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Research Article

Exploring STR signal in the single- and
multicopy number regimes: Deductions
from an in silico model of the entire DNA
laboratory process

Short tandem repeat (STR) profiling from DNA samples has long been the bedrock of
human identification. The laboratory process is composed of multiple procedures that
include quantification, sample dilution, PCR, electrophoresis, and fragment analysis. The
end product is a short tandem repeat electropherogram comprised of signal from allele,
artifacts, and instrument noise. In order to optimize or alter laboratory protocols, a large
number of validation samples must be created at significant expense. As a tool to support
that process and to enable the exploration of complex scenarios without costly sample
creation, a mechanistic stochastic model that incorporates each of the aforementioned
processing features is described herein. The model allows rapid in silico simulation of
electropherograms from multicontributor samples and enables detailed investigations of
involved scenarios. An implementation of the model that is parameterized by extensive
laboratory data is publically available. To illustrate its utility, the model was employed in
order to evaluate the effects of sample dilutions, injection time, and cycle number on peak
height, and the nature of stutter ratios at low template. We verify the model’s findings by
comparison with experimentally generated data.

Keywords:
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1 Introduction

Since the work describing PCR was published [1], analysis
of short tandem repeat (STR) fragments has been the main-
stay of the forensic identity process. Once biological evidence
is collected and submitted to the DNA laboratory, extraction
and purification of the DNA ensue. The extract is quanti-
fied, typically using quantitative PCR (qPCR) methods and,
if necessary, diluted. Next, PCR is utilized as a means to
exponentially amplify the number of DNA copies from a
set of STR regions. The STR loci commonly employed dur-
ing human identity testing were chosen because they are
relatively short in length (3–5 bp sequences that repeat 5–
40 times) and are polymorphic among individuals. Once
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amplification is complete, STR fragment analysis is accom-
plished by electrophoresis where the amplicons are separated
based on size and the intensity of the fluorescence signal is
indicative of the number of amplicons produced during PCR
[2–6].

Though STR profiling is common practice, the interpre-
tation of STR measurements is complicated by the presence
of instrument noise and PCR artifacts such as stutter. Both are
difficult to distinguish from allele signal, particularly when
there are only a few cells available for testing. The complex-
ity associated with STR interpretation quickly escalates with
the number of, usually unknown, contributors to the DNA
mixture [7–10].

In crime laboratories, the identification of which alleles
are present in the sample is typically determined by applying
an analytical threshold (AT) in order to filter background
noise from allele signal in the electropherogram (EPG) [11].
With the application of an AT, there are potentially three
reasons an allele may not be detected: (i) the allele was not
present in the amplification tube; (ii) the allele was present
and was amplified, but there was insufficient starting quantity
of DNA to cross the AT; or (iii) the allele was present and
was amplified, but PCR replication was inefficient and the
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signal from the fluorescently tagged amplicons did not cross
threshold.

Previous work has suggested sampling effects, rather
than PCR effects, are the chief cause of peak height
discrepancies, which are usually measured by the ratio
of the peak intensities of the two alleles within a lo-
cus [12, 13]. Given that both moderate- and low-template
samples are regularly processed, defining the sensitivity
of the procedure is required (SWGDAM, 2012. Valida-
tion guidelines for DNA analysis methods. http://media.
wix.com/ugd/4344b0_cbc27d16dcb64fd88cb36ab2a2a25e4c-
.pdf). Specifically, sensitivity studies are used to garner
information related to the dynamic range, ideal target level,
peak height ratio expectations, signal to noise ratios, and
stochastic effects of the assay. Generally, these parameters
are established by generating data from a series of DNA
samples of varying quantity and of known genotype.
Though it is advisable to utilize single-source casework or
environmental samples to characterize these parameters,
there are uncertainties associated with employing unknowns
during validation; namely, the number of contributors
and the genotypes of said contributors are unknown.
Accordingly, the validation dataset is typically generated
by obtaining DNA from known sources where there are
ample copies of DNA. To produce validation samples
with low-copy numbers, the extract may be quantified and
then serially diluted. Since low-template samples obtained
from the environment are unlikely to be serially diluted
in this way, a study that explores differences between data
originating from true low-template samples and manu-
factured low-template samples is warranted but difficult
to design since it necessitates the transfer of one or a
few cells by way of single-cell manipulation techniques
[14, 15].

In principle, PCR coupled with CE and fluorescence de-
tection is sensitive enough to distinguish allele response from
noise. If true, then an increase in injection time or voltage [16],
additional PCR cycles [2,17], or implementation of post-PCR
clean-up processes [18] can all play important roles in en-
suring all signal that can be detected is detected. Decreasing
the AT to a level that assures reasonable protection from
labeling noise while simultaneously ensuring good allele de-
tection rates has also been explored [19] and may be a sensible
option. Each of these modifications, however, requires addi-
tional cost or effort if they are to be successfully implemented
within the laboratory. For example, post-PCR clean-up meth-
ods require additional reagents and labor, while decreasing
the AT may result in labeling of artifactual peaks, such as
pull-up or double-back stutter, that would require additional
manpower or software implementations to analyze and in-
terpret. Furthermore, designing wet-laboratory experiments
to test the viability of introducing new laboratory processes
is costly and requires the amplification and analysis of many
samples that may not be readily available.

STR-based EPG signal is also encumbered by a com-
mon PCR artifact known as stutter [20]. As with instrument
noise, it is difficult to distinguish stutter from allele signal in

mixtures, particularly when only a few template copies of
DNA are collected from one or more contributors. In the
past, stutter ratios, which are usually determined by divid-
ing the signal of the stutter peak by the signal strength of
the allele peak, were calculated from a set of standards with
the goal of establishing and implementing stutter thresholds
designed to filter potential stutter. Filtering peaks in stut-
ter position is, however, no longer recommended since the
peak in stutter position may have allelic signal contained
in it [21, 22]. Consequently, modern interpretation strategies
have implemented stutter models to probabilistically evaluate
these peaks [3, 23–25], and models describing stutter at high
template levels (typically � 0.4 ng) have been described else-
where [2,26–29]. In general, amplification of normal amounts
of DNA results in stutter peaks that tend to be less than
15% [30], but if the DNA concentration is in the low-copy
regime, slippage that occurs in early cycles can result in stut-
ter peaks that are proportionally larger and can be greater
than the allelic peak. Since forensic laboratories are process-
ing DNA from touched samples, which in all likelihood con-
tain only few copies of DNA, characterizing and exploring the
stutter ratio at low- and single-copy levels is warranted.

