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Optimization-Based Linear Network Coding

for General Connections of Continuous Flows
Ying Cui, Muriel Médard, Edmund Yeh, Douglas Leith, Ken Duffy

Abstract—For general connections, the problem of
finding network codes and optimizing resources for those
codes is intrinsically difficult and little is known about its
complexity. Most of the existing methods for identifying
solutions rely on very restricted classes of network
codes in terms of the number of flows allowed to be
coded together, and are not entirely distributed. In this
paper, we consider a new method for constructing linear
network codes for general connections of continuous flows
to minimize the total cost of edge use based on mixing. We
first formulate the minimum-cost network coding design
problem. To solve the optimization problem, we propose
two equivalent alternative formulations with discrete
mixing and continuous mixing, respectively, and develop
distributed algorithms to solve them. Our approach
allows fairly general coding across flows and guarantees
no greater cost than existing solutions. Numerical results
illustrate the performance of our approach.

Index Terms—network coding, network mixing, gen-
eral connection, resource optimization, distributed algo-
rithm.

I. INTRODUCTION

In the case of general connections (where each

destination can request information from any subset

of sources), the problem of finding network codes is

intrinsically difficult. Little is known about its com-

plexity and its decidability remains unknown. In certain

special cases, such as multicast connections (where

destinations share all of their demands), it is sufficient

to satisfy a Ford-Fulkerson type of min-cut max-flow

constraint between all sources to every destination in-

dividually. For multicast connections, linear codes are

sufficient [1], [2] and a distributed random construction
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exists [3]. In the literature, linear codes have been the

most widely considered. However, in general, linear

codes over finite fields may not be sufficient for general

connections, as shown by [4] using an example from

matroid theory.

Different aspects of the connection between a ma-

troidal structure and the network coding problem with

general connections have been investigated in the liter-

ature [5]–[13]. However, progress in understanding the

matroidal structure of the general connection problem

has not yet provided simple and useful approaches

to generating explicit linear codes. There has been

considerable investigation of special cases [15]–[20].

However, the studies of these special cases do not offer

satisfactory solutions for the general case.

Even when we consider simple scalar network codes

(with scalar coding coefficients), the problem of code

construction for general connections (i.e., neither mul-

ticast nor its variations) remains vexing [21]. The main

difficulty lies in canceling the effect of flows that are

coded together but not destined for a common destina-

tion. The problem of code construction becomes more

involved when we seek to limit the use of network

links for reasons of network resource management.

In the case of multicast connections of continuous

flows, it is known that finding a minimum-cost solution

for convex cost functions of flows over edges of the

network is a convex optimization problem and can be

solved distributively using convex decomposition [22].

In the case of general connections of continuous flows,

however, network resource minimization, even when

considering only restricted code constructions, appears

to be difficult.

In general, there are two types of coding approaches

for optimizing network use for general connections.

The first type of coding is mixing, which consists of

coding together flows from sources using the random

linear distributed code construction of [3] (originally

proposed for multicast connections), as though the

flows were parts of a common multicast connection. In

this case, no explicit code coefficients are provided and

decodability is ensured with high probability by the

random coding, given that mixing is properly designed.

For example, in [23], a two-step mixing approach

is proposed for network resource minimization of

general connections, where flow partition and flow
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rate optimization are considered separately. In [14],

[24], we introduce linear network mixing coefficients

for general connections that generalize random linear

network coding (RLNC) for multicast connections, and

present a new method for constructing linear network

codes for general connections of integer flows to

minimize the total cost of edge use. The minimum-

cost network coding design problem in [14], [24] is

a discrete optimization problem that jointly considers

mixing and flow optimization. The second type of

coding is an explicit linear code construction, where

one provides specific linear coefficients, to be applied

to flows at different nodes, over some finite field. In

this case, the explicit linear code constructions are

usually simplified by restricting them to be binary,

generally in the context of coding flows together only

pairwise. For example, in [25] and [26], simple two-

flow combinations are proposed for network resource

minimization of general connections.

The flow rate optimization in [23], the joint mixing

and flow optimization in [14], [24], and the joint two-

flow coding and flow optimization in [25], [26] can

be solved distributively. However, the separation of

flow partition and flow rate optimization in [23] and

the pairwise coding in [25], [26] lead in general to

feasibility region reduction and network cost increase.

The joint mixing and flow rate optimization for general

connections of integer flows in [14], [24] allow fairly

general coding across flows. However, in [14], [24],

we consider integer flow rates and edge capacities,

and do not allow flow splitting and coding over time,

leading to coded symbols flowing through each edge

at an integer rate. The restriction of integer flow rates

affects the network cost reduction.

In this paper, we consider a new method for con-

structing linear network codes to minimize the total

cost of edge use for satisfying general connections

of continuous flows. We generalize the linear network

mixing coefficients introduced in [14], [24] to allow

flow splitting and coding over time, leading to coded

symbols flowing through each edge at a continuous

rate, to further reduce network cost. Using mixing

with generalized mixing coefficients, we formulate the

minimum-cost network coding design problem, which

is an instance of mixed discrete-continuous program-

ming. Our mixing-based formulation allows for fairly

general coding across flows, offers a tradeoff between

performance and computational complexity via tuning

a design parameter controlling the mixing effect, and

guarantees no greater cost than any solution without

inter-flow network coding, the solution of the two-step

mixing in [23], and the integer solution of the discrete

joint mixing and flow rate optimization in [14], [24].

To solve the mixed discrete-continuous optimization

problem, we propose two equivalent alternative for-

mulations with discrete mixing and continuous mix-

ing, respectively, and develop distributed algorithms to

solve them. Specifically, the distributed algorithm for

the discrete mixing formulation is obtained by relating

its discrete subproblem to a constraint satisfaction

problem (CSP) in discrete optimization and applying

recent results in the domain [27], and solving its

continuous subproblem using a primal-dual method.

The distributed algorithm for the continuous mixing

formulation is based on penalty methods for nonlinear

programming [28]. Note that the methods for solving

the continuous problems are new compared to [14],

[24]. In addition, note that this paper extends the

results in the conference version in [29] which does

not present a distributed algorithm for the continuous

mixing formulation.

II. NETWORK MODEL AND DEFINITIONS

In this section, we first define the network model for

general connections of continuous flows. The model

is similar to the one we considered in [14], [24] for

integer flows, except that here we consider general flow

rates and edge capacities, and allow flow splitting and

coding over time. Next, we also briefly illustrate the

formal relationship between linear network coding and

mixing established in [14], [24].

A. Network Model

We consider a directed acyclic network with general

connections. Let G = (V, E) denote the directed

acyclic graph, where V denotes the set of V = |V|
nodes and E denotes the set of E = |E| edges. To

simplify notation, we assume there is only one edge

from node i ∈ V to node j ∈ V , denoted as edge

(i, j) ∈ E .1 For each node i ∈ V , define the set of

incoming neighbors to be Ii = {j : (j, i) ∈ E} and the

set of outgoing neighbors to be Oi = {j : (i, j) ∈ E}.

Let Ii = |Ii| and Oi = |Oi| denote the in-degree

and out-degree of node i ∈ V , respectively. Assume

Ii ≤ D and Oi ≤ D for all i ∈ V , where D is a

constant. Consider a finite field F with size F = |F|.
Let P = {1, · · · , P} denote the set of P = |P|
flows of symbols in finite field F to be carried by

the network. For each flow p ∈ P , let sp ∈ V be its

source. We consider continuous flows. To be specific,

each continuous flow consists of symbols from finite

field F , and its source rate (i.e., the number of symbols

generated at its source per unit time) can be a real

number. Let Rp ∈ R
+ denote the source rate for

source p, where R
+ denotes the set of non-negative

real numbers. Let S = {s1, · · · , sP } denote the set

of P = |S| sources. We assume different flows do

not share a common source node and no source node

1Multiple edges from node i to node j can be modeled by
introducing multiple extra nodes, one on each edge, to transform
a multigraph intro a graph.



3

has any incoming edges. Let T = {t1, · · · , tT } denote

the set of T = |T | terminals. Each terminal t ∈ T
demands a subset of Pt = |Pt| flows Pt ⊆ P . Assume

each flow is requested by at least one terminal, i.e.,

∪t∈T Pt = P . Let P , (Pt)t∈T denote the demands

of all the terminals. We assume no terminal has any

outgoing edges.

Let Bij ∈ R
+ denote the edge capacity for edge

(i, j). We assume a cost is incurred on an edge

when information is transmitted through the edge and

let Uij(zij) denote the cost function for edge (i, j)
when the transmission rate through edge (i, j) is

zij ∈ [0, Bij ]. Note that we allow flow splitting and

coding over time, leading to coded symbols flowing

through each edge of the network at a continuous rate.2

Assume Uij(zij) is convex,3 non-decreasing, and twice

continuously differentiable in zij . For example, we can

choose Uij(zij) = azij with a ≥ 1 or Uij(zij) = zij
a

with a ≥ 1. We are interested in the problem of finding

linear network coding designs and minimizing the

network cost
∑

(i,j)∈E Uij(zij) for general connections

of continuous flows under those designs.

B. Scalar Time-Invariant Linear Network Coding and

Mixing

For ease of exposition, in this section, we illustrate

linear network coding and mixing by considering unit

flow rate, unit edge capacity and one (coded) symbol

transmission for each edge per unit time, and adopt

scalar time-invariant notation. Later, in Sections III,

V, and IV, we shall consider general flow rates and

edge capacities and allow flow splitting and coding

over time, which enable multiple (coded) symbols to

flow through each edge at a continuous rate.

In linear network coding, a linear combination over

F of the symbols in {σki ∈ F : k ∈ Ii} from

the incoming edges {(k, i) : k ∈ Ii}, i.e., σij =
∑

k∈Ii
αkijσki, can be transmitted through the shared

edge (i, j) ∈ E , where coefficient αkij ∈ F is referred

to as the local coding coefficient corresponding to edge

(k, i) ∈ E and edge (i, j) ∈ E . On the other hand,

the symbol of edge (i, j) ∈ E can be expressed as

a linear combination over F of the source symbols

{σp ∈ F : p ∈ P}, i.e., σij =
∑

p∈P cij,pσp,

where coefficient cij,p ∈ F is referred to as the

global coding coefficient of flow p ∈ P and edge

(i, j) ∈ E . Let cij , (cij,p)p∈P ∈ FP denote the P
coefficients corresponding to this linear combination

for edge (i, j) ∈ E , referred to as the global coding

vector of edge (i, j) ∈ E . Here, FP represents the

set of global coding vectors, the cardinality of which

2A detailed illustration of flow splitting and coding over time can
be found in Appendix A.

3The convexity assumption precludes the case where transmission
rates over some edges are too large compared with others, hence
balancing traffic over a network.

is FP . Note that, we consider scalar time-invariant

linear network coding. In other words, αkij ∈ F and

cij,p ∈ F are both scalars, and do not change over time.

