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A B S T R A C T

Forensic DNA signal is notoriously challenging to interpret and requires the implementation of computational
tools that support its interpretation. While data from high-copy, low-contributor samples result in electro-
pherogram signal that is readily interpreted by probabilistic methods, electropherogram signal from forensic
stains is often garnered from low-copy, high-contributor-number samples and is frequently obfuscated by allele
sharing, allele drop-out, stutter and noise. Since forensic DNA profiles are too complicated to quantitatively
assess by manual methods, continuous, probabilistic frameworks that draw inferences on the Number of
Contributors (NOC) and compute the Likelihood Ratio (LR) given the prosecution’s and defense’s hypotheses
have been developed.

In the current paper, we validate a new version of the NOCIt inference platform that determines an A
Posteriori Probability (APP) distribution of the number of contributors given an electropherogram. NOCIt is a
continuous inference system that incorporates models of peak height (including degradation and differential
degradation), forward and reverse stutter, noise and allelic drop-out while taking into account allele frequencies
in a reference population. We established the algorithm’s performance by conducting tests on samples that were
representative of types often encountered in practice. In total, we tested NOCIt’s performance on 815 degraded,
UV-damaged, inhibited, differentially degraded, or uncompromised DNA mixture samples containing up to 5
contributors. We found that the model makes accurate, repeatable and reliable inferences about the NOCs and
significantly outperformed methods that rely on signal filtering.

By leveraging recent theoretical results of Slooten and Caliebe (FSI:G, 2018) that, under suitable assumptions,
establish the NOC can be treated as a nuisance variable, we demonstrated that when NOCIt’s APP is used in
conjunction with a downstream likelihood ratio (LR) inference system that employs the same probabilistic
model, a full evaluation across multiple contributor numbers is rendered. This work, therefore, illustrates the
power of modern probabilistic systems to report holistic and interpretable weights-of-evidence to the trier-of-fact
without assigning a specified number of contributors or filtering signal.

1. Introduction

Forensic DNA evidence is typically processed using the following
steps: 1) the sample is collected and submitted for testing; 2) the DNA is
extracted; 3) the concentration of DNA is approximated by qPCR; 4) a
portion of the extract is amplified; 5) the amplified fragments are se-
parated and detected using capillary electrophoresis and laser induced

fluorescence, respectively; 6) the data are processed and the peaks are
sized; and finally, 7) the peak information is interpreted to evaluate a
NOC or LR. In Step 6, an analytical threshold (AT) and artifact filtering
rules are often applied to the post-processed peaks, potentially sig-
nificantly affecting assessments on the number of contributors and
subsequent LR.

Since the NOC assumption can substantially affect downstream
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outcomes, particularly in forensic cases where the contributions from
any one person within the DNA mixture are small or encumbered by
signal from other contributors [1,2], there is interest in engineering
methods that effectively and accurately provide inferences on the likely
number of contributors that comprise the signal. Indeed, estimating the
NOC to a sample has gained traction in other domains where the au-
thors of [3] demonstrate that estimating the NOC in the gut contents of
fish can inform predation rates.

The traditional method of inferring a sample’s NOC is by a binary
method termed ‘Maximum Allele Count’ (MAC), where the maximum
number of peaks categorized as alleles per locus are counted, divided by
two and rounded up. The MAC approach, therefore, reports the
minimum number of contributors that explains the profile. Notably,
MAC relies on the application of an AT and stutter filters. That is, peaks
below the AT or stutter filter thresholds are not considered during in-
terpretation, while peaks above those thresholds are used to assign the
NOC, impacting downstream interpretation [2]. It is well established
that reliance on categorical determinations of allele presence leads to
underestimations of the NOC [4], which does not significantly improve
by amplifying additional STRs [5,6] and is exacerbated in the presence
of drop-out [7,8]. In addition, recently published results [9] demon-
strate that effectively combining manual evaluation of peak height ra-
tios with allele counting techniques is likely to remain unsubstantiated
given the number of genotype combinations that explain a complex
mixture. Despite numerous publications demonstrating counting
methods provide an incomplete evaluation of the evidence, it is a
method that continues to see widespread use in practice.

While evaluation of the NOC and determination of LRs have tradi-
tionally been distinct endeavors, a mathematical basis for computing an
end-to-end, overall or full LR that treats the NOC as a nuisance para-
meter has recently been theoretically established by Slooten and
Caliebe [10]. Briefly, for an electropherogram E, with N being the un-
known number of contributors, Hp being the prosecution’s hypothesis
and Hd being the defense’s hypothesis, if it is assumed that the a priori
distribution of the number of contributors is the same under both hy-
potheses in the absence of any data, i.e., = = =P N n H P N n H( | ) ( | )p d ,
and that the posterior probability of the NOC given the defense’s hy-
pothesis is positive for all possible NOCs, = >P N n E H( | , ) 0d for all n,
then it is shown in [10] that the end-to-end LR satisfies
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That is, the likelihood ratio of the electropherogram given the two
hypotheses is the sum of the APP that the NOC is n under the defense
hypothesis given the data, =P N n E H( | , )d , times the likelihood ratio
conditioned on the number of contributors being n,

= =P E H N n P E H N n( , )/ ( , )p d . For completeness, a derivation of
Slooten and Caliebe’s result, Eq. (1), is given in the appendix.

This result implies that if, in the absence of data, the prior prose-
cution and defense hypotheses regarding the NOC are equal, one can
treat the NOC as a nuisance variable in the LR computation. This de-
rivation assumes that the probabilistic model used for the computation
of the APP and the conditional LRs is the same, and the data provided to
each are coincident, which is important for its use in practice.

To evaluate the LR with Eq. (1) we require two distinct inferences:
one that evaluates the APP of the NOC given the defense’s hypothesis;
and one that evaluates the LR for each possible NOC. While there are
alternative expressions that can be used to compute the LR obtained by
Eq. (1) [4], the expression given in Eq. (1) decomposes the LR into two
parts that can be easily and independently interpreted, thus main-
taining consistency with the prevailing approach among existing com-
putational procedures for LR calculation that rely on an assignment for
the NOC.

The current paper first focuses on validation of an updated version
of NOCIt, which stands for Number of Contributors, a software system
that computes an approximation to the APP, =P N n E H( | , )d , for all
values of n up to nmax= 6 by utilizing all post-processed information
contained in the electropherogram. A prototype version of NOCIt, de-
scribed in [11], utilized relationships between peak heights and the
mass of DNA amplified as determined by qPCR. Despite its simplicity,
the prototype outperformed the MAC and Haned et al.’s Maximum
Likelihood Estimation (MLE) methods for samples containing up to five
contributors [11,12] justifying further development of the biological
models, which are fully described in [13,14]. The updated probabilistic
models and computational environment underlying NOCIt have also
been incorporated into CEESIt (for Computational Evaluation of Evi-
dentiary Signal), a software that computes a Monte Carlo approxima-
tion to the conditional likelihood ratio

= =P E H N n P E H N n( , )/ ( , )p d [15].
NOCIt reports a probability distribution, the APP, which has a

number of useful features. In general, it is not possible to determine the
NOC without uncertainty and so, in reporting a probability distribution,
a key feature of NOCIt is that it enables this uncertainty to be quantified
and reported. In addition, it allows for the elimination of unlikely NOCs
from consideration and, notably, provides the probability distribution
on the NOC for full downstream interpretation.

Downstream interpretation in forensics could take a number of
forms. The simplest method, conceptually, is to use the most likely NOC
from the APP (the so-called Maximum A Posteriori Probability, or MAP,
estimate) instead of one obtained by MAC or an alternative method
[16–18] as the NOC assumption for LR computation. The advantage of
the MAP estimate over alternative estimates is that, subject to the as-
sumptions on the prior distribution of the NOC and the probabilistic
model of the electropherogram, it theoretically minimizes the prob-
ability of error. Even with the MAP estimate, however, the probability
of error may be significant. We have observed, for example, cases where
the APP has significant, non-zero probabilities for two or more possible
values of the NOC, implying that any estimator that produces only a
single point estimate of the NOC may have significant probability of
error. Indeed, while the MAP estimate (or alternative point estimates)
are appealing because of their simplicity, previous studies have argued
against their use [12]. An alternative approach is to use the APP to
eliminate extremely unlikely NOCs from consideration and for LRs to be
presented and interpreted only for the remaining NOCs. The APP,
therefore, provides a quantitative basis by which the assumptions un-
derlying the various LRs can be assessed. Yet another approach is to
incorporate the APP into the LR calculation and treat the NOC as a
nuisance variable as per Eq. (1), thus computing an overall LR across
multiple n. In addition, non-forensic [3] or investigative uses, such as
informing investigators of the number of individuals that explain the
data in the absence of a suspect, may also gain traction. Whatever the
method or application, we see the APP as being useful for determining
the NOC and for downstream interpretation and [1–40] seek to report a
large-scale experimental validation of NOCIt as a method for its com-
putation.

