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Abstract—Visual saliency has been studied extensively in the
past decades through perceptual studies using eye tracking tech-
nologies and 2D displays. Visual saliency algorithms have been
successfully developed to mimick the human ability to quickly
spot informative local areas in images. This paper proposes to
investigate the extension of visual saliency algorithms to media
displayed in 3D. We show first that the Graph-Based Visual
Saliency (GBVS) algorithm outperforms all the other common
2D algorithms as well as their 3D extensions. This paper then
extends GBVS to 3D and shows that these new 3D GBVS based
algorithms outperform other past algorithms.

Index Terms—Visual saliency, 3D media.

I. INTRODUCTION

Humans optimise the analysis of a visual scene by quickly
sifting through irrelevant information. People’s attention shifts
from one important region to another and it is during this
time that the brain builds its representation of the surrounding
world [1]. This optimising behavioural action is the subject of
research in visual saliency (VS) and it is studied extensively
with the use of eye trackers monitoring people’s gaze as they
look at specific images and videos. In the past three decades,
several visual saliency algorithms (VSAs) mimicking how
people look at 2D images have been proposed [2]–[4] and
have already proven to be valuable in several applications such
as compression [5], content-based image retrieval [6], quality
assessment [7] and retargetting [8].

Most of VS research has been focussing on the visual
perception of images and videos displayed on 2D screens.
More recently, however, it has been shown that humans look
differently at images displayed in 3D compared to 2D [9],
[10] and subsequently, a few algorithms for 3D saliency (3D-
VSAs) have been proposed [11], [12]. The lack of ground
truth has limited the comparison of VSAs in the past and
recently Wang et al. [12] published an eye-tracking database
with stereoscopic 3D images to act as ground truth to test
VSAs. Using this database, they have proposed a comparison
of several 2D-VSAs and 3D-VSAs [12]. We first propose to
extend their study to include the Graph-Based Visual Saliency
algorithm (GBVS) [2] and we show that GBVS performs
better than other 2D-VSAs (Section IV). We then propose
several extensions to GBVS to make it more effective for
analysing 3D stereoscopic images (Section III). We show that
our new algorithms (3D GBVS) outperforms other state of the
art 3D-VSAs [12] (section IV). We start next with a review

on VSAs and the metrics used to assess their performances.

II. REVIEW
Visual saliency can be broken down into two groups:

bottom-up and top-down [13] [14]. Bottom-up saliency is the
preattentive, involuntary phase before any prior knowledge
related to the task at hand or personal factors come into play
that can affect attention guidance. Top-down saliency is highly
dependent on semantic information and the current task being
performed. For example, if we need to locate a red dragon in
a box of toys, we would naturally scan the scene first for red
objects and from these possibilities locate the desired toy.

This paper focuses on bottom-up saliency algorithms that
are more generic (i.e. not dependent on the nature of the
task) and faster to compute than top-down ones. Section II-A
presents algorithms that do not incorporate any knowledge
about the 3D nature of the scene depicted in the images
(e.g. no depth or disparity is used to compute saliency).
These algorithms are called here 2D-VSAs and Section II-B
presents several extensions to these methods that include
3D information about the scenes (hence noted 3D-VSAs).
Metrics have been introduced to measure the performance of
VSAs using VS as ground truth captured with eye tracking
technologies. Section II-C presents a few such metrics used in
our experiments (Section IV).

A. 2D Visual saliency algorithms
Itti et al. [15] proposed an algorithm (noted 2D Itti) that

first calculates features (i.e. colour, orientation and intensity)
at multiple scales in an image. An activation map (an initial
saliency map) is then calculated in parallel for each of these
channels. Next, the activation maps are combined into a master
saliency map. Finally, a ranking of salient regions is computed
through the use of a Winner-Takes-All (WTA) network.

Hou et al.’s approach [16] (noted 2D Hou) analyses the log-
spectrum of an image based on luminance only and extracts
the spectral residual in the spectral domain. A saliency map is
then created from this information. The algorithm is assessed
in an object detection task and is shown to outperform Itti’s
method [16].

