probability space conditioned on I. Note that N is the total 
number of contributors, which includes any known contributors 
assumed in the case information I so, if I assumes one known contrib
utor, then P(N = 0) = 0. 

Briefly, conditioning on I, NOCIt computes: 

P(E|I,N = n,Hd

)

=

∫∫

(θ,λ)∈(Δn− 1×Ωn− 1)

P(E|I,Θ = θ,Λ = λ,N

= n ,H d )fΘ(θ)fΛ|Θ(λ|θ)dθdλ  

where Θ is the n-dimensional vector of DNA mixture proportions; 
Δn− 1 = {(θ1,…, θn) ∈ ℝn

|
∑n

i=1θi = 1, θi > 0∀i is the (n − 1)-simplex, 
which defines all possible DNA mixture proportions; Λ is the n-dimen
sional vector representing the change in mixture proportions for each 
contributor at a reference length of 200 bp from that at 0 bp owing to 
degradation; Ωn− 1 defines all possible values for Λ; fΘ is the probability 
density function of Θ; and fΛ|Θ is the conditional probability density 
function of Λ given Θ. Given Θ and Λ, the electropherogram for each 
locus l, El, is assumed independent of the electropherogram at every 
other locus. Therefore, 
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P(El|I,Θ = θ,Λ = λ,N = n ,Hd) =
∏

l∈L
P(El|I,Θ = θ,Λ = λ,N = n,Hd),

where L is the set of loci. Lastly, we have 

P(El|I,Θ = θ,Λ = λ,N = n,Hd)

=
∑

g,d∈Γn×{0,1}2×|L|×n

{
P(El|I,G = g,D = d,Θ = θ,Λ = λ,N = n)

∙P(D = d|I,Θ = θ,Λ = λ) P⁡(G = g|I,Hd)

}

,

where G is the genotypes of the contributors; D ∈ {0,1}2×|L|×n is a 2 ×

|L| × n matrix that represents the drop-out configuration for the alleles of 
these contributors; and Γn is the space of all possible genotypes for n 
contributors. 

If the case information I is that there is a known contributor with 
genotype g1, then 

P(El|I,Θ = θ,Λ = λ,N = n,Hd)

=
∑

g,d∈Γn×{0,1}2×|L|×n

{
P(El|,G = {g, g1},D = d,Θ = θ,Λ = λ,N = n)

∙P(D = d|Θ = θ,Λ = λ)P(G = {g, g1}|I,Hd)

}

,

where P(G = {g,Hd) is the probability of drawing n − 1 random con
tributors with genotype g from the background population. 

To calculate the term P(El|G = {g,D = d,Θ = θ,Λ = λ,N = n), we 
use a probabilistic model of the electropherogram at locus l developed 
from calibration data of electropherograms of samples with known ge
notypes as described in Ref. [11]. Apart from this modification to 
calculate the probability of the electropherogram at each locus P(El|I,
Θ = θ,Λ = λ,N = n,Hd) with conditioning on an assumed contributor, 
all other aspects of the NOCIt calculation described in Ref. [11] remain 
the same. 

3. Materials and methods 

We calibrated NOCIt with all but 100 of the publicly available 1-Per
son PROVEDIt samples amplified with the GlobalFiler® Kit and injected 
on the 3500 Genetic Analyzer for 25 s (i.e., 2611 single source samples). 
Though the entire PROVEDIt dataset was used, smaller sets of calibra
tion data containing 50 serially diluted samples can adequately calibrate 
the models [13]. 

The 100 single-source electropherograms excluded from the cali
bration data were used as the 1-person test samples. In addition, all 666, 
2- to 5- person GlobalFiler™/25s PROVEDIt mixtures were used to 
evaluate the changes to APP(n|I), as were 49 differentially degraded 
mixture samples. This is the same dataset as used in Ref. [11]. All in
formation germane to the sample is contained in its name as detailed in 
Ref. [5]. Briefly, the DNA target masses of the test samples ranged from 
0.75 to 0.0078 ng, and the mixture ratios ranged from equal parts from 
all contributors to a 1:9 ratio between any two contributors. Samples 
were analyzed with GeneMapper® ID-X at 1 RFU. Non-reproducible 
artifacts such as spikes and dissociated dyes were manually removed, 
while peaks associated with incomplete adenylation, pull-up, complex 
pull-up (i.e., raised baseline) were filtered using the CleanIt module. 
Details regarding artifact removal are in Ref. [5]. All data were imported 
into NOCIt as a CSV and the filtered datasets are available on lftdi.com. 

The nominal NOC is taken to be the TrueNOC as it is reasonable to 
assume that each contributor’s DNA is represented in the signal since: 1) 
the RFU signal from a single amplifiable molecule of DNA is resolved 
from noise at these laboratory and AT conditions [16]; 2) the smallest 
minor contributor of any mixture sample did not fall below two cell’s 
worth of DNA (NB: some single-source samples were amplified at 
0.0078 ng); and 3) all 25 s GlobalFiler™ single-source PROVEDIt sam
ples amplified at 0.016 ng or higher rendered RFU signal at a minimum 

of 12 known allele locations, whether they be pristine, degraded or 
inhibited [5]. Though it is likely that some signal at these locations may 
be attributed to noise, it is unlikely that all 12 can; thus, we expect some 
signal from each contributor for all samples, wherein the expectation 
was corroborated by affirming the LR for true contributors was greater 
than one for most samples in [12]. (Table 1). 

