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Abstract—Single Image Super-Resolution (SISR) has witnessed
a dramatic improvement in recent years through the use of deep
learning and, in particular, convolutional neural networks (CNN).
In this work we address reconstruction from low-resolution
images and consider as well degrading factors in images such as
blurring. To address this challenging problem, we propose a new
architecture to tackle blur with the down-sampling of images by
extending the DBSRCNN architecture [1]. We validate our new
architecture (DBSR) experimentally against several state of the
art super-resolution techniques.

Index Terms—Image super-resolution, image deblurring, deep
learning, CNN.

I. INTRODUCTION

Single image super-resolution (SISR) endeavours to es-
timate a super resolution (SR) image as an approximation
to an unknown high-resolution (HR) image from a single
low-resolution (LR) input image. It is a classical problem
in computer vision aiming at increasing image resolution
thus providing efficient zooming tool for applications such as
surveillance [2], etc. It is still an active challenging task due to
its complexity and ill-posed nature [3]. Tsai [4] presented the
first work that discussed the topic of image super-resolution
in the 1980s, and the area remains active ever since. The
state-of-the-art methods are example-based approaches which
learn prior information to alleviate the problem of solution
ambiguity [5]. The example-based methods are categorised
into two classes: internal example-based methods [6]–[8] and
external example-based methods [9]–[14].

Recently, SISR performance witnessed a dramatic boost due
to the introduction of CNNs. The latter have many advantages
such as efficiency, accuracy, fast speed using parallel com-
puting, allowing improvements for designing and training the
networks [15]–[18]. Moreover CNN architectures attempt to
learn an end-to-end mapping function linking Low Resolution
(LR) images with the corresponding High Resolution (HR)
images. Several CNN models proposed for SISR have achieved

The first author was supported by King Abdullah Scholarship Program
from Saudi Arabian Government. The second author was supported by the
European Unions Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No.713567. This work was partly
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the European Regional Development Fund.

excellent results when they deal with simple degradation
reduced to down-sampling only. The limitation of these models
is that they do not take into account other frequently occurring
image degradation factors. In a more realistic scenario the
performance of these learned CNNs will be substantially lower
when the true degradation is more complex [5]. An important
image degradation factor can be modeled via convolution with
a blurring kernel. By not taking blurring into consideration or
via simple mismatch of blurring kernels, most SISR methods
are of reduced interest practically, see [19]. Despite the im-
portance of considering blur as a degradation factor in SISR
methods, there is little work on designing CNN models to
handle this problem.

This paper aims to design a CNN to perform SISR that is
capable of handling low-resolution and input image blurring
simultaneously. We propose a new architecture called DeBlur-
ring Super-Resolution (DBSR) that is applied to both non-
blind and blind SR scenarios. We also provide the program
implementation of the architecture online. In the remainder of
the paper we start by presenting the related work in Sec. II. We
then present DBSR in Sec. III, followed by its experimental
evaluation Sec. IV. We finally draw conclusions in Sec. V.

II. RELATED WORK

Dong et al.’s architecture (SRCNN) [20] was the first one to
solve single image super-resolution using a three-layers con-
volutional neural network. The Very Deep Super-Resolution
model (VDSR) [21] has been proposed by Kim et al. using
residual learning to be able to train deep networks. Using
residual learning strategy, Zhang et al. [22] proposed to train a
single CNN architecture to tackle several general tasks such as
Gaussian denoising, single image super-resolution and JPEG
image deblocking. Their latest iteration of their architecture
(SRMD [23]) is compared with ours in the experimental
section (Sec.IV). Using transposed convolutions, a Laplacian
pyramid super-resolution network (LapSRN) takes the input
LR image and progressively produces the sub-band residuals
[24]. Many other CNN models have been proposed likewise
for SISR [25]–[33]. Several CNN models have been proposed
for SISR based on bicubic interpolated inputs. Recently prac-
tical scenarios where Gaussian blurring occur as additional
degradation to low resolution have been addressed with a CNN
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denoiser plugged as a learned prior into a model-based method
to solve image deblurring and super-resolution (IRCNN) [34].

