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Abstract. Despite strong progress in the field of 3D reconstruction from
multiple views, holes on objects, transparency of objects and textureless
scenes, continue to be open challenges. On the other hand, silhouette
based reconstruction techniques ease the dependency of 3d reconstruc-
tion on image pixels but need a large number of silhouettes to be avail-
able from multiple views. In this paper, a novel end to end pipeline is
proposed to produce high quality reconstruction from a low number of
silhouettes, the core of which is a deep shape reconstruction architec-
ture. Evaluations on ShapeNet [1] show good quality of reconstruction
compared with ground truth.

Keywords: Deep 3D reconstruction + End to end architecture -
Silhouettes

1 Introduction

3D geometry reconstruction techniques have made significant progress during
this two decades from theoretical development to software implementation. The
aim of both contributions are to build high-quality 3D reconstruction of scenes
and objects from 2D or 2.5D source information in terms of image pixels, depth
and other source data. Current progress in this filed involves wider applica-
tion of 3D reconstruction towards real world application including video data
application, large-scale scene reconstruction, light field reconstruction and other
applications. However, several open questions remain challenging for 3D recon-
struction such as holes, wrinkles, coarse region and other unwanted artifacts in
the 3D rebuilt world for the reconstruction of transparent objects, textureless
scenes and other challenging objects and scenes (Fig. 1).

Among the two most popular 3D reconstruction technique groups includ-
ing the increment multiview reconstruction and volume-based reconstruction,
the first technique framework is based on 2D image source information. Lots of
techniques and theories have been developed to produce high-quality 3D recon-
struction. Furthermore, for the 3D reconstruction of challenging objects such as
transparent objects and objects containing textureless parts, lots of priors includ-
ing surface normals, object-specific shape priors and other priors are applied
and integrated in the reconstruction systems. These priors are demonstrated to
improve the quality of 3D reconstruction in order to avoid of holes, wrinkles,
and other artifacts.
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Fig. 1. Two stage direct 3D reconstruction pipeline

The second technique groups build the 3D real world in the grid space con-
sists of voxels. Priors such as connectivity priors, surface orientation priors are
represented as data constraint terms. These terms are calculated in a mathe-
matical framework such as multiple label convex framework or MRF pipelines
to provide solutions to the opening challenges. Besides, sufficient information of
viewpoints including camera parameter matrix of each viewpoint, a large number
of silhouettes and 2D image pixels are the base of quality of 3D reconstruction
in the grid space.

The proposed pipeline is a deep reconstruction pipeline consisting of two
reconstruction stages. The first stage is shape coarse reconstruction stage. It
takes a small number of silhouettes as input with known camera parameters of
the associated viewpoints, and produces a coarse visual hull. The second stage is
deep shape reconstruction stage, it works based on a deep shape reconstruction
architecture. This proposed 3D convolution networks (3D-CNNs) architecture
reconstructs good quality shapes from coarse shapes. The currently proposed
pipeline is designed for reconstructing category-specific object shapes.

Two contributions are made. First, this pipeline produces high quality of
3D reconstruction based on a low number of silhouettes. It is not dependent on
images pixels, depth data and et al. Therefore, this silhouettes based technique
is considered as a potential solution for 3D reconstruction of transparent objects
or objects with textureless parts. Second, compared with techniques relying on
a large number of images taken in different viewpoints, the proposed pipeline
reduces the number of views.

This paper is organized as follows. We review related work in Sect. 2. We for-
mulate the problem in Sect. 3. Both the solution to the formulated problem and
the proposed reconstruction pipeline is presented in Sect. 4. Evaluation details
including the dataset, traning, test and results are shown in Sect.5. Finally,
conclusion and future work for our pipeline is discussed in Sect. 6.

2 Related Work

End to end deep learning architectures have been applied successfully to a
variety of vision problems such as segmentation [2-5], edge prediction [6],
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classification [7], optical flow prediction [8], depth prediction [9], keypoint pre-
diction [4] and feature learning [10,11]. Also, fully convolutional networks prove
their efficiency in one dimensional input strings [12] extended from LeNet [13],
two dimensional detection [14,15] with learning and inference, three dimensional
representation [16], volumetric 3D shapes classification and interpolation [17].

Convolutional Neural Networks(CNNs) have been proven their efficiency in
improving 3D reconstruction. For example, CNNs is developed for the task of
prediction of surface normals from a single image [18]. A combined framework for
viewpoint estimation and local keypoint prediction is proposed through applica-
tion of a convolutional neural network architectures [19]. A convolutional neural
network is built to perform extremely well for stereo matching [20].

