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ABSTRACT

Recently multiple high performance algorithms have been de-
veloped to infer high-resolution images from low-resolution
image input using deep learning algorithms. The related
problem of super-resolution from blurred or corrupted low-
resolution images has however received much less attention.
In this work, we propose a new deep learning approach that
simultaneously addresses deblurring and super-resolution
from blurred low resolution images. We evaluate the state-
of-the-art super-resolution convolutional neural network (SR-
CNN) architecture proposed in [1] for the blurred reconstruc-
tion scenario and propose a revised deeper architecture that
proves its superiority experimentally both when the levels of
blur are known and unknown a priori.

Index Terms— Image super-resolution, deblurring, deep
learning, convolutional neural networks.

1. INTRODUCTION

Single image super-resolution (SR) is an essential applica-
tion in computer vision that proves useful in multiple areas
such as remote sensing image processing, security systems,
medical imaging, etc. The SR task is an ill-posed problem,
where one LR image has many solutions for HR image. In the
early 1980s, Tsai [2] has addressed the topic of image super-
resolution for the first time. Since then the problem has re-
ceived a lot of attention, and typical state-of-the-art methods
perform as example-based approaches where learned prior
information alleviates the problem of multiple solutions [3].
The example-based methods are divided into two kinds: inter-
nal methods [4, 5, 6] and external example-based methods [7,
8, 9, 10, 11, 12]. The pipeline of most external example-based
approaches is shared, where the focus is on learning and op-
timizing the dictionaries or learning mapping functions. De-
spite some similarities convolutional neural networks (CNNs)
based technique are different because they attempt to learn
an end-to-end mapping function between LR and HR images
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without addressing explicitly the problem of selection and
composition of dictionaries and / or manifolds.

Currently, the majority of the best performing state-of-
the-art methods for SR are based on deep neural networks
[13, 1, 14, 15, 16, 17, 18, 19, 20, 21]. The pioneering SR-
CNN model of Dong et al. [1] introduced a simple yet effi-
cient deep architecture for SR. All these algorithms assume
that a constant amount of noising or blurring is applied to all
training and testing images. In this study we address an ad-
ditional factor of unknown amount of blurring applied to im-
ages that are received by the SR pipeline. It is thus necessary
to tackle simultaneously deblurring and SR reconstruction in
a unified procedure. This paper aims at designing a smart
system for tackling this dual problem. We propose a new ar-
chitecture for deblurring SR application inspired by SRCNN.
We refer to our model as deblurring super-resolution convo-
lutional neural network (DBSRCNN) which we apply to SR
on blurred images with a priori known (non-blind) and un-
known (blind) amount of blurring. We experimentally vali-
date our model and show that our architecture is better suited
for reconstructing blurred images than SRCNN in both blind
and non-blind scenarios.

2. SUPER RESOLUTION AND DEBLURRING

We begin by briefly reviewing the SRCNN architecture pro-
posed by Dong et al. [1] and its optimization procedure in
Sec. 2.1. To tackle efficiently simultaneous deblurring and
SR we propose a novel DBSRCNN architecture presented in
Section 2.2.

2.1. SRCNN architecture

The (9-1-5) architecture of SRCNN corresponds to a rela-
tively small network that contains 8,032 parameters and is
composed of 2 hidden layers: added to the input and the out-
put layers there are 4 layers in total. The objective is to learn a
mapping function F performing three tasks: patch extraction,
non-linear mapping, and reconstruction. The structure of the
network is defined as follows [1]:

• Input Layer: the input x is 2-dimensional representa-
tion of the sub-image with c = 1 for grey level image
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(channel Y) and c = 3 for colour images (YCbCr).

• Patch extraction and representation The first hidden
layer extracts overlapping patches from the input sub-
image and represents each patch as a high-dimensional
vector. It uses a Rectified Linear Unit (ReLU) activa-
tion function F1, kernel size f1 = 9 and contains n1 =
64 feature maps:

F1(x) = max
�
0,W (1) ∗ x + b(1)

�
, (1)

where W (1) contains n1 filters of size c× f1 × f1 that
produce n1 feature maps. b(1) is a n1-dimensional bias
vector; ’*’ denotes the convolution operation.