On the other hand, end-to-end learning can be performed
by super-resolution network trained for multiple degradations
(SRMD) [23] which takes the concatenated LR image and
degradation maps in a single network and these degradation
maps are collected by a dimensionality stretching method of
the degradation parameters (i.e., blur kernel and noise level).
Alternatively we recently proposed deblurring super-resolution
convolutional neural network (DBSRCNN) [1] to handle noisy
and low res images in non-blind and blind SR scenarios.
DBSRCNN tackles blurring and SISR together in a single
network (see Sec.III-A). We propose here to improve this
network by enhancing the features inside the network (see
Sec. III-B).

III. SUPER-RESOLUTION AND DE-BLURRING

A. DeBlurring Super-Resolution Convolutional Neural Net-
work (DBSRCNN)

The DBSRCNN [1] aims to recover the deblurred high-
resolution image F (X) from the blurred low-resolution im-
age X (input) after interpolation, by learning an end-to-end
mapping F . This network includes five convolutional layers.
The first and the second layers are merged by using the
concatenation operation. The objective is to learn a mapping
function F containing three main operations: patch extraction
and representation operation to extract the noisy feature maps
from the LR input image; reconstruction operation to form the
reconstructed image (output); and finally, a sequence of non-
linear mapping operations between the input and the output.
The model can be written as:

Fi(X) = max
(
0,Wi ∗ Fi−1(X) + bi

)
i ∈ {1, 2, 4} (1)

F12(X) = merge
(
F1(X), F2(X)

)
(2)

F3(X) = max
(
0,W3 ∗ F12(X) + b3

)
(3)

F (X) = W5 ∗ F4(X) + b5 (output layer) (4)

where Wi and bi are the weights of the filters and biases
of the ith layer respectively. The Wi comprises of ni filters
which supports ni−1×fi×fi, where ni is the number of filter
(number of feature maps), and n0 is the number of channels
in the input image. Fi(X) is the output feature maps and

Blurred LR 
image (Input)

Deblurred HR
image (Output)

𝑛ଵ feature maps
of  blurred LR image

𝑛ଶ feature maps
of  enhanced features

𝑛ହ feature maps
of  deblurred HR image

Feature Extraction Enhanced Feature Concatenate Non-linear  Mapping Reconstruction

𝑓ଵ × 𝑓ଵ
𝑓ଶ × 𝑓ଶ

𝑓ଷ × 𝑓ଷ 𝑓ହ × 𝑓ହ𝑓ସ × 𝑓ସ

Fig. 1: DBSRCNN architecture [1] which consists 5 layers.

Fi−1(X) is the input feature maps. The activation function
used is Rectified Linear Unit (ReLU, max(0,X)) [35]. The
structure of DBSRCNN: The number of feature maps (and
filter size) of each layer is as following 32(9), 32(5), 32(5),
32(5) and 1(5), to be easier we can write it as (32-32-32-32-
1)(9-5-5-5-5). The third layer concatenate feature maps of the
first two layers together to form a vector containing low-level
features and enhanced features together. This layer comprises
64-features maps.

B. DeBlurring Super-Resolution (DBSR)

In DBSRCNN, feature extraction is the first step for deter-
mining what should be extracted and restored in the following
steps. The enhanced layer is used to enhance the noisy
extracted features. As the image blurring level increases, the
output image quality is decreased, because the extracted and
enhanced features are incapable of dealing with the additional
noise. Inspired by the step of feature enhancement used in
super-resolution [36] and JPEG compression artifacts reduc-
tion [37], we propose to introduce three feature enhancement
layers after the merged layer in DBSRCNN to create a more
efficient and deeper network (DBSR). Indeed, a single layer
has a limited capacity to enhance the noisy extracted features
in complex applications like blurred SISR. Therefore, we
increase this number to improve the capacity to suppress blur
(noise) in the features. Indeed, we have added more than three
layers to improve the performance of the network, but the
enhancement was marginal.