Bruce et al’s algorithm [11] (noted 2D Bruce) is derived
from efficient coding and information theory and is also shown
to outperform Itti’s algorithm. It is based on the premise that
localised saliency computation serves to maximise information
sampled from one’s environment. Content of interest, hence,
are areas where there is the most amount of ‘surprise’ and
self-information.978-1-4799-4874-1/14/$31.00 c©2014 IEEE
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Proposed by Harel et al. [2], the GBVS algorithm is a 2D
VSA that uses a Markovian approach to calculate its saliency
maps. The first step in this algorithm is to break up the input
image into the following feature channels: colour, intensity and
orientation. Salient regions are then located in each of these
channels by computing:

d((i, j)||(p, q)) =
∣∣∣∣log M(i, j)

M(p, q)

∣∣∣∣ (1)

where M(i, j) is the value of the pixel (i, j) in the feature
map M (i.e. in the feature channel of colour, intensity or
orientation). Following this, a fully connected graph GA is
created by connecting every node with all other nodes in each
M . The edge of each node connection from (i, j) to (p, q) is
assigned the following weight:

w((i, j), (p, q)) = d((i, j)||(p, q))× F (i− p, j − p) (2)

where
F (a, b) = exp

(
−a

2 + b2

2σ2

)
(3)

and σ is a free parameter set to approximatively one tenth
to one fifth of the image width. All the weights, w, are,
hence, proportional to their dissimilarity and distance in M .
A Markov chain is then defined over GA by treating nodes
as states and edge weights as transition probabilities. The
equilibrium distribution calculated for each GA reflects the
time a random walker would spend at each node. Higher
values are obtained for nodes with higher dissimilarities with
their neighbouring nodes. This is because it is more likely
to transition into subgraphs with lower similarity measures.
This algorithm has been stated as being biologically plausible,
meaning that its method for calculating saliency is based on
psychophysical and physiological evidence [2].

B. 3D Visual saliency algorithms

Stereoscopic images displayed on 3D screens allow us to
immediately perceive depth information [17]. Incorporating
depth or disparity information in the calculation of saliency
is therefore a natural extension to VSAs for automatically
analysing 3D content. Two strategies have been proposed to
use depth information.

Chamaret et al. [18] have proposed to multiply the saliency
map computed with any 2D VSAs by the inverse of the
depth map. Regions appearing closer to the viewer are then
made more salient. Indeed, close areas have been shown to
be viewed more often than regions further away [10]. These
regions, hence, should be deemed more salient. Chamaret et al.
then used this saliency calculation to refine a single region-of-
interest that was selected earlier through a nearest-neighbour
filtering and thresholding approach.

Wang et al. [12] explore two common ways to include
depth information. The first is the depth-weighting model that
weights 2D saliency computations with a corresponding depth
map. The second is the depth-saliency model that creates a
depth saliency map (DSM) by first looking for features in
the depth map and then linearly pooling this with 2D VSA

computations. Wang et al.’s DSM calculations included a Dif-
ference of Gaussian (DoG) filtering step and then correlation
of the contrast map with the degree of depth saliency through
the use of results obtained from a psychophysical experiment
of theirs. Through quantitative experiments, Wang et al. [12]
show that the best algorithm for incorporing depth information
was to add 2D VSAs saliency map with DSM. They also
confirm quantitatively that 2D Bruce outperforms 2D Hou (and
that 2D Hou outperforms 2D Itti) and this ordering remains
true in 3D when adding the DSM. These algorithms proposed
by Wang et al. are noted 3D Itti, 3D Hou and 3D Bruce.
Adding DSM provided the best results but was the most
computationaly demanding. Alternatively, Chamaret’s method
to include depth information performed poorly but was the
most computationally efficient.