• Second order mapping The second hidden layer maps
each high-dimensional vector of the previous layer to
another high-dimensional vector, which is the represen-
tation of a high-resolution patch. ReLU activation func-
tion is employed with n2 = 32 feature maps and filter
size f2 = 1:

F2(x) = max
�
0,W (2) ∗ F1(x) + b(2)

�
, (2)

where W (2) involves n2 filters of size n1 × f2 × f2 to
produces n2 feature maps. b(2) is the bias vector.

• Reconstruction operation The output layer produces
the reconstructed SR image by aggregating the patch-
wise representations:

F (x) = W (3) ∗ F2(x) + b(3) (3)

where W (3) includes c filters of size n2 × f3 × f3 with
filter size f3 = 5. b(2) is a c-dimensional bias vector,
associated to the number of image channels.

The structure of SRCNN can be written as a network with 3
layers (9-1-5)(64-32-1).

SRCNN Optimization The filter weights in each layer
are initialized by drawing randomly from a Gaussian distri-
bution with zero mean and standard deviation 0.05, the bi-
ases set to 0, and the learning rate equal to 0.001. The aim
is to recover SR image F (x) from LR (x) that is as similar
as possible to the original HR image y. The estimation of
Θ = {W (1),W (2),W (3), b(1), b(2), b(3)} is required to spec-
ify the end-to-end mapping function F . To this end, the cost
minimization between the reconstructed images F (x,Θ) and
its original HR images y is performed. The MSE function
C(θ) is employed as the cost function:

C(θ) =
1

n

n�

i=1

||F (xi; θ)− yi||2 (4)

This cost function is minimized using Adam [22], which is
used to optimize the network at faster convergence rates.

Fig. 1. Proposed architecture DBSRCNN

2.2. De-blurring with DBSRCNN

The proposed network aims to learn an end-to-end mapping
F , which takes the blurred LR image x as input, and directly
provides the deblurred HR reconstruction F (x). Our archi-
tecture includes four convolutional layers in addition to a con-
catenation layer as demonstrated in Figure 1.

The first layer is feature extraction to compute the low-
level features and contains 32-feature maps (32 filters) with
filter size 9 × 9. The second layer is a feature enhancement
layer which provides enhanced features from the output of the
first layer, and contains 32-features maps with filters of size
5× 5. The third layer concatenates features from the first two
layers creating a merged vector with low-level and enhanced
features. This layer contains 64-features maps or 32-features
maps depending on the operation defining the merger proce-
dure. Such operations include summation, maximum, sub-
traction, averaging, multiplication, concatenation. All these
operations except the last one take the same size of inputs and
return the same shape. Concatenation allows inputs of differ-
ent sizes. We have empirically observed the best performance
associated with the concatenation operation. The fourth layer
performs the second-order mapping.The final fifth layer re-
constructs the output HR image. The operations of the pro-
posed network can be described as follow:

Fi(x) = max
�
0,W (i) ∗ Fi−1(x) + b(i)

�
, i ∈ {1, 2, 4} (5)

F3(x) = merge
�
F1(x), F2(x)

�
(6)

F (x) = W (5) ∗ F4(x) + b(5) (7)

where W (i) and b(i) are the filters and biases. W (i) is com-
prised of ni filters and n0 is the number of channels in the in-
put image. Fi(x) are the feature maps and F (x) is the recon-
structed output image which has the same size as the input im-
age. The activation functions used are ReLU. Mean Squared
Error (MSE) is used as the cost function, and the cost func-
tion is minimized using Adam optimization.

3. EXPERIMENTAL RESULTS

Dataset & image degradation model The training dataset is
composed of 91 images taken from Yang et al. [23]. The test
datasets are denoted “Set5” (5 images) [8] and “Set14” (14
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Method Training images LR Blur 𝝈 = 𝟏 Blur 𝝈 = 𝟐 Blur 𝝈 = 𝟑 Blur 𝝈 = 𝟒