A key design feature of NOCIt, and its sister program CEESIt, is that
they work on all post-processed peaks, making the application of an AT
a superfluous task. Since a decrease in the AT will necessarily increase
the chance of detecting instrument and PCR artifacts – potentially in-
creasing the burden associated with electropherogram review – we
have implemented a module, named CleanIt, that automatically filters
minus A (i.e., incomplete adenylation of newly polymerized DNA
fragments), pull-up and raised baseline, using parameters provided by
the laboratory. Though the application of an AT is unnecessary for the
full interpretation pipeline, it remains an option as seemingly contra-
dictory findings on the effects of ATs on LRs have been presented by the
authors of [19], who demonstrated that for the 72 samples used in their
study, a higher AT improved LR results for two probabilistic programs,
and the authors of [20], who demonstrated that optimized ATs based on
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bioanalytical principles improve and stabilize inference outcomes
across laboratory systems.

In what follows, we explore the performance of a continuous in-
terpretation system that approximates the probability of n contributors
given the evidence, =P N n E H( | , )d , by evaluating the impact of various
conditions and sample types on repeatability and true positive rates
acquired by NOCIt. We supplement the literature by once again de-
monstrating that methods that rely on binary signal decisions do not
provide correct NOC estimates in many cases. Motivated by the above
and the description in [10], we show the way in which APPs calculated
by NOCIt are used to calculate an overall LR for all probable values of n.
The performance of NOCIt was tested on a dataset of 815, 1- to 5-
contributor DNA profiles garnered from pristine, damaged, inhibited
and differentially degraded samples [8]. This dataset is publicly avail-
able, making our study a potential benchmark against which newly
developed NOC methods can be compared. Finally, we demonstrate
that through the use of NOC inferences and LR computations, condi-
tional on the use of the same probabilistic model, an end-to-end in-
ference of the LR can be made.

2. Description of NOCIt

NOCIt computes the APP distribution =N n E HP( | , )d for
= … =n n n0, , max as = =N n E H E NP( | , ) (P( |d = × =n H N, ) P(d

n H E H| ))/Pr( | )d d , where E is the evidence (the electropherogram), N is
the number of contributors, Hd is the defense hypothesis (i.e., that,
given that =N n, the electropherogram arises from n random un-
related contributors from a population with known DNA profile fre-
quencies), and nmax is a maximum number of possible contributors in a
sample that is assumed a priori. We assume a uniform prior for N over

… n0, 1, , max (that is, = = +N n H nP( | )  1/( 1)d max for = … =n n n0, , max,
and = =N n HPr( | ) 0d otherwise). Since we assume a uniform prior, we
have = =N n E H E N n HP( | , ) P( | , )d d .

In the absence of evidence external to the electropherogram to in-
form prior probabilities on the NOC, the choice of an uninformative
uniform prior is reasonable. It is interpreted as saying that, prior to the
observation of the electropherogram, it is assumed that all numbers of
contributors between 0 and nmax are equally likely. If evidence external
to the electropherogram suggests distinct a priori probabilities, that
information can readily be incorporated by taking the APP obtained
under the assumption of an uninformative prior and applying a simple
re-weighting. All results presented in this paper are obtained using a
uniform prior.

For a given sample and a given NOC, n, we denote by the n -di-
mensional vector of DNA mixture proportions with components i. As

== 1i
n

i1 , takes values in the n( 1) -simplex
= … = >= i{( , , ) | 1, 0 }.n

n
n

i
n

i i
1

1 1 Because the degree of
DNA degradation may differ among the contributors, the DNA mixture
proportions may be different at distinct DNA fragment lengths. Let i

l be
the mixture proportions for a length l bp fragment. We set =i i

0, the
DNA mixture proportions at a putative 0 bp fragment length.
Furthermore, we define = …(1, , , )n2 to be a n -dimensional vector
with components = >( / )/( / ) 0i i i

200
1
200

1 that record the change
in mixture proportion for contributor i, relative to the mixture pro-
portion of contributor 1, at a reference length of 200 bp from that at 0
bp. For example, suppose that we have a given NOC of =n 4, that

= (3/8, 2/8, 2/8, 1/8), and that = (1, 1/2, 1/2, 1). This would
imply that, at 0 bp, the mixture proportions are

= = (3/8, 2/8, 2/8, 1/8)0 and that, at 200 bp, the mixture propor-
tions are = (3/6, 1/6, 1/6, 1/6)200 . (The vector 200 can be computed
by taking the Hadamard, or entrywise, product

= =(3/8, 2/8, 2/8, 1/8) (1, 1/2, 1/2, 1) (3/8, 1/8, 1/8, 1/8) and
normalizing by == ( ) 6/8i

n
i1 .) We see that, relative to the pro-

portion contributed by contributor 1, the proportions contributed by
contributors 2 and 3 have decreased (implying a greater differential
rate of degradation) because = = 1/22 3 , while the relative

proportion contributed by contributor 4 stays the same because = 14 .
Note that, while the absolute mixture proportions for contributors 1 and
4 have increased from 0 bp to 200 bp, this example is valid only if,
owing to overall degradation of the sample, the absolute contribution
levels of contributors 1 and 4 have decreased from 0 bp to 200 bp, since
each contributor’s absolute contribution level can only decrease with
increasing fragment size, not increase.

To quantify the overall signal amplitude of the sample, we fit an
estimate of decayed amplitude for each dye color as previously de-
scribed [13,14]. In brief, at a locus l, for n observed peaks of height

…h h, n1 at alleles of size …s s, n1 bps, we define the amplitude of the
signal at the locus as = =H hl i

n
i1 and the weighted average size sl of

the alleles at the locus by = =s h s H( ) /l i
n

i i l1 . For each dye color c, we
have a set of m loci …l l, , m1 of that color, each with their corresponding
weighted average sizes …s s, ,l lm1 and amplitudes …H H, ,l lm1 . To these
weighted average sizes and amplitudes, we fit an exponential regression
curve of the form =f s A e( ) .c c

B sc Thus, for each dye color c, we have
parameters Ac and Bc, which we call the quantification parameters for
c.

Thus, NOCIt computes:

=
= = = =

×

E N n H
E N n H f f

P( | , )
P( | , , , ) ( ) ( | )d d

d

d( , ) ( ) |n n1 1

Where f is the probability density function of and f | is the con-
ditional probability density function of given . In practice, we ap-
proximate the integral over as a discrete sum, where each i takes
values in …{ } d, , , 1 ,d

d
d

1 1 , and d is a parameter that represents the
Discretization Level, as input by the user, while is assumed to be
uniform over the discrete set of points in n 1 satisfying these dis-
cretization levels. For , let = …{( , , )| {0.5,1, 2}}n

n i
1

2 . For a
given = , we assume that is uniform over n 1, excluding those
points in n 1 that would result in the absolute contribution level of one
or more contributors increasing from 0 bp to 200 bp. More specifically,
for each dye color we have an exponential curve A ec

B sc that defines the
expected signal amplitude as a function of fragment size s. At 0 bp, the
absolute contribution level of contributor i is Ac i, while at 200 bp,
their absolute contribution level is A e .c i

B200 200 c Thus, we require
A A ec i c i

B200 200 c for all contributors i and remove any points from
n 1 where this condition is not satisfied. Note that, even though is

defined relative to contributor 1, this distribution for does not result
in bias because of symmetry of the contributors.

Given and , the electropherogram for each locus l, El, is assumed
independent of the electropherogram at every other locus. Therefore,

= = = = = = =E N n H E N n HP( | , , , ) P( | , , , ),d
l L

l d

where L is the set of loci.
Let G be the genotypes of the contributors. Let × ×D {0,1} L n2 | | be a

× ×L n2 | | matrix that represents the drop-out configuration for the
alleles of these contributors. If Dijk, the i j k, , th entry of D, is 0, then the
ith allele at the j th locus of the k th contributor has dropped out, while
if Dijk is 1, it has not dropped out. We have

= = =

=
= = = = =

= = = =× × ×

E N n H
P E G g D d N n H

P D d G g

P( | , , , )
( | , , , , , )

( | , )P( )

l d

g d

l d

, {0,1} L nn 2 | |

Where n is the space of all possible genotypes for n contributors. The
electropherogram El is a vector of peak heights. Given G and D,

= = = = =E G g D d N n HP( | , , , , , )l d is calculated by classifying
each peak as an allele peak, a forward stutter peak, a reverse stutter
peak, noise, or the additive combination of allele and stutter, and as-
sessing the probability of achieving the vector of peak heights El given
their classification.