Unlike the above methods, end to end deep architectures are built for
3D reconstruction. For example, convolution network is applied to build 3D
models from single images [21], 3D recurrent reconstruction neural network
(3D-R2N2) is built to unify both single and multi-view 3D object reconstruction
[22], Semantic deformation flows are learned with 3D convolution networks for
improving 3D reconstruction [23], 3D volumetric reconstruction is learned from
single-view with projective transformations [24]. However, these 3D reconstruc-
tion deep architectures are dependent on image pixels, transformation and etc.
In contrast, a novel reconstruction pipeline is proposed directly from a small
number of silhouettes input end to 3D reconstruction end.

3 Problem Formulation

We aim at building a function V of Visual Hull H, (inferred from k silhouettes
[25]) that reconstructs a shape as close as possible to the Ground Truth (GT)
shape:

V(Hg) ~GT (1)

It is commonly understood that the visual hull improves as the number &k of
silhouettes increases such that:

lim H, =H (2)
k—o0
where the limit visual hull H is the best approximation possible of the object
shape estimated from silhouettes. H itself is often far away from the true
shape GT as concave areas fail to be recovered from Shape-from-Silhouettes
techniques [26].

To avoid these artifacts, we propose an improvement on visual hull inferred
by shape-from-silhouettes techniques using a Bayesian like framework where we
aim at using prior information about the object category to design a function
V(Hy) =V, that is as close as possible to GT'. The function V is designed using
deep neural network and is trained using ShapeNets dataset [1]. Our formulation
is tested for k = 2,3, 4,5 silhouettes available as input of the pipeline.
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4 Two-Stage Deep Shape Reconstruction Pipeline

An end to end deep shape reconstruction pipeline is proposed. The input end
is a small number of silhouettes with known camera parameters and the output
end is reconstructed 3D shape in the form of volume. The volume grid consists of
voxels whose values are binary. 0 represents the empty space and 1 represents the
occupied space of the shape. To be noted, both space on the surface of the shape
and inside the shape are represented as 1. The proposed shape reconstruction
pipeline is split in two stages including coarse shape reconstruction stage and
deep shape reconstruction stage. The first stage is to produce a 3D shape of
object Hy with known silhouettes and corresponding camera parameters. The
second stage is to reconstruct a good quality of 3D shape Vi with known Hy
through a deep shape reconstruction architecture. This architecture works as a
solver to the formulated problem. H}, is produced through a common method of
intersection of known silhouette cones [25]. And the architecture of the second
stage is represented as follows.
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3 Layer 3D CNN Encoder 3 Layer 3D CNN Decoder

Fig. 2. Deep shape reconstruction architecture. Details of the deep shape reconstruc-
tion architecture are represented including the number of 3D convolution layers and
3D deconvolution layers, size of filters, the umber of filters and parameters of the stride

4.1 Architecture

Both the input end Hy and the output end V) are in the forms of volume space
consisting of voxels. The values of the voxels are binary. The key components of
the deep learning architecture we built for the deep shape reconstruction are the
convolutional encoding layers(recognition network) and convolutional decoding
layers(generative network). As shown in Fig. 2, there are three 3D convolutional
layers and three 3D deconvolutional layers in our deep shape reconstruction
architectures. From the input end to the output end of the deep shape architec-
ture, we use different size of filters. From the beginning layer of the recognition
network, the filter size changes from 4 x 4 x 4 to 2 x 2 x 2, the number of filters
increase from 64 to 1024. In contrast, from the beginning layer of the generative
network, the filter size changes from 2 x 2 x 2 to 4 x 4 x 4, and the number of
filters reduces from 1024 to 64.
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4.2 Convolution and Deconvolution

CNNs are good at extracting high-level abstract information of data by inter-
leaving convolutional and deconvolutional layers, pooling and spatially shrinking.
For both convolutional and deconvolutional layers, learnable filters are important
components for the stronger learning ability of these layers. A filter of a trainable
convolutional layer acts as a learnable local down-sampling unit and the filter
of a trainable deconvolutional layer acts as a learnable local up-sampling unit.
In 3D convolution, 3D input signals are convolved by the kernel filter and the
values are placed on the output 3D grid. Conversely, 3D deconvolution takes the
values of the input 3D grid and the result values are got through multiplying the
values by weights in the filters. If one 3D filter has size s X s X s, it generates a
§ X 8 X s output matrix for each voxel input. The output matrices can be stored
overlapping and the amount of the output overlap depends on the output stride.
If the amount of output stride of the convolution filter is bigger than 1, then the
convolution layer produces an output with size smaller than the input and works
as down-sampler. While, if the amount of input stride of the deconvolution filter
is bigger than 1, the deconvolution layer produces an output with size bigger
than the input and works as up-sampler.

AN— N/ N/ —
z . H »
o = B 0

Fig. 3. Triple silhouettes and viewpoints for training deep 3D reconstruction model.