NOCIt Settings were set to the standard settings detailed in [11], 
using a maximum contributor number setting of 6. NOCIt’s APP(n|I) 
results for Imaj and Imin are available in Supplement 1 and 2, respectively. 

3.1. Shift in APP(n|I) with known contributor 

To assess what impact changes to contextual information has on APP 
(n|I), we interrogate the distribution’s similarities, changes to mode 
nmax|I = argmaxnAPP(n|I), and the shifts in the distribution’s support. We 
note that in cases where there is an equal mixture proportion of con
tributors (e.g., 1:1:1) the results when conditioning on the first and 
second contributors are presented under the labels of ‘minor’ and 
‘major’, respectively. 

The similarity between distributions was assessed by employing the 
Bhattacharyya coefficient (BC) [17], 

BC
(

P,Q
)
=
∑ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P(n)Q(n)
√

where P and Q are two distributions defined on the same range. The BC 
gives a number between 0 and 1, with 0 occurring when the two dis
tributions have no overlap, and 1 occurring when the two distributions 
are equal. For each sample, the BC was evaluated for APP(n| Ino) with 
each of APP(n| Imaj) and APP(n| Imin). When plotted as histograms, a 
large number of BCs near zero indicate a large number of APP distri
butions experience significant shifts under distinct contextual 
propositions. 

We consider two supplementary statistics to assess changes in the a 
posteriori probability distribution on the NOC as a result of contextual 
information. As previously defined, let nmax|I be the mode of the APP 
when conditioned on the contextual information I. The first statistic is 
the APP Range, |APP(nmax|Ino|Ino)-APP(nmax|Ino|I)|, which captures the 
absolute difference in the probability at the context-free mode by the 
introduction of the context I. We report the APP Range for the context I 
being both Imaj and Imin. For example, if no assumed contributor resulted 
in a mode of nmax|Ino= 3 with APP(nmax|Ino) = 0.92 and the context of a 
known major or minor contributor resulted in APP(nmax|Ino|I)=APP(3| 
I)= 0.24, then the APP Range would be |0.92–0.24|= 0.68. An APP 
Range greater than 0.5 necessarily means the mode of the APP has 
changed as a result of the introduction of the context. 

The second statistic is the difference in the APP modes in the absence 
and presence of an assumed contributor, nmax|Imaj- nmax|Ino and nmax|Imin- 
nmax|Ino. Negative values connote the distribution shifting to a smaller n 
in the context of an assumed contributor, while a positive value suggests 
the opposite. 

We also explored if changing contextual information produces 
modifications to the size of the support of the APP, i.e., the number of 
non-negligible plausible NOCs, by directly reporting the number of APP 
(n|I) ≥ 0.001 for each sample. 

Lastly, we conducted a multinomial logistic regression and report the 
P(nmax|Imaj-nmax|Ino=− 1, 0, +1, +2) for: β, the degree of electrophero
gram (EPG) sloping (continuous) (see [11] for a description of its 
determination); the TrueNOC (nominal); and whether the known 
contributor was one with “High’, ‘Some’ and ‘Low’ levels of drop-out. 
This corresponded to the first bin representing the amplification of ca. 
1–2 copies of amplifiable DNA, the ‘Some’ category representing the 
amplification of ca. 3–4 copies, while the last bin represents assumed 
contributors donating > 5 DNA copies. Since the limit of detection for 
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our post-PCR method was 1 copy (i.e., all intact alleles that survived the 
pre-PCR steps are detected) [16], allele drop-out is solely the result of 
the ability to sample intact alleles, which can be accurately described as 
in [11]. Thus, the dropout rate for the intact assumed contributor in the 
‘High’ drop-out bin ranges between 6% and 28%. The second bin con
tains samples with assumed contributors with drop-out rates between 

0.3% and 6%, whereas the remaining bin includes samples whose 
assumed contributor has drop-out rates less than 0.3%. 

3.2. APP(n|I) concentrations at n = TrueNOC 

To assess if the APP shifts are toward or away from APP(TrueNOC|I) 

Table 1 
Summary of the 815 GlobalFiler® sample set used to validate NOCIt.  

NOC 1 2 3 4 5 

Number 100 193 170 186 166 
Total Template Mass (ng) 0.5–0.0078 0.75–0.03 0.75–0.045 0.75–0.06 0.75–0.075 
Contributor Ratio N/A 1:1–1:9 1:1:1–1:9:9 1:1:1:1–1:9:9:1 1:1:1:1:1–1:9:9:9:1  

Fig. 1. (a) An electropherogram of 14 of the 22 STR GlobalFiler™ loci of PROVEDIt Sample RD14-0003-31_32–1;1-M2a-0.126GF-Q1.2_03.25s. hid, where this 
sample was mixed, extracted, quantified, amplified using 29-cycles, and injected for 25 s into a 3500 Genetic Analyzer [5]. (b) Bar charts of NOCIt’s APP(n|I) when 
no known contributor (KC) is assumed and when the known contributor is one or the other donor to the mixture. The values on top of the bars are the logLR(E|n, I) for 
each POI under each proposition. Also provided are the known genotypes of each contributor. 