In prior work [13,14], we assessed and evaluated a range of
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probabilistic models for each one of these classifications. In the lan-
guage of that paper, the final recommended models were TP4, SP1,
NP2, TDO1, SDO1 and NDO2, which were used in the present paper. A
complete description of those can be found in that published article,
but, in summary, peak heights were modeled using Gaussian random
variables, and drop-out events were modeled as Bernoulli random
variables. The means and standard deviations of the Gaussians are
functions of the decayed amplitude A ec

B sc , where s is the size of the
allele in bp, for true and noise peak heights, but stutter peak height
values were instead a function of parent peak heights. True peak drop-
out probabilities were modeled as exponentially decaying in decayed
amplitude, stutter peak drop-out probabilities as exponentially de-
caying in the parent peak height, and the probability of noise drop-out
was estimated by determining the relative frequency of possible allele
positions (i.e., bins) with no RFU signal. The parameters for these
models were estimated using a set of calibration data (cf. Section 3.2),
and these parameters were used for all the validation tests. The terms

= = = = =E G g D d N n HP( | , , , , , )l d and = = =D dP( | , )
are calculated from these models in the same manner as CEESIt, as
described in [15]. The distribution =G gP( ) is calculated from allele
frequency distributions at each locus, which are derived from popula-
tion-specific data tables, assuming a value of 0.01 for FST (referred to as
‘theta’ in in NOCIt’s GUI). Specifically, at a given locus, the probability
that the +n 1 st allele is of type a given that n alleles have been sam-
pled, of which na were type a is calculated as +

+
n F F p

n F
(1 )

1 ( 1)
a ST ST a

ST
[21],

where pa is the frequency of allele a. The allele frequencies we used are
those found in the GlobalFiler™ Amplification Kit Manual following the
method described in [22].

Because the set × {0,1} nn 2 is too large to be enumerated in full for
larger values of n, NOCIt estimates = = =E N n HP( | , , , )l d using
importance sampling. Specifically, rather than summing over all

×g d( , ) {0,1} nn 2 , NOCIt generates ×Z /Card( )n
n n1 1 , where

×Card( )n n1 1 is the cardinality of ×n n1 1 after discretization,
random samples of g n and d {0,1} n2 . The random samples of g and
d come from sampling distributions selected to achieve efficient im-
portance sampling, which, for g, is a distribution whose probabilities
are proportional to the allele heights in the electropherogram El and,
for d, is a uniform distribution over its possibilities. The parameter Zn,
called the batch size, is calculated as = ×Z z m zmin( , )n

n
1 max where

z m z( , , )1 max are the user-defined parameters Sample Batch Size,
Multiplicative Factor and Maximum Samples in a Batch, respectively.
Thus, by generating ×Z /Card( )n

n n1 1 samples of g and d, the
number of samples grows exponentially with the number of con-
tributors n, and the total number of samples used for a given n is kept
constant regardless of the size of n 1 and n 1 (i.e. regardless of how
finely the contribution and relatively degradation levels of the con-
tributors are discretized).

Finally, NOCIt computes an estimate of

= = =
=…

N n E H E N n H
E N n H

P( | , ) P( | , )
P( | , )

.d
d

n n d{0, , }max

In addition, NOCIt computes the standard error sn of the estimate of
=N n E HP( | , )d . An ad-hoc heuristic adds batches of

×Z /Card( )n
n n1 1 samples to specific estimates of

= = =E N n HP( | , , , )l d until the standard error s nsn max
where smax is a user-defined precision criterion (with default value set to
0.05). Alternatively, the user can define a computation time limit: in
that case, sample batches are added until either the time or precision
criteria is first met.

The computation performed by NOCIt bears significant similarity to
that performed by CEESIt [15], which computes the conditional like-
lihood ratio = = = =E N n E N n H E N n HLR( | ) Pr( | , )/Pr( | , )p d . Both
methods use the same signal model, i.e., both methods calculate

= = = = =E G g D d N n HP( | , , , , , )l d in the same way. Where the
two methods differ is in the way in which computation is allocated to

calculate accurate approximations of their respective key statistics, as
exact computation is prohibitively expensive in terms of computational
running time, and sampling methods are employed to obtain those
approximations. For example, in NOCIt, we compute =P E H N n( | , )d for
all = …n n0,1, , max, but a crude estimate of =P E H N n( | , )d max often
suffices, since =P E H N n( | , )d for some <n nmax is often orders of
magnitude larger. Since the ultimate goal of NOCIt is to compute the
APP, large uncertainty in =P E H N n( | , )d max is insignificant if it is
dwarfed by =P E H N n( | , )d for some <n nmax. In contrast, in CEESIt, if
the given assumption for n is large, there is no option other than to
utilize many samples to obtain a good approximation of =P E H N n( | , )d
to compute =E N nLR( | ). Thus, provided that NOCIt and CEESIt each
calculate accurate approximations of the APP and the conditional
likelihood ratios, respectively, the two methods are compatible in the
sense that they can be separately used to calculate the terms of the end-
to-end LR described in Eq. (1).

3. Materials and methods

3.1. Software and GUI verification

GUI and software verification was conducted in accordance with the
General Principles of Software Validation, Version 2.0 by the Center for
Devices and Radiological Health [23]. As suggested in [24], we utilized
two software teams: a software development team and a test team. The
test team performed all software testing while the development team
implemented modifications to the code, if necessary. First, the test team
categorized NOCIt as software that is both critical and complex: critical
because of its ability to substantially influence forensic DNA inter-
pretation, statistical conclusions and the accuracy of the results, and
complex because it contains many lines of code, complex algorithms
and interconnected modules; thus, NOCIt software testing included: 1)
functional; 2) reliability; and 3) regression testing. Functional tests are
those engineered to verify that each function of the software applica-
tion operates as expected and are further subdivided into positive, ne-
gative, boundary and fuzz tests. Positive tests confirm that the natural
inputs yield the expected outputs; negative tests confirm that incorrect
inputs yield the expected outputs; boundary tests verify that the soft-
ware renders expected outcomes when inputs are at the limits; and fuzz
testing checks that expected outputs are obtained when nonsensical
inputs are used. Reliability tests are designed to test the software in the
laboratory environment and confirm the site and resources can handle
the application’s need, while regression testing confirms that an already
verified function is not modified or terminated because of seemingly
unrelated changes to the software.

A total of 273 software tests were completed on six 64-bit PC or
MAC computers using Java Version 8. For each test case, we randomly
selected samples from the PROVEDIt database [8]. Therefore, one test
case may have utilized samples generated using one kit, CE platform,
injection time, etc., while another test case utilized samples generated
using different laboratory conditions. In total, the software functions
and modules were tested using three kits (i.e., GlobalFiler®, Identifiler®
Plus, and PowerPlex® 16HS), three different cycle numbers (i.e., 28, 29,
and 32 cycles), four injection times (i.e., 5, 10, 15 or 25 s) on two
different capillary electrophoresis platforms (3130 and 3500 Genetic
Analyzers), nine computers, four distinct operating systems, and four
testers at two sites using samples containing anywhere from 1- to 5-
contributors [8].

If the software output or behavior satisfied pre-recorded expecta-
tions, the software functionality was categorized as “By Design,” and
the test was passed. If NOCIt failed to meet the acceptance criteria for a
test case, remediation was required and the outcome of the software
test was categorized as either a “Minor,” “Major” or “Critical” failure.
The level depended on the functionality tested and how disparate the
outcome was compared to the pre-defined requirement. All dis-
crepancies between expectation and output were uploaded into an
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internal database accessible to both software teams. Once appropriate
software modifications were made, a new distribution of NOCIt was
released for developmental testing.

3.2. NOCIt performance and validation

We calibrated NOCIt with all but 100 of the 1-Person PROVEDIt
samples amplified with the GlobalFiler™ Kit and injected on the 3500
Genetic Analyzer for 25 s (i.e., 2611 single source samples). Though the
entire PROVEDIt 25 s GlobalFiler™ dataset was used, smaller sets of
calibration data containing 50 serially diluted samples have been
shown to adequately calibrate NOCIt models [12].