DBSR is a deeper version of DBSRCNN which incorporates
more non-linear mapping layers. A deeper network allows
for enhanced non-linearity mapping, thus supporting a more
robust regressor between the low-level features and the output.
Indeed, applications like deblurring or denoising are complex
which leads to noisy low-level features extracted by a single
layer. In such case, the performance of the network depends on
the features, not on the regressor. DBSR improves the mapping
efficiency by enhancing the low-level extracted features using
additional layers after concatenation of the low-level feature
maps of the first layer and enhanced feature maps of the second
layer. All these layers put together constitute a better feature
extractor.

a) Formulation: The new model DBSR is shown in
Figure 2. Overall it consists of 8 layers. The five layers
of DBSRCNN remain unchanged in the new network. The
first enhanced feature layer located after the first layer is to
extract new features form the extracted noisy features, and then
merged these features together using concatenate layer to map
them together. While in DBSRCNN we mapped these features
directly, in DBSR these features are further processed by three
layers before the final mapping. Similar to DBSRCNN, DBSR
adopts Rectified Linear Unit (Relu) as the activation function.

b) Model Learning: Consider a set {Yi,Xi}mi=1, where
Y is a high-resolution image and X is its corresponding
interpolated blurred low-resolution image. Mean Squared Er-
ror (MSE) is used as the loss function to find the optimal
parameters Θ of the model. This is achieved by minimizing
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Blurred LR 
image (Input)

Deblurred HR
image (Output)

𝑛ଵ feature maps
of  blurred LR image

𝑛ଶ feature maps
of  enhanced features 𝑛ସ feature maps

of  deblurred HR image

Feature Extraction Enhanced Feature Concatenate Non-linear  Mapping Reconstruction

𝑓ଵ × 𝑓ଵ
𝑓ଶ × 𝑓ଶ

𝑓ଷ × 𝑓ଷ 𝑓 × 𝑓𝑓 × 𝑓

The added enhanced layers

Fig. 2: Proposed DBSR architecture. This network comprises
eight layers: the five convolutional layers of DBSRCNN,
in addition to extra 3 enhanced layers inserted after the
concatenated layer to further refine the merged feature maps.

the difference between the reconstructed images F (X,Θ) and
its ground truth high-resolution images Y:

L(Θ) =
1

m

m∑

i=1

||F (Xi; Θ)− Yi||2, (5)

where Θ = {W1,W2, · · · ,W8, b1, b2, · · · , b8}, and m is
the number of training samples. The lost function is minimized
using Adam optimization [38]. We train all experiments for 60
epochs with a batch size 64. In each layer, the filter weights
are initialized by the initialization method described in He et
al. [39], considered a robust method for ReLU. The learning
rate is 0.001. The structure of the proposed network is 8 layers
(64-32-32-32-32-32-32-1)(9-5-5-5-5-5-5-5).

IV. EXPERIMENTS

A. Datasets and Degradation Model

a) Training and Testing dataset: Different training
datasets have been used for different networks. For example,
SRCNN [20] uses 91 images from Yang et al. [9] which
is a relatively small dataset. In the VDSR model [21] 291
images are used, 91 images from Yang et al. in addition to 200
images from Berkeley Segmentation Dataset [40]. In our work
we employ 291 images as in [21], with data augmentation
(flip and rotation) resulting in a total of 2,328 images. The
training dataset is divided into sub-images with size fsub = 31
resulting in 573,632 sub-images by employing a stride of 21.
The model is trained on sub-images, whereas the inference is
carried out on the whole image. ‘Set5’ [10] and ‘Set14’ [41]
are two datasets commonly used for testing.

b) Degradation Model: A standard model for degrada-
tion is formulated by the as a linear combination

ILR = Ds Hσ IHR + n, (6)

where the HR image IHR is first blurred by operator Hσ

and then down-sampled with Ds. The bicubic downsampling
method with fixed down-sampling factor s is used here. The
noise n is additive noise.