When using scalar linear network coding, for each

terminal, extraneous flows are allowed to be mixed

with the desired flows on the paths to the terminal, as

the extraneous flows can be cancelled at intermediate

nodes or at the terminal.

In many cases, we shall see that the specific values

of the local or global coding coefficients are not

required in our design. For this purpose, we introduce

the mixing concept based on local and global mixing

coefficients established in [14], [24]. Later, we shall

see that distributed linear network mixing designs in

terms of these mixing coefficients are much easier.

Specifically, we consider the local mixing coefficient

βkij ∈ {0, 1} corresponding to edge (k, i) ∈ E and

edge (i, j) ∈ E , which relates to the local coding

coefficient αkij ∈ F as follows. βkij = 1 indicates that

symbol σki of edge (k, i) ∈ E is allowed to contribute

to the linear combination over F forming symbol σij

and βkij = 0 otherwise. Thus, if βkij = 0, we have

αkij = 0; if βkij = 1, we can further determine

how symbol σki contributes to the linear combination

forming symbol σij by choosing αkij ∈ F (note

that αkij can be zero when βkij = 1). Similarly, we

consider the global mixing coefficient xij,p ∈ {0, 1}
of flow p ∈ P and edge (i, j) ∈ E , which relates

to the global coding coefficient cij,p ∈ F as follows.

xij,p = 1 indicates that flow p is allowed to be

mixed (coded) with other flows, i.e., symbol σp is

allowed to contribute to the linear combination over

F forming symbol σij , and xij,p = 0 otherwise. Thus,

if xij,p = 0, we have cij,p = 0; if xij,p = 1, we

can further determine how symbol σp contributes to

the linear combination forming symbol σij (note that

cij,p can be zero when xij,p = 1). Then, we introduce

the global mixing vector xij , (xij,p)p∈P ∈ {0, 1}P

for edge (i, j) ∈ E , which relates to the global coding

vector cij = (cij,p)p∈P ∈ FP . Here, {0, 1}P repre-

sents the set of global mixing vectors, the cardinality

of which is 2P . Similarly, we consider scalar time-

invariant linear network mixing. That is, βkij ∈ {0, 1}
and xij,p ∈ {0, 1} are both scalars, and do not change

over time.

Global mixing vectors provide a natural way of

speaking of flows as possibly coded or not coded

without knowledge of the specific values of global

coding vectors. Intuitively, global mixing vectors can

be regarded as a limited representation of global coding

vectors. Network mixing vectors may not be sufficient

for telling whether a certain symbol can be decoded

or not. Therefore, using the network mixing repre-

sentation, extraneous flows which are mixed with the

desired flows on the paths to each terminal, are not

guaranteed to be cancelled at the terminal. Let ep
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denote the vector with the p-th element being 1 and

all the other elements being 0. Let ∨ denote the “or”

operator (logical disjunction).

Definition 1 (Feasibility of Scalar Linear Network

Mixing): [14], [24] For a network G = (V, E) and

a set of flows P with sources S and terminals T , a

linear network mixing design x = (xij,p)(i,j)∈E,p∈P

is called feasible if the following three conditions are

satisfied: 1) xspj = ep for source edge (sp, j) ∈ E , for

all sp ∈ S and p ∈ P; 2) xij = ∨k∈Ii
βkijxki for edge

(i, j) ∈ E not outgoing from a source, for all i 6∈ S
and βkij ∈ {0, 1}; 3) ∨i∈It

xit,p = 1 for all p ∈ Pt

and xit,p = 0 for all i ∈ It, p 6∈ Pt and t ∈ T .

Note that xit,p = 0 for all i ∈ It, p 6∈ Pt and t ∈ T
in Condition 3) of Definition 1 ensures that for each

terminal, the extraneous flows are not mixed with the

desired flows on the paths to the terminal. In other

words, using linear network mixing, only mixing is

allowed at intermediate nodes. This is not as general as

using linear network coding, which allows both mixing

and canceling (i.e., removing one or multiple flows

from a mixing of flows) at intermediate nodes.

Given a feasible linear network mixing design (spec-

ified by β , (βkij)(k,i),(i,j)∈E ), one way to implement

mixing when F is large is to use RLNC [3] (to

obtain α , (αkij)(k,i),(i,j)∈E ), as discussed in the

introduction. Specifcially, when βkij = 1, αkij can

be randomly, uniformly, and independently chosen in

F using RLNC; when βkij = 0, αkij has to be chosen

to be 0.

III. CONTINUOUS FLOWS WITH MIXING ONLY

In this section, we consider the minimum-cost scalar

time-invariant linear network coding design problem

for general connections of continuous flows with

mixing only. Starting from this section, we consider

multiple global mixing vectors for each edge and

allow coded symbols to flow through each edge at a

continuous rate.

A. Design Parameter

Now, we generate the mixing design illustrated in

Section II-B [14], [24] by considering multiple global

mixing vectors for each edge, allowing flows mixed

over each edge in different ways. We refer to the num-

ber of global network mixing vectors for each edge as

the mixing parameter, denoted as L ∈ {1, · · · , Lmax},

where Lmax is the maximum number of global network

mixing vectors necessary for decodability using mixing

(cf. Definition 1). First, we introduce the global and

local network mixing vectors, for a given mixing

parameter L. Denote L , {1, · · · , L}. For each l ∈ L,

let xij,l , (xij,p,l)p∈P ∈ {0, 1}P denote the l-th
global network mixing vector over edge (i, j) ∈ E . Let

βkij,l,m ∈ {0, 1} denote the local mixing coefficient
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Fig. 1: Illustration of flow partition Y and mixing parameter
L. P = {1, 2, 3}, S = {s1, s2, s3}, R1 = R2 = R3 = 1,
Bij = 10 for all (i, j) ∈ E , U45(z45) = 10z45, Uij(zij) =
zij for all (i, j) ∈ E \ {(4, 5)}, T = {t1, t2}, P1 = {1, 2}
and P2 = {1, 2, 3}. Thus, Y = {{1, 2}, {3}}, Lmax =
|Y | = 2 and L ∈ {1, 2}.

corresponding to the l-th global network mixing vector

of edge (k, i) ∈ E (i.e., xki,l) and the m-th global

network mixing vector of edge (i, j) ∈ E (i.e., xij,m),

where l,m ∈ L. Next, we illustrate the maximum num-

ber of global network mixing vectors Lmax. Denote

Y , {∩t∈T Yt : Yt = Pt or Yt = P−Pt}−{∅}, which

gives a set partition of P that represents the flows that

can be mixed (cf. Definition 1) over an edge in the

worst case (i.e., all terminals obtaining flows through

the same edge). We choose Lmax = |Y |. Note that

1 ≤ Lmax ≤ P , where Lmax = 1 for the multicast

case, i.e., Pt = P for all t ∈ T , and Lmax = P for

the unicast case, i.e., Pt′ ∩ Pt = ∅ for all t 6= t′ and

t, t′ ∈ T . Fig. 1 illustrates an example of flow partition

Y and mixing parameter L for the general case.

Let f t
ij,p,l ≥ 0 denote the transmission rate of flow

p ∈ Pt to terminal t ∈ T over edge (i, j) ∈ E using

xij,l, and let zij,l ≥ 0 denote the transmission rate

corresponding to xij,l over edge (i, j) ∈ E , where l ∈
L. As we allow flow splitting and coding over time,

f t
ij,p,l and zij,l can be real numbers.

B. Problem Formulation

We would like to find the minimum-cost scalar time-

invariant linear network coding design with design

parameter L ∈ {1, · · · , Lmax} for general connections

of continuous flows with mixing only.4

4Note that (1) with j = t, (6) with i = t, and (7) with j = t

imply ∨i∈It,l∈Lxit,p,l = 1 for all p ∈ Pt in Condition 3) of
Definition 1, where t ∈ T .
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Problem 1 (Mixing):

U∗(L) = min
z,f ,x,β

∑

(i,j)∈E

Uij

(

∑

l∈L

zij,l

)

s.t. xij,p,l ∈ {0, 1}, (i, j) ∈ E , p ∈ P, l ∈ L (1)

βkij,l,m ∈ {0, 1}, (k, i), (i, j) ∈ E , l,m ∈ L
(2)

f t
ij,p,l ≥ 0, (i, j) ∈ E , p ∈ Pt, t ∈ T , l ∈ L

(3)
∑

p∈Pt

f t
ij,p,l ≤ zij,l, (i, j) ∈ E , t ∈ T , l ∈ L

(4)
∑

l∈L

zij,l ≤ Bij , (i, j) ∈ E (5)

∑

k∈Oi,l∈L

f t
ik,p,l −

∑

k∈Ii,l∈L

f t
ki,p,l = σt

i,p,

i ∈ V, p ∈ Pt, t ∈ T
(6)

f t
ij,p,l ≤ xij,p,lBij , (i, j) ∈ E , p ∈ Pt,

t ∈ T , l ∈ L (7)

xspj,l = ep, (sp, j) ∈ E , p ∈ P, l ∈ L (8)

xij,l = ∨k∈Ii,m∈Lβkij,m,lxki,m,

i 6∈ S, (i, j) ∈ E , l ∈ L (9)

xit,p,l = 0, i ∈ It, p 6∈ Pt, t ∈ T , l ∈ L,
(10)

where

σt
i,p =











Rp, i = sp

−Rp, i = t

0, otherwise

i ∈ V, p ∈ Pt, t ∈ T .

(11)

Here, z , (zij,l)(i,j)∈E,l∈L, f ,

(f t
ij,p,l)(i,j)∈E,p∈Pt,t∈T ,l∈L, x ,

(xij,p,l)(i,j)∈E,p∈P,l∈L, and β ,

(βkij,l,m)(k,i),(i,j)∈E,l,m∈L.

Problem 1 is a mixed discrete-continuous optimiza-

tion problem, and does not appear to have a ready

solution.

Remark 1 (Problem 1 with L = 1 for Multicast):

For the multicast case (i.e., Pt = P for all t ∈ T )

and L = 1, the constraint in (10) is vacuous, and

the constraint in (7) is always satisfied by choosing

βkij,1,1 = 1 for all (k, i), (i, j) ∈ E and choosing x

according to (8) and (9). Therefore, in the multicast

case, Problem 1 with L = 1 for general connections

reduces to the conventional minimum-cost network

coding design problem for the multicast case [22]. The

complexity of the optimization for the multicast case

is much lower than that for the general case. This is

because in the optimization for the multicast case, the

variables x and β do not appear, and the constraints

in (1), (2), (7), (8), (9) and (10) can be removed.

Remark 2 (Comparison with Intra-flow Coding):

Problem 1 (with any L ∈ {1, · · · , Lmax}) with an

extra constraint
∑

p∈P xij,p,l ∈ {0, 1} for all (i, j) ∈ E
and l ∈ L is equivalent to a minimum-cost intra-flow

coding problem. Thus, the minimum network cost of

Problem 1 (with any L ∈ {1, · · · , Lmax}) is no greater

than the minimum cost for intra-flow coding.