C.M. Grgicak et al.                                                                                                                                                                                                                             



Forensic Science International: Genetics 54 (2021) 102563

5

with changing context, we report the proportion of samples for which 
APP(TrueNOC|I) ≥ α, when α = 10− 6, 0.001, 0.01, 0.1, 0.2, 0.5. As a 
reference, the true positive rates for the MAC method are also provided, 
reporting the minimum number of contributors that could explain the 
evidence. For the MAC method, the minimum NOC was calculated by 
applying an analytical threshold (AT) of 100 RFU, and filtering peaks in 
the stutter position that met the following two conditions: that the peak- 
in-question was one STR repeat shorter than a higher RFU peak to the 
right of it; and that the RFU intensity of said peak was less than the 
manufacturer’s stutter filter thresholds [18]. We also report the 
∑

n∕=TrueNOCAPP(N = n|I) for each sample for Ino, Imaj and Imin. Larger 
sums mean a shift in a posteriori belief away from the TrueNOC. 

4. Results 

We first provide illustrative examples demonstrating the way in 
which contextual information may impact the fullLR, the comparison of 
hypotheses that treats the NOC as a nuisance variable. Fig. 1a shows 14 
of 22 STR loci of PROVEDIt Sample RD14-0003–31_32-1;1-M2a- 
0.126GF-Q1.2_03.25s.hid, which is a 2-person undamaged 1:1 mixture 
amplified from 0.126 ng of DNA, and injected for 25 s on a 3500 Genetic 
Analyzer. The values above the peaks are the STR alleles and their 
respective peak heights, where the dark text indicates alleles unique to 
the 2nd contributor. In loci D8S1179 and D5S818 there is obvious peak- 
height imbalances between the alleles associated with the 2nd contrib
utor. When this sample is assessed with NOCIt we see a shift in the APP’s 
mode from 2 to 3 under different contexts. On top of each bar in Fig. 1b 
is the logLR for the POI (person-of-interest) under the corresponding n 
assignment. This example shows the implications of assuming (or not 
assuming) the same context when ascertaining the range of n for 
downstream interpretation. 

In instances where the casefile does not provide definitive in
dications of whether one or the other context is the only reasonable 
assumption, one could consider all plausible contexts by incorporating 
prior probabilities on I, P(I = i), settled on before seeing the evidence, 
and using the law of total expectation [19]: 

E[LR(E)] =
∑

i
LR(E|I = i)P

(

I = i

)

(1)  

where LR(E|I = i) is the previously described LR across all reasonable n 
within context i. Though mathematically straightforward, determining 
or settling on P(I=i) is non-trivial for casework applications as it pre
sumes some agreement between parties or justification about the 
probability that a given individual’s genotype is in the data. In the 
absence any clear indications that a contributor should be assumed part 
of the mixture, one possibility is to apply P(I = i) = 0.5 across both 
contexts (i.e., that the assumed contributor is just as likely to be present 
in the data as not to be). In that case, the LR across all contexts is 24 and 
25 for POI=G1 and POI=G2 (see Table 2). 

In another scenario we show that assuming the presence of a speci
fied contributor causes a shift to a lower nmax, corresponding to the 

TrueNOC. In this example, PROVEDIt Sample RD14-0003-49d3S10- 
0.0156GF-Q1.0_07.25s resulted in nmax shifting from 2 to 1 when Sam
ple 49 was assumed present in the data. These exemplars can be taken to 
represent any electropherogram where the presence of a specified 
contributor in the data would be reasonable to assume, but not certain, 
such as an EPG of a sperm-fraction, where the victim’s DNA is not un
expected, but also not assured. In Table 3 the summary of results for this 
sample is shown. Notably, with a known contributor correctly assumed, 
the fullLR, which treats the NOC as a nuisance variable, for a true non- 
contributor (PROVEDIt ID 01) transitions from 10− 3 to 10− 6, which 
makes sense given most of the signal is explained by the assumed 
contributor (PROVEDIt Sample ID 49) when n = 2. In contrast, if only 
one n was assigned, then LR(E|n = 1,Ino) is 10− 40 but increases to 10− 3 

for LR(E| n = 2,Ino), demonstrating the marked impact n assignments 
can have on results with exclusionary influence. Notably, when all 
scenarios and all plausible n are considered, the overall LR approximates 
the largest LR of 10− 3. In all treatments a P(I=i) = 0.5 is used as illus
tration but can be set to any value between 0 and 1. 

Note that these examples are not presented as prescriptions sug
gesting what contexts ought to be considered, nor should they be 
interpreted as representative of most samples. Instead they serve to 
demonstrate that the range of n explaining the evidence depends on 
context and that coupling an nmax obtained when not assuming a spec
ified contributor with an LR computation that does assume one could 
lead to unexpected results. To that end we present a large-scale evalu
ation of the impact on changing context on APP(n|I) using the NOCIt 
system. 