Before generating LR images according to Eq.(6), the blur
kernels should be defined. The degradation model assumes that

an HR image can be degraded into many LR images depending
on the blur kernel and the noise. To produce blur we applied
the Gaussian kernel model with a fixed kernel width (the value
of σ). In non-blind CNN models, the standard deviation σ
is set to 1, 2, and 3. For blind CNN models, the standard
deviation takes values in [0.5, 3], which is assumed unknown.
To generate a single blurred LR image Xi (input) for training
and testing, the HR image Yi are first blurred using a Gaussian
kernel with standard deviation σ = i. Secondly, images are
down-sampled using the down-scaling factor s, and then up-
sampled using bicubic interpolation to the HR size. The down-
scaling and up-scaling factors used here are 2, 3, 4. Note that
padding may be required.

B. Comparison with the state-of-the-art

The proposed DBSR model is compared with several CNN
models designed to handle down-sampling without blurring.
Table I shows the PSNR and SSIM [42] results of state-of-the-
art CNN models. While our proposed method may not always
perform best, our DBSR pipeline still achieves competitive
results with a smaller number of parameters in comparison.
The results of the DBSR model are better than those obtained
by SRCNN and DBSRCNN and this is achieved by adding
more layers in DBSRCNN model to enhance the low level
features before mapping.

C. Non-Blind and Blind Scenarios

Table II shows the evaluation of the performance of DBSR
on images with different degrees of blur. We have considered
two different scenarios: non-blind and blind scenario. The non-
blind scenario corresponds to the case when the network is
trained and tested on images with the same σ in N(0, σ);
σ = 1, 2 or 3. While, in the blind scenario the network is
trained on images with kernel width N(0, σ) with σ ranging
between [0.5-3]. The blind models are tested on images at any
kernel width value. The quantitative results (PSNR/ SSIM) for
Set5 and Set14 point out that DBSR enhances the quality
of images over SRCNN and DBSRCNN models, for both
non-blind and blind scenarios. A possible explanation is that
the added enhanced layers led to improved results relying on
cleaner features with less noise.

In Table III, we follow the comparison presented in Zhang
et al. [23], where Gaussian blur with σ = 1.3 and σ = 2.6
and scale factor s = 3 was considered on Set5 dataset. We

TABLE I: Average PSNR and SSIM results for σ = 0 (without
adding any blur) on datasets Set5 and Set14.

Dataset
Scale
Factor

LR Input SRCNN [43] DBSRCNN [1] LapSRN [24] SRMD [23] DBSR
PSNR/ SSIM

Set5
s = 2

s = 3

s = 4

33.66 / 0.930
30.40 / 0.868
28.42 / 0.810

35.68/ 0.948
31.95/ 0.845
29.79/ 0.844

-
32.60/ 0.908

-

37.52 / 0.959
33.82 / 0.922
31.54 / 0.885

37.53 / 0.959
33.86 / 0.923
31.59 / 0.887

37.23/ 0.957
33.24/ 0.917
30.84/ 0.873

Set14
s = 2

s = 3

s = 4

30.24 / 0.869
27.54 / 0.774
25.99 / 0.703

31.74/ 0.899
28.67/ 0.806
27.00/ 0.735

-
29.11/ 0.817

-

33.08 / 0.913
29.89 / 0.834
28.19 / 0.772

33.12 / 0.914
29.84 / 0.833
28.15 / 0.772

32.83/ 0.911
29.56/ 0.827
27.69/ 0.759

No of parameters - 8k 105k 813K 1,478k 236k

The results for LapSRN and SRMD are taken from Zhang et al. [23].
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Original HR Blurred LR SRCNN DBSRCNN DBSR DBSRCNN blind DBSR blind
PSNR

σ
=

2

30.75 33.47 35.00 35.21 32.75 34.61

PSNR

σ
=

3

26.67 30.74 32.20 33.34 31.44 33.99

Fig. 3: SR with different models on images after Gaussian blur with different σ = 2, 3. The results show the non-blind and
blind scenarios. Each result is accompanied by zoom and PSNR(dB). In blind scenarios σ ∈ [0.5, 3].