Remark 3 (Comparison with Two-step Mixing):

Problem 1 with L = Lmax and βkij,l,m = 1 instead

of (2), is equivalent to the minimum-cost flow rate

control problem in the second step of the two-step

mixing approach in [23]. Thus, the minimum network

cost of Problem 1 with L = Lmax is no greater than

the minimum cost of the two-step mixing approach in

[23].

Remark 4 (Comparison with Joint Design for Integer

Flows): Problem 1 with L = 1, zij,1 ∈ {0, 1}
and f t

ij,p,l ∈ {0, 1} instead of (3), is equivalent

to the discrete minimum-cost joint mixing and flow

rate optimization problem for general connections of

integer flows in [14], [24], which does not allow flow

splitting and coding over time. Thus, the minimum

network cost of Problem 1 is no greater than that of

the discrete optimization problem in [14], [24]. If the

optimal solution of Problem 1 is a non-integer solution,

it has a lower network cost than that of the discrete

optimization in [14], [24].5

Example 1 (Illustration of Linear Network Mixing):

We illustrate a feasible mixing design (corresponding

to a feasible solution) to Problem 1 with L = 2
for the example in Fig. 1. For ease of illustration,

in this example, we consider unit source rate and do

not consider flow splitting and coding over time. For

source edges (1,6), (1,4), (2,7), (2,4) and (3,4), choose

the global mixing vectors as follows: x16,l = x14,l =
(1, 0, 0), x24,l = x27,l = (0, 1, 0) and x34,l = (0, 0, 1)
for all l = 1, 2. In addition, choose the local cod-

ing coefficients as follows: β145,1,1 = β245,1,1 =
β345,1,2 = 1, β145,2,1 = β245,2,1 = β345,2,2 = 0,

β145,m,2 = β245,m,2 = β345,m,1 = 0 for all m = 1, 2,

β456,1,1 = 1, β456,2,1 = β456,1,2 = β456,2,2 = 0,

β457,1,1 = β457,2,2 = 1 and β457,1,2 = β457,2,1 =
0. Therefore, for edges (4,5), (5,6) and (5,7) not

outgoing from a source, the global mixing vectors

are given by x45,1 = (1, 1, 0), x45,2 = (0, 0, 1),
x56,1 = (1, 1, 0), x56,2 = (0, 0, 0), x57,1 = (1, 1, 0)
and x57,2 = (0, 0, 1). On the other hand, flow paths

(sets of ordered edge-mixing index pairs ((i, j), l)

5Due to space limitations, we do not numerically verify the gains
of the proposed design in this paper over the ones in [14], [23], [24].
Please note that in [14], we have shown the gain of the proposed
solution in [14], [24] over the solution in [23] using numerical
experiments, and the gain of the solution of Problem 1 over the
solution in [14], [24] is obvious.
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such that f t
ij,p,l = 1) from the three sources, i.e.,

{((i, j), l) : f t
ij,p,l = 1, (i, j) ∈ E , l ∈ L} for all

p ∈ Pt and t ∈ T , are illustrated using green, blue

and pink curves in Fig. 1. Accordingly, choose the

transmission rates as follows: zij,1 = 1 and zij,2 =
0 for all (i, j) = (1, 6), (1, 4), (2, 7), (2, 4), (3, 4),
z45,1 = z45,2 = z56,1 = z57,1 = z57,2 = 1, and

z56,2 = 0.

The following lemma shows the existence of a fea-

sible linear network code corresponding to Problem 1.

Lemma 1: Suppose Problem 1 is feasible. Then, for

each feasible solution, there exists a feasible linear

network code with a field size F > T to deliver the

desired flows to each terminal.

Proof: Please refer to Appendix A.

Example 2 (Illustration of Linear Network Cod-

ing): We illustrate how to obtain a feasible linear

network code using random linear network coding,

based on the feasible linear network mixing design

illustrated in Example 1. In this example, one local

mixing coefficient (global mixing vector) corresponds

to one local coding coefficient (global coding vec-

tor).6 For the source edges, choose the global coding

vectors as follows: cij,l = xij,l for all (i, j) =
(1, 6), (1, 4), (2, 7), (2, 4), (3, 4) and l = 1, 2. For all

l,m ∈ L and (k, i), (i, j) ∈ E , if βkij,l,m = 0,

choose αkij,l,m = 0; if βkij,l,m = 1, choose αkij,l,m

uniformly at random from F . Therefore, for the edges

not outgoing from a source, the global coding vectors

are given by cij,l =
∑

k∈Ii,m∈L αkij,m,lcki,m for all

(i, j) = (4, 5), (5, 6), (5, 7) and l ∈ L.

C. Network Cost and Complexity Tradeoff

The design parameter L in Problem 1 determines the

complexity and network cost tradeoff. First, we illus-

trate the impact of L on the complexity of Problem 1.

By (2), we know that for given (k, i), (i, j) ∈ E , the

number of possible choices for (βkij,l,m)l,m∈L is L2.

Since
∑

(i,j)∈E Oj =
∑

j∈V IjOj ≤
∑

j∈V DOj =
DE, the number of possible choices for β =
(βkij,l,m)(k,i),(i,j)∈E,l,m∈L is smaller than or equal to

L2DE. Note that by (8) and (9), x can be fully

determined by β. Therefore, the number of choices

for x and β of Problem 1 is L2DE, which increases

with L.

Next, we discuss the impact of L on the network

cost.

Lemma 2: If Problem 1 is feasible for design

parameter L, then Problem 1 is feasible for design

parameter L + 1 and U∗(L + 1) ≤ U∗(L), where

L ∈ {1, · · · , Lmax − 1}.

6When flow splitting or coding over time happens, one local
mixing coefficient (global mixing vector) may correspond to multiple
local coding coefficients (global coding vectors), and a linear net-
work code can be designed in a similar way based on the sub-flows
and sub-edges established in the proof of Lemma 1.

Proof: Given a feasible solution to Problem 1 with

design parameter L, by setting variables w.r.t. index

l = L + 1 or m = L + 1 to be zero, we can easily

construct a feasible solution to Problem 1 with design

parameter L+1. This feasible solution corresponds to

the same network cost as the one with design parameter

L. But the network cost with design parameter L+ 1
can be further optimized by solving Problem 1 with

design parameter L + 1. Therefore, we complete the

proof.

By Lemma 2, we know that the network cost U∗(L)
is non-increasing w.r.t. L. This can also be understood

from the example in Fig. 1. Note that by Condition 3)

in Definition 1, flow 3 is not allowed to be mixed with

flow 1 and flow 2 on their paths to terminal t1. When

L = 1 < Lmax, flow 3 cannot be delivered over edge

(4, 5) to terminal t2 using feasible mixing. In other

words, Problem 1 with L = 1 is not feasible (i.e., of

infinite network cost). However, when L = 2 = Lmax,

flow 3 can be delivered to terminal t2 without mixing

with flow 1 and flow 2 over edge (4, 5), e.g., using

global mixing vectors x45,1 = (1, 1, 0) and x45,2 =
(0, 0, 1) over edge (4, 5). In other words, Problem 1

with L = 2 is feasible (i.e., of finite network cost).

IV. ALTERNATIVE FORMULATION WITH DISCRETE

MIXING

Problem 1 is a mixed discrete-continuous optimiza-

tion problem with two main challenges. One is the

choice of the network mixing coefficients, i.e., x and

β (discrete variables), and the other is the choice of

the flow rates, i.e., z and f (continuous variables). In

this section, we first propose an equivalent alternative

formulation of Problem 1 which naturally subdivides

Problem 1 according to these two aspects. Then, we

propose a distributed algorithm to solve it.

A. Alternative Formulation

Problem 1 is equivalent to the following problem.

Problem 2 (Equivalent Discrete Mixing for Prob-

lem 1):

U∗(L) = min
x∈M(L)

U∗
x(x),

where U∗
x(x) and M(L) are given by the following

two subproblems, respectively.

Subproblem 1 (Flow Optimization for Problem 2):

For given x, we have:

U∗
x(x) =min

z,f

∑

(i,j)∈E

Uij

(

∑

l∈L

zij,l

)

s.t. (3), (4), (5), (6), (7).

The optimal solution is written as (z∗(x), f∗(x)).
Subproblem 2 (Feasible Discrete Mixing for

Problem 2): Find the set M(L) , {x :
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(1), (2), (8), (9), (10), (12)} of feasible x, where (12) is

given by:

∨i∈It,l∈L xit,p,l = 1, p ∈ Pt, t ∈ T . (12)

For given x, Subproblem 1 is a convex optimiza-

tion problem (optimizing z and f for given x) and

has polynomial-time complexity [30]. On the other

hand, Subproblem 2 is a discrete feasibility problem

(obtaining the set of feasible x) and is NP-complete in

general [31]. Thus, Problem 2 is still a mixed discrete-

continuous optimization problem and is NP-complete

in general.

B. Distributed Solution

In this part, we develop a distributed algorithm

to solve Problem 2 by solving Subproblem 1 and

Subproblem 2, respectively, in a distributed man-

ner. First, we consider Subproblem 1. Given a fea-

sible x ∈ M(L), Subproblem 1 is convex and

can be solved distributively using the primal-dual

method [32]. By relaxing the constraints in (4), (5),

(6) and (7) of Subproblem 1, we have the La-

grangian function L (z, f ,λ,η,µ, ξ) given in (13),

where λ , (λt
ij,l)(i,j)∈E,t∈T ,l∈L � 0, η ,

(ηij)(i,j)∈E � 0, µ , (µt
i,p)i∈V,p∈Pt,t∈T and ξ ,

(ξtij,p,l)(i,j)∈E,p∈Pt,t∈T ,l∈L � 0 denote the Lagrangian

multipliers w.r.t. the constraints in (4), (5), (6) and (7)

of Subproblem 1, respectively. The partial derivatives

of L (z, f ,λ,η,µ, ξ) are given by:

∂L

∂zij,l
=U ′

ij

(

∑

m∈L

zij,m

)

−
∑

t∈T

λt
ij,l+ηij (14)

∂L

∂f t
ij,p,l

=λt
ij,l + µt

i,p1 [Oi 6= ∅]− µt
j,p1 [Ij 6= ∅] + ξtij,p,l

(15)

∂L

∂λt
ij,l

=
∑

p∈Pt

f t
ij,p,l − zij,l (16)

∂L

∂ηij
=
∑

l∈L

zij,l −Bij (17)

∂L

∂µt
i,p

=
∑

k∈Oi,l∈L

f t
ik,p,l −

∑

k∈Ii,l∈L

f t
ki,p,l − σt

i,p

(18)

∂L

∂ξtij,p,l
=f t

ij,p,l − xij,p,lBij , (19)

where 1 [·] denotes the indicator function. The corre-

sponding dual function is given by:

g(λ,η,µ, ξ) = min
z,f

L (z, f ,λ,η,µ, ξ) (20)

s.t. (3).