For these reasons, it would be useful to analyze EPG
data where the noise, allele, and stutter signal are isolated.
Generating and evaluating experimental data pertaining to
the noise, allele and stutter is preferred, but it is difficult
to isolate these components using wet-laboratory techniques.
Moreover, generating well-defined extracts containing known
copy numbers is a significant challenge. Thus, modeling the
entire forensic laboratory in silico based on a data-driven pa-
rameterization and then generating synthetic EPGs is a useful
method to understand the impacts of processing decisions on
the final EPG and explore the origins of variation observed in
the signal.

Models that synthesize allele signal generated from
stochastic variation induced by the PCR process [31, 32] as
well as the fuller laboratory process [2] have been described.
That work is extended here by incorporating aspects of the
forensics process that are particularly significant in either
the low- or multi-copy regimes. These include the follow-
ing: (i) quantification and sampling that occur pre-PCR; (ii)
amplicon-number dependent PCR efficiency; and (iii) the in-
clusion of instrument noise.

An implementation of the full model, named SEEIt (SEE
refers to Simulating Evidentiary Electropherograms), can
be downloaded from http://sites.bu.edu/grgicak/software/.
In its current form, the model has been developed in the
Stella environment and requires a licensed version of Stella
(iseeSystems.com); development of the SEEIt model in mul-
tiple environments is possible and is anticipated. The publi-
cally available version of SEEIt incorporates up to six individ-
uals, but for exposition we present the single-source dynamic
model and concentrate on data generated from a D8S1179 lo-
cus model parameterization. We illustrate the model’s utility
by exploring allele dropout, peak heights, peak height ratios,
and stutter behavior within the single- and multi-copy num-
ber regimes.
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2 Materials and methods

Building upon the work presented in [2], a mechanistic lab-
oratory model of forensics EPG creation and analysis was
developed. The model consists of three modules: (i) the pre-
PCR component, which includes quantification, dilution of
extract (if desired), and PCR setup; (ii) PCR; and (iii) CE and
fragment analysis. The rational for each modeling choice is
explained at each stage. After the model pieces are intro-
duced, a description of the data-driven parameterization of
each module that is contained in the software implemen-
tation is provided. In terms of notation, each bold symbol
corresponds to a user-defined input, which can be altered in
line with a particular laboratories protocol or to explore the
consequences of procedural changes. The symbol ∼ indicates
equality in distribution.

2.1 A mechanistic model of the forensics process

2.1.1 Module 1: Quantification, dilution of extract,

and PCR setup

Initial inputs to the model include the average concentration
of DNA, �DNA ng/�L, which can be based, for example, on
qPCR or UV-Vis quantification expectations [33–35], as well
as the percentage RSD (Relative Standard Deviation) of the
quantification value, �DNA. Capturing extraction variability,
the concentration of the DNA, D ng/�L, in the extract is
modeled as a normal random variable with those parameters,
D ∼ Normal(�DNA, (�DNA �DNA)2).

The sampled concentration is converted to a total copy
number, T , for each allele, a, by assuming 6.3 pg of DNA
per diploid cell [36], and multiplying D by the total extract
volume, Vtot �L, obtaining T = �DVtot103/6.3� , where �x�
indicates the greatest integer that is less than or equal to x.
From the total extract volume, an aliquot, Valiquot (�L), of the
extract can be directly added to the PCR, or can undergo up to
three serial dilutions. Here, Valiquot is a random variable, again
described using a Normal distribution with nominal volume,
�aliquot(�L), bias, �aliquot (�L), and variance, �2

aliquot (�L)2,

Valiquot ∼ Normal
(

�aliquot + �aliquot, �2
aliquot

)
. (1)

If no dilutions are performed, assuming that the sample
is well mixed, a copy of each individual allele, a, is randomly
selected independently with probability Valiquot/Vtot. This re-
sults in the total initial copies of the allele,T0, that shall un-
dergo amplification being captured by a binomial random
variable

T0 ∼ Binomial
(

T,
Valiquot

Vtot

)
. (2)

If dilutions are performed, then Valiquot is sampled from
Vtot as described by Eqs. (1) and (2), but buffer is added to the
aliquot, and another aliquot sampled independently from the
resulting mixture. This procedure is repeated in the case of
serial dilutions. To capture variability in pipetting, the added

buffer volume, B, is itself described as being normally dis-
tributed with specified mean, �buffer, bias, �buffer, and variance,
�2

buffer,

B ∼ Normal
(
�buffer + �buffer, �2

buffer

)
. (3)

Thus, this first module models the pre-PCR procedures
leading to the pre-PCR copy number of each allele at each
locus.

2.1.2 Module 2: PCR

Alleles that survive the pre-PCR process undergo amplifi-
cation. Akin to the PCR model in [2], we use a multitype
Galton–Watson process [37] to capture stochastic PCR pro-
cesses, but with two differences. First, the possibility that
stuttered copies stutter further is included. In [2] the copy-
ing efficiency of PCR, E , the probability that an amplicon is
duplicated per round, is modeled as constant. While that is
a good approximation for low starting template, PCR is well
known to become less efficient as more amplicons are pro-
duced [5], which influences artifacts such as stutter. Thus,
the second modification is the inclusion of an amplicon
number dependent PCR efficiency in the model. With Nc

denoting the total number of amplicons in the PCR, true
plus stuttered from a given locus, at the end of cycle c ,
each allele is duplicated in cycle c with a probability E (Nc),
where E is a decreasing function of the number of amplicons
present at the end of cycle c . A data-driven characterization of
E (Nc), which is implemented in the software, is explained in
Section 2.2.2 below. At each round of amplification, each true
amplicon independently has a probability, �S1, of stuttering
while each stutter product stutters further still with proba-
bility �S2. Note that duplication of amplicon fragments does
not occur until the third cycle of the PCR [5], which is also
captured in the model.