The 100 single-source electropherograms excluded from the cali-
bration data were used as the 1-person test samples. In addition, all
666, 2- to 5- person GlobalFiler™/25 s PROVEDIt mixtures were used
for performance evaluation, as were 49 differentially degraded mixture
samples. Table 1 summarizes the samples used to test NOCIt’s perfor-
mance, and the full list of mixture samples and their NOCIt results is
available in Supplement 1. All pertinent information related to a sample
is contained in its name as detailed in [8]. Briefly, the DNA target
masses of the test samples ranged from 0.75 to 0.0078 (designated as
0.008 ng in this work) ng, and the mixture ratios ranged from equal
parts from all contributors to a 1:9 ratio between any two contributors.
Samples were analyzed with GeneMapper® ID-X at 1 RFU. Spikes and
dissociated dye artifacts were manually removed during analysis, while
minus A, pull-up and raised baseline (or complex pull-up) were re-
moved using the CleanIt module available in the software; details re-
garding artifact removal are available in [8]. The data were imported
into NOCIt as a CSV.

Within the context of this study, the nominal NOC is taken to be the
TrueNOC as it is reasonable to assume that each contributor’s DNA is
represented in the signal since it has previously been demonstrated that
for this dataset: 1) the RFU signal from a single amplifiable molecule of
DNA is fully resolved from noise at these laboratory and AT conditions
[20]; 2) the smallest minor contributor of any mixture sample did not
fall below 0.016 ng, which is approximately two copies of DNA (NB:
some single-source samples were amplified at 0.008 ng); and 3) all 25 s
GlobalFiler™ single-source PROVEDIt samples amplified at 0.016 ng or
higher rendered RFU signal at a minimum of 12 known allele locations,
regardless of the laboratory or sample condition [8]. Though it is likely
that some signal at these locations may be attributed to noise, it is
unlikely that all 12 can. As such, RFU signal is expected to be present
even for the most degraded, lowest quantity and quality minor con-
tributor for the samples used in this study.

NOCIt’s functionality was assessed by evaluating its performance
pursuant to the recommendations set forth by the Scientific Working
Group on DNA Analysis Methods (SWGDAM) in their Guidelines for the
Validation of Probabilistic Genotyping Systems [25]. Although that
document does not specifically address probabilistic systems that
compute the APP of the NOC, we use it as the foundation for perfor-
mance assessment.

3.2.1. Precision
Precision was evaluated for three NOCIt run conditions (Table 2).
The NOCIt settings that are likely to impact precision or accuracy

are the Discretization Level, batch size (which is the Sample Batch Size
multiplied by the Multiplicative Factor as described in Section 2) and the

Maximum Samples in a Batch. We ran the 815 test samples three times
for each of the NOCIt conditions and recorded the n at which we ob-
tained the Maximum A Posteriori Probability (MAP) for repeated NOCIt
run 1 (R1). The APP obtained from run 2 (R2) and 3 (R3) at that n were
also recorded, and the largest absolute difference in probabilities across
runs at that n was termed the APP Range. For example, if APP(5)R1 =
0.896, APP(5)R2 = 0.928, and APP(5)R3 = 0.893, then APP Range =
max(0.032, 0.003, 0.035) = 0.035. However, if APP(5)R1 = 0.892,
APP(5)R2 = 0.002, and APP(5)R3 = 0.925, then APP Range = 0.923.
Run conditions resulting in many samples exhibiting small APP Ranges
are preferred over larger ranges, since it represents higher run-to-run
precision. The FST value was set to 0.01 for all runs.

3.2.2. Correctly including the TrueNOC into the interpretation pipeline
Recall that the APP distribution may be used in a variety of ways

during interpretation. Whether it is used to eliminate unlikely values of
n from consideration or as a nuisance variable, reporting system per-
formance is a necessity. One way to test performance is to assess the
proportion of times the TrueNOC was deemed probable. Using the re-
sults of the first NOCIt run, we counted the number of samples, out of
815, rendering P TrueNOC E( | ) . Because α is essentially an arbitrary
threshold, we determine these proportions for α values of 0.001, 0.01,
0.1, 0.2 and 0.5. Note that if the APP for an n is greater than 0.5, that n
is necessarily NOCIt’s MAP estimate. We emphasize that these thresh-
olds do not represent recommendations; rather, they are used to allow
for comparisons between NOC inference systems, different conditions,
and to provide an overall assessment of model performance.

3.2.3. Comparison to alternative methods
NOCIt’s performance was compared to MAC and to Haned et al.’s

MLE method [18], whose method improves on the MAC approach by
accounting for population frequencies, but does not explicitly account
for drop-in or drop-out of alleles or degradation effects, instead taking
as input the alleles deemed present at each locus. Because NOCIt as-
sumes a uniform prior on the NOC (cf. Section 2), a MAP estimate
derived from NOCIt’s APP is also a maximum likelihood estimate, albeit
one based on different data or “evidence” (i.e., the full sequence of
electropherogram peak heights, as opposed to the alleles present at
each locus) and on models of the evidence distinct from that used in
Haned et al.’s MLE method. Nevertheless, for the purposes of this work,
whenever we refer to the MLE method, we refer specifically to Haned
et al’s MLE method and, in particular, not to NOCIt’s MAP estimate.

To compare performance between the MAC, Haned et al.’s MLE and

Table 1
Summary of the 815 GlobalFiler™ sample set used to validate NOCIt.

NOC 1 2 3 4 5

Number 100 193 170 186 166
Total Template Mass (ng) 0.5- 0.008 0.75- 0.03 0.75- 0.045 0.75- 0.06 0.75- 0.075
Contributor Ratio N/A 1:1−1:9 1:1:1−1:9:9 1:1:1:1−1:9:9:1 1:1:1:1:1−1:9:9:9:1

Table 2
NOCIt settings for Condition 1, 2 and 3 on a 12-core system with 3.4 GHz of
processor speed.

NOCIt Parameters Parameter Value
Condition 1 Condition 2 Condition 3

Discretization Level 12 8 12
Standard Error Tolerance 0.05 0.05 0.05
Refinement Time Limit (s) 14400 14400 14400
Sample Batch Size 4000 4000 1000
Multiplicative Factor 3.0 3.0 2.0
Maximum Samples in a Batch 175,000 175,000 175,000
Average Run Time per sample(min) 37 20 19
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NOCIt’s APP methods, we determined the proportion of samples where
NOCIt’s APP exceeded α and plotted these alongside the number of
times the MAC or MLE method resulted in the correct n. For the MAC
method, the minimum NOC was calculated by applying an AT of 100
RFU, and filtering potential stutter peaks that met the following two
conditions: 1) the peak-in-question was one STR repeat shorter than a
higher RFU peak to the right of it; and 2) the RFU intensity of said peak
was ≤ the manufacturer’s stutter filter thresholds [26]. For MLE’s n, we
used the same filtered data as was used for the MAC method as well as
the forensim package available at http://forensim.r-forge.r-project.org/
[18,27]. We chose to compare the APP to MAC since filtering signal and
counting alleles is often considered an attractive option, particularly if
one seeks to provisionally inform their beliefs. Though MLE still re-
quires the application of an AT and stutter filters, it estimates the NOC
based on allele frequencies and was, therefore, taken to represent the
category of software that do not deal with quantitative profile data, but
are more sophisticated than counting methods. We note that exhaustive
comparisons between MAC, MLE and NOCIt to other existing or future
methods is afforded by the use of the publicly available PROVEDIt data
[8] and by the data available in Supplement 1.

3.2.4. Robustness of NOCIt across sample qualities
As per PCAST recommendations [28], we report whether NOCIt was

robust across the range of sample types typically encountered in case-
work. To do so, we used multiple logistic regression and determined the
probability that APP TrueNOC( ) 0.001 and the probability that
APP TrueNOC( ) 0.5 for: μ, the degree of electropherogram sloping
(continuous); the mass of the minor contributor supplying the smallest
quantity of DNA to the mixture [ng] (nominal); and the TrueNOC
(nominal). Note that we drop the '|E' in the notation for ease of ex-
position. Multiple logistic regression was performed using JMP® Pro
14.2.0. If NOCIt’s APP is robust, APP TrueNOCP( ( ) ) should remain
relatively stable across large changes in all three of μ, the mass of the
minor and the TrueNOC.