The corresponding dual problem is as follows:

max
λ,η,µ,ξ

g(λ,η,µ, ξ)

s.t. λ � 0,η � 0, ξ � 0. (21)

For given x ∈ M(L), the primal

optimal (z∗(x), f∗(x)) and the dual optimal

(λ∗(x),η∗(x),µ∗(x), ξ∗(x)) can be obtained using

the primal-dual algoritm summarized in Algorithm 1.

The update equations in Algorithm 1 are given below:

zij,l(n+ 1) =zij,l(n)− δ(n)
∂L

∂zij,l
(n) (22)

f t
ij,p,l(n+ 1) =

(

f t
ij,p,l(n)− δ(n)

∂L

∂f t
ij,p,l

(n)

)+

(23)

λt
ij,l(n+ 1) =

(

λt
ij,l(n) + δ(n)

∂L

∂λt
ij,l

(n)

)+

(24)

ηij(n+ 1) =

(

ηij(n) + δ(n)
∂L

∂ηij
(n)

)+

(25)

µt
i,p(n+ 1) =µt

i,p(n) + δ(n)
∂L

∂µt
i,p

(n) (26)

ξtij,p,l(n+ 1) =

(

ξtij,p,l(n)− δ(n)
∂L

∂ξtij,p,l
(n)

)+

,

(27)

where (x)+ , max{0, x}, the partial derivatives of

L (z(n), f(n),λ(n),η(n),µ(n), ξ(n)) in (22)-(27) are

given by (14)-(19), and {δ(n)} denotes the diminishing

stepsize7 satisfying:

δ(n) → 0 as n → ∞,
∞
∑

n=1

δ(n) = ∞,

∞
∑

n=1

δ(n)2 < ∞.

(28)

(22)-(27) can be computed at each edge based

on local information. Thus, Algorithm 1 can be

implemented locally. In addition, it has been

shown [32] that as n → ∞, (z(n), f(n)) →
(z∗(x), f∗(x)) and (λ(n),η(n),µ(n), ξ(n)) →
(λ∗(x),η∗(x),µ∗(x), ξ∗(x)). In other words, for

given x ∈ M(L), Algorithm 1 converges to

the primal and dual optimal of Subproblem 1,

as n → ∞. Fig. 2 illustrates the convergence of

Algorithm 1 of the network in Fig. 1, with x

given in Example 1. From Fig. 2, we can see that

L (z(n), f(n),λ(n),η(n),µ(n), ξ(n)) converges to

28, which is the optimal network cost U∗(x) to

Subproblem 1, for x given in Example 1.

Next, we consider Subproblem 2. Subproblem 2

can be treated as a CSP and solved distributively

7Note that the diminishing stepsize can guarantee convergence,
although the associated convergence may be slow. For our problem,
it is difficult to determine an appropriate constant stepsize with
guarantee of convergence.
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L (z, f ,λ,η,µ, ξ) =
∑

(i,j)∈E

Uij

(

∑

l∈L

zij,l

)

+
∑

(i,j)∈E,
t∈T ,l∈L

λ
t
ij,l

(

∑

p∈Pt

f
t
ij,p,l − zij,l

)

+
∑

(i,j)∈E

ηij

(

∑

l∈L

zij,l −Bij

)

+
∑

i∈V,
p∈Pt,t∈T

µ
t
i,p





∑

k∈Oi,l∈L

f
t
ik,p,l −

∑

k∈Ii,l∈L

f
t
ki,p,l − σ

t
i,p



+
∑

(i,j)∈E,p∈Pt,
t∈T ,l∈L

ξ
t
ij,p,l

(

f
t
ij,p,l − xij,p,lBij

)

(13)

Algorithm 1 Primal-dual Method for Subproblem 1

(Flow Optimization)

INPUT: x ∈ M(L)

OUTPUT: z∗(x), f∗(x),λ∗(x),η∗(x),µ∗(x), ξ∗(x)

1: initialize n = 0, z(0), f(0),λ(0),η(0),µ(0), ξ(0)
2: loop
3: For all (i, j) ∈ E , edge (i, j) updates zij,l(n +

1), f t
ij,p,l(n+1), λt

ij,l(n+1), ηij(n+1), µt
i,p(n+1)

and ξtij,p,l(n+ 1) according to (22), (23), (24), (25),
(26) and (27), respectively, under given x ∈ M(L).

4: Set n = n+ 1.
5: end loop

Iteration ×10
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Fig. 2: Convergence of Algorithm 1 (Primal-dual Method

for Subproblem 1) for the network in Fig. 1, with x given

in Example 1. The curve represents the Lagrangian function

L (z(n), f(n),λ(n),η(n),µ(n), ξ(n)) at the n-th iteration,

where L(·) is given by (13). Note that in the simulation

for this figure, we use 1.1
∑

(i,j)∈E Uij(
∑

l∈L zij,l) as the

objective function, where Uij(·) is given in Fig. 1.

using clause partition and the Communication-Free

Learning (CFL) algorithm from [27]. While CSPs are

NP-complete in general, CFL provides a probabilistic

distributed iterative algorithm with almost sure conver-

gence in finite time. Specifically, the elements of x can

be treated as the variables of the CSP. {0, 1} can be

treated as the finite set of the CSP. From (9), we have

an equivalent constraint purely on x, i.e.,

∃ (βkij,m,l)k∈Ii,m∈L, βkij,m,l ∈ {0, 1},

s.t. xij,l = ∨k∈Ii,m∈Lβkij,m,lxki,m,

l ∈ L, (i, j) ∈ E , i 6∈ S. (29)

In the following, we shall only consider solving for

the variables x of the CSP in a distributed way using

clause partition and CFL. Note that we directly choose

xspj,l = ep for all l ∈ L, (sp, j) ∈ E and p ∈ P

according to (8). In addition, β can be obtained from

feasible x by (8) and (9).

For notational simplicity, we write the clauses for x

in a more compact form as follows:

φij,p,l

(

xij,l, {xki,m : m ∈ L, k ∈ Ii},

{xkj,m : m ∈ L, k ∈ Ij , j ∈ T }
)

,



















1, if j 6∈ T , (29) holds

1, if j ∈ T and p ∈ Pj , (29) and (12) hold

1, if j ∈ T and p 6∈ Pj , (29) and (10) hold

0, otherwise

(i, j) ∈ E , i 6∈ S, p ∈ P, l ∈ L. (30)

Note that, when j 6∈ T , {xkj,m : k ∈ Ij , j ∈ T ,m ∈
L} = ∅ and we ignore it in the clause φij,p,l(·). For

(12) and (10) in clause φij,p,l(·), we use j as the

terminal index instead of t. It can be seen that the

constraints in (9) (i.e., (29)), (10) and (12) are con-

sidered in clause φij,p,l(·). In addition, the constraint

in (8) is considered when choosing xspj,l = ep for

all (sp, j) ∈ E , p ∈ P and l ∈ L. Therefore, all

the constraints in Subproblem 2 has been considered

in the CSP. We now construct the clause partition of

Subproblem 2. Specifically, the set of clauses variable

xij,p,l participates in is as follows:

Φij,p,l , {φij,p,l} ∪ {φjk,p,m : k ∈ Oj ,m ∈ L}

∪ {φkj,p,m : k ∈ Ij , j ∈ T ,m ∈ L}

i 6∈ S, (i, j) ∈ E , p ∈ P, l ∈ L. (31)

Note that, when j 6∈ T ,

{φkj,p,m : k ∈ Ij , j ∈ T ,m ∈ L} = ∅ and we

ignore it in Φij,p,l in (31).

We thus have the following proposition.

Proposition 1 (CSP for Subproblem 2): The CSP

with variables xij,p,l ∈ {0, 1}, (i, j) ∈ E , p ∈ P, l ∈ L
and clauses (31) has considered all the constraints in

Subproblem 2.

Therefore, a feasible x ∈ M(L) to Subproblem 2

can be found distributively using the probabilistic

distributed iterative CFL algorithm [27, Algorithm 1].

Specifically, for all (i, j) ∈ E , p ∈ P and l ∈ L, in

each iteration, each node i realizes a Bernoulli random

variable selecting xij,p,l; messages on x are passed
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Fig. 3: Convergence of Algorithm 2 (CFL for Subproblem 2) for the network in Fig. 1. a = 0.1 and b = 0.1. These
convergence curves are for one realization of the random Algorithm 2.

Algorithm 2 CFL for Subproblem 2 (Feasible Discrete

Mixing)

Output: x ∈ M(L)

1: For all (i, j) ∈ E , p ∈ P and l ∈ L, edge (i, j) initializes
qij,p,l(x) =

1
2

, where x ∈ {0, 1}.
2: loop
3: For all (i, j) ∈ E , p ∈ P and l ∈ L, edge (i, j)

realizes a random variable, selecting xij,p,l = x with
probability qij,p,l(x), where x ∈ {0, 1}.

4: for (i, j) ∈ E , p ∈ P and l ∈ L do
5: Each edge (i, j) evaluates all the clauses in Φij,p,l.
6: if all clauses in Φij,p,l are satisfied then

7: set qij,p,l(x) =

{

1, if x = xij,p,l

0, otherwise

8: else
9: set qij,p,l(x) =

{

(1− b)qij,p,l(x) +
a

1+a/b
, if x = xij,p,l

(1− b)qij,p,l(x) +
b

1+a/b
, otherwise

where a, b ∈ (0, 1] are design parameters.
10: end if
11: end for
12: end loop

between adjacent nodes for each node i to evaluate its

related clauses in (31); based on the evaluation, each

node i updates the distribution of the Bernoulli random

variable selecting xij,p,l. The details are summarized

in Algorithm 2, which obtains a feasible solution to

Subproblem 2 using CFL. Based on the convergence

result of CFL [27, Corollary 2], we know that Algo-

rithm 2 can find a feasible solution to Subproblem 2

in almost surely finite time. Fig. 3 illustrates the

convergence of Algorithm 2 for the network in Fig. 1.

From Fig. 3, we can see that Algorithm 2 converges to

a feasible solution (i.e., the feasible solution illustrated

in Example 1) to Subproblem 2 quite quickly (within

40 iterations).

Now, we can develop a distributed algorithm to solve

Problem 2, relying on the distributed algorithm for

Subproblem 1 (i.e., Algorithm 1) and the distributed al-

gorithm for Subproblem 2 (i.e., Algorithm 2), as briefly

illustrated in Algorithm 3.8 Based on the convergence

results for Algorithm 1 and Algorithm 2, we can easily

see that Un → U∗(L) almost surely as n → ∞.