Original HR Blurred LR VDSR IRCNN SRMD DBSR DBSR blind

PSNR

σ
=

2

21.06 21.43 28.95 29.25 29.04 28.31

Fig. 4: SISR performance of different models on Butterfly image after Gaussian blur at σ = 2. In the blind scenario σ ∈ [0.5, 3].

TABLE II: Average PSNR and SSIM results with different
blur levels σ = 1, 2, 3, scale factor s = 3 on Set5 and Set14.

Non-blind Networks Blind Networks

SRCNN [43] DBSRCNN [1] DBSR
DBSRCNN [1]

σ ∈ [1, 3]

DBSR

σ ∈ [0.5, 3]
Dataset Kernel

Width

LR Input

PSNR/ SSIM

σ = 1 29.47/ 0.847 31.55/ 0.892 32.65/ 0.907 33.24/ 0.917 31.24/ 0.888 32.60/ 0.909

σ = 2 27.45/ 0.789 30.29/ 0.873 32.09/ 0.897 33.05/ 0.914 30.14/ 0.868 31.78/ 0.900
Set5

σ = 3 25.65/ 0.724 29.03/ 0.819 30.48/ 0.858 31.36/ 0.879 29.51/ 0.840 31.67/ 0.886

σ = 1 26.86/ 0.745 28.40/ 0.805 29.11/ 0.818 29.56/ 0.827 28.38/ 0.805 29.10/ 0.820

σ = 2 25.37/ 0.679 27.41/ 0.780 28.80/ 0.808 29.47/ 0.825 27.43/ 0.765 28.80/ 0.813
Set14

σ = 3 24.04/ 0.617 26.33/ 0.712 27.50/ 0.753 28.00/ 0.782 26.68/ 0.722 28.29/ 0.788

compare our model with VDSR [21], SRMD [23], also model-
based methods such as IRCNN [34]. Our model provides
good performance compared to other models. Examples of
qualitative comparison of reconstruction are shown in Figure
3 and 4. In particular, it can be observed that SRMD, the best
performing model in terms of PSNR, reports SR results of
comparable visual quality with the proposed DBSR 1, whereas
the more realistic DBSR blind pipeline achieves slightly worse
sharpness (see zoom). Note that the higher the PSNR and

1The code is available at: https://github.com/Fatma-ALbluwi/DBSR.git

TABLE III: Average PSNR and SSIM results with different
kernel width of blur kernel with scale factor s = 3 on Set5.

Kernel

Width
LR Input VDSR [21] IRCNN [34] SRMD [23]

DBSR

σ ∈ [0.5, 3]

σ = 0.2 30.39/ 0.8680 33.67/ 0.9213 33.39/ 0.9393 33.86/ 0.9232 -

σ = 1.3 28.84/ 0.8308 - 33.31/ 0.9186 33.77/ 0.9214 32.70/ 0.9094

σ = 2.6 26.17/ 0.7444 - 31.48/ 0.8624 32.59/ 0.8999 31.85/ 0.8951

The results of VDSR model is taken from Zhang et al. [23].

SSIM values are, the better the performance is.

V. CONCLUSION

In this paper, we have presented DBSR, an extension
model for DBSRCNN model, where we have proposed adding
convolutional layers to enhance the extracted features. We have
reported a panel of comparisons with the state-of-the-art deep
learning and model-based methods to highlight the competitive
performance of the proposed model for super resolution on
blurred images. Importantly, these results are obtained by a
model with 3 to 6 times less parameters. This constitutes a
strong advantage of DBSR and facilitates its deployment and
accelerates the training process [44].
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