Recall that T0 is the initial number of copies of allele a,
as determined by Module 1. After c rounds of amplification,
let Tc denote the number of true amplicons and Sc denote the
number of stuttered amplicons. A mathematical description
of the PCR starts with T2 = T0 and S2 = 0, and for c ≥ 2
we have the following stochastic recursions describing the
growth of these coupled quantities:

Tn + 1 = Tn +
Tn∑

i = 1

C c,T
i

(
1 − Dc,T

i

)
(4)

and

Sn+1 = Sn +
Tn∑
i=1

C c,T
i Dc,T

i +
Sn∑
j=1

C c,S
j (1 − Dc,S

j ), (5)

where C c,T
i and C c,S

i are independent and identically dis-
tributed (IID) Bernoulli random variables that take the
value 1 (indicating a successful copy) with probability
P ( C c,T

i = 1) = E (Nc) which captures copying efficiency,
and the value 0, indicating no copy is produced, with
probability P ( C c,T

i = 0) = 1 − E (Nc). The Dc,T
i are also

IID Bernoulli random variables that take the value 1 with
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probability P ( Dc,T
i = 1) = �S1 , describing a stutter from

true to n − 1, and 0, corresponding to no stutter from true to
n − 1, with probability P ( Dc,T

i = 0) = 1 − �S1. Finally, the
Dc,S

i are IID Bernoulli random variables with P ( Dc,S
i = 1) =

�S2 capturing the possibility of stutter on stutter.
Equations (4) and (5) can be understood in the following

terms; at each round all previously created true and stutter
amplicons are preserved. Each true amplicon is copied with
probability E (Nc) and with probability 1 − �S1 it does not
stutter, producing an additional true amplicon in the next
round. As well as the previous round’s stutter amplicons,
each true amplicon that is replicated but stutters creates a
new stutter amplicon and, moreover, each existing stutter
amplicon can be replicated and, so long as the replicate does
not stutter further, a new stutter amplicon is created.

The total number PCR cycles is a model input, NPCR,
and may be 27, 28, or 29 cycles in forensics applications [38].
In software terms, the total number of amplicons (true and
stutter) produced during each cycle “flow” into stocks, which
are designated in the causal-loop diagram (Fig. 1) by a solid
border. The resultant allele and stutter amplicon count for
each allele is exported to Module 3—the module in which
the allele designations and the relative fluorescence unit
(RFU) peak heights are assigned to the amplicons. By de-
signing the model in this way, the information stored in the

stocks and flows can be readily tabulated and evaluated for all
cycles.

2.1.3 Module 3: CE and genotype assignment

For each STR locus l , the population frequency of each allele
a is a model input, f l

a . Each of the two alleles at each lo-
cus is assigned independently via a multinomial distribution
described by those frequencies, Al ∼ Multinomial({ f l

a}), with
the stutter position defined to be one repeat unit shorter.
Thus, we obtain a collection of allele pairs for each locus,
which are randomly assigned to the amplicon output of the
stochastic PCR process, TNPCR and SNPCR . Lastly, we convert
the number of true and stutter amplicons into an RFU value
by assuming a constant fluorescence per amplicon, � , known
as the CE sensitivity. The data-driven characterization of �

included in the software is provided in Section 2.2.3 below.
Noise is an inherent instrument issue that, according to a

recent study [39], occurs at approximately 15% of allelic posi-
tions, and when it occurs is best described as a log-normal dis-
tribution. Log-normal distributions are more prone to large
outliers than normal distributions and can generate noise that
is of similar peak height to true and stutter products in the
presence of low starting template or less numerous rounds

Figure 1. Causal loop-diagram of the PCR
module (Module 2) showing the different
variables in the system and the ways in
which they are related. As the total num-
ber of allele, stutter 1 (n – 1) and stutter 2
(n – 2) amplicons grows, the amplification
efficiency, E(Nc), decreases, thereby reduc-
ing the number of amplicons successfully
amplified.
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of PCR, NPCR. For the model, we incorporate the finding
by independently adding noise at each allelic position with
probability 0.15, whereupon it follows a log-normal with a
per-locus mean, �noise, and variance, �2

noise, taken from [39]. If
noise occurs at a position assigned to true or stuttered alleles,
its fluorescence is treated as additive.

The final genotype contains signal from a combination
of noise, stutter, and allele, and the RFU from each compo-
nent is added to obtain the final peak height for each allele
position or “bin.” With two alleles, A1

l and A2
l , giving rise to

true and stutter amplicons (T 1
NPCR

, S1
NPCR

) and (T 2
NPCR

, S2
NPCR

) re-
spectively, at locus l , the final observed fluorescence at allele
a is

Fa =
2∑

i=1

(
1{Ai

l=a}T i
NPCR

+ 1{Ai
l=a+1}Si

NPCR

)
� + X l

a , (6)

where 1{ Ai
l= a} denotes the indicator function, which takes the

value 1 if Ai
l = a and 0 otherwise, while for each l and an X l

a

is an independent random variable that with probability 0.85
is zero and with probability 0.15 is lognormally distributed
with mean �noise and variance �2

noise.

2.1.4 Model integration and display

For the software realization of the model, the output on the
interface includes the following: (i) the initial copy number for
each allele for all loci; (ii) the number of DNA copies produced
during PCR; (iii) the known genotype of each contributor;
(iv) PCR efficiency at each cycle; (v) the final profile, which
includes signal from noise, reverse stutter and alleles; and
(vi) the noise contribution. Other values that are stored and
are accessible include, but are not limited to, the number of
stutter products produced at each cycle of the PCR, number
of amplicons aliquoted into the CE sample plate for injection,
and volume of liquid aliquoted during any of the steps.

2.2 Data-driven model parameterization

The model described above requires several inputs, recapit-
ulated in Table 1, that need to be specified. To most accu-
rately capture the experimental process, we provide a descrip-
tion of a parameterization of the more involved components
taken from data generated in our laboratory, including the CE
sensitivity, � , and the amplicon number dependent PCR
copying efficiency function, E (N). These are included in the
software implementation of the model.

2.2.1 Parameterizing module 1

Module 1 simulates the PCR set-up process, which includes
quantification of the DNA extract, extract dilution, and PCR
setup. This concentration value is taken to be an accurate
representation of the bulk concentration of DNA in solution.
The extract volume is an important quantity in the model as
it is used to determine the number of target molecules, T,

aliquoted from extraction tube to PCR or dilution tube. The
extract volume can range from 10 to 200 �L, which are typical
extract volumes used in forensic laboratories [40,41]. Extracts
can be serially diluted, and the maximum pipette volume is
1000 �L for both �aliquot and �buffer. Last, the maximum vol-
ume of DNA that can be transferred into the PCR tube is 10
�L as described in [30]. All pipette biases and SDs (standard
deviations) cannot exceed the maximum volume transferred,
(i.e., �aliquot and �buffer) or 100 �L. Though a 100 �L pipette
bias or SD is extreme, particularly when compared to the ISO
standards (ISO/IEC 17025:2005(E) 2005) for testing and cali-
bration laboratories, the ability to test different quality control
failure scenarios in an operations setting is warranted from a
training, quality control, and quality assurance perspective.