Fig. 4 illustrates the convergence of Algorithm 3 at one

instance for the network in Fig. 1. From Fig. 4, we can

see that Algorithm 3 obtains the optimal network cost

28 to Problem 2 (Problem 1) quite quickly (within 5

iterations for the outer loop).

8In Step 3, CFL is run for a sufficiently long time. Step 4 (Step
6) can be implemented with a master node obtaining the network
convergence information of CFL (network cost) from all nodes or
with all nodes computing the average convergence indicator of CFL
(average network cost) locally via a gossip algorithm.
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Algorithm 3 CFL-based Optimization for Problem 2

(Discrete Mixing)

1: initialize n = 1 and U1 = +∞.
2: loop
3: Run the CFL in Algorithm 2.
4: if the CFL finds a feasible solution x to Subproblem 2

then
5: For the obtained x, run Algorithm 1 to obtain the

optimal solution (z∗(x), f∗(x)) to Subproblem 1.
Let Ūn denote the corresponding network cost
U∗

x (x).
6: Set Un = min{Ūn, Un}, Un+1 = Un and n =

n+ 1.
7: end if
8: end loop

Iteration

5 10 15 20 25 30 35 40 45 50

N
e
tw

o
r
k
 C

o
s
t

28

30

32

34

36

38

Network cost

Minimum cost

Fig. 4: Convergence of Algorithm 3 (CFL-based Opti-
mization for Problem 2) for the network in Fig. 1. Each
dot represents the network cost (obtained by Algorithm 1)
of a feasible solution (obtained Algorithm 2). While the
curve represents the minimum network cost obtained by
Algorithm 3 within a certain number of iterations. The dots
and curve are for one realization of the random Algorithm 3.

V. ALTERNATIVE FORMULATION WITH

CONTINUOUS MIXING

The complexity of solving Problem 2 mainly lies in

solving for the network mixing coefficients (discrete

variables) in Subproblem 2. In this section, we first

propose an equivalent alternative formulation of Prob-

lem 1 (Problem 2) with continuous mixing. Then, we

propose a distributed algorithm to solve it.

A. Alternative Formulation

Problem 1 is a mixed discrete-continuous optimiza-

tion problem. Applying continuous relaxation to (1)

and (2) and manipulating (9), we obtain the following

continuous optimization problem.

Problem 3 (Equivalent Continuous Mixing for Prob-

lem 1):

Ū∗(L) = min
z,f ,x̄,β̄

∑

(i,j)∈E

Uij

(

∑

L∈L

zij,l

)

s.t. (3), (4), (5), (6), (8), (10)

x̄ij,p,l ∈ [0, 1], (i, j) ∈ E , p ∈ P, l ∈ L (32)

β̄kij,l,m ∈ [0, 1], (k, i), (i, j) ∈ E , l,m ∈ L
(33)

f t
ij,p,l ≤ x̄ij,p,lBij , (i, j) ∈ E , p ∈ Pt,

t ∈ T , l ∈ L (34)

x̄ij,p,m ≥ β̄kij,l,mx̄ki,p,l, k ∈ Ii, Ii 6= ∅,

(i, j) ∈ E , p ∈ P, l,m ∈ L (35)

x̄ij,p,m ≤
∑

k∈Ii,l∈L

β̄kij,l,mx̄ki,p,l,

Ii 6= ∅, (i, j) ∈ E , p ∈ P, m ∈ L. (36)

Here, x̄ , (x̄ij,p,l)(i,j)∈E,p∈P,l∈L and β̄ ,

(β̄kij,l,m)(k,i),(i,j)∈E,l,m∈L.

Note that Constraints (32) and (33) in Problem 3 can

be treated as the continuous relaxation of Constraints

(1) and (2) in Problem 1. Constraint (34) in Problem 3

corresponds to Constraint (7) in Problem 1. Constraints

(35) and (36) in Problem 3 can be treated as the

continuous counterpart of Constraint (9) in Problem 1.

The following lemma shows the relationship between

Problem 1 (mixed discrete-continuous optimization

problem) and Problem 3 (continuous optimization

problem).

Lemma 3 (Relationship between Problem 1 and

Problem 3): (i) If (z, f ,x,β) is a feasible solu-

tion to Problem 1, then (z, f , x̄, β̄) is a feasible

solution to Problem 3, where x̄ij,p,l = xij,p,l and

β̄kij,l,m = βkij,l,m; if (z, f , x̄, β̄) is a feasible so-

lution to Problem 3, then (z, f ,x,β) is a feasible

solution to Problem 1, where xij,p,l = ⌈x̄ij,p,l⌉ and

βkij,l,m = ⌈β̄kij,l,m⌉. (ii) The feasibilities of Prob-

lem 1 and Problem 3 imply each other. (iii) The optimal

values of Problem 1 and Problem 3 are the same, i.e.,

U∗(L) = Ū∗(L).
Proof: (Sketch) We can easily show that (i) im-

plies (ii) and (iii). Thus, to show Lemma 3, it is

sufficient to show (i). To show (i), we first show that

Constraint (9) is equivalent to two constraints. Then,

we show the first statement of (i) based on the fact

that Constraints (32), (33) and (34) in Problem 3 can

be treated as the continuous relaxations of Constraints

(1), (2) and (7) in Problem 1, respectively; Constraints

(35) and (36) in Problem 3 can be treated as the

continuous relaxations of the two equivalent constraints

of Constraint (9) in Problem 1. Finally, we show the

second statement of (i) by showing that a feasible

solution of Problem 3 satisfies Constraints (32), (33),

(34) and (9). Please refer to Appendix B for the

detailed proof.
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By Lemma 3, solving Problem 1 is equivalent to

solving Problem 3. Problem 3 is a (pure) continuous

optimization problem. It is not convex due to the

constraints in (35) and (36). In general, we can obtain a

stationary point to a non-convex (continuous) problem

with polynomial-time complexity.

B. Distributed Solution

In this part, we develop a distributed algorithm to ob-

tain a stationary point of Problem 3 with polynomial-

time complexity, by using penalty methods [28], the

basic idea of which is to eliminate some or all of the

constraints and add to the objective function a penalty

term that prescribes a high cost to infeasible points.

First, by eliminating the non-convex constraints in

(35) and (36) and adding to the objective function of

Problem 3 a penalty term reflecting a high cost of

violating (35) and (36), we introduce the augmented

Lagrangian function Lc

(

z,x,β,ν,ν
)

given in (37),

where ν , (νkij,p,l,m)(k,i),(i,j)∈E,p∈P,m,l∈L � 0

and ν ,
(

νij,p,m
)

(i,j)∈E,p∈P,m∈L
� 0 denote the

Lagrangian multipliers corresponding to the constraints

in (35) and (36), respectively, and

gkij,p,l,m , β̄kij,l,mx̄ki,p,l − x̄ij,p,m (38)

g
ij,p,m

,−
∑

k∈Ii,l∈L

β̄kij,l,mx̄ki,p,l + x̄ij,p,m. (39)

Here, the second and third terms in the augmented

Lagrangian function in (37) are the penalty terms

that prescribe high costs to infeasible points violating

the non-convex constraints in (35) and (36), and c
is a positive penalty parameter which determines the

severity of the penalty.

We now consider an approximated problem to Prob-

lem 3 which minimizes the augmented Lagrangian

function in (37) subject to the constraints of Problem 3

except (35) and (36).

Problem 4 (Penalty Approximation for Problem 3):

For given c > 0, ν � 0 and ν � 0, we have:

min
z,x,β

Lc

(

z,x,β,ν,ν
)

s.t.
(

z,x,β
)

∈ X ,

where X ,
{(

z,x,β
)

: (3), (4), (5), (6), (8), (10), (32), (33), (34)
}

.

The objective function of Problem 4 is differentiable

but non-convex. The constraint set X of Problem 4

is convex. In general, for given (c,ν,ν), we can

only obtain a stationary point of Problem 4, denoted

as
(

z
†(c,ν,ν),x†(c,ν,ν),β

†
(c,ν,ν)

)

, e.g., using

gradient projection methods, which will be illustrated

later.

As c increases, the approximated problem in Prob-

lem 4 becomes increasingly accurate to Problem 3. The

penalty method for Problem 3 consists of a sequence

Algorithm 4 Penalty Method for Problem 3 (Contin-

uous Mixing)

OUTPUT: z†,x†,β
†

1: initialize n = 0, c(0) = 1, ν(0) and ν(0).
2: loop
3: Compute a stationary point

(

z(n),x(n),β(n)
)

of Problem 4, e.g., using Algo-
rithm 5, i.e.,

(

z(n),x(n),β(n)
)

=
(

z
†(c(n),ν(n),ν(n)),x†(c(n),ν(n),ν(n)),β

†
(c(n),ν(n),ν(n))

)

obtained by Algorithm 5.
4: For all (i, j) ∈ E and l,m ∈ L, each edge (i, j)

updates c(n+1), νkij,p,l,m(n+1) and νij,p,m(n+1)
according to (40), (41) and (42), respectively.

5: Set n = n+ 1.
6: end loop

of problems obtaining a stationary point of the form in

Problem 4 with increasing c. The details of the penalty

method for Problem 3 is summarized in Algorithm 4.

The update equations in Algorithm 4 are given by:

c(n+ 1) = βc(n) (40)

νkij,p,l,m(n+ 1) =
(

νkij,p,l,m(n) + c(n)gkij,p,l,m(n)
)+

(41)

νij,p,m(n+ 1) =
(

νij,p,m(n) + c(n)g
ij,p,m

(n)
)+

.

(42)

Here, gkij,p,l,m(n) and g
ij,p,m

(n) denote the the values

of the functions in (38) and (39) at a stationary point
(

z
†(c(n),ν(n),ν(n)),x†(c(n),ν(n),ν(n)),β

†
(c(n),ν(n),ν(n))

)

of Problem 4 at the n-th iteration, which can be

obtained in a distributed manner using the gradient

projection algorithm in Algorithm 5. We shall illustrate

the details of Algorithm 5 later. In addition, the update

equations in Step 4 can be computed at each edge

based on local information. Therefore, Algorithm 4

can be implemented in a distributed manner. As the

number of iterations n goes to infinity, we can obtain

a stationary point of Problem 3, as summarized in the

following theorem.

Theorem 1 (Convergence of Algorithm 4): As

n → ∞,
(

z(n),x(n),β(n)
)

→
(

z
†,x†,β

†
)

, where
(

z(n),x(n),β(n)
)

is given by the n-th iteration of

Algorithm 4, and
(

z
†,x†,β

†
)

is a stationary point of

Problem 3.9

Proof: Please refer to Appendix C.