Upsampling (bicubic) - 30.40 29.47 27.45 25.65 24.33

Original SRCNN[1] 𝝈 = 𝟎 31.95

Re-trained SRCNN
non-blind

custom 𝝈 31.55 30.29 29.01 27.35

Re-trained SRCNN
blind

mixed 𝝈 = 𝟏 − 𝟑 28.49 30.05 30.02 27.54 25.43

mixed 𝝈 = 𝟏 − 𝟒 27.64 29.05 29.55 27.80 25.91

Table 1. Average of PSNR (dB) for SRCNN on “Set5”

images) [24]. We make this choice of training and test data to
allow a fair comparison with [1] where they were employed.
To fully exploit the available data we rely on augmentation:
HR images from the training set are randomly cropped to ob-
tain fsub×fsub×c pixel sub-images. We employ sub-images
of size fsub = 33, thus the 91 HR images can be divided
into 21,824 training sub-images with stride 14. The model is
trained on sub-images, and the inference on the whole image.

To create a single blurred LR sub-images xi (input) for
training and testing, the HR sub-images yi are first blurred
using a Gaussian kernel noted bluri (with standard deviation
σ = i). Secondly images are down-sampled using the down-
scaling factor, and then up-sampled using bicubic interpola-
tion to the HR input resolution. Thus, the sizes of the input
and output images of our network are equal. The down/up
scaling factor employed in this study is s = 3.

Computation Time The Python implementation of SR-
CNN [25] uses Keras-1 with Theano library as a backend.
We converted the code to keras-2 and switched the backend
to TensorFlow. To render the SRCNN training more compu-
tationally efficient, our implementation relies on Adam opti-
mization. The training time of SRCNN in this implementa-
tion was 8.33 minutes with NVIDIA GTX 1050 GPU. Dong
et al. [1] indicate that the (9-5-5) SRCNN network achieved
better performance than (9-1-5) SRCNN network but at the
cost of training time. In our implementation of (9-5-5) SR-
CNN network, the training time was around 11 minutes.

3.1. Evaluation of SRCNN

To fully evaluate the performance of SRCNN on SR of
blurred images we test several different scenarios:

• Non-blind scenario: four pipelines are trained on im-
ages with blur N(0,σ) with σ = 1, 2, 3, 4 and tested on
images having the same level of blur.

• Blind scenario: two pipelines are trained on images
with blur N(0,σ) with σ varying between 1-3 and 1-
4. Testing performed on images with various levels of
blur.

The average of peak signal-to-noise ratio (PSNR) in dB
between the blurred LR input (degraded images) and the
original HR images on Set5 and Set14 is used to evaluate
the performance of all pipelines and results are reported in
Tables 1 and 2. The default baseline comparison is with
the bicubic interpolation. In the non-blind scenario, all AI

Method Training images LR Blur 𝝈 = 𝟏 Blur 𝝈 = 𝟐 Blur 𝝈 = 𝟑 Blur 𝝈 = 𝟒

Upsampling (bicubic) - 27.54 26.86 25.37 24.04 23.05

Original SRCNN[1] 𝝈 = 𝟎 28.67

Re-trained SRCNN
non-blind

custom 𝝈 28.40 27.41 26.33 25.19

Re-trained SRCNN
blind

mixed 𝝈 = 𝟏 − 𝟑 26.46 27.57 27.16 25.34 23.85

mixed 𝝈 = 𝟏 − 𝟒 25.85 26.92 26.93 25.52 24.20

Table 2. Average of PSNR (dB) for SRCNN on “Set14”

Method Training images LR Blur 𝝈 = 𝟏 Blur 𝝈 = 𝟐 Blur 𝝈 = 𝟑 Blur 𝝈 = 𝟒

Upsampling (bicubic) - 0.8589 0.8325 0.7660 0.6937 0.6337

Original SRCNN[1] 𝝈 = 𝟎 0.8852

Re-trained SRCNN
non-blind

custom 𝝈 0.8816 0.8545 0.8047 0.7491

Re-trained SRCNN
blind

mixed 𝝈 = 𝟏 − 𝟑 0.8488 0.8707 0.8436 0.7588 0.6771

mixed 𝝈 = 𝟏 − 𝟒 0.8319 0.8561 0.8409 0.7717 0.6969

Table 3. Average of SSIM for SRCNN on “Set14”

pipelines improve the PSNR. The same behavior is observed
for the structural similarity index measure (SSIM) as well,
see Table 3 for “Set14”. The performance improvement be-
comes less pronounced in the blind scenarios.