2.2.2 An empirically derived model of amplicon

number dependent PCR efficiency

To create a functional description for the PCR efficiency,
E (N), we estimated the change in efficiency with total am-
plicon number by utilizing empirical qPCR data from this
laboratory. Though many kinetic models of the PCR process
have been previously described [42–46], the exact concentra-
tions of STR amplicons, primers, and active enzyme in foren-
sic human identity kits are unknown, making it a challenge
to develop a detailed kinetically based representation of the
forensic PCR process. Accordingly, we utilize empirical data
generated using the methods described in [47] to approximate
the following: (i) the PCR efficiency at early cycles, and (ii)
the decrease in efficiency with amplicon level.

The qPCR fluorescence signal of 44 samples from four
runs, generated over a period of 6 months, from samples
containing 0.42 to 100 ng of DNA were obtained by using the
manufacturer’s recommended protocol and DNA standard
[48]. Using these data, the empirical PCR efficiency for each
cycle was determined by

EqPCR,c = FqPCR,c

/
FqPCR,c−1 − 1, (7)

where FqPCR is the normalized VIC fluorescence minus the
baseline signal generated at a cycle. As we are interested in
the efficiency before plateauing, but after FqPCR,c−1 is sub-
stantially larger than baseline, we take the maximum EqPCR,c

obtained from fluorescent signals greater than 0.02. The value
of 0.02 was chosen as the minimal distinguishable signal
since it was the intensity at which the fluorescence consis-
tently and discernably doubled, indicating reliable and de-
tectable growth of amplicon numbers. The maximum EqPCR,c

per sample ranged from 0.7 to 1.0, with a median of 0.96, in-
dicating that the PCR is highly efficient in the low-amplicon
concentration range. This is larger than the PCR efficiency
reported in [2], but correlates well with the slopes obtained
from our qPCR standard curves throughout the past 3 years,
which range from –3.311 to –3.582 and correspond to effi-
ciencies between 0.90 and 1.0. Thus, at these low cycle num-
bers we use a constant efficiency of E0 = 0.96 to obtain a
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Table 1. Extract volume, pipette, PCR, allele frequencies, and capillary sensitivity parameters used in Simulations 1 through 6.

Parameters held constant during all simulations

Extract volume,
Vtot (�L) = 50

Percentage RSD
of DNA
concentration,
�DNA= 0%

Initial PCR
efficiency,
E 0 = 0.94

Nominal volume of
CE aliquot, �CE
(�L) = 1

Allele frequencies,
f l
a = [30]

Parameters modified between simulations

Simulation 1
(Sim 1)

Simulation 2
(Sim 2)

Simulation 3
(Sim 3)

Simulation 4
(Sim 4)

Simulation 5
(Sim 5)

Simulation 6
(Sim 6)

Concentration of DNA, �DNA
(ng/�L)

0.00078 780 0.0078 0.0078 0.0078 0.25

Nominal volume of DNA into
dilution, �aliquot (�L)

0 1 0 0 0 0

Nominal volume of buffer,
�buffer (�L)

0 999 0 0 0 0

Number of serial dilutions 0 2 0 0 0 0
Nominal volume of DNA into

PCR, �aliquot,PCR (�L)
10 10 1 1 1 1

PCR cycle number, NPCR 29 29 28 29 29 29
CE sensitivity, �

(RFU/amplicon)
4.07 × 10−7 4.07 × 10−7 4.07 × 10−7 4.07 × 10−7 8.12 × 10−7 4.07 × 10−7

All pipette biases (�aliquot, �CE) and SDs (�aliquot, �CE) were set to 0 and all extract volumes (Vtot) were set to 50 �L. The stutter slippage
probability was set to 0.0055.

relationship between the qPCR (i.e., VIC fluorophore) signal
and the nominal number of amplicons produced at cycle c:

Nc = No (1 + E0)c = No (1.96)c , (8)

where

N0 = 2MDNA

/(
6.3 10−3

)
, (9)

the factor 2 is implemented because there are two copies per
cell, and the mass of DNA standard, MDNA (ng), is provided
by the manufacturer [48]. We plot Nc versus the VIC signal at
maximum EqPCR,c for each sample. Figure 2A demonstrates
there is a direct proportionality between the signal obtained
from the exponential segment of the PCR curve and the nom-
inal concentration, with a slope of 1.93 × 10−12. This slope is
used to approximate the number of amplicons produced in
the linear and plateau phases that, in turn, aid in estimating
the efficiency with respect to total product levels. Figure 2B is
a plot of the efficiency as determined by qPCR fluorescence,
Eq. (7), with respect to Nc, the total number amplicons at cycle
c. An exponential function was fit to the data using the least
squares fit functionality in Igor Pro version 6.1.2.1. We see
that the PCR efficiency, EqPCR,c, is approximately 1 when the
amplicon numbers are less than 10 billion. As the reaction
progresses, the number of amplicons quickly grows. As a re-
sult, the efficiency quickly approaches 0 at later cycles—when
the amplicon numbers are large. For purposes of characteriz-
ing the efficiency as a function of amplicon number, E (Nc),
we incorporate this change in efficiency per cycle, c, into the
dynamic model as

E (Nc) = E0 e−1.12·10−12(Nc)
, (10)

where E0 is the baseline efficiency. In the code, this func-
tionality may be turned off, if desired, in favor of a constant
efficiency as in [2].

2.2.3 CE sensitivity, that is, fluorescence per

amplicon, �

To obtain a reasonable CE sensitivity, �, the nominal DNA
amplicons of a set of single-source standards ranging in target
from 0.016 to 0.5 ng, amplified using the Identifiler Plus kit
was plotted against the RFU of the locus (Fig. 3). Although
amplification was for 29 cycles, the first two cycles do not
produce fully formed fragments [5] and to account for this
phenomenon we subtract 2 from the total cycle number in
computations. If the amplification efficiency of the target is
consistently 96% and it is assumed that RFU is directly pro-
portional to the concentration of amplified product after 29
cycles, the following linear relationship should result:

RFU = � N0 1.9627 + A = �N29 + A, (11)

where A is the y-intercept, which one would expect to be 0 if
the proportionality is unbiased.