Fig. 5 illustrates the convergence of Algorithm 4

for the network in Fig. 1. From Fig. 5, we can see

that as n increases, the non-convex constraints in (35)

and (36) tend to be satisfied, and the network cost

goes to 28, which is the optimal network cost to

9The constraint set of Problem 3 can be written as
{(

z,x,β
)

: (35), (36)
}

∩ X , in terms of
(

z,x,β
)

, where X is

the constraint set of Problem 4.
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Lc

(

z,x,β,ν,ν
)

=
∑

(i,j)∈E

Uij

(

∑

l∈L

zij,l

)

+
1

2c

∑

(k,i),(i,j)∈E,
p∈P,l,m∈L

(

(

(

νkij,p,l,m + cgkij,p,l,m
)+
)2

− ν
2
kij,p,l,m

)

+
1

2c

∑

Ii 6=∅, (i,j)∈E,
p∈P,m∈L

(

(

(

νij,p,m + cg
ij,p,m

)+
)2

− ν
2
ij,p,m

)

(37)

Problem 2 (Problem 1). Algorithm 4 converges quite

quickly (within 5 iterations for the outer loop).

Now, we focus on obtaining a stationary

point
(

z
†(c,ν,ν),x†(c,ν,ν),β

†
(c,ν,ν)

)

of

Problem 4, using gradient projection methods [28,

pp. 228]. We first compute the partial derivatives of

Lc

(

z,x,β,ν,ν
)

in (37) as follows:

∂Lc

∂zij,l
=U ′

ij

(

∑

m∈L

zij,m

)

(43)

∂Lc

∂xij,p,m

=−
∑

k∈Ii,l∈L

(

νkij,p,l,m + cgkij,p,l,m
)+

+
∑

k∈Oj ,l∈L

βkij,l,m

(

νkij,p,m,l + cgkij,p,m,l

)+

−
∑

k∈Oj ,l∈L

βijk,m,l

(

νjk,p,l + cg
jk,p,l

)+

+
(

νij,p,m + cg
ij,p,m

)+

(44)

∂Lc

∂βkij,l,m

=
∑

p∈P

xki,p,l

(

(

νkij,p,l,m + cḡkij,p,l,m

)
+

−
(

νij,p,m + cg
ij,p,m

)+
)

. (45)

For given (c,ν,ν), the gradient projection

method to compute a stationary point
(

z
†(c,ν,ν),x†(c,ν,ν),β

†
(c,ν,ν)

)

of Problem 4 is

summarized in Algorithm 5. The update equations in

Algorithm 5 are given below:

zij,l(n+ 1) =

[

zij,l(n)− ǫ(n)
∂Lc

∂zij,l
(n)

]

∗

(46)

xij,p,m(n+ 1) =

[

xij,p,m(n)− ǫ(n)
∂Lc

∂xij,p,m

(n)

]

∗
(47)

βkij,l,m(n+ 1) =

[

βkij,l,m(n)− ǫ(n)
∂Lc

∂βkij,l,m

(n)

]

∗

,

(48)

where the partial derivatives of Lc

(

z,x,β,ν,ν
)

in

(46), (47) and (48) are given by (43), (44) and (45),

Algorithm 5 Gradient Projection Method for Prob-

lem 4 (Penalty Approximation)

INPUT: c,ν,ν

OUTPUT: z†(c,ν,ν),x†(c,ν,ν),β
†
(c,ν,ν)

1: initialize n = 0, z(0), x(0), β(0).
2: loop
3: For all (i, j) ∈ E , each edge (i, j) updates

zij,l(n + 1), xij,p,m(n + 1) and βkij,l,m(n + 1)
according to (46), (47) and (48), respectively,
where the projection [ ]∗ on the constraint set
of Problem 4 is computed using Algorithm 6. In
other words,

(

z(n+ 1),x(n+ 1),β(n+ 1)
)

=
(

z
∗
(

z
′,x′,β

′
)

,x∗
(

z
′,x′,β

′
)

,β
∗
(

z
′,x′,β

′
))

obtained by Algorithm 6, where
z′ij,l = zij,l(n) − ǫ(n) ∂Lc

∂zij,l
(n),

x′
ij,p,m = βkij,l,m(n) − ǫ(n) ∂Lc

∂βkij,l,m
(n), and

β
′

kij,l,m = βkij,l,m(n)− ǫ(n) ∂Lc

∂βkij,l,m
(n).

4: Set n = n+ 1.
5: end loop

{ǫ(n)} denotes the diminishing stepsize satisfying:

ǫ(n) → 0 as n → ∞,

∞
∑

n=1

ǫ(n) = ∞,

∞
∑

n=1

ǫ(n)2 < ∞,

(49)

and [·]∗ denotes the projection on the convex con-

straint set of Problem 4, i.e., the set of solutions

satisfying (3)-(6), (8), (10), (32)-(34), which can be

obtained in a distributed manner using the primal-

dual algorithm in Algorithm 6. We shall illustrate

the details of Algorithm 6 later. It has been shown

that as n → ∞, (z(n),x(n),β(n)) converges to a

stationary point
(

z
†(c,ν,ν),x†(c,ν,ν),β

†
(c,ν,ν)

)

of Problem 4 [28, pp. 232]. Fig. 6 illustrates the

convergence of Algorithm 5 for the network in Fig. 1.

We can see that Algorithm 5 converges quite quickly

(within 50 iterations for the outer loop).

Next, we study the projection of
(

z
′,x′,β

′
)

on the convex constraint set of Problem 4, i.e.,
[(

z
′,x′,β

′
)]

∗
. First, define the distance between

(z,x,β) and
(

z
′,x′,β

′
)

as follows:

D
(

z,x,β, z′,x′,β
′
)

,
∑

(i,j)∈E,l∈L

(zij,l − z′ij,l)
2
+

∑

(i,j)∈E,l∈L

(

x̄ij,p,l − x̄′
ij,p,l

)2
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Fig. 5: Convergence of Algorithm 4 (Penalty Method for Problem 3) for the network in Fig. 1. In (a), the curve represents

the augmented Lagrangian function Lc(n)

(

z(n),x(n),β(n),ν(n),ν(n)
)

at the n-th iteration, where Lc(·) is given by (37).

In (b), the curve represents
∑

(k,i),(i,j)∈E,p∈P,l,m∈L

(

gkij,p,l,m(n)
)+

+
∑

Ii 6=∅, (i,j)∈E,p∈P,m∈L

(

g
ij,p,m

(n)
)+

at the n-th

iteration. In (c), the curve represents
∑

(i,j)∈E Uij

(
∑

l∈L zij,l(n)
)

at the n-th iteration.
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Fig. 6: Convergence of Algorithm 5 (Gradient Projection
Method for Problem 4) for the network in Fig. 1. The curve
represents Lc

(

z(n),x(n),β(n),ν,ν
)

at the n-th iteration
for given c > 0, ν � 0 and ν � 0, where Lc(·) is given by
(37).

+
∑

k∈Ii 6=∅,(i,j)∈E,l,m∈L

(

β̄kij,l,m − β̄′
kij,l,m

)2
. (50)

The projection of
(

z
′,x′,β

′
)

on the convex constraint

set of Problem 4 can be obtained by solving the

following problem.

Problem 5 (Projection on Constraint Set of Prob-

lem 4): For given
(

z
′,x′,β

′
)

, we have:

min
z,x,β,f

D
(

z,x,β, z′,x′,β
′
)

s.t. (3), (4), (5), (6), (32), (33), (34).

The optimal solution to Problem 5 is written as
(

z
∗
(

z
′,x′,β

′
)

,x∗
(

z
′,x′,β

′
)

,β
∗
(

z
′,x′,β

′
)

, f∗
(

z
′,x′,β

′
))

.

In addition, we have
[(

z
′,x′,β

′
)]

∗
=

(

z
∗
(

z
′,x′,β

′
)

,x∗
(

z
′,x′,β

′
)

,β
∗
(

z
′,x′,β

′
))

.

Problem 5 is convex and can be solved us-

ing the primal-dual method. By relaxing the con-

straints in (4), (5), (6) and (34) of Problem 5,

for given (z′,x′,β
′
), we have the following La-

grangian function L
(

z,x,β, f ,λ,η,µ, ξ
)

given in

(51), where λ , (λt
ij,l)(i,j)∈E,t∈T ,l∈L � 0, η ,

(ηij)(i,j)∈E � 0, µ , (µt
i,p)i∈V,p∈Pt,t∈T and ξ ,

(ξtij,p,l)(i,j)∈E,p∈Pt,t∈T ,l∈L � 0 denote the Lagrangian

multipliers w.r.t. the constraints in (4), (5), (6) and (34)

of Problem 5, respectively, with abuse of notations. The

partial derivatives of L
(

z,x,β, f ,λ,η,µ, ξ
)

are given

by:

∂L

∂zij,l
= 2

(

zij,l − z′ij,l
)

−
∑

t∈T

λt
ij,l+ηij (52)

∂L

∂xij,p,m

= 2
(

xij,p,m − x′
ij,p,m

)

−
∑

t∈{t:p∈Pt}

ξtij,p,mBij

(53)

∂L

∂βkij,l,m

= 2
(

βkij,l,m − β
′

kij,l,m

)

(54)

∂L

∂f t
ij,p,l

= λt
ij,l + µt

i,p1 [Oi 6= ∅]− µt
j,p1 [Ij 6= ∅] + ξtij,p,l

(55)

∂L

∂λt
ij,l

=
∑

p∈Pt

f t
ij,p,l − zij,l (56)

∂L

∂ηij
=
∑

l∈L

zij,l −Bij (57)

∂L

∂µt
i,p

=
∑

k∈Oi,l∈L

f t
ik,p,l −

∑

k∈Ii,l∈L

f t
ki,p,l − σt

i,p

(58)

∂L

∂ξtij,p,l
= f t

ij,p,l − xij,p,lBij . (59)

Similar to Subproblem 2 in Section IV,

for given
(

z
′,x′,β

′
)

, the primal optimal
(

z
∗
(

z
′,x′,β

′
)

,x∗
(

z
′,x′,β

′
)

,β
∗
(

z
′,x′,β

′
)

, f∗
(

z
′,x′,β

′
))

and the dual optimal

(

λ∗
(

z
′,x′,β

′
)

,η∗
(

z
′,x′,β

′
)

,µ∗
(

z
′,x′,β

′
)

, ξ∗
(

z
′,x′,β

′
))

of Problem 5 can can be obtained using the primal-

dual algoritm summarized in Algorithm 6. The update
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L
(

z,x,β, f ,λ,η,µ, ξ
)

=D
(

z,x,β, z
′
,x

′
,β

′
)

+
∑

(i,j)∈E,
t∈T ,l∈L

λ
t
ij,l

(

∑

p∈Pt

f
t
ij,p,l − zij,l

)

+
∑

(i,j)∈E

ηij

(

∑

l∈L

zij,l −Bij

)

+
∑

i∈V,
p∈Pt,t∈T

µ
t
i,p,l





∑

k∈Oi,l∈L

f
t
ik,p,l −

∑

k∈Ii,l∈L

f
t
ki,p,l − σ

t
i,p



+
∑

(i,j)∈E,p∈Pt,
t∈T ,l∈L

ξ
t
ij,p,l

(

f
t
ij,p,l − xij,p,lBij

)