C. Metrics for VSAs

Several metrics have been introduced to measure the perfor-
mance of VSAs. In our experiments, we used the Pearson Lin-
ear Correlation Coefficient (PLCC) [19], [20] and Kullback-
Leibler divergence (KLD) [19], [21], which were also used in
Wang et al.’s study [12]. These measures compare the saliency
maps obtained from saliency algorithms with fixation density
maps (maps created from eye-tracking experiments).

The PLCC measures the linear correlation between the
saliency and fixation maps H and P:

PLCC(H,P ) =
Cov (H,P )
σHσP

(4)

where Cov(H,P ) is the covariance and σH and σP denote
the standard deviations of H and P respectively.

The KLD calculates the dissimilarity between normalised
saliency and fixation maps (to be understood as two probability
density functions (PDFs)):

KLD(H,P ) =
∑
x

hx ln

(
hx
px

)
(5)

where hx and px denote the values of the normalised maps of
H and P respectively at pixel location x.

III. GBVS EXTENSIONS TO 3D MEDIA

The GBVS algorithm has never been extended to 3D and we
propose to incorporate depth information in three ways: using
Chamaret et al.’s approach [18] (noted 3D GBVS (Chamaret)),
using the DSM as proposed by Wang et al. [12] (noted 3D
GBVS (Wang)), and using our own approach (noted 3D GBVS
(our approach)).

This last method (3D GBVS (our approach)) involves a
three-step process: selecting a low or high scaling factor
corresponding to depth values, restriction of the depth-range
that saliency values are affected by this scaling factor and
then the subsequent scaling of these saliency values. The first
step entails calculating the median and mean values of the
depth map. If the median is smaller than the mean, a higher
scaling factor is chosen (SF in eqs 7 and 8) and vice versa
otherwise. The idea behind this is to detect images that have
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unique objects in the foreground and hence will stand out
on their own in 3D. A smaller median value compared to the
mean would provide an indication of this. This method is a fast
way of detecting features in the depth map. The second step
is performed by retaining only the depth values in the depth
map that have a 2D saliency value over a chosen saliency
threshold ST (saliency values are scaled between 0 and 1,
where 1 indicates very salient and 0 indicates no saliency).
We note these selected depth and 2D GBVS saliency values
{(di, si)} (i is the pixel index in the map) and find the range
of these values by computing:{

l = mini{di} (lower bound)
h = maxi{di} (upper bound) (6)

and the middle of the interval is then defined by dm = h+l
2 .

For the pixel i, we compute
• If di < dm then

Si =
si

1 + SF × dm−l
dm−di

(7)

• If di > dm then

Si = si

(
1 + SF × h− dm

di − dm

)
(8)

where SF is the chosen scaling factor (high or low from step
1), Si is the new 3D GBVS value, and si is the 2D GBVS
value. We have set SF = 0.35 (high SF ) or SF = 0.1 (low
SF ) and ST = 0.4 in our experiments. These threshold values
were chosen after an exhaustive search of all possibilites. The
justification behind the last two steps is that depth information
should only be used on areas with high-enough saliency and
should not be ‘wasted’ elsewhere. If salient regions are only
present in the foreground, the competition for scaling should
only take place there.

IV. EXPERIMENTAL RESULTS

We used the eye-tracking database supplied by Wang et al.
[12] as ground truth. This database contains 18 stereoscopic
images, eye-tracking data obtained from 35 human subjects,
corresponding depth and disparity maps and eye fixation maps.
This database serves as a ground truth and is noted 3D VS
because the stereoscopic images were displayed on a 3D
screen (as opposed to 2D VS ground truth that collects eye
tracking data with the image displayed on a 2D screen).

A. Evaluation of 2D VSAs against 3D VS

In Table I, we compared the 2D GBVS algorithm on this
dataset with Itti’s, Hou’s and Bruce’s algorithms using the
PLCC (defined in Eq. (4)) and KLD (Eq. (5)) metrics. Note
that the 2D GBVS algorithm was not analysed by Wang et
al. [12] but they did compute the PLCC and KLD for 2D
Itti, 2D Hou and 2D Bruce. Our numerical results slightly
differ from theirs due to rounding errors and different image
scaling algorithms. Our results in Table I confirm Wang et
al.’s assessment for 2D Itti, 2D Hou and 2D Bruce and our
contribution in Table I is to show that 2D GBVS algorithm
outperforms all other 2D VSAs by far.