The degree of sloping, μ, was determined for each sample using the
contour of the STR signal, which we modeled as exponentially decaying
in fluorescence with molecular weight as per,

=F el
µw̄l

Where Fl is the sum of the peak heights associated with the known
genotypes at locus l, w̄l is the average base pair size of the known STR
alleles at locus l, and and µ are the parameters obtained for each
sample using least squares regression; thus, for the 815 samples used in
this study, we obtain 815 sloping parameters µ. In extreme cases of
decay, the highest molecular weight peaks may not reach detectable
levels. If high molecular weight markers exhibit low peak heights due to
degradation or inhibition of the PCR reaction, µ takes a large negative
value. In contrast, if there is good signal balance across all loci, in-
dicating efficient PCR and high quality template DNA, µ will be near
zero.

The mass of the minor contributor was grouped into bins of sizes:
0.008−0.016; 0.017−0.035; 0.036−0.066; and 0.067−0.5 ng. The
first bin, therefore, represents the amplification of ca. 1–2 copies of
DNA, the second represents ca. 3–4 copies, while the third and fourth
bins represent 5–10 and> 10 copies of the minor’s DNA, respectively.
Given that the limit of detection for our post-PCR method was 1 copy
(i.e., all intact alleles that survived the pre-PCR steps are detected),
allele drop-out is solely the result of the ability to sample intact alleles
which can be described by binomial probabilities with binomial para-
meters T, the total copy number of allele and V

V
aliquot

tot
, representing the

volume fraction of extract transferred to the PCR container [29]. For
the 815 samples used in this study, Valiquot ranged between 1 and 10 μL,
Vtot = 48 μL, and the probability of drop-out is Binomial TP( ( , V

V
aliquot

tot
) =

0). In the absence of degradation, when the smallest minor contributor

is 0.008 ng, T ranged from 60
µL48

0.0063

ng µL
ng cell

0.008 1 to 6
µL48

0.0063

ng µL
ng cell

0.008 10 co-

pies. When the smallest contributor contributes 0.016 ng to the mix-
ture, the value of T ranged from 121 to 12 copies. Thus, the dropout
rate for the smallest minor in the first bin is expected to range between
28 and 6%. The second bin contains samples with minor contributors
that have expected drop-out rates between 0.3 and 6%, whereas the
remaining bins all have drop-out rates less than 0.3 % [20] when nei-
ther the DNA is degraded or PCR is inhibited. Thus, the bin ranges
represent minor contributor quantities exhibiting considerable, some,
low and extremely low allelic drop-out due to sampling.

3.2.5. Performance at the signal boundary
To test performance at the signal boundary, we evaluated the APPs

obtained when an amplification negative, containing no known frag-
ments of DNA or obvious spurious signal, was run without an AT (i.e.,
AT = 1 RFU) and with an AT of 150 RFU.

3.3. Integrating the APP into the LR calculation

To illustrate and further explore the impact of reporting the full LR,
we ran four of the 815 GlobalFiler samples with CEESIt and combined
NOCIt’s APP and CEESIt’s LRs as per Eq. (1). We compared the end-to-
end LR and the LRs acquired when using a single MAC-based n as-
signment. Specifically, we evaluated LRs from the following samples:

1 A single-source sample (RD14−0003-15d2U60−0.25GF-
Q4.5_01.25 s) where NOCIt’s APP indicated that n= 2 was highly
probable and the MAC assignment incorrectly assigned a value of 2;

2 A single-source sample (RD14−0003-17d2U60−0.25GF-
Q13.3_01.25 s) where both the APP and the MAC assignment cor-
rectly indicated the NOC was likely one;

3 A two-person mixture (RD14−0003-39_40−1S2;2a-0.5GF-
Q1.1_0.1.25 s) where NOCIt’s APP suggested that n= 2 was highly
probable, but MAC incorrectly assigned a value of 3; and

4 A four-person mixture (RD14-0003–40_41_42_43−1;1;1;1-M4d-
0.06GF-Q1.7_01.25 s) where NOCIt’s APP suggested that n= 3 and 4
were highly probable, but the MAC-based assignment was under-
estimated by one.

4. Results

4.1. Software and GUI verification

Over the course of development, the development team provided
the test team with 11 software distributions. At the end of testing each
distribution, the test team reported software failures or inadequacies to
the development team who would modify the software, based on those
reports, to meet expectations. The subsequent distribution was trans-
ferred to the test team for further testing and the reporting steps were
repeated. Fig. 1A illustrates that over the course of GUI development,
there was an increase in the proportion of test cases that passed, de-
monstrating that good software development practices, which included
a standardized method of software validation and verification, resulted
in marked improvements to NOCIt’s GUI and functionality. The in-
troduction of new modules in Distributions 7 and 9, which were the
result of modifications to the user requirements, resulted in a decrease
in pass rates, demonstrating the importance of rigorous software and
GUI testing when introducing significant changes to software func-
tionality.

Fig. 1B depicts the percentage of each test type used to verify the
GUI was performing as expected. Most software tests were of the po-
sitive variety, though regression testing became prevalent at the end
stages. The final distribution was verified solely by regression tests. In
addition, different users at two sites using multiple processors/com-
puters and operating systems confirmed GUI performance. We note that
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although we obtained a test pass rate of 100 % with the final dis-
tribution, the failure of any software to meet pre-determined expecta-
tions for a given test does not necessarily invalidate it. Many minor
failures or a few critical failures, however, may lead the user or team to
conclude that the software is not fit for its intended use. Ultimately, the
decision to implement new software is dependent upon pre-defined
acceptance criteria and a review of the entirety of the results.

4.2. NOCIt performance and validation

Once GUI verification was completed the final distribution was used
to test the biological models. Model validation was completed with 815
samples consisting of degraded, differentially degraded, inhibited, low-
template and high-template samples containing anywhere from 1- to 5-
contributors in any proportion. The mixtures were generated under
controlled laboratory conditions and so the actual number of con-
tributors, i.e., TrueNOC, for each sample is known. These 815 samples
were specifically selected to test the biological models because they
represent mixtures that: 1) contain information from a kit containing
the extended CODIS loci; 2) consist of 1- to 5- contributors, some of
which were subjected to conditions that compromise the integrity of the
PCR; and 3) were run using an optimized forensic DNA pipeline en-
gineered to produce allele signal that is well resolved from noise when
in the single-copy regime [20].

NOCIt outputs the APP distribution for n= 0 to 6 contributors,
providing the user with a means by which to assess the probability that
one, two, three or more contributors comprise the evidence. For ex-
ample, a sample rendering APPs of 0.8 and 0.2 for n= 2 and 3,

respectively suggests the mixture may be well explained by either
number, though n= 2 is more likely given the evidence. Traditionally,
the value 2 or 3 would be assigned to the mixture, and the LR would be
calculated using those assignments. As suggested by the authors of [10],
however, an alternative approach is to use the APP values in the de-
termination of an overall LR, making the NOC assignment an un-
necessary task. Since the APP calculation is pertinent to computing the
overall LR or deciding upon probable values for n, we focus on assessing
the performance of NOCIt to output reproducible, robust and accurate
APP results.

4.2.1. Precision
As shown previously [30,31], some probabilistic genotyping ap-

proaches may not produce the same outcome from repeat analyses due
to their Monte Carlo-based algorithms. Therefore, where applicable,
validation studies should report the range of values from multiple
analyses of the same data, which is then used as the basis for estab-
lishing acceptable or expected degrees of variation in output [25]. As a
result, parameter settings that can reduce variability were evaluated.

Increasing the Sample Batch Size or the Discretization Level, as de-
scribed in Section 2, associated with the Monte Carlo settings may in-
fluence the variation in the results. To evaluate effects of these para-
meters on repeatability, we ran all 815 test samples using three
conditions (Table 2). For each sample, every condition was run in tri-
plicate.

Each condition employed the same values for Refinement Time Limit,
and Maximum Samples in a Batch. The Refinement Time Limit is a user
input that pertains to the time (in minutes) that NOCIt is allowed to run.