(51)

equations in Algorithm 6 are given below:

zij,l(n+ 1) =zij,l(n)− γ(n)
∂L

∂zij,l
(n) (60)

xij,p,l(n+ 1) =

[

xij,p,l(n)− γ(n)
∂L

∂xij,p,l

(n)

]

[0,1]

(61)

βkij,l,m(n+ 1) =

[

βkij,l,m(n)− γ(n)
∂L

∂βkij,l,m

(n)

]

[0,1]

(62)

f t
ij,p,l(n+ 1) =

(

f t
ij,p,l(n)− γ(n)

∂L

∂f t
ij,p,l

(n)

)+

(63)

λt
ij,l(n+ 1) =

(

λt
ij,l(n) + γ(n)

∂L

∂λt
ij,l

(n)

)+

(64)

ηij(n+ 1) =

(

ηij(n) + γ(n)
∂L

∂ηij
(n)

)+

(65)

µt
i,p(n+ 1) =µt

i,p(n) + γ(n)
∂L

∂µt
i,p

(n) (66)

ξtij,p,l(n+ 1) =

(

ξtij,p,l(n) + γ(n)
∂L

∂ξtij,p,l
(n)

)+

,

(67)

where the partial derivatives of

L
(

z(n),x(n),β(n), f(n),λ(n),η(n),µ(n), ξ(n)
)

in

(60), (61), (62), (63), (64), (65), (66) and (67) are

given by (52), (53), (54), (55), (56), (57), (58) and

(59), [x][0,1] denotes the projection of x on [0,1], and

{γ(n)} denotes the diminishing stepsize satisfying

γ(n) → 0 as n → ∞,

∞
∑

n=1

γ(n) = ∞,

∞
∑

n=1

γ(n)2 < ∞.

(68)

Note that Algorithm 6 can be implemented in a

distributed manner. In addition, it has been shown

[32] that as n → ∞,
(

z(n),x(n),β(n), f(n)
)

→
(

z
∗
(

z
′,x′,β

′
)

,x∗
(

z
′,x′,β

′
)

,β
∗
(

z
′,x′,β

′
)

, f∗
(

z
′,x′,β

′
))

and (λ(n),η(n),µ(n), ξ(n)) →
(

λ∗
(

z
′,x′,β

′
)

,η∗
(

z
′,x′,β

′
)

,µ∗
(

z
′,x′,β

′
)

, ξ∗
(

z
′,x′,β

′
))

.

In other words, for given
(

z
′,x′,β

′
)

, Algorithm 6

converges to the projection of
(

z
′,x′,β

′
)

on

Algorithm 6 Primal-dual Method for Problem 5 (Pro-

jection)

INPUT: z′, x
′ and β

′

OUTPUT: z∗
(

z
′,x′,β

′
)

,x∗
(

z
′,x′,β

′
)

,β
∗
(

z
′,x′,β

′
)

, f∗
(

z
′,x′,β

′
)

λ∗
(

z
′,x′,β

′
)

,η∗
(

z
′,x′,β

′
)

,µ∗
(

z
′,x′,β

′
)

and

ξ∗
(

z
′,x′,β

′
)

1: initialize n = 0,
z(n),x(n),β(n), f(n),λ(n),η(n),µ(n) and ξ(n).

2: loop
3: Update zij,l(n + 1), xij,p,l(n + 1), βkij,l,m(n +

1), f t
ij,p,l(n+1), λt

ij,l(n+1), ηij(n+1), µt
i,p(n+1)

and ξtij,p,l(n+ 1) according to (60), (61), (62), (63),
(64), (65), (66) and (67), respectively.

4: Set n = n+ 1.
5: end loop

Iteration
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Fig. 7: Convergence of Algorithm 6 (Primal-dual Method for
Problem 5) for the network in Fig. 1. The curve represents

D
(

z(n),x(n),β(n), z′,x′,β
′
)

at the n-th iteration for

given
(

z
′,x′,β

′
)

, where D(·) is given by (50).

the convex constraint set of Problem 4, i.e.,
[(

z
′,x′,β

′
)]

∗
, as n → ∞. Fig. 7 illustrates the

convergence of Algorithm 6 for the network in Fig. 1.

VI. CONCLUSION

In this paper, we considered linear network code

constructions for general connections of continuous

flows to minimize the total cost of edge use based on

mixing. To solve the minimum-cost network coding

design problem, we proposed two equivalent alter-

native formulations with discrete mixing and contin-

uous mixing, respectively, and developed distributed

algorithms to solve them. Our approach allows fairly

general coding across flows and guarantees no greater

cost than existing solutions.
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APPENDIX A: PROOF OF LEMMA 1

First, we consider L = 1. We omit the index terms

(1) and (1, 1) behind the variables for notational sim-

plicity. Let {zij}, {xij,p}, {βkij} and {f t
ij,p} denote

a feasible solution to Problem 1. We shall extend the

proof of Lemma 1 in [14], [24] for the integer flows

(f t
ij,p ∈ {0, 1}) and unit source rates (Rp = 1) with

one global coding vector over each edge (zij ∈ {0, 1})

to the general continuous flows (f t
ij,p ∈ [0, Bij ]) and

source rates (Rp ∈ R
+) with multiple global coding

vectors (zij ∈ [0, Bij ]) over each edge. In the general

case, we code over time n ≥ 1. For all p ∈ P ,

convert source p with source rate Rp over time n to

⌊nRp⌋ unit rate sub-sources p1, · · · , p⌊nRp⌋. For each

edge (i, j) ∈ E , allow the total number of the sub-

flows of flow p ∈ Pt to terminal t ∈ T to be fewer

than or equal to ⌈nf t
ij,p⌉. Therefore, the flow path

of flow p can be decomposed into ⌊nRp⌋ unit rate

sub-flow paths p1, · · · , p⌊nRp⌋ from source p ∈ Pt

to terminal t ∈ T . The sum rate of unit rate sub-

flows of flow p over edge (i, j) ∈ E is less than or

equal to ⌈nf t
ij,p⌉. The sum rate of unit rate sub-flows

of all the flows over edge (i, j) is less than or equal

to z̄ij = maxt∈T

∑

p∈Pt
⌈nf t

ij,p⌉. Decompose edge

(i, j) into z̄ij sub-edges. Let sub-flows to terminal t
pass different sub-edges, i.e., each sub-edge transmit

at most one sub-flow to terminal t. We have now

reduced the general case to the special case considered

in Lemma 1 in [14], [24]. Therefore, we can show that

there exists a feasible linear network code over time

n. The associated average sum transmission rate over

edge (i, j) is z̄ij/n. Note that z̄ij/n − zij/n ≤ P/n.

Therefore, this code design can achieve the minimum

cost U∗(1) by taking n arbitrarily large.

When L > 1, we can convert each edge (i, j) ∈ E
into L edges. Then, we can apply the above proof for

L = 1 to the equivalent constructed network.

APPENDIX B: PROOF OF LEMMA 3

It is obvious that (i) implies (ii). Next, we show

that (i) implies (iii). Suppose (i) holds, which indicates

that each {zij,l} associated with a feasible solution to

Problem 1 is also associated with a feasible solution to

Problem 3, and vice versa. By noting that {zij,l} fully

determines
∑

(i,j)∈E Uij(
∑

l∈L zij,l), the two related

feasible solutions for the two problems have the same

network cost. Thus, the set of feasible network costs to

Problem 1 is the same as that to Problem 3, implying

the optimal values of the two problems are the same.

Therefore, we can show that (i) implies (iii). Thus, to

show Lemma 3, it is sufficient to show (i). Note that

in the proof, we only need to consider the different

constrains between Problem 1 and Problem 3.

To show (i), we first show that when xij,p,l ∈ {0, 1}
and βkij,l,m ∈ {0, 1}, Constraint (9) is equivalent to

the following two constraints in (69) and (70).

xij,p,m ≥ βkij,l,mxki,p,l, k ∈ Ii, l ∈ L

m ∈ L, Ii 6= ∅, (i, j) ∈ E , p ∈ P (69)

xij,p,m ≤
∑

k∈Ii,l∈L

βkij,l,mxki,p,l,

m ∈ L, Ii 6= ∅, (i, j) ∈ E , p ∈ P. (70)

Note that Constraints (9), (69) and (70) are for all

m ∈ L, Ii 6= ∅, (i, j) ∈ E and p ∈ P . Thus, we prove

this equivalence by considering the following two cases

for any m ∈ L, Ii 6= ∅, (i, j) ∈ E and p ∈ P .

First, consider the case where βkij,l,mxki,p,l = 0 for

all k ∈ Ii and l ∈ L. Constraint (9) implies that

xij,p,m = 0, and Constraints (69) and (70) also imply

that xij,p,m = 0. Second, consider the case where there

exists at least one pair (k, l), where k ∈ Ii and l ∈ L,

such that βkij,l,mxki,p,l = 1. Constraint (9) implies

that xij,p,m = 1, and Constraints (69) and (70) also

imply that xij,p,m = 1. Note that under the integer

constraints xij,p,l ∈ {0, 1} and βkij,l,m ∈ {0, 1},

the above two cases are the only two possible cases.

Therefore, we can show Constraint (9) is equivalent to

Constraints (69) and (70).

Next, we show that the first statement of (i) holds.

Suppose {zij,l}, {f
t
ij,p,l}, {xij,p,l}, {βkij,l,m} is a fea-

sible solution to Problem 1. Let x̄ij,p,l = xij,p,l ∈
{0, 1} for all l ∈ L, (i, j) ∈ E and p ∈ P , and

β̄kij,l,m = βkij,l,m ∈ {0, 1} for all k ∈ Ii, Ii 6=
∅, (i, j) ∈ E and l,m ∈ L. Since Constraints (32), (33)

and (34) in Problem 3 can be treated as the continuous

relaxation of Constraints (1), (2) and (7) in Problem 1,

{f t
ij,p,l}, {x̄ij,p,l}, {β̄kij,l,m} satisfies Constraints (32),

(33) and (34). In addition, since Constraint (9) is

equivalent to Constraints (69) and (70), and Constraints

(35) and (36) can be treated as the continuous relax-

ation of Constraints (69) and (70), {x̄ij,p,l}, {β̄kij,l,m}
satisfies Constraints (35) and (36). Therefore, we can

show {zij,l}, {f
t
ij,p,l}, {x̄ij,p,l}, {β̄kij,l,m} is a feasible

solution to Problem 3.