Table 4 presents the average PSNR over the merged test
sets. Here we test all pipelines on all possible levels of the in-
put blurring. As expected non-blind pipelines perform best on
images presenting the correct level of blurring (the one used
for their training), see diagonal PSNR in red, and outperform
blind pipelines trained to tackle a range of blurring levels. But
when information about the blurring level is unavailable or a
wrong non-blind model is used, the blind networks allow to
achieve the best performance.

3.2. Evaluation of DBSRCNN

Tables 5, 6 and 7 report average PSNR for “Set5”, “Set14”,
and SSIM for “Set14”, respectively. One observes a clear
improvement of DBSRCNN’s performance over SRCNN on
blurred images. DBSRCNN architecture allows to improve
the quality of the images as measured with PSNR and SSIM.
A possible explanation of this performance is that the con-
catenation of features extracted at an early stage acts similarly
to traditional image processing techniques such as unsharp
masking that boosts relevant (high) frequencies partially lost
in the blurring stage, to enhance the reconstructed image.

Reconstruction examples with various levels of blur are
shown in Figure 2 for qualitative comparison: DBSRCNN al-

Method Training images LR Blur 𝝈 = 𝟏 Blur 𝝈 = 𝟐 Blur 𝝈 = 𝟑 Blur 𝝈 = 𝟒

Upsampling (bicubic) - 28.29 27.55 25.92 24.46 23.39

Original SRCNN[1] 𝝈 = 𝟎 29.53 28.90 26.53 24.63 23.42

Re-trained SRCNN
non-blind

𝝈 = 𝟏 28.18 29.23 27.11 24.87 23.54

𝝈 = 𝟐 20.66 23.64 28.16 25.78 23.92

𝝈 = 𝟑 16.86 18.80 23.98 27.04 24.88

𝝈 = 𝟒 14.75 16.04 19.59 24.35 25.76

Re-trained SRCNN
blind

mixed 𝝈 = 𝟏 − 𝟑 26.99 28.22 27.92 25.92 24.27

mixed 𝝈 = 𝟏 − 𝟒 26.32 27.48 27.62 26.12 24.65

Table 4. Average of PSNR (dB) for SRCNN on “Set5+Set14”
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Original HR blurred LR SRCNN blind 1-3 SRCNN DBSRCNN blind 1-3 DBSRCNN

σ
=

1

30.83 dB 32.81 dB 31.41 dB 33.43 dB 32.03 dB

σ
=

3

27.38 dB 30.31 dB 29.57 dB 31.54 dB 30.75 dB

σ
=

1

31.34 dB 33.85 dB 31.75 dB 35.14 dB 32.59 dB

σ
=

3

26.67 dB 30.74 dB 28.92 dB 32.20 dB 31.44 dB

Original HR blurred LR SRCNN blind 1-4 SRCNN DBSRCNN blind 1-4 DBSRCNN

σ
=

2

21.06 dB 25.28 dB 24.22 dB 27.00 dB 25.19 dB

σ
=

4

17.77 dB 21.29 dB 19.32 dB 23.06 dB 21.77 dB

Fig. 2. SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with different σ. Third and fifth column
show non-blind scenario, and fourth and sixth correspond to blind scenario. Each result is accompanied by zoom and PSNR.
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Original HR blurred LR SRCNN blind 1-3 SRCNN DBSRCNN blind 1-3 DBSRCNN

σ
=

2

30.75 dB 33.47 dB 33.55 dB 35.00 dB 32.75 dB

σ
=

3

28.76 dB 32.41 dB 30.97 dB 33.53 dB 33.90 dB

Fig. 3. SR with SRCNN and DBSRCNN on a colour image after Gaussian blur with different σ. Third and fifth column show
non-blind scenario, and fourth and sixth correspond to blind scenario. Each result is accompanied by zoom and PSNR.