PLCC KLD Yr of publication
2D Itti 0.154 2.781 1998 [15]
2D Hou 0.299 0.877 2007 [16]
2D Bruce 0.346 0.704 2009 [11]
2D GBVS 0.589 0.314 2007 [2]
UTPL [12] 0.897 0.127

TABLE I: Performances of 2D VSAs. Higher PLCC and lower
KLD values indicate better performances.

The Upper Theoretical Performance Limit (UTPL) [22]
computed by Wang et al. [12] is also reported for both PLCC
and KLD. The UTPL is commonly used as a benchmark
for 2D visual saliency models, and 2D GBVS is halfway in
performance between this theoretical limit and the best 2D
VSA previously reported (2D Bruce). Figure 1 (c)-(f) shows
some saliency maps for these 2D VSAs.

B. Evaluation of 3D VSAs against 3D VS

Our 3D VSAs are also evaluated on the same dataset. Wang
et al. found their proposed 2D+DSM approach to be the best
way to incorporate depth in saliency calculations, and this
method is referred to as (Wang) in Table II. We implemented
their approach for all the four 2D VSAs as well as Chamaret’s
and our own proposed method with the GBVS algorithm.
Table II confirms the results for Itti (Wang), Bruce (Wang)
and Hou (Wang) as reported by Wang et al. [12].

Our contribution in Table II is to show that the three 3D
VSAs we proposed outperform all 3D VSAs proposed by
Wang et al [12]. Surprisingly, Chamaret’s method in the GBVS
fared better than Wang’s algorithm (that is also the most
computationally demanding method). Note however that 3D
GBVS (Chamaret) and 3D GBVS (Wang) are outperformed by
2D GBVS (cf. Table I). Our simple and fast proposed method
for incorporating depth obtained the best results. Figure 1 (f)-
(i) shows example saliency map results for 2D GBVS, 3D
GBVS (Wang), 3D GBVS (Chamaret) and 3D GBVS (Our
method). An improvement on 2D-GBVS can be seen in 3D
GBVS (Chamaret) and 3D GBVS (Our method) - both are
closer to the ground truth.

3D Saliency Algorithms PLCC KLD Yr of pub.
3D GBVS (Chamaret) 0.573 0.379
3D GBVS (Our method) 0.606* 0.306*
3D GBVS (Wang) 0.561 0.484
3D Itti (Wang) 0.364 0.627 2013 [12]
3D Bruce (Wang) 0.419 0.657 2013 [12]
3D Hou (Wang) 0.436 0.558 2013 [12]

TABLE II: Performances of 3D-VSAs. Higher PLCC and
lower KLD values indicate better performance. * indicates
significant difference from the 2D model (paired t-test, p<0.1
[12]).

V. CONCLUSION

In this paper we demonstrated that the GBVS algorithm is
greatly superior in predicting fixations in 3D compared to other
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(a) Original Image (b) Fixation density map (ground truth) (c) 2D Itti

(d) 2D Hou (e) 2D Bruce (f) 2D GBVS

(g) 3D GBVS (Wang) (h) 3D GBVS (Chamaret) (i) 3D GBVS (Our method)

Fig. 1: Saliency maps with VSAs. (a) Original image #18 [12], (b) Corresponding fixation density map, (c)-(f) Saliency
predictions from the four 2D VSAs: Itti, Hou, Bruce and GBVS, (g)-(i) Saliency predictions from the three 3D VSAs: 3D
GBVS (Wang), 3D GBVS (Chamaret) and 3D GBVS (Our method)

state of the art algorithms. We also showed that our simple and
fast extension to Chamaret’s method of depth incorporation
outperforms all other depth incorporation methods analysed
by Wang et al. Future work will investigate the application of
our 3D VSAs in areas such as content-based image retrieval,
compression and image segmentation.
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