In Fig. 2 are stacked plots of APP(n|I) for all test samples separated by 
the TrueNOC for Ino, Imaj and Imin. These plots demonstrate the distri
butions are consistently unimodal, regardless of context. We note that 
the samples are independently ordered according to their probabilities 
and, therefore, the mth sample of the first plot is not necessarily the same 
sample in the corresponding plots. In the case of TrueNOC= 1, there is 
no minor contributor and, therefore, NOCIt runs for TrueNOC= 1 and 
Imin are not applicable. 

In addition to unimodality, another key result from Fig. 2 is that, in 
general, there is a tendency for the APP modes to shift from lower to 
higher n in the presence of an assumed contributor. This is more pro
nounced when the assumed contributor constituted the minor portion of 
the sample and when the TrueNOC is higher. A possible explanation of 
this phenomenon is that the addition of the minor assumed contributor 
does little to explain the EPG, and so a similar number of additional 
contributors is more likely to explain the data. Barring quantitative as
sessments of stutter, noise or drop-in, one can envision scenarios that 
explain such shifts. Take, for example, the scenario where there are two 
low-level peaks and the assumed contributor is homozygotic at that 
locus. If the first or second low-level peak is inconsistent with the 
assumed contributor, the estimate on n would increase. 

4.1. Shift in APP(n|I) with contextual information 

We expand on the qualitative observations of Fig. 2 by examining the 

Table 2 
Computing the overall (across context and n) LR as per [14] and Eq. (1). The APP(N = n|E, I = i) is from NOCIt and the LR(E|N = n, I = i) is from CEESIt, two 
systems using the same underlying model, for the PROVEDIt sample RD14–0003–31_32–1;1-M2a-0.126GF-Q1.2_03.25s.hid. Here the POIs, G1 and G2, are PROVEDIt 
Sample ID 31 and 32, respectively.   

No KC One KC 

POI KC APP (n = 2|E,Ino) LR (E = n = 2,Ino) APP (n = 3|E,Ino) LR (E = n = 3,Ino) APP (n = 2|E,I) LR (E = n = 2,I) APP (n = 3|E,I) LR (E| n = 3,I) 

G1 G2 0.932 1016 0.067 1018 0.044 10− 13 0.956 1024 

fullLR(E = Ino) (0.932•1016)+ (0.067•1018)= 1017 fullLR(E = I) (0.044•10− 13)+ (0.956•1024)= 1024 

Across context LR (1017•0.5)+ (1024•0.5)= 1024 

G2 G1 0.932 1018 0.067 1019 0.094 10− 12 0.906 1025 

fullLR(E = Ino)= (0.932•1018)+ (0.067•1019)= 1018 fullLR(E|I)= (0.094•10− 12)+ (0.906•1025)= 1025 

Across context LR (1018•0.5)+ (1025•0.5)= 1025  
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degree to which the APP shifts and to what extent the APP distribution 
broadens or narrows when we assume the presence of a specified 
contributor. Fig. 3 provides pie charts showing the number of APP(n |I) 
≥ 0.001 for Ino, Imaj and Imin for the 715, 2- to 5- person mixture samples. 
Since there is no Imin for single-source samples, we exclude the 100 
single-source data from Fig. 3. The pie charts indicate that, in general, 
the number of n associated with significant probabilities do not change. 
Thus, regardless of context, one to three n explain the mixtures well. 

Though the range of reasonable n does not substantively change with 
conditioning, the histograms of Fig. 3 demonstrate that the APP Range 

and BC do. The BC, which is a measure of dissimilarity across distribu
tions, reveals that 12.4% and 21% of the paired comparisons rendered 
BCs less than 0.5 when APP(n| Ino) was compared to APP(n|Imaj) and 
APP(n|Imin) respectively, across the 715, 2– to 5- person samples. 
Similarly, the APP Range, which is a measure of change to the APP(n) 
support, illustrates that for 8.4% and 19% of the samples, the nmax 

changed between Ino and Imaj, and Ino and Imin, respectively. When we 
compare these APP Range values to those reported across three NOCIt 
replicates of Ino [11] using standard NOCIt conditions, wherein only 
5.4% of the APP Ranges for the 715 mixture samples exceed 0.5, we 

Table 3 
Computing the overall (across context and n) LR as per [14] and Eq. (1). The APP(N = n|E, I = i) is from NOCIt and the LR(E|N = n, I = i) is from CEESIt, two 
systems using the same underlying model, for the PROVEDIt sample RD14-0003-49d3S10-0.0156GF-Q1.0_07.25s. We test this sample using the POI PROVEDIt Sample 
ID 01, which is a true non-contributor to this sample.    

No KC One KC 

POI KC APP (n = 1|E,Ino) LR (E = n = 1,Ino) APP (n = 2|E,Ino) LR (E = n = 2,Ino) APP (n = 1|E,I) LR (E = n = 1,I) APP (n = 2|E, I) LR (E| n = 2, I) 

01 49 0.484 10− 40* 0.516 10− 3 0.9999 N/A 0.0001 10− 2 

fullLR(E = Ino) (0.484•10− 40)+ (0.516•10− 3)= 10− 3 fullLR(E = I) (0.0001•10− 2)= 10− 6 

Across context LR (10− 3•0.5)+ (10− 6•0.5)= 10− 3  

* log(LR)< − 40 are reported as − 40. N/A = not applicable, or zero, since the condition is that there is one person that constitutes the mixture and they are assumed 
present in the data so there cannot be another person, or POI, represented in the data. 