Finally, we show that the second statement of (i)

holds. Suppose {zij,l}, {f
t
ij,p,l}, {x̄ij,p,l}, {β̄kij,l,m} is

a feasible solution to Problem 3. Let xij,p,l = ⌈x̄ij,p,l⌉
for all l ∈ L, (i, j) ∈ E and p ∈ P , and βkij,l,m =
⌈β̄kij,l,m⌉ for all k ∈ Ii, Ii 6= ∅, (i, j) ∈ E and

l,m ∈ L. In other words, if x̄ij,p,l = 0 (β̄kij,l,m = 0),

then xij,p,l = 0 (βkij,l,m = 0); if x̄ij,p,l ∈ (0, 1]
(β̄kij,l,m ∈ (0, 1]), then xij,p,l = 1 (βkij,l,m = 1).

It is obvious that {f t
ij,p,l}, {xij,p,l}, {βkij,l,m} satis-

fies Constraints (1), (2) and (7). It remains to show

{xij,p,l}, {βkij,l,m} satisfies Constraint (9). Note that

Constraint (9) is for all m ∈ L, Ii 6= ∅, (i, j) ∈ E
and p ∈ P . Thus, similarly, we prove this result by

considering the following two cases for any m ∈



16

L, Ii 6= ∅, (i, j) ∈ E and p ∈ P . First, consider the

case where β̄kij,l,mx̄ki,p,l = 0 for all k ∈ Ii and l ∈ L.

Constraints (35) and (36) imply that x̄ij,p,m = 0,

and hence, we have xij,p,m = ⌈x̄ij,p,m⌉ = 0. In

addition, β̄kij,l,mx̄ki,p,l = 0 for all k ∈ Ii and l ∈ L
also implies βkij,l,mxki,p,l = ⌈β̄kij,l,m⌉⌈x̄ki,p,l⌉ = 0
for all k ∈ Ii and l ∈ L. Thus, in this case,

we can show {xij,p,l}, {βkij,l,m} satisfies Constraint

(9). Second, consider the case where there exists at

least one pair (k, l), where k ∈ Ii and l ∈ L,

such that β̄kij,l,mx̄ki,p,l ∈ (0, 1]. Constraints (35) and

(36) together with Constraints (32) and (33) imply

that x̄ij,p,m ∈ (0, 1], and hence, we have xij,p,m =
⌈x̄ki,p,l⌉ = 1. In addition, β̄kij,l,mx̄ki,p,l ∈ (0, 1]
together with Constraints (32) and (33) also imply

βkij,l,mxki,p,l = ⌈β̄kij,l,m⌉⌈x̄ki,p,l⌉ = 1. Thus, in

this case, we can show {xij,p,l}, {βkij,l,m} satisfies

Constraint (9). Note that under the continuous con-

straints xij,p,l ∈ [0, 1] and βkij,l,m ∈ [0, 1], the above

two cases are the only two possible cases. Therefore,

we can show {zij,l}, {f
t
ij,p,l}, {xij,p,l}, {βkij,l,m} is a

feasible solution to Problem 1.

Therefore, we complete the proof of Lemma 3.

APPENDIX C: PROOF OF THEOREM 1

In the following, we prove a theorem, i.e., Theo-

rem 2, which is more general than Theorem 1. For

ease of illustration, we first introduce some notations.

Denote x , (x1, · · · , xn), z , (z1, · · · , zr) and

∇xf ,

(

∂f
∂x1

, · · · , ∂f
∂xn

)T

, where r ≤ n. Consider

the following optimization problem.

Problem 6 (Equality and Inequality Constrained

Problem):

min
x

f(x)

s.t. hi(x) = 0, · · · , hm(x) = 0,

gj(x) ≤ 0, · · · , gr(x) ≤ 0.

Its augmented Lagrangian function is given by [28, pp.

406]:

Lc (x,λ,µ) =f(x) + λT
h(x) +

c

2
‖h(x)‖2

+
1

2c

r
∑

j=1

(

(max (0, µj + cgj(x)))
2 − µ2

j

)

,

(71)

where h , (h1, · · · , hm) and λ , (λ1, · · · , λm)T .

Convert Problem 6 to the following problem [28, pp.

406]:

Problem 7 (Equality Constrained Problem):

min
x,z

f(x)

s.t. hi(x) = 0, · · · , hm(x) = 0,

gj(x) + z2j = 0, · · · , gr(x) + z2r = 0.

Its augmented Lagrangian function is given by [28,

398]:

L̄c (x, z,λ,µ) = f(x) + λT
h(x) +

c

2
‖h(x)‖2

+

r
∑

j=1

(

µj

(

gj(x) + z2j
)

+
c

2
|gj(x) + z2j |

2
)

, (72)

where h , (h1, · · · , hm), λ , (λ1, · · · , λm)T and

µ , (µ1, · · · , µr)
T .

Assume f , hi, i = 1, · · · ,m and gj , j = 1, · · · , r
are continously differentiable. Assume the constraint

set X , {x ∈ R
n|hi(x) = 0, gj(x) ≤ 0, i =

1, · · ·m, j = 1, · · · r} of Problem 6 is nonempty. The

following theorem shows that a stationary point of

Problem 6 can be obtained using the penalty method

considered in this paper. Note that Theorem 2 extends

Proposition 4.2.1 in [28]. In addition, Theorem 2

implies Theorem 1.

Theorem 2: For n = 0, 1, · · · , let x(n) ∈ X
be a stationary point of Lc(n)(x,λ(n),µ(n)), i.e.,

∇xLc(n)(x,λ(n),µ(n))
T (x − x(n)) ≥ 0 for all

x ∈ X , where {λ(n)} and {µ(n)} are bounded

and {c(n)} satisfies 0 < c(n) < c(n + 1) for all

n and c(n) → ∞ as n → ∞. Assume x(n) →
x
∗ ∈ X , λi(n) → λ∗

i and µj(n) → µ∗
j , where

λi(n+1) = λi(n) + c(n)hi(x(n)), i = 1, · · · ,m and

µj(n + 1) = µj(n) + c(n)(gj(x(n)) + zj(n)
2
), j =

1, · · · , r. Then, x∗ is a stationary point of the prob-

lem 6, i.e.,∇xf(x
∗)T (x − x

∗) ≥ 0 for all x ∈ X .

Proof: By the proof in [28, 405], we know that

for given c(n), λ(n) and µ(n), we have:

Lc(n) (x,λ(n),µ(n)) = min
z

L̄c(n) (x, z,λ(n),µ(n))

=L̄c(n) (x, z (x, c(n),λ(n),µ(n)) ,λ(n),µ(n)) , ∀x ∈ X ,
(73)

where

z (x, c(n),λ(n),µ(n)) , arg min
z

L̄c(n) (x, z,λ(n),µ(n)) .

First, we show that (x(n), z(n)) is a stationary point

of L̄c(n) (x, z,λ(n),µ(n)). By (73), we have:

∇zL̄c(n) (x, z (x, c(n),λ(n),µ(n)) ,λ(n),µ(n))
T

(z− z (x, c(n),λ(n),µ(n))) = 0, ∀x ∈ X

⇒∇zL̄c(n) (x(n), z(n),λ(n),µ(n))
T
(z− z(n)) = 0, ∀z ∈ R

r,
(74)

where z(n) , z (x(n), c(n),λ(n),µ(n)). Since x(n)
is a stationary point of Lc(n)(x,λ(n),µ(n)), we have:

∇xLc(n) (x(n),λ(n),µ(n))
T
(x− x(n)) ≥ 0, ∀x ∈ X .

(75)
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By (73) and (75), we can get:

∇xL̄c(n) (x(n), z(n),λ(n),µ(n))
T
(x− x(n)) ≥ 0, ∀x ∈ X .

(76)

By (74) and (76), we can get:

∇xL̄c(n) (x(n), z(n),λ(n),µ(n))
T
(x− x(n))

+∇zL̄c(n) (x(n), z(n),λ(n),µ(n))
T
(z− z(n)) ≥ 0,

∀x ∈ X , ∀z ∈ R
r. (77)

Thus, we can show that (x(n), z(n)) is a stationary

point of L̄c(n) (x, z,λ(n),µ(n)).
Next, we show that (x∗, z∗) is a stationary point of

f(x) + λ∗T
h(x) +

r
∑

j=1

µ∗
j (gj(x) + z2j ). By (72), we

know:

∇xL̄c (x, z,λ,µ) = ∇f(x) +∇h(x)λ+ c∇h(x)h(x)

+

r
∑

j=1

(

∇gj(x)µj + c(gj(x) + z2j )∇gj(x)
)

(78)

∇zj L̄c (x, z,λ,µ) = 2µjzj + 2czj
(

gj(x) + z2j
)

, j = 1, · · · , r.
(79)

Substituting (78) and (79) into (77), we have:
(

∇f(x(n)) +∇h(x(n)) (λ(n) + c(n)h(x(n)))

+
r
∑

j=1

∇gj(x(n))
(

µj(n) + c(n)
(

gj(x(n)) + zj(n)
2))
)T

(x− x(n)) +

r
∑

j=1

(

2zj(n)
(

µj(n) + c(n)
(

gj(x(n)) + zj(n)
2)))

(zj − zj(n)) ≥ 0, ∀x ∈ X , ∀zj ∈ R. (80)

Since x(n) → x
∗, λi(n) → λ∗

i for all i = 1, · · · ,m,
µj(n) → µ∗

j and zj(n) → z∗j for all j = 1, · · · , r, we
have:
(

∇f(x∗) +∇h(x∗)λ∗ +

r
∑

j=1

(

∇gj(x
∗)µ∗

j

)

)T

(x− x
∗)

+

r
∑

j=1

2z∗jµ
∗
j

(

zj − z
∗
j

)

≥ 0, ∀x ∈ X , zj ∈ R. (81)

Since the L.H.S of (81) is the gradient of f(x) +

λ∗T
h(x) +

r
∑

j=1

µ∗
j

(

gj(x) + z2j
)

, we can show that

(x∗, z∗) is a stationary point of f(x) + λ∗T
h(x) +

r
∑

j=1

µ∗
j (gj(x) + z2j ).

Finally, we show that x∗ is the stationary point of

f(x), for all x ∈ X . We denote Y ,
{

(x, z)
∣

∣hi(x) =
0, i = 1, · · · ,m, gj(x) + z2j = 0, zj ∈ R, j =
1, · · · , r

}

. Note that (x, z) ∈ Y implies x ∈ X . For all

(x, z) ∈ Y , we have λ∗T
h(x)+

r
∑

j=1

µ∗
j (gj(x)+ z2j ) =

0. Note that, we have shown that (x∗, z∗) is a station-

ary point of f(x) + λ∗T
h(x) +

r
∑

j=1

µ∗
j (gj(x) + z2j ).

Thus, (x∗, z∗) is the stationary point of f(x). So, we
have:

∇xf(x)
T (x− x

∗) +∇zf(x)
T (z− z

∗) ≥ 0, ∀(x, z) ∈ Y.
(82)

Since ∇zf(x) = 0, we have ∇xf(x)
T (x − x

∗) ≥
0, for all x ∈ X . Thus, we can show that x

∗ is the

stationary point of f(x), for all x ∈ X .
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