For the training of 4 object categories including cars, planes, motorbikes and chairs,
both silhouettes and views used to produce coarse shapes are represented

5 Evaluation

Evaluation are conducted for the proposed pipeline. First, training of a deep
shape model is conducted through usage of the ShapeNet [1] dataset. Second, test
is carried on to reconstruct 3D shapes from a low number of silhouettes. Finally,
comparison between the reconstructed 3D shapes and the ground truth shape
is made and the reconstruction errors are calculated. We did 4 experiments.
The goal of each experiment is to reconstruct the 3D shape of instances of a
specific object category. For conducting each experiment, category-specific deep
shape model is trained and then the evaluation on the reconstruction accuracy
is calculated.
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5.1 Dataset

ShapeNet is presented as a richly-annotated, large-scale repository of shapes
containing 3D CAD models of objects for a rich number of object categories.
ShapeNets contains more than 3,000,000 models, and 220,000 models of which
are classified into 3,135 categories. And ShapeNets has been used in a range of
deep 3D shape research work [27-29]. Here, we use a subset of ShapeNets to train
our category-specific deep shape reconstruction model. For example, we use 372
car CAD models for training our car deep shape reconstruction network, and
then use 110 car CAD models for testing the performance of our pipeline. The
number of CAD models used in the training for other three categories including
planes, motorbikes and chairs are 372, 277, 315 respectively. The number of CAD
models for testing are 107, 164 and 62 respectively.

5.2 Training

In the training, both the ground truth shape and the coarse shape of each CAD
model are used. The coarse shapes for training a category-specific deep shape
reconstruction model are produced through applying triple silhouettes. These
silhouettes are taken from three different views around each CAD model. The
three views are 0°, 120°, and 240° around each CAD model. Figure 3 visualizes
the fixed three views and triple silhouettes for the training. Then, with known
triple silhouettes and camera parameters, the coarse shapes are produced simply
from the intersection of three silhouette cones [25]. And both the ground truth
shape and the coarse shape are represented in the form of volume consisting of
binary voxels. Figure 4 presents ground truth shape and their corresponding Hj
used for training. To be noted, for both training and testing, the volume size
of each shape is 50 x 50 x 50. The category-specific reconstruction network is
trained end to end from scratch and with pure stochastic gradient decent. And
the learning rate is 1le~® for 200 epoches. The value of momentum is 0.9 and the
implementation is based on the open source library Torch.

5.3 Testing

In the testing, the category-specific 3D shape reconstruction pipeline is evaluated
for 4 object categories including cars, planes, chairs and motorbikes. For each
object category, we test the 3D deep shape reconstruction pipeline for 4 different
number of views. First, we test the 3D deep shape reconstruction pipeline with
input of 2 silhouettes. These 2 silhouettes are produced from 2 fixed views, 0°
and 180° around a ground truth CAD model. The other three tests evaluate
the performance of the deep shape reconstruction pipeline for 3 fixed views,
4 fixed views and 5 fixed views respectively. Also, the views chosen for these
three tests are [0°,120°,240°], [0°,90°,180°,270°] and [0°,72°,144°,216°, 288°]
respectively. Figure 5 visualizes the four arrangements of views for the test.
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Fig. 4. Sample shapes for training deep shape reconstruction architecture. Both ground
truth (GT) shapes and coarse shapes Hs are alternatively presented from the left to
right columns. Both two kinds of shapes are used for training category-specific deep
shape reconstruction architecture. Samples of the shapes for training 4 object categories
are all represented
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Fig. 5. Four view arrangements of silhouettes for test. The view arrangements for the
test of the car object category are shown

5.4 Results

The reconstructed shape in the two stages of our deep 3D reconstruction pipeline
are represented. For the test of the 4 view arrangements and 4 object categories,
both the coarse shapes and final shapes are shown qualitatively and quanti-
tatively. Both the qualitative and quantitative results show that the deep 3D
reconstruction pipeline is capable of reconstructing category-specific 3D shapes
with a small number of silhouettes as input. It also demonstrates that the net-
work improves the reconstruction after coarse shape stage. The reconstruction
error between Vi, and GT is shown to be smaller than the reconstruction error
between Hjy and GT, proving that the deep shape reconstruction architecture
reconstructs vy which is better than Hy.

Qualitative Results. Figures6, 7, 8, 9 visualize the shape reconstruction of
four object categories including cars, planes, motorbikes and chairs. Ground
truth shapes, shapes reconstructed in both the coarse shape reconstruction stage
and the deep shape reconstruction stage are all represented in the figures.