Fig. 2. Stacked plots of APP(n = I) for: I––Ino, when there is no assumed contributor; I––Imaj, when the assumed contributor is the major to the mixture; and I––Imin, 
when the assumed contributor constituents the smallest portion. Samples are ordered by probability rather than accession number such that the mth sample in the first 
row is not necessarily the same sample in the two corresponding stacked plots. Note that APP(0) > 0 is only possible when the context is Ino. 
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conclude that supplying contextual information impacts the APP and the 
number of contributors assignments for a significant number of samples, 
particularly when the assumed contributor is a minor component to the 
mixture. 

To assess the direction of the distribution’s shift, we record nmax⁡|I 
for each of the scenarios and report what proportion of n migrate to 
higher or lower values (Fig. 3c). When a change in nmax⁡|I occurred, it 
almost always occurred to a value that was one greater than originally 
obtained with I––Ino. To further explore, we conduct a multiple logistic 
regression to determine the probability that nmax shifts by − 1, 0, 1 or 
2 when we change Ino to Imaj or Imin. Notably, when the assumed is the 
major contributor, few samples are in the High to Some dropout (DO) 
category since, in most cases, the major will donate a large number of 
DNA copies. The exception are samples for which the total template 
mass is low and the contributions from each contributor are equal or 
near equal. Regardless of dropout category, we see that when the 
assumed contributor is the major one there is, overall, a low proba
bility that contextual information will shift the APP distribution to 
higher n. This probability increases as the TrueNOC increases and 
reaches its largest value of 0.2, when the TrueNOC= 5 and the EPG 
sloping is severe. These trends, however, are significantly more pro
nounced when the assumed contributor is the minor one, wherein the 
probability of shifting to higher n is dependent on all three features 
and reaches its pinnacle at ca. 0.7 when the mass of the minor is low 
(i.e., high levels of dropout), the EPG sloping is severe, and the True 
NOC is 5. 

4.2. APP(n) concentration at n = TrueNOC 

Defining sensitivity as the proportion of samples for which APP 
(TrueNOC|I) ≥ α for given α > 0, in  Fig. 4 the sensitivity of NOCIt is 
plotted, and separated by TrueNOC and background information. As in 
Ref. [11], the sensitivity of NOCIt when no contributor is assumed is 
high (i.e., > 82%) at all α, except when TrueNOC = 5. Notably, NOCIt 
improves upon MAC’s estimations across all sample complexities for all 
contextual scenarios. When we employ Imaj, the sensitivity tracks well 
with those of Ino. Notably, for TrueNOC= 1 if a contributor is known, 
then they are necessarily the major so sensitives for Imin are not offered. 
Interestingly, the sensitivity of APP(TrueNOC|Imin) is noticeably lower 
for TrueNOC= 2 and to a lesser extent for TrueNOC= 3, but substanti
vely improves for TrueNOC= 5. This implies different n might best 
explain the evidence under distinct propositions, requiring the integra
tion of contextual or known contributors during NOC assessments, 
which may be difficult to accomplish intuitively in a consistent manner 
or would require substantiation in the literature. 

Also shown in Fig. 4 is the total APP(n| I) for all n not equal to 
TrueNOC, where the median 

∑
n∕=TrueNOCAPP(n) is 0.006, 0.008 and 

0.014 for Ino, Imaj and Imin, respectively. In a well performing system 
these values would be near 0. The median associated with Imin being 
slightly larger than the other two contexts suggests that if an assigned 
contributor is the minor to the mixture, the APP’s concentration at 
n = TrueNOC is decreased but, typically, only by very small levels. The 
box plots also show that, regardless of context, the majority (i.e., 75%) of 
the samples resulted in at least 75% of the APP(n| I) centered at 
n = TrueNOC. 

Fig. 3. (a) Pie charts depicting the percentage of samples resulting in one, two or three APP(n|I) ≥ 0.001 when no specified donor is assumed, I––Ino; the assumed 
contributor is also the major donor to the mixture, I––Imaj; and the assumed contributor is the minor constituent, I––Imin. No sample exhibited greater than three APPs 
exceeding 0.001, regardless of context. (b) Histogram of the Bhattacharyya coefficient (BC) obtained between APP(n| I) distributions when no and a major 
contributor is assumed, and the coefficient when no and a minor contributor is assumed. Also included are histograms of the APP Range with and without background 
contributor. The numbers on the top of the bars represent the number of samples falling into the corresponding category. (c) The proportion of 715 mixture samples 
for which nmax|I changed when no contributor was assumed, and when a contributor was assumed and was either the major or minor component to the mixture. (d) 
Line graphs of the probabilities that the APP mode, nmax|I, shifts to one greater or does not shift when we assume a known contributor to be the major or the minor to 
the mixture. The probabilities are determined using multiple logistic regression for shifts of − 1 to 2, wherein the probabilities for a shift of 0 and + 1 are shown in 
the figure owing to the near 0 probabilities for all others. The features of TrueNOC, degree of electropherogram sloping [β], and the masses of the contributors binned 
into three categories representing high, some and low-levels of allele drop-out (DO) were the independent variables. The number of samples falling into the Low, 
Some and High DO are also depicted as are the p-values for each feature. 
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5. Discussion 