Fig. 1. (A) Proportion of GUI test cases that passed across 11 NOCIt distributions. (B) Percentage of positive, negative, fuzz, boundary and regression software tests
across 11 NOCIt distributions. A distribution represents an internal release of NOCIt to the software test team from the development team. (C) Histograms of the APP
Range, (D) Proportion of instances where NOCIt determined an APP ≥ 0.001 for the TrueNOC using ( ) Condition 1, ( ) Condition 2, and ( ) Condition 3 for run 1
(R1).
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Once this time limit is reached, NOCIt automatically stops and the user
can restart it, if desired. Since NOCIt uses a Monte Carlo-based ap-
proach, this feature was added in cases where the user deems it ad-
vantageous to re-start a run rather than wait for an extensive period for
convergence. Similarly, Maximum Samples in a Batch is the maximum
number of samples NOCIt randomly selects during Monte Carlo sam-
pling. Preliminary results demonstrated little change in the outcomes
when these parameters were modified; therefore, these settings were
not modified for this work. The parameters in Condition 1 were chosen
because they represent relatively stringent settings, resulting in the
longest average run time of 37 min per sample. Condition 2 employed a
lower Discretization Level than Condition 1 but the same Batch Size. The
third condition was equivalent to the first, except the Batch Sizes de-
creased, significantly decreasing the average run time per sample be-
tween Conditions 1 and 3.

Fig. 1C are histograms of the APP Ranges across three NOCIt set-
tings. Differences between the histograms of Condition 1 and 2 versus
Condition 3 are evident. For example, we observe that the last condition,
which employed smaller batch sizes, resulted in more samples with APP
Ranges exceeding 0.5. Specifically, the less stringent Condition 3 re-
sulted in 14.0 % of samples exhibiting APP Ranges in excess of 0.5,
while Conditions 1 and 2 resulted in 4.2% and 5.2% of the samples with
this outcome, respectively. Focusing on the APP Range (0.9,1], sig-
nifying that the most likely n for one run was nearly improbable for at
least one of the other repeated runs, we observe that Condition 3 has a
substantial number of samples in this range, indicating that the Batch
Size influences repeatability more than Discretization Leveldoes. Fig. 1D,
demonstrates that the proportion of samples for which
APP TrueNOC( ) 0.001 for Conditions 1 and 2 are not substantially
different, though the higher Discretization Level seems to exhibit good
accuracies across all TrueNOC. Accordingly, we utilized Condition 1 as
the standard NOCIt run parameters for all other tests, as it resulted in
high accuracies, good repeatability and tractable run times.

4.2.2. Correctly including the TrueNOC into the interpretation pipeline
Fig. 2 are stacked plots presenting the APPs for all test samples

obtained using Condition 1 separated by the nominal number of con-
tributors. Fig. 2A demonstrates that for most samples, NOCIt outputs an
APP distribution suggesting only one or two values of n explain the
evidence well and, typically, the n corresponding to the MAP was the
TrueNOC. Even in the presence of significant allele-sharing, most 5-
contributor samples resulted in only one or two probable values of n,
and more than half of the samples resulted in a MAP at n= 5, de-
monstrating that even in the presence of abundant allele sharing and
severe allele drop-out, a fully quantitative evaluation of the data
without analytical thresholds or stutter filters produced APPs indicating
the n= TrueNOC explained the data well. This is notable given that,
based on the known genotypes, the 5-person samples do not have any
locus with greater than eight alleles, and as many as 75 allelic peaks per
profile (65 % of the profile) were not detected [8].

By further exploring Fig. 2A, we observed that the APP distribution
was always unimodal, and it is possible that the mode was not ne-
cessarily equal to TrueNOC. That is, we did not observe any instance
where the APP was high for small values of the NOC, n, low for medium
n values and then increased again for large values of n. Fig. 2B and
Table 3 summarize the number of samples that resulted in one, two or
three APP(n) ≥ 0.001.

No sample had greater than three APPs exceeding 0.001.

4.2.3. Comparison to alternative methods
Following the testing principles described in the SWGDAM

Guidelines [25], we compared the results of NOCIt to those acquired by
MAC and the allele frequency based MLE method described in [18].
Prototype implementations of NOCIt were previously compared to al-
lele counting and MLE methods [11,12] and showed promising results.
To ensure that NOCIt continued to outperform common methodologies,

we plot the proportion of samples that resulted in TrueNOCAPP( )
and the proportion of times MAC and MLE provided the correct esti-
mate for the 815 samples used in this study.

Interestingly, we observed that the proportion of times TrueNOC
was correctly included when using the MAC method is lower than might
be expected (i.e., 66 %) for single-source samples. We note, however,
that the 100 single source samples used as the test samples included
many compromised, low-template samples. In particular, a great ma-
jority of the 1-person test samples were subjected to UV-damage or
sonication and were at the extreme low template regime (Supplement
1). Closer inspection established that many of them exhibited excessive
stutter products due to their low-template nature, which is not un-
expected as previous work has demonstrated that amplifying samples in
the single-copy regime results in nearly 8% of all alleles exhibiting
stutter ratios> 15 % at the end-point of PCR [29]. Therefore, it is not
surprising that low-template profiles containing 21 autosomal STR loci
would regularly exhibit indications of an ‘additional contributor’ within
the MAC paradigm. Since the MLE method also depends on the same
noise and stutter filters as MAC, the proportion of samples supplying
correct estimates did not much improve for the MLE method, though
there were some improvements for the 4- and 5- person mixture sam-
ples when compared to MAC estimations. Also plotted in Fig. 3A are the
proportion of samples where APP(TrueNOC) was at least 0.001, 0.01,
0.1, 0.2 and 0.5. Note that an APP threshold of 0.5 means that TrueNOC
was the MAP estimate (i.e., most probable n). Fig. 3A demonstrates that
in most cases, NOCIt’s MAP estimate was equal to TrueNOC. It also
demonstrates, however, that rather than choosing a single n for
downstream interpretation, increasing the range of n is warranted. For
example, at = 0.001, correctly including TrueNOC into the inter-
pretation pipeline did not fall below 90 % regardless of the TrueNOC
that comprised the sample.

In Fig. 3B is plotted MAC’s NOC Assignment versus the APP
(TrueNOC). Notably, in many cases, NOCIt’s MAP correctly indicated
the TrueNOC when MAC did not, while the reverse (i.e., MAC correctly
assigned the TrueNOC, while NOCIt’s MAP did not) was rarely ob-
served. Of note was the relatively large set of three-person samples
where MAC and MLE estimates did not equal the MAP estimate. Closer
inspection, however, of Fig. 3B for TrueNOC= 3 shows that many of
the APP(3) ranged between 0.1 and 0.5, suggesting NOCIt still assigned
a significant probability to n= 3. The MLE results were similar to those
of the MAC method.

As suggested by Fig. 3, the models of NOCIt seem less sensitive to
elevated stutter effects than methods that rely on signal filtering be-
cause they determine the relationship between the stutter peak heights
and the parent peak height [13,14]. The poor response of MAC and
MLE, even with seemingly simple samples, demonstrates that the NOC
estimations are unlikely to represent the TrueNOC if assigned by binary
or counting methods alone.

4.2.4. Robustness of NOCIt across sample qualities
To explore the impact of sample quality on the APP, we evaluated

effects of electropherogram sloping, TrueNOC and the mass of the
smallest contributor on the ability of NOCIt to output an APP greater
than or equal to 0.001 or 0.5 for n= TrueNOC. That is, we evaluated
the degree to which degradation, sample complexity and template mass
of the smallest contributor impacted NOCIt’s ability to determine
whether the TrueNOC would be included in downstream interpretation
by performing multiple logistic regression where the dependent vari-
able is assigned a status of one if the APP(TrueNOC)> α and 0 other-
wise. The resultant AIC and BIC values were 227 and 268, respectively,
for α= 0.001 while the AIC and BIC values for α= 0.5 were 658 and
699, respectively. These represented the lowest AIC and BIC values
obtained from several modeling options (data not shown). Full sum-
maries of the logistic fit details for each α are provided in Supplement 2
and 3. The results are depicted in Fig. 4 where we plot the logistic
curves for α= 0.001 and 0.5 against the degree of sloping separated by
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the TrueNOC and the mass of the smallest contributor.
Fig. 4 demonstrates that samples used in this work represent the

wide variety of complexity expected in forensic samples with µ values
as low as -0.025 and minor contributor’s values as low as 0.016 ng
(single-source masses went to 0.008 ng). Overall, we see that the
chance of including the TrueNOC in downstream interpretation is, in
general, higher for less stringent APP thresholds demonstrating the
value of considering multiple NOCs during downstream interpretation.