Thus, if optimal conditions exist, a plot of N0 1.9627

versus peak height (RFU) should result in a straight line.
The resultant slope is the CE sensitivity and represents the
increase in RFU signal per amplicon produced, �. For this
computation, N0 was calculated using Eq. (9).

CE sample preparation steps are modeled as described
in Module 1. Briefly, �CE, �CE, and �2

CE are the nominal
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Figure 2. (A) qPCR VIC fluorescence obtained from a set of DNA
standards containing 0.42 to 100 ng versus the nominal amplicon
number as determined by Eq. (8). (B) The empirical efficiency
as determined by Eq. (7) versus the number of qPCR amplicons
produced during 40 cycles of qPCR using the Quantifiler Duo
quantification kit and the least-squares exponential fit to the data.

Figure 3. The sum of the allelic peak heights (RFU) for the
D8S1179 locus obtained when 0.016, 0.031, 0.047, 0.063, 0.0125,
and 0.25 ng of DNA was amplified using the AmpFlSTR Identifiler
Plus amplification kit (29 cycles). STR fragment separation was
achieved with a 3130 Genetic Analyzer. The nominal amplicon
number at cycle 29, N29, was calculated using Eq. (8).

volume, pipette bias, and pipette variance associated with
the CE sample preparation. VCE is the volume of sample
aliquoted during CE preparation and is described using a
normal distribution. The number of amplicons that undergo
electrophoresis is a binomial random variable where the PCR
reaction volume is set to 25 �L.

2.3 Parameterization of simulations reported on in

this paper

Six distinct simulation scenarios were used for the analysis in
Section 3. Table 1 shows the input parameters for each. In all
cases, the pipette biases and variances were zero. An extract
volume of 50 �L was chosen as it is one of the recommended
elution volumes for silica-based extractions of forensic sam-
ples [40]. The baseline PCR efficiency was set to 0.94, which
is the average PCR efficiency from calibration standards ob-
tained in this laboratory over the last 3 years, corresponding
well to the median efficiency (i.e., 0.96) obtained from the
raw qPCR analysis of 44 samples described in Section 2.2.2.

2.4 Low-template laboratory empirical data

generation

Single-source profiles were obtained by extracting DNA from
whole blood or proficiency test samples purchased from var-
ious manufacturers using phenol/chloroform purification
and alcohol precipitation. The extracts were quantified us-
ing Quantifiler Duo (Life Technologies, Carlsbad, CA, USA)
on the Applied Biosystems 7500 (Applied Biosystems, Fos-
ter City, CA, USA) using the manufacturer’s recommended
thermalcycling protocol and a validated, universal calibration
curve [47]. The samples were amplified on the GeneAmp
PCR Amplification System 9700 using AmpFlstr Identifiler
Plus (Life Technologies) following the manufacturer’s recom-
mended protocol (29 cycles) at 0.0078 ng [30]. Thus, a total
of 95, 0.0078 ng single-source amplified samples were gener-
ated. All samples were injected for 5, 10, and 20 s at 3 kV on
the Applied Biosystems 3130 Genetic Analyzer, and resultant
EPGs were analyzed with GeneMapper ID-X v1.1.1 (Applied
Biosystems) at 1 RFU. Artifacts such as pull-up, complex pull-
up, and minus A were manually removed. Pullup was defined
as a peak that appears in the same position (±0.3 bases) as an
allelic peak in another color channel and has a peak height
of 5% or less of the allelic peak. Complex pullup was de-
fined as a peak with a plateau-like shape located between two
adjacent allelic peaks in a different color channel. Minus A
was defined as a peak one base shorter in size (±0.3 bases)
than an allelic peak. There were no height restrictions for the
complex pull-up and minus A artifacts. The filtered genotype
table for each sample was exported from GeneMapper ID-X
for downstream analysis.

3 Results

To illustrate the model’s utility, we used it to investigate three
important aspects of the laboratory process that would be
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challenging to assess experimentally: First, the impact of se-
rial dilution on dropout; second, the impact of cycle number
and injection time on peak height; and finally, the impact of
low-template DNA levels on stutter ratios.

3.1 Peak height variations and allele dropout from

diluted and undiluted samples

To obtain single-source validation samples with low-template
levels, an extract containing ample copies of DNA may be se-
rially diluted in order to reach low-template levels [12,49,50].
Therefore, it is of interest to study the effects of serially dilut-
ing concentrated DNA stocks on the EPG and to examine if
peak height variability obtained from diluted samples would
be representative of the variability seen in low-template sam-
ples that do not undergo such processing. To examine this
2000 undiluted (Sim 1) and 2000 diluted (Sim 2) heterozy-
gous pairs were simulated (Table 1). Figure 4A shows the
RFU of the high molecular weight peak, Ha2, plotted against
the RFU of the low molecular weight peak, Ha1, using het-

Figure 4. (A) The peak height of the high molecular weight allele,
Ha2, versus the peak height of the low molecular weight allele, Ha1,
for 2000 simulated samples of 0.0078 ng and (B) the logarithm of
the peak height balance (Hb) against the average peak height for
(x) undiluted and (◦) diluted samples. The two horizontal bars in
(B) represent heterozygote balance of 50%.

erozygous pairs from Sim 1 and 2. The tallest heterozygous
peak with a sister allele that did not survive the pre-PCR sam-
pling process for undiluted samples was 101 RFU, while the
tallest surviving sister peak height for diluted samples was 147
RFU. Figure 4A also shows that the data cluster in groups,
where the most pronounced groups are centered at (25, 24),
(23, 47), (48, 23), and (47,46), regardless of whether or not the
samples were diluted. We further explore the impact of dilut-
ing concentrated extracts to reach the low-template regime by
examining the heterozygous balance within a locus, defined
as,

Hb = Ha1/Ha2 , (12)

where Ha1 is the peak height of the first allele at D8S1179,
and Ha2 is the height of the second allele.