Discussions and work regarding the methods by which n (or its 
range) are chosen are ongoing [14,20–22], where some take a 
single-step approach and evaluate the evidence across a pre-set range of 
n (typically 1–4) as described in Ref. [22] and discussed in Ref. [23], 
while others describe methods that are reliant upon user-specified n, 
requiring a pre-evaluation step. If the latter approach is utilized the 
pre-evaluation step may take many forms ranging from subjective 
evaluations, MAC, tools that aim to correctly classify a single n [12] or 
machine learning tools that provide probabilities that a given n explains 
the evidence [24,25], while others have discussed evaluating this within 
a Bayesian paradigm [11,13,26,27]. Notably, this problem extends 
beyond the forensic domain [28], which implies broad scientific interest 
in estimating the number of contributors to data. 

Whatever the domain, the APP may be used to inform the scientist to 
the number of contributors that explain the evidence well, and the APP 
distribution can be used to do this in several ways. One approach, for 
example, is to select a range of n from the APP such that it surpasses 
some predefined α. This approach ensures all n associated with ‘signif
icant’ APP(n) are considered and is the method taken in Ref. [11] and 
discussed here. An alternative use of the APP(n|I) is to define a threshold 
β to exclude the largest set of n ∈ Ne such that 

∑
n∈Ne

APP(n) ≤ β. In other 
words, one ensures that the cumulative probability of all excluded n does 
not exceed β. This approach is discussed in Ref. [20] within the context 
of LRs. Other uses of the APP(n|I) exist, such as selecting nmax as the 
single number of contributors that best explain the data. Though a 
straightforward approach, this work suggests that for complex scenarios 
and mixtures, determining the range of numbers of contributors that 

effectively describe the evidence holds merit. 
In most LR software, it is necessary to pick one or a very narrow 

range of n to evaluate the LR. The issue, therefore, is one of adequately 
choosing the n range for this purpose and by considering the relevant 
context while doing so. Notably, in current practice this is most often 
accomplished by the MAC method or by the analyst subjectively, by 
visual inspection, determining if there are adequate peak height im
balances to justify one (or two) additional or fewer contributors despite 
the explosion of genotype and peak height combinations that might 
explain the data [6] or publications that demonstrate MAC’s insensi
tivity [1,3]. 

This work supplements the literature by exploring the impact of 
providing contextual information to the NOC inference. Here, we take 
the same 815 samples in Ref. [11] and run them under the assumption 
that all contributors are unrelated and there is one assumed contributor, 
wherein the assumed was either the major or smallest donor to the 
mixture. The results show that in a significant number of cases and in the 
presence of an assumed contributor, the range of n that explain the ev
idence shifts to higher n particularly when the assumed contributor 
constitutes a small portion of the signal. More generally, we demonstrate 
that when assigning n ranges the same contextual information as 
considered in the LR is needed. The certainty surrounding whether this 
can consistently be accomplished over time across analysts through vi
sual inspection requires evaluation since some early literature suggests 
differences between analyst assignments [29,30], which can in turn 
differ from the range assigned with computational assistance as, for 
example, observed for PROVEDIt RD14–0003–44_45_46_47– 
1;1;4;1-M3a-0.105GF-Q0.8 in Refs. [29,11]. 

Fig. 4. Bar charts of sensitivity, i.e. correctly including TrueNOC for LR assignments, at α 10− 6, 0.001, 0.01, 0.1, 0.2 and 0.5, separated by TrueNOCs. When APP 
(TrueNOC) ≥ 0.5, then TrueNOC = nmax. Included at the base of each bar is the sensitivity value at said α. Tracking along the bar are the sensitivities at each α (──) 
for Imaj and (─ ─) Imin. The MAC sensitivities are provided as the dark shaded regions between the bars. Note, in the case of TrueNOC= 5, MAC renders a sensitivity of 
0. The box plot is the 

∑
n∕=TrueNOCAPP(n|I) and the associated median for Ino, Imaj and Imin across the 715 mixture samples. 
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6. Conclusion 

We demonstrate that changes to contextual information can impact 
the APP(n|I), where the greatest impact was seen when an assumed 
contributor comprised the minor portion of the mixture. A unimodal 
APP(n|I) is observed for all contexts. If the APP(n|I) did exhibit a shift, it 
usually shifted to higher n suggesting that if contextual information is 
assumed in the LR, it also ought to be considered when determining the 
range of n. If calculating a ‘fullLR’, the APP(n|I) and LR(n|I) must be 
coincident. This, notably, has implications to forensic operations when 
contributors are assumed part of the signal. 

Funding Disclaimer and Acknowledgments 

This work was partially supported by NIJ2011-DN-BX-K558 and 
NIJ2014-DN-BX-K026 awarded by the National Institute of Justice, Of
fice of Justice Programs, U.S. Department of Justice as well as W911-NF- 
14-C-0096 from the Department of Defense. The opinions, findings, and 
conclusions or recommendations expressed in this publication are those 
of the author(s) and do not reflect those of the Departments of Justice or 
Defense. We would like to extend our gratitude to two reviewers who 
improved the manuscript. Patent No: PCT/US14/59503. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.fsigen.2021.102563. 