Although a less stringent APP threshold necessarily improves the
chance of correctly incorporating TrueNOC in downstream LR inter-
pretation, it also increases the range of n. In common parlance, this
means that if the APP threshold were lowered there would be a rela-
tively good chance the expert would be required to consider more than
one n assignment to the possible exclusion of only improbable ns. The
degree of electropherogram sloping, which is indicative of DNA damage
or PCR inhibition, engendered a significant impact for α= 0.001,
wherein the probabilities of correctly including TrueNOC into down-
stream interpretation decreased as the severity of electropherogram
sloping increased. Interestingly, the greatest impact of μ was seen in the
α= 0.001 case, since the chance of correctly including TrueNOC within
the probable range of n is substantially larger at low degradation levels
than for α= 0.5. Moreover, Fig. 4 reveals that P(APP(TrueNOC)>
0.001) for non-degraded samples is relatively constant until the mass of
the minor contributor reaches ca. 2 cells’ worth of DNA. This was in
contrast to the α= 0.5 case where the probability of correctly in-
corporating the TrueNOC in downstream interpretation decreased as

Fig. 2. (A) Stacked Plots of APP(n) obtained using Condition 1 NOCIt settings, where TrueNOC is the true number of contributors that comprise the mixture and the
APP for n = 0 to 6 is depicted for each sample for n= (white bar)0; ( )1; ( )2; ( )3; ( )4; and ( ) 5; and ( ) 6. (B) Pie Chart depicting the percentage of samples
resulting in one, two or three APP(n) ≥ 0.001. No sample exhibited greater than three APPs exceeding 0.001.

Table 3
The number of samples rendering one, two or three APP(n) ≥ 0.001.

TrueNOC

Number of APP(n) ≥ 0.001 1 2 3 4 5

1 67 126 43 36 9
2 33 67 115 127 96
3 0 0 12 22 61
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the mass decreased across the entire range. In general, the TrueNOC
consistently influenced the probability that the actual contributor
number will be within the range of n considered during downstream
interpretation, though not in a unidirectional manner. For example,
Fig. 4 once again expresses the results already depicted in Figs. 2 and 3
which shows that the 1-person samples resulted in lower than

anticipated probabilities of correctly incorporating the TrueNOC into
downstream interpretation, indicating that DNA profile ‘complexity’ is
present within all mass and NOC regimes.

4.2.5. Performance at the signal boundary
There are one of two ways a laboratory may choose to import

Fig. 3. (A) The proportion of samples resulting in APP(TrueNOC) ≥ α, where α was assigned values of 0.001, 0.01, 0.1, 0.2 and 0.5, separated by TrueNOC ( ) 1, ( )
2, ( ) 3, ( ) 4, and ( ) 5. Also included are the proportion of samples where (e) MAC and (- -) MLE estimates equaled the TrueNOC. Since these methods provide a
single n value rather than a probability distribution, there is no α-value; therefore, the proportion is unchanging across the bar graphs. (B) Bubble charts, separated by
TrueNOC, of the MLE or MAC estimates plotted against NOCIt’s APP(TrueNOC). The larger the diameter of the disk, the larger the proportion of samples represented.
The darker shaded disks highlight instances where the MAC/MLE estimates were inconsistent with NOCIt’s MAP estimate. On the top right of the plots are the
number of samples that rendered APP(TrueNOC)≥0.5 and MAC or MLE estimates ≠ TrueNOC; and the number of samples that rendered APP(TrueNOC)≤ 0.5 and
MAC or MLE estimates = TrueNOC.

Fig. 4. Plotted are the probabilities that APP(TrueNOC) ≥ 0.001 and APP(TrueNOC) ≥ 0.5, determined with multiple logistic regression, against the degree of
electropherogram sloping, μ, delineated by the mass of the contributor with the lowest target mass in the mixture [ng]. Also presented are the PValues demonstrating
the significance of each impact variable on correctly classifying TrueNOC as within the range of n for α= 0.001 and 0.5.
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evidentiary or unknown data: The first option is to import all of the
peak information (without AT applied), while the other is to import the
peak information after the application of an AT. To examine the impact
of an AT at the signal boundary, we analyzed a negative amplification
control using both approaches. In the first approach, all of the data,
including baseline, are imported into NOCIt (i.e., no AT is applied and
all low-level, post-processed peaks are interpreted as part of the signal).
We also applied an AT to the signal thereby importing no information.
As expected, the results between these two scenarios differ: in the first
case, the AAP was almost 1 at n= 0, and the next largest APP was

×5.05 10 6 at n= 1 (see Supplement 4 for the full NOCIt report). In the
second case, using the same negative sample with an AT of 150 RFU
applied, the probabilities for all n were 1/7, which is equal to their prior
probability (see Supplement 5 for the full NOCIt report). This example
not only demonstrates that NOCIt works well at the signal boundaries,
but that the application of a high-pass threshold designed to filter data
is unnecessary when evaluating evidence using probabilistic systems
and can, in some cases, provide the end-user with less information than
is actually available. This suggests that further studies examining the
impact of ATs on probabilistic pipelines are warranted.

4.3. Integrating the APP into the LR calculation

Fig. 6 provides an illustration of a sample progressing through the
interpretation pipeline depicted in Fig. 5. We see in Fig. 6A that for this
true 2-person example, the MAC method would suggest two persons
explain the evidence while peaks near the baseline would indicate the
presence of three. Consistent with that observation, Fig. 6B depicts the
output acquired when the sample of Fig. 6A is analyzed by NOCIt and
shows that the probable NOCs are 2 or 3 with APPs of 0.736 and 0.264,
respectively.

The MAP of 0.736 suggests that 2 persons explain the mixture well,
though an APP of 0.264 suggests that it is far from implausible that 3
persons have generated this mixture. Together, these APPs constitute
the range of likely NOCs since the other n values had APPs of 0. Fig. 6C
portrays the summary statistics obtained using CEESIt and four input
conditions: (1) suspect 1 (s1) and n= 2; (2) s1 and n= 3; (3) suspect 2

(s2) and n= 2; and (4) s2 and n= 3, while Table 4 shows the result
obtained for both suspects when Eq. (1) is used to compute the overall
LR using NOCIt to obtain the = =APP n P N n E H( ) ( | , )d and CEESIt to
approximate LR(E|N = n) [10] for each n. The question of how to as-
sign the NOC [9], or whether to use different NOCs in the numerator
and denominator [1,32–34] has been debated in the literature with
some suggesting the LRs from all reasonable NOC assignments be de-
termined and reported and others advocating maximizing the Hp and Hd

likelihoods separately [34]. If one were to take the former approach, in
this example the LR slightly decreases when the NOC assignment shifts
from 2 to 3. In addition, the LR distribution under Hd shifts closer to 1
as the NOC assignment increases in number. Because protocols may
vary between laboratories, one laboratory may compute the LR for n=
2 and 3 and report the lower LR, while another laboratory might only
assign n= 2 (based on MAC) and report the higher LR value. Without
standardization or consensus, reporting LRs at distinct n values is un-
likely to aid in normalizing LR results across laboratories. Rather than
computing and reporting LRs from different n separately, an alternative
is to use the APPs from a system such as NOCIt, the LRs by a coincident
system such as CEESIt and Eq. (1) [10] to compute an overall LR. Since
NOCIt and CEESIt systems incorporate the same models for drop-out,
stutter, peak heights and noise, combining the APP with =E N nLR( | )
(Table 4) represents the full evaluation of evidentiary DNA signal
without analytical thresholds applied.

Continuing, we compared the end-to-end LR to the MAC-based LR
for the sample depicted in Fig. 6 and three additional samples and
summarize the MAC, APP and LR results in Table 5. For the NOCIt
results, we note any APP less than 1 × 10−6 was assigned a value of 0.
For Sample 3, a true 2-person mixture, the LRs obtained using MAC and
APP do not differ since the one ‘extra’ peak present in the profile that
forced the MAC assignment to 3 was of a comparatively low peak height
and in stutter position; thus, the LR was negligibly affected when an
‘additional’ contributor was added. Likewise, the LRs for Sample 2 did
not significantly change since the MAC assignment and the APP result
were consistent – i.e., both suggesting the NOC to this sample was one.
Despite instances where the single LR and full LR agree, there were
other instances when they did not. Notably, Sample 1 demonstrates that