Quantitative Results. In order to get quantitative measures of the recon-
structed shape, we evaluate the 3D reconstruction in two ways. The first evalu-
ation is the mean square error between a 3D voxel reconstruction before thresh-
olding and its ground truth voxelized model. The second evaluation is the
voxel Intersection-over-Union(IoU) between the 3D voxel reconstruction and the
ground truth model. More formally,

Z?:1 lvpi — vai|2
n

Reconstruction Error = (3)
where vp; represents the final output at voxel ¢ in a grid space before thresh-
olding, vp; € [0,1]. And let the corresponding ground truth occupancy be Gup;,
Gop; € {0,1}. Lower error indicates better reconstruction. To be noted, we train
and test in a 50 x 50 x 50 grid space so the total number of voxels is determined
as n = 50 x 50 x 50.

S I (vps > t) I(Gupy)]
Yo I(I(vp; > t) + I(Gop;))

Voxel IoU = (4)
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Fig. 6. Qualitative car reconstruction results. Samples of reconstructed car shapes
are represented, the GT column represents the ground truth shapes, the other eight
columns represent reconstructed shapes from the coarse stage and the 3D deep recon-
struction stage. H2 column represents coarse reconstructed shapes in the 2-view
arrangement. V5 column represents final reconstructed shapes in the 2-view arrange-
ment. Shapes in other columns are represented in a similar way
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Fig. 7. Qualitative plane reconstruction results
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Fig. 8. Qualitative motorbike reconstruction results
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Fig. 9. Qualitative chair reconstruction results
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Fig. 10. Reconstruction errors for four object categories. For each object category,
reconstruction errors of reconstructed shapes from both the 2 stages including coarse
stage (in blue curves/bars) and the deep stage (in yellow curves/bars) are shown. The
errors of each test sample of 4 view arrangements are shown on the top 4 sub-figures,
the average error for each view arrangement is shown in the bar figures. Variance of
errors is plot in red lines (Color figure online)

where I(.) is an indicator function and ¢ € [0,1] is a voxelization threshold.
Higher IoU values indicates better reconstruction. In the test, the value of thresh-
old is set to t = 0.5 for cars, planes and motorbikes. ¢ = 0.3 is chosen for chairs.

Figure 10 visualizes the reconstruction errors of all tests. Error of each test
sample, the average error and variance of error for each object ategory and each
view arrangement are all shown. Figure 11 visualizes the voxel IoU of all tests.
Voxel IoU of each test sample, the average voxel IoU and variance of voxel IoU
for each object category and each view arrangement are all shown.
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Fig.11. Voxel IoU for four object categories. For each object category, voxel IoU of
reconstructed shapes from both the 2 stages including coarse stage (in blue curves/bars)
and the deep stage (in yellow curves/bars) are shown. Voxel IoU of each test sample
of 4 view arrangements are shown on the top 4 sub-figures, the average Voxel IoU for
each view arrangement is shown in the bar figures. Variance of each voxel IoU is plot
in red lines (Color figure online)

6 Conclusion and Future Work

Our 3D reconstruction pipeline using 3D CNNs networks has been trained end
to end. The input of the pipeline are a small number of silhouettes with cor-
responding camera parameter matrix and the output is the reconstruction of
category-specific 3D shapes. Our approach proves its efficiency in tackling the
complexity of the shapes considered where the object categories contain instances
with large non-linear shape variations. The proposed pipeline works in two stages
including coarse shape reconstruction stage and deep shape reconstruction stage.
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Our 3D reconstruction pipeline works from a low number of silhouettes given
as inputs, to reconstruct good-quality 3D category-specific shapes. This recon-
struction pipeline is independent on pixel values, feature matches and other
forms of data. It provides a potential solution to opening challenges in current
3D reconstruction field including reconstruction failures for objects containing
textureless, transparent parts and low-quality reconstruction due to insufficient
dense feature correspondences. Furthermore, this pipeline is practical to use
because it depends on a low number of silhouettes inputs as opposed to pro-
viding a large number of images/silhouettes from multiple views as needed for
reconstruction.

However, some limitations of the reconstruction pipeline exists. First, the pro-
posed pipeline is not capable of reconstructing good shapes from two silhouettes
or a single silhouette. Second, the proposed pipeline is demonstrated to produce
reconstruction for a range of selected view arrangements: the selected silhouettes
were taken from evenly spaced locations on a circle around the object. Third,
the reconstruction pipeline relies on camera parameters matrix to be available.
Finally, quality of the final reconstruction is not very good for chairs that have
legs broken. Moreover, our current shape resolution is only 50 x 50 x 50 (inputs,
and outputs) and this is an open computational challenge to address high reso-
lution volumetric shape in 3D reconstruction.

Therefore, our future work will improve the reconstruction quality of our
pipeline in four aspects. First, we will explore to produce good reconstruction
from two silhouettes or a single silhouette. Second, more work is planed to pro-
duce good reconstruction from random views. Third, in order to let our pipeline
to work more automatically, we will improve our pipeline to reduce the input
to only silhouettes without the knowledge of their camera parameter matrix.
Finally, the improvement on both higher resolution of final reconstruction and
less failure such as broken legs will also be made.
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