Figure 4B is a plot of the logarithm of Hb versus the
average peak height (APH) of the two alleles that survived
pre-PCR sampling. Peak height balance has been previously
studied [27, 51, 52], and it has been suggested that variability
in Hb proportionally decreases with APH as

var(Hb) = (�2
PH)/APH. (13)

In the case of these low-template sample simulations, the
APH for Sim 1 and 2 were 37 and 39 RFU, respectively. Using
the estimated var(Hb) from the simulations in conjunction
with Eq. (13), it was determined that �2

PH increased from
37.8 to 43.3 for Sim 1 and 2, respectively. Taken together,
these results suggest a small but real effect associated with
diluting extracts containing large copy numbers in order to
manufacture samples that contain few copies of DNA.

For well-mixed solutions, sampling due to dilution is ac-
curately described by binomial probabilities, as in Eq. (2),
making it particularly amenable to mathematical analysis.
For example, mathematically, the outcome of serial dilution
is identical to a single dilution with a sampling probabil-
ity that is the product of sampling volumes. Moreover, the
probability of dropout can be readily computed and so can
be considered over a wide range of dilution factors. Striving
to obtain a sample containing 7.8 × 10−4 ng/�L of DNA,
such that 10 �L of this solution will result in approximately
one copy of DNA to undergo PCR, we can compute the
probability that zero copies survived the pre-PCR sampling
process for a given dilution factor. Recall that the average
copy number is T = DVtot 103/6.3 and so in this example
(7.8 10−4)(48 103)/6.3 = 5.94 = 5. Note that 48 �L stems
from the knowledge that typically 2 of 50 �L of the extract is
utilized to quantify during PCR [48], which is implemented
in the software. Therefore the probability of obtaining zero
copies for a given dilution factor, r, is

P (Binomial (�5.94 r �, 10/(48 r )) = 0)

= (1 − 10/(48 r ))�5.94 r �. (14)

When r = 1, there is no dilution. As r becomes larger,
the starting density is higher and the sampling probability
is proportionally lower, ensuring the same average outcome.
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Figure 5. The probability of allele dropout with respect to dilution
factor, r, for a sample containing �5.94r� copies of DNA at the start
of sampling. A dilution factor of 1 denotes no dilution takes place
between quantification and amplification.

The rate of allele dropout as a function of the dilution factor,
r, is presented in Fig. 5, which illustrates that the likelihood
an allele survives the pre-PCR sampling process is dependent
upon whether or not the extract was diluted prior to ampli-
fication. Indeed, Fig. 5 demonstrates there is an increasing
likelihood of dropout as r increases, which converges to a
limit. When r = 1, Eq. (14) gives a drop-out probability of
0.246, while analysis using L’Hopital’s Rule shows that for
large r this probability converges to e−5.9410/48 = 0.29. While
one can assess this mathematically as described, one of the
merits of the model is that this effect can also be seen directly
from simulations without recourse to mathematics. When
we examine the allele drop-out rate in Sim 1 and Sim 2, for
example, we find that the number of alleles that dropped out
increased from 485 (24.25 ± 0.9% SEM) to 575 (28.75 ± 1%
SEM) for the undiluted and diluted samples, corresponding
well to the values determined mathematically.

From a validation perspective, these results suggest that
allele detection rates of low-template DNA samples garnered
from diluting extracts with large quantities of DNA do not
equal the detection rates of low-template samples that do
not undergo dilution. However, we note that it is not always
the case that DNA from low-template contributors will
not undergo dilution. For example, in a forensic casework
scenario, a two-person major–minor sample containing large
quantities of major may, indeed, require dilution. There
are innumerable scenarios that lead to various processing
decisions in the laboratory. This analysis suggests that
diluting a few very concentrated extracts in an attempt to
mimic low-template or ‘touch’ samples is not ideal. Rather,
production of a sufficient validation dataset generated
using representative and typical laboratory processes is
the preferred mechanism by which to establish the lim-
itations of a method and, subsequently, the peak height
ratio expectations, stochastic effects and signal to noise of
the assay.

3.2 Effects of cycle number and injection time

on peak height

Recently, a number of studies have focused on characterizing
noise generated during the forensic PCR process [39,53]. This
is typically performed in order to establish an AT, which is a
signal threshold designed to filter noise. Since there is a trade-
off between signal loss and false noise detection associated
with the AT, it is arguably one of the most important analysis
parameters set by the laboratory [20]. Ideally, the separation
between noise and allele signal should be substantial enough
to distinguish noise from the signal obtained from one copy
of DNA.

In Fig. 6A is plotted the histogram of peak heights when
100 000 profiles were simulated with the cycle number, NPCR,
set to 29. The nominal input value of DNA, �DNA, was
0.0078 ng/�L and we aliquot 1 �L (i.e., �1 copy) into the
PCR reaction. Other details of the simulation can be found in
Table 1 under column Sim 4. The PCR efficiency was set to be
amplicon number independent, E = 0.94, the stutter slip-
page probability was �S1 = �S2 = 0.0055 for the D8S1179
locus, which is larger than the 0.002 estimate in [2], but is in

Figure 6. Histograms of peak heights generated from (A) 100 000
simulations using the model and parameter set Sim 4, and (B)
experimental data from amplicons (n = 82) with target mass of
0.0078 ng, amplified for 29 cycles and injected for 10 s.
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line with 0.005 used in [32]. Figure 6A demonstrates that a
multimodal pattern with the first, second, third, and fourth
peaks centered at 3, 26, 49, and 75 RFU, respectively, was
obtained. Figure 6B displays the peak height histogram of
82 heterozygous D8S1179 pairs from low-template samples
generated in this laboratory using conditions described in
Section 2.4. Only heterozygous pairs where the known alleles
were at least three STR units apart, to eliminate any impact
of stutter effects, are depicted in Fig. 6B. Qualitatively, we see
the empirical data has a multimodal pattern that is similar to
the simulated data, with the first two peaks centered on 3 and
23. It is difficult to discern the presence of the third and fourth
peaks in the empirical dataset due to low sample numbers.
Despite this, the presence of similar patterns in both the sim-
ulated and experimental data suggests the model generates
RFU values consistent with those derived in the laboratory.

We repeat the simulations using the same parameters as
describe for Sim 4, but change the cycle number to NPCR = 28
cycles (Sim 3). In addition, we perform a fifth set of simula-
tions using NPCR = 29 cycles and doubling the sensitivity
from � = 4.07·10−7 to 8.14·10−7 (Sim 5) to mimic laboratory
scenarios where the injection time is doubled or the instru-
ment is twice as sensitive. Figure 7A–C present boxplots of
Sims 3–5 and summarize the peak height outputs for each
simulation against the starting copy numbers, T0.