Fig. 5. A schematic of the interpretation pipeline that includes APP(n). All of the data are analyzed using a peak detection software of choice. The calibration data are
garnered from single-source profiles of known genotype analyzed using the lowest possible signal threshold setting, and well-characterized artifacts, such as pull-up
and minus A, are filtered with the CleanIt module and user-defined criteria. These calibration data are used to parameterize the models utilized by NOCIt. NOCIt
determines the APP distribution on the NOC from data acquired from an unknown sample containing any number of contributors in any proportion. As with the
calibration data, the STR data acquired from the environmental sample will undergo pre-processing steps wherein peak detection and artifact filtering are completed.
Unlike the calibration data, however, an analytical threshold, may be applied to the unknown, if desired. The data, containing information on the peak height, peak
position and allele call, are imported into NOCIt for evaluation. NOCIt outputs P(N = n|E, Hd) for all n. Using the same models, CEESIt is then utilized to compute the
LR for the person-of-interest (POI), likelihood ratio distributions for randomly generated genotypes, or other reporting statistics. For this pipeline, data from the
calibration and unknown samples are expected to be acquired using the same DNA laboratory processing protocols (i.e., same STR assays, PCR cycle numbers, and
electrophoresis settings).
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for this single source sample, the MAC assignment of two is consistent
with NOCIt’s MAP, suggesting the plausibility of 2-persons contributing
to this sample; however, the APP also suggested that one contributor
might explain the data, leading to a difference in the final LR outcomes.
Sample 4, a low-level complex mixture, rendered NOCIt APPs of 0.695
and 0.305 for n= 3 and 4, respectively. Given the complexity of the
signal, the MAC-based NOC assignment may be in doubt resulting in

two or more reported LRs; one which may be categorized as limited in
support, while the other as relatively strong. The full LR, however,
provides a means to report a single LR across all prominent n. Since it is
unlikely that manual examination of peak heights is beneficial when the
sample is composed of more than two contributors [9] or exhibits allele
drop-out [7], integrating a validated APP distribution into the inter-
pretation pipeline as depicted in Fig. 6 may be an important addition
for contentious samples. As such, additional large-scale studies that
explore, authenticate and report the use of Eq. (1) in forensic casework
are warranted.

5. Conclusion

Probabilistic-based interpretation pipelines typically require an as-
sumption on the number of contributors to a sample [35,36]. As a re-
sult, work on NOC estimations and studies that examine the effects of
the NOC assumptions [1,6,7] on statements of evidential strength have
catalyzed the development of methods that address this limitation
[11,16,37]. Moreover, interpretation schemes that do not rely upon
signal thresholds [15,38,39] or seek to minimize their effects [20] [40]
demonstrate that continued development in this field is ongoing. Here

Fig. 6. Example of a sample progressing through the full interpretation pipeline depicted in Fig. 5. (A) The GeneMapper® ID-X electropherogram of eight re-
presentative STR loci of a 2-person mixture containing one part of a degraded contributor (s1= PROVEDIt ID #39) to two parts of an un-degraded contributor (s2=
PROVEDIt ID #40). The total target mass was 0.5 ng. Each known allele peak is labelled with the STR number and peak height above the peaks, while the known
genotypes for both contributors, s1 and s2, are below the peaks. The data were exported from the peak detection software GeneMapper IDX and filtered with CleanIt.
(B) The filtered data were imported into NOCIt, and the aposteriori distribution on the NOC is shown. NOCIt results suggest that this sample probably arose from 2 or
3 contributors. (C) Both assumptions are used to compute the evidentiary summary statistics in CEESIt for contributors s1 and s2 as potential donors to the mixture.
The distribution of LRPOI=G, the likelihood ratio for a potential donor with genotype G drawn uniformly from the background population, is shown under both
assumptions. When the smaller, and in this case correct, NOC is assumed (i.e., n= 2, top two panels), the LR distribution shifts left, and the LRPOI increases. When a
larger number is assumed (i.e., n= 3, bottom two panels), the LRPOI decreases for both s1 and s2 while the probability that a random person would result in LR>1
increases. We note that though the Pr(LR>1|Hd) can be useful when evaluating matters such as the benefits of including more information into the interpretation
pipeline, it is not presented as an alternative to the LRPOI. The overall LR for this sample is 1029.5 and 1040.8 for s1 and s2 respectively, as detailed in Table 4.

Table 4
Computing the overall LR using Eq. (1) [10], the APP from NOCIt, and the

=E N nLR( | ) from CEESIt for the sample in Fig. 6.

n P(N =
n|E)

= == E N n N n ELR( | )P( | )n 1
6

s1 s2

0 0 (0.736*1029.6)+
(0.264*1028.5) = 1029.5

(0.736*1040.9)+ (0.264*1039.5)
= 1040.81 0

2 0.736
3 0.264
4 0
5 0
6 0
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we focus on reporting the performance of a fully continuous system,
NOCIt, which calculates the P(N = n|E,Hd).

For most samples, NOCIt’s APP suggested that one or two values of n
often described the electropherogram well, and the APP distribution
was unimodal for all samples tested. The average run time of NOCIt for

=n 6max using the most stringent settings tested was 37 min per sample.
A comparison between NOCIt, allele counting and allele frequency-
based methods indicated that NOCIt outperformed procedures that rely
on signal filtering at all levels of complexity, including single-con-
tributor samples. Tests with samples for which TrueNOC= 0 demon-
strated that one of the most important features of probabilistic systems
is the ability to model noise directly, while still filtering artifacts such as
pull-up and minus A, constituting a complete evaluation of the evi-
dentiary electropherogram; thus, we demonstrate that the application
of an AT is unnecessary for the interpretation of evidence. We showed
that accurately including the TrueNOC into downstream interpretation
is affected by the stringency of the APP threshold, the presence of se-
vere electropherogram sloping and, to a lesser extent, the TrueNOC.
Finally, using experimental data, two fully continuous systems using
the same underlying model (i.e., NOCIt and CEESIt) and the principles
articulated in [10] we are the first to demonstrate the way in which
NOC APPs may be coupled with LRs to obtain an ‘overall LR’ using the
entire signal (i.e., no analytical threshold). We emphasize that all

samples used in this work were obtained from PROVEDIt – a free, open,
and forensically relevant database, facilitating direct comparisons be-
tween emerging or analogous systems.
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Appendix A

Derivation of Eq. (1), a result from [10]. Assuming that the a priori distribution of the number of contributors is the same under both hypotheses
in the absence of any data, i.e., = = =P N n H P N n H( | ) ( | )p d , and that the posterior probability of the NOC given the defense’s hypothesis is positive
for all possible NOCs, = >P N n E H( | , ) 0d for all n, the following equality holds due to repeated application of Bayes’ Theorem:
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We note that, by considering reciprocals and following the same derivation that leads to (1), one can also show that under the same assumptions,
but with the posterior constraint being conditioned on the prosecution’s hypothesis,

Table 5
Computing the overall LR using Eq. (1) [10], the APP from NOCIt, and the =EN nLR( ) from CEESIt for three PROVEDIt samples. Also shown are the LR values
obtained when using n = TrueNOC and the MAC Assignment only.

Sample MAC Assign. =N n EP( | ) n = 0;1;2;3;4;5;6 LR(E|n = TrueNOC) LR(E|n = MAC) Overall LR

1 2 0; 0.161; 0.839; 0; 0; 0; 0 1036.4 1030.9 1035.5

2 1 0; 1; 4.14 × 10−10; 0;0;0;0 1034.4 1034.4 1034.4

3 (Minor) 3 0; 0; 0.736; 0.264; 0; 0; 0 1029.6 1028.5 1029.5

3 (Major) 3 0; 0; 0.736; 0.264; 0; 0; 0 1040.9 1039.5 1040.8

4 (PROVEDIt ID 42) 3 0; 0; 0; 0.695; 0.305; 0; 0 101.7 103.2 103.0

Sample Names as described in [8]: Sample 1. RD14−0003-15d2U60−0.25GF-Q4.5_01.25 s is a single-source sample amplified with target mass of 0.25 ng and UV-
bombarded for 60 min; Sample 2. RD14−0003-17d2U60−0.25GF-Q13.3_01.25 s is a single source sample amplified at target mass of 0.25 ng, and UV-bombarded
for 60 min; Sample 3. RD14−0003-39_40−1S2;2a-0.5GF-Q1.1_0.1.25 s is a 2-person differentially degraded sample (the minor contributor was subjected to 2 s of
sonication) with a target mass of 0.5 ng; and Sample 4. RD14-0003–40_41_42_43−1;1;1;1-M4d-0.06GF-Q1.7_01.25 s is a 4-person degraded sample with a target
mass of 0.06 ng using PROVEDIt Sample ID 42 as the POI.
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Thus, it is also possible to evaluate the APP under the prosecution’s hypothesis, and still treat the NOC as a nuisance variable in the computation
of the likelihood ratio.

Appendix B. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.fsigen.2020.102296.
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