Method Training images LR Blur 𝝈 = 𝟏 Blur 𝝈 = 𝟐 Blur 𝝈 = 𝟑 Blur 𝝈 = 𝟒

Upsampling (bicubic) - 30.40 29.47 27.45 25.65 24.33

DBSRCNN
non-blind

𝝈 = 𝟎 32.60
custom 𝝈 32.65 32.09 30.48 28.69
improvement over 
non-blind SRCNN

+0.65 +1.10 +1.80 +1.47 +1.34

DBSRCNN
blind

mixed 𝝈 = 𝟏 − 𝟑 29.89 31.24 30.14 29.51 26.28
mixed 𝝈 = 𝟏 − 𝟒 29.63 30.85 30.08 28.40 27.72
improvement over 
blind SRCNN

+1.4 +1.19 +0.12 +1.71 +1.81

Table 5. Average of PSNR (dB) for DBSRCNN on “Set5”

lows for a visually better reconstruction than SRCNN con-
firming the quantitative assessment results reported by PSNR
and SSIM. SRCNN has been compared with the earlier state-
of-the-art methods (SC, NE+LLE, KK, ANR, A+) in [1], and
hence DBSRCNN compares favourably with these as well.

3.3. Extension to colour images

The majority of existing SR methods concentrate on single-
band or grey-scale input imagery. There are several main ap-
proaches to perform super-resolution on colour images. The
straight forward approach is to perform SR separately on the
input colour channels and then merge them together into a
colour image. Another approach consists in dealing with all
three channels in a unified manner by expanding the sizes of
layers in the deep architecture (c = 3). Finally, colour im-
ages can be super-resolved by casting the colour images to
YCbCr colour space where the SR is performed solely on the
luminance channel Y. Chroma components Cb, and Cr are up-
scaled by bicubic interpolation, and then all channels (Y, Cb,
Cr) are combined again to produce output.

In this work we follow the third strategy and perform SR
on Y channel and bicubic interpolation on chroma compo-
nents. Figure 3 demonstrates an example output of processing

Method Training images LR Blur 𝝈 = 𝟏 Blur 𝝈 = 𝟐 Blur 𝝈 = 𝟑 Blur 𝝈 = 𝟒

Upsampling (bicubic) - 27.54 26.86 25.37 24.04 23.05

DBSRCNN
non-blind

𝝈 = 𝟎 29.11
custom 𝝈 29.11 28.80 27.50 26.28
improvement over 
non-blind SRCNN

+0.44 +0.71 +1.39 +1.17 +1.09

DBSRCNN
blind

mixed 𝝈 = 𝟏 − 𝟑 27.20 28.38 27.43 26.68 24.55
mixed 𝝈 = 𝟏 − 𝟒 27.10 28.09 27.28 25.99 25.46
improvement over 
blind SRCNN

+0.74 +0.81 +0.27 +1.16 +1.26

Table 6. Average of PSNR (dB) for DBSRCNN on “Set14”

Method Training images LR Blur 𝝈 = 𝟏 Blur 𝝈 = 𝟐 Blur 𝝈 = 𝟑 Blur 𝝈 = 𝟒

Upsampling (bicubic) - 0.8589 0.8325 0.7660 0.6937 0.6337

DBSRCNN
non-blind

𝝈 = 𝟎 0.8927
custom 𝝈 0.8930 0.8860 0.8416 0.7882
improvement over 
non-blind SRCNN

+0.0075 +0.0114 +0.0315 +0.0369 +0.0391

DBSRCNN
blind

mixed 𝝈 = 𝟏 − 𝟑 0.8692 0.8832 0.8488 0.8115 0.7130
mixed 𝝈 = 𝟏 − 𝟒 0.8628 0.8775 0.8422 0.7983 0.7561
improvement over 
blind SRCNN

+0.0204 +0.0125 +0.0052 +0.0398 +0.0592

Table 7. Average of SSIM for DBSRCNN on “Set14”

a colour input along with relevant comparisons with SRCNN.

4. CONCLUSION

In this work we have extensively evaluated performance of the
recently proposed SRCNN architecture for recovering high
resolution images from low resolution corrupted by blur /
noise. We have proposed a new architecture DBSRCNN that
enhances the reconstruction by boosting the relevant features
that were originally lost in the SRCNN pipeline. Our exper-
imental study with different levels of Gaussian blur demon-
strates that our revised deeper architecture performs better in
both blind and non-blind testing scenarios.
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