Though the increase in injection time and amplification
cycle number does not seem to improve the sensitivity (i.e., a
difference of approximately two copies is needed to observe
discernable changes in signal), the data in Fig. 7 demonstrate
there is improved separation between the noise and signal as
the cycle number and sensitivity increase. This makes sense;
signal originating from the fluorescence, which is a repre-
sentation of the number of amplicons injected, is expected
to double with twice the injection time, or the addition of
one PCR cycle, while the noise signal would only mildly be
affected by these laboratory modifications.

Therefore, the entire DNA laboratory process can be op-
timized to produce high-fidelity EPGs such that all of the
alleles that have survived the pre-PCR processes have been
amplified to a degree that will lead to detection. These data
also imply that coupling the optimized laboratory protocols
with a carefully chosen AT may provide appropriate levels
of protection against noise detection, while still maintaining
high rates of allele detection.

To explore this further, we plot the RFU histograms for
zero and one copies of DNA for Sim 3–5 (Fig. 8A–C). Figures
8B and C indicate that the noise to signal distributions seem
reasonably well separated for Sim 4 and 5, suggesting that by
using an AT of 12 RFU, an NPCR � 29 and an injection time
�10 s (or an NPCR � 30 with an injection time of 5 s) the labo-
ratory would be reasonably confident that all DNA fragments
that survived the pre-PCR steps would be detected. Interest-
ingly, these laboratory conditions differ from the manufactur-
ers recommended protocol which suggests an NPCR = 28 or
29 and a 5-s injection time using a voltage of 3 kV [30]. Since
good signal to noise is obtained by applying small modifica-
tions to the laboratory protocol, these data suggest that major

Figure 7. Boxplots of the allele peak height, in RFU, obtained for
100 000 simulations using the parameters described for (A) Sim
3, (B) Sim 4, and (C) Sim 5 in Table 1.

protocol changes, such as the addition of post-PCR clean-up,
or the use of multiple injection or amplification protocols,
would not likely lead to higher detection rates for samples
unperturbed by PCR inhibition or degradation. This corrobo-
rates the findings of [2] where it was determined that by using
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Figure 8. Simulated peak heights (RFU) obtained for ( ) noise
and ( ) one copy of DNA when using parameters described in
Table 1 for (A) Sim 3, (B) Sim 4, and (C) Sim 5, for the same
starting total copy number, T = 1.

NPCR = 34 all the alleles that survived sampling crossed the
signal threshold of 50 RFU. Similarly, [18] further supports
this with empirical studies which demonstrated that for sam-
ples amplified using the PowerPlex ESX 16 kit and analyzed
using an AT of 50 RFU the number of alleles detected in-

creased as NPCR increased from 30 to 33 cycles; however, no
additional alleles were detected with NPCR values of 34 or 35.

Empirical data from this study showed similar results.
Samples containing 0.0078 ng of DNA were amplified with
the 29-cycle Identifiler Plus protocol and injected using a
5, 10, or 20-s injection time. The number of D8S1179 het-
erozygous peaks � 12 RFU was determined. Of 94 possible
heterozygous alleles, 73, 84, and 84 alleles were detected as
the times increased from 5, to 10 and then to 20 s; that is, no
additional allele information was gained once the laboratory
conditions were modified to an AT = 12 RFU, an NPCR= 29
and a 10s/3 kV injection.

Taken together, these studies suggest that, as predicted,
PCR coupled with CE is sensitive enough to detect single-
copy alleles, if present, and highlights the need to improve the
front-end processes affiliated with testing, such as collection,
volume transfer, and extraction processes. We note that the
laboratory conditions by which we produce these RFU values
are not globally applicable and, thus, do not represent rec-
ommendations or standards regarding PCR cycle number or
injection parameters for all forensic laboratories. Sensitivities
are dependent upon the specific laser/detector combination;
hence, the sensitivity of each instrument, �, would need to
be derived in order to optimize an analytical process within a
given laboratory. Instead, a method by which to test numer-
ous laboratory conditions and confirm, through comparison
of simulated and empirical data, that the signal-to-noise ratio
for one copy is sufficiently large for single-copy DNA analysis
is presented. From this, an AT that provides sufficient protec-
tion from noise, while ensuring most allele signal is detected,
may be acquired. By optimizing the laboratory procedure in
this way, both low- and moderate-template samples can suc-
cessfully be amplified using the same laboratory procedure
since both the single- and multicopy signal will be detected
using the same laboratory processes. For example, by utiliz-
ing an AT = 12, NPCR = 29 and a 20 s/3 kV injection, we
detected �99.5% of the simulated alleles that survived the
pre-PCR set-up stages. Further, at this AT, 99% of the noise
peaks fell below this threshold. If more protection against
noise is desired such that a larger AT is implemented (i.e.,
30 RFU), this model can be used to determine the laboratory
parameters that still allow for a 99.5% positive detection rate,
provided the allele survived the sampling process.

Visual inspection of the second peak of Figs. 8A–C sug-
gests the peak height distribution from single-copy samples
is left-skewed rather than right-skewed as presented in [31].
The difference in the tailing may be explained by the fact
that [31] presents an “idealized” model that ignores stut-
ter. As reported in [31], we observe that at moderate copy
numbers (i.e., 40), the signal distribution no longer skews to
the left or right (data not shown).

3.3 Stutter in the low- and moderate-template

regimes

Stuttering that occurs during PCR is a well-studied phe-
nomenon and its mechanistic origins have been proposed
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[20]. However, with the introduction of continuous interpreta-
tion approaches as a means to compare EPG’s from evidence
and standards, there has been renewed interest in under-
standing and characterizing its signal. We supplement this
effort by simulating the stutter ratio obtained from single- to
moderate-copy numbers in order to evaluate if the distribu-
tions used to describe moderate-template samples are well
suited for single-copy interpretation.