References 

[1] M.D. Coble, J.-A. Bright, J.S. Buckleton, J.M. Curran, Uncertainty in the number of 
contributors in the proposed new CODIS set, Forensic Sci. Int. Genet. 19 (2015) 
207–211. 

[2] G.M. Dembinski, C. Sobieralski, C.J. Picard, Estimation of the number of 
contributors of theoretical mixture profiles based on allele counting: does 
increasing the number of loci increase success rate of estimates? Forensic Sci. Int. 
Genet. 33 (2018) 24–32. 

[3] S. Norsworthy, D.S. Lun, C.M. Grgicak, Determining the number of contributors to 
DNA mixtures in the low-template regime: exploring the impacts of sampling and 
detection effects, Leg. Med. 32 (2018) 1–8. 

[4] C.A. Rakay, J. Bregu, C.M. Grgicak, Maximizing allele detection: effects of 
analytical threshold and DNA levels on rates of allele and locus drop-out, Forensic 
Sci. Int. Genet. 6 (6) (2012) 723–728. 

[5] L.E. Alfonse, A.D. Garrett, D.S. Lun, K.R. Duffy, C.M. Grgicak, A large-scale dataset 
of single and mixed-source short tandem repeat profiles to inform human 
identification strategies: PROVEDIt, Forensic Sci. Int. Genet. 32 (2018) 62–70. 

[6] P.C. Lynch, R.W. Cotton, Determination of the possible number of genotypes which 
can contribute to DNA mixtures: non-computer assisted deconvolution should not 
be attempted for greater than two person mixtures, Forensic Sci. Int. Genet. 37 
(2018) 235–240. 

[7] I.E. Dror, W.C. Thompson, C.A. Meissner, I. Kornfield, D. Krane, M. Saks, 
M. Risinger, Letter to the editor— context management toolbox: A Linear 
Sequential Unmasking (LSU) approach for minimizing cognitive bias in forensic 
decision making, J. Forensic Sci. 60 (4) (2015) 1111–1112. 

[8] K.R. Duffy, N. Gurram, K.C. Peters, G. Wellner, C.M. Grgicak, Exploring STR signal 
in the single- and multicopy number regimes: deductions from an in silico model of 
the entire DNA laboratory process, Electrophoresis (2016). 

[9] R. Cowell, A unifying framework for the modelling and analysis of STR DNA 
samples arising in forensic casework, arXiv Appl. (2018). 

[10] R.G. Cowell, Computation of marginal distributions of peak-heights in 
electropherograms for analysing single source and mixture STR DNA samples, 
Forensic Sci. Int. Genet. 35 (2018) 164–168. 

[11] C.M. Grgicak, S. Karkar, X. Yearwood-Garcia, L.E. Alfonse, K.R. Duffy, D.S. Lun, 
A large-scale validation of NOCIt’s a posteriori probability of the number of 
contributors and its integration into forensic interpretation pipelines, Forensic Sci. 
Int. Genet. 47 (2020), 102296. 

[12] M. Kruijver, H. Kelly, K. Cheng, M.H. Lin, J. Morawitz, L. Russell, J. Buckleton, J. 
A. Bright, Estimating the number of contributors to a DNA profile using decision 
trees, Forensic Sci. Int. Genet. 50 (2021), 102407. 

[13] L.E. Alfonse, G. Tejada, H. Swaminathan, D.S. Lun, C.M. Grgicak, Inferring the 
number of contributors to complex DNA mixtures using three methods: exploring 
the limits of low-template DNA interpretation," (in English), J. Forensic Sci. Artic. 
62 (2) (2017) 308–316. 

[14] K. Slooten, A. Caliebe, Contributors are a nuisance (parameter) for DNA mixture 
evidence evaluation, Forensic Sci. Int. Genet. 37 (2018) 116–125. 

[15] H. Swaminathan, M.O. Qureshi, C.M. Grgicak, K. Duffy, D.S. Lun, Four model 
variants within a continuous forensic DNA mixture interpretation framework: 
effects on evidential inference and reporting, PLoS One 13 (11) (2018), 0207599. 

[16] K.C. Peters, H. Swaminathan, J. Sheehan, K.R. Duffy, D.S. Lun, C.M. Grgicak, 
Production of high-fidelity electropherograms results in improved and consistent 
DNA interpretation: standardizing the forensic validation process, Forensic Sci. Int. 
Genet. 31 (2017) 160–170. 

[17] A.K. Bhattacharyya, On a measure of divergence between two statistical 
populations defined by their probability distributions, Bull. Calcutta Math. Soc. 35 
(1943) 99–109. 

[18] ThermoFisher, "GlobalFiler™ PCR Amplification Kit User Guide," ed, 2016. 
[19] D.P. Bertsekas, J.N. Tsitsiklis, Introduction to Probability, Athena Scientific, 2008. 
[20] R. Meester, K. Slooten, An epistemic interpretation of the posterior likelihood ratio 

distribution, Law Probab. Risk 19 (2) (2020) 139–155. 
[21] I.W. Evett, S. Pope, Is it to the advantage of a defendant to infer a greater number 

of contributors to a questioned sample than is necessary to explain the observed 
DNA profile? Sci. Justice 54 (5) (2014) 373–374. 

[22] S. Manabe, C. Morimoto, Y. Hamano, S. Fujimoto, K. Tamaki, Development and 
validation of open-source software for DNA mixture interpretation based on a 
quantitative continuous model, PLoS One 12 (11) (2017), 0188183. 

[23] C. Brenner, "How to Decide How Many Contributors in a Mixture," presented at the 
American Academy of Forensic Sciences, Baltimore, MD, 2019. 

[24] C.C.G. Benschop, J. van der Linden, J. Hoogenboom, R. Ypma, H. Haned, 
Automated estimation of the number of contributors in autosomal short tandem 
repeat profiles using a machine learning approach, Forensic Sci. Int. Genet. 43 
(2019), 102150. 

[25] M.A. Marciano, J.D. Adelman, Developmental validation of PACETM: automated 
artifact identification and contributor estimation for use with GlobalFilerTM and 
PowerPlex® fusion 6c generated data, Forensic Sci. Int. Genet. 43 (2019), 102140. 

[26] H. Swaminathan, C.M. Grgicak, M. Medard, D.S. Lun, NOCIt: a computational 
method to infer the number of contributors to DNA samples analyzed by STR 
genotyping, Forensic Sci. Int. Genet. 16 (2015) 172–180. 

[27] T. Egeland, I. Dalen, P.F. Mostad, Estimating the number of contributors to a DNA 
profile, Int. J. Leg. Med. 117 (5) (2003) 271–275. 

[28] S.A. Sethi, W. Larson, K. Turnquist, D. Isermann, Estimating the number of 
contributors to DNA mixtures provides a novel tool for ecology, Methods Ecol. 
Evol. 10 (1) (2019) 109–119. 

[29] J.-A. Bright, K. Cheng, Z. Kerr, C. McGovern, H. Kelly, T.R. Moretti, M.A. Smith, F. 
R. Bieber, B. Budowle, M.D. Coble, R. Alghafri, P.S. Allen, A. Barber, V. Beamer, 
C. Buettner, M. Russell, C. Gehrig, T. Hicks, J. Charak, K. Cheong-Wing, A. Ciecko, 
C.T. Davis, M. Donley, N. Pedersen, B. Gartside, D. Granger, M. Greer-Ritzheimer, 
E. Reisinger, J. Kennedy, E. Grammer, M. Kaplan, D. Hansen, H.J. Larsen, 
A. Laureano, C. Li, E. Lien, E. Lindberg, C. Kelly, B. Mallinder, S. Malsom, 
A. Yacovone-Margetts, A. McWhorter, S.M. Prajapati, T. Powell, G. Shutler, 
K. Stevenson, A.R. Stonehouse, L. Smith, J. Murakami, E. Halsing, D. Wright, 
L. Clark, D.A. Taylor, J. Buckleton, STRmix; collaborative exercise on DNA mixture 
interpretation, Forensic Sci. Int. Genet. 40 (2019) 1–8. 

[30] E.R. Roman E. Aranda, K. Mereus, P. Spenser, R. Tontarsk, "DNA Mixture 
Interpretation Study: Inter- and Intra-laboratory Variation," in International 
Symposium on forensic Science Error Management, Gaithersburg, MD, 2015. 

C.M. Grgicak et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.fsigen.2021.102563
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref1
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref1
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref1
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref2
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref2
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref2
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref2
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref3
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref3
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref3
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref4
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref4
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref4
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref5
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref5
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref5
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref6
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref6
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref6
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref6
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref7
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref7
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref7
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref7
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref8
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref8
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref8
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref9
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref9
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref10
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref10
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref10
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref11
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref11
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref11
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref11
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref12
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref12
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref12
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref13
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref13
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref13
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref13
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref14
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref14
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref15
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref15
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref15
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref16
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref16
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref16
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref16
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref17
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref17
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref17
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref18
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref19
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref19
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref20
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref20
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref20
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref21
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref21
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref21
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref22
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref22
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref22
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref22
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref23
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref23
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref23
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref24
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref24
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref24
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref25
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref25
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref26
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref26
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref26
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27
http://refhub.elsevier.com/S1872-4973(21)00100-9/sbref27

	The a posteriori probability of the number of contributors when conditioned on an assumed contributor
	1 Introduction
	2 Description of NOCIt’s APP and the fullLR when conditioned on a known contributor
	3 Materials and methods
	3.1 Shift in APP(n|I) with known contributor
	3.2 APP(n|I) concentrations at n = TrueNOC

	4 Results
	4.1 Shift in APP(n|I) with contextual information
	4.2 APP(n) concentration at n = TrueNOC

	5 Discussion
	6 Conclusion
	Funding Disclaimer and Acknowledgments
	Appendix A Supporting information
	References