In advance of considering simulated EPGs, the mecha-
nistic model allows some immediate deductions. From the
PCR module alone, one sees that stutter ratios are necessarily
more variable at low-template due to the increased likelihood
of a significant early stutter event. With higher template these
events become increasingly less likely due to the law of large
numbers. Beyond that, it can be shown mathematically that
in the absence of noise, Pearson’s linear correlation between
true and stutter fluorescence does not depend on starting
template. For low template, this is not observed empirically
(data not shown) and explains the need to include noise in
the model, particularly at low template. With higher template
numbers, signal to noise ratios are such that the noise is
an insignificant component. At low template, however, noise
can dominate.

We simulated 1000 heterozygous profiles where the
alleles were at least two repeat units apart for �DNA =
0.0078 ng/�L (Sim 4) and 0.25 ng/�L (Sim 6). These data
demonstrate that the stutter ratios for samples containing
low levels of DNA are larger and more varied than those ob-
tained from samples containing ample copies of DNA. For
example, synthetic EPGs derived from extracts with �DNA=
0.0078 ng/�L resulted in a mean stutter ratio of 0.103 ±
0.226 with a maximum and minimum 3 and 0, respec-
tively. In contrast, the concentrated samples, where �DNA=
0.25 ng/�L, resulted in average stutter ratios of 0.071 ± 0.013.
We highlight that this model generates signal whereby the
final genotype contains signal from a combination of noise,
stutter, and allele, as described in Eq. (6). Thus, the RFU from
the noise component is part of the final peak height for each
position. When the noise is subtracted from the signal the
mean stutter ratios are 0.070 ± 0.069 and 0.070 ± 0.013 for the
low- and moderate-template samples, respectively. Figure 9
demonstrates the effects of noise when the starting template,
T0, is greater than 0. This plot shows the stutter ratios ob-
tained for moderate (i.e., 0.25 ng; Sim 6) and low-template
samples (i.e., 0.0078 ng; Sim 4) with and without the noise
component removed. Stutter ratios for low-copy samples are
substantially affected by the noise component, which can
be as large and even exceed the signal generated by the
stutter or allele fragment. In contrast, samples containing
ample copy numbers are largely unaffected by the noise
component since it is negligible compared to these peak
heights. Despite the effects of noise on stutter ratios, the large
variance of stutter ratio associated with low-template sam-
ples demonstrates that large stutter ratios are still expected
for low-template samples and are not the result of noise
effects alone.

Figure 9. Stutter ratio with noise versus stutter ratio with noise
component removed for (x) �DNA = 0.0078 and (•) �DNA = 0.25
ng/�L samples amplified using the parameters described in
Table 1; Sim 4 and 6.

4 Discussion

We describe an in silico dynamic model of the full-DNA pro-
cess from quantification to signal generation. For any analyti-
cal bioassay, the ultimate performance benchmarks are accu-
racy and reliability within the established dynamic range. To
establish the sensitivity and dynamic range of any assay low-
copy number validation standards may be artificially derived
in the laboratory by serial dilution. A plethora of studies have
indicated that this technique, though common, may need
careful evaluation since volume transfer errors may propa-
gate throughout the series [54, 55]; the implications being
that the mass of the DNA is never known and approxima-
tions become prone to error as the sample is diluted. This
study shows that even in cases where there is no pipette bias
or variation, artificially generating low-template samples by
employment of a dilution series strategy will lead to small,
but real, differences in the numbers of alleles that survive
the pre-PCR process. Additionally, the second study shows
that moderate laboratory modifications that include small in-
creases in injection time and cycle number are sufficient and
result in signal to noise ratios large enough to confidently
detect all signal—even signal from one copy of DNA if the
PCR is uncompromised by external factors such as inhibitors,
damage, or degradation. From a forensic processing perspec-
tive, this implies that a single optimized PCR and post-PCR
laboratory protocol, such as the 29-cycle 20-s injection model
here, will detect signal from even the smallest copy num-
ber and that the current technology has a potential LOD of
one copy. Thus, once optimized post-PCR modifications have
been implemented in the laboratory, improvements during
pre-PCR sampling can be evaluated in order to enhance the
number of copies that survive the pre-PCR process. Such im-
provements may include utilizing extraction strategies that
decrease the volume of the extract such that a larger portion
of the extract is processed through to PCR. Last, we highlight
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the impact noise has on the ability to infer stutter ratios for
samples in the single-cell regime and show that stutter ratio
calculations are significantly perturbed by noise. Modeling
of the relative stutter ratios by [32] indicated that the relative
intensity of the stutter peaks increases with cycle number. As
a result, these authors recommend an increase in injection
time or voltage over an increase in cycle numbers, since an
increase in cycle numbers would lead to more pronounced
stutter peaks. As this work shows, increasing the sensitivity
of the capillary system by increasing time or voltage is a viable
option; however, stutter peaks from low-template samples or
minor contributors are unlikely to reach RFU levels that are
negligibly affected by noise without modification to the cycle
number.

4.1 Conclusion

We developed a full-mechanistic mathematical model of the
forensic laboratory process, creating a publically available
implementation in the Stella environment. We utilized this
simulation tool to synthesize D8S1179 EPGs in order to ex-
plore the impact of various laboratory conditions on the sig-
nal within the low-template regime. Low-template signal was
also compared to signal generated from samples containing
sufficient quantities of DNA. The model is capable of simu-
lating synthetic EPGs at all template levels and is capable of
delineating effects of noise, stutter, and allele peak heights
on the total signal. The change in PCR efficiency with copy
number, E (Nc), and the CE sensitivity, �, were determined
by a data-driven evaluation of the qPCR curve and CE RFU
traces, respectively. We find good agreement between simu-
lated and empirical data, which suggests the PCR efficiency
and CE sensitivity were well characterized. For two of the sim-
ulation sets, Sim 4 and 5, there is sufficient signal to noise,
suggesting that good separation between EPG signal obtained
from one copy of DNA and noise is possible with only modest
changes to laboratory protocols, such as increasing the injec-
tion time, or adding one additional cycle to the PCR. This also
indicates that to be reasonably certain that all allele-based sig-
nal is detected, the commonly applied AT of 50 RFU coupled
with the manufacturer’s recommended protocol of NPCR =
28 or 29 and a 5-s/3 kV injection would require optimization.
Further, stutter ratios obtained from low-template samples
are not similar to ratios obtained from moderate-copy num-
ber samples and produce many stutter ratios that are greater
than typical stutter thresholds generated using samples con-
taining ample copy numbers. We determine that the large
stutter ratios at the low-template region are, in many cases,
a consequence of the additive noise interfering significantly
with signal.
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