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Abstract—We compare the objective functions used by GR2T
[1] and the L2E estimator [2] that have both been proposed
for robust parameter estimation. We show their similarity when
estimating location parameters. Of particular interest is their
ability for dealing with the scale parameter that is often unknown
and acts as a nuisance parameter. Both techniques are tested
experimentally for regression (e.g. to find patterns such as line
and circle in noisy datasets) and for registration between datasets.

I. INTRODUCTION

One major difficulty in robust inference is to deal with the
unknown standard deviation of the inliers also known as the
scale. Assuming that the correct parameter of interest (location
parameter) has been recovered, a robust estimate of the scale
can be found based on the distribution of the residuals [3].
However, a poor estimate of the location parameter leads to a
poor scale parameter estimate and vice versa. Two frameworks,
GR2T [1] and L2E [2], have recently been introduced for
dealing jointly with both scale and location parameters. We
first point out their similarities and differences in section II.
We extend GR2T formulation to the problem of registration
(paragraph III) and we propose to take advantage of the
Bayesian nature of GR2T to add a prior distribution for the
scale (section IV). Section V compares experimentally both
GR2T and L2E for both regression and registration. Section
VI concludes with potential improvements on the modelling
the scale prior.

II. L2E AND GR2T

A. Euclidian distance L2/L2E between pdfs

1) L2 for Registration: Considering two datasets
{x(i)}i=1,··· ,Nx

and {y(j)}j=1,··· ,Ny
, Jian et al. [4] proposes

to find the transformation t that registers the first dataset
onto the second, such that the Euclidian distance between
the kernel density estimate noted p̂t(x) computed using

{t(x(i))}i=1,··· ,Nx and a kernel density estimate noted p̂y
computed using observations {y(j)}j=1,··· ,Ny

is minimised.
This Euclidian distance corresponds to:

L2(t) = ‖p̂y − p̂t(x)‖2 =
∫
(p̂y(y)− p̂t(x)(y))

2 dy

= ‖p̂y‖2 + ‖p̂t(x)‖2 − 2 〈p̂y|p̂t(x)〉
(1)

and the transformation t is estimated with:

t̂ = argmint L2(t)

= argmint
{
L2E(t) = ‖p̂t(x)‖2 − 2 〈p̂y|p̂t(x)〉

} (2)

since the term ‖p̂y‖ does not depend on t. When the trans-
formation t to estimate is a rigid transformation then the term

‖p̂t(x)‖ also does not depend on t [4], in which case it is
equivalently found by maximising the kernel correlation [5]:

t̂ = argmax
t
〈p̂y|p̂t(x)〉 (3)

Note that when using Gaussian Kernel density estimates for p̂y
and p̂t(x), integrals in eq. (1) or (3) are solved explicitly [4].
While L2E or kernel correlation are not objective functions
originally able to include prior information about t, several re-
cent works have proposed to include an additive regularisation
term to L2/L2E to constraint its estimation [6], [7].

2) L2E objective function for Regression: Consider the
following equation:

F (x, θ) = ε ∼ pε|ν(ε) (4)

where θ is the latent random variable of interest that we wish to
infer, F is a link function (linear or not) relating the observed
variable x with θ, and the noise ε has a chosen distribution
pε|ν that is centered on zero and depends on a (scale) nuisance
parameter ν. Scott [2] proposed to estimate θ and the scale ν
by minimising L2E between the chosen model for the errors
pε|ν and the empirical pdf p̂ε defined as:

p̂ε(ε) =
1

N

N∑
i=1

δ(ε− ε(i)) (5)

where δ(·) is the Dirac kernel, and ε(i) = F (x(i), θ) is the
residual computed at θ using the observations {x(i)}i=1,··· ,N
collected for the variable x. The location θ and scale ν are
then estimated as follow:

(θ̂, ν̂) = argmin
θ,ν

{
L2E(θ, ν) = ‖pε|ν‖2 − 2 〈pε|ν |p̂ε〉

}
(6)

The dependence over θ only appears thanks to the empirical
density p̂ε (through the residuals), hence when ν is fixed, θ is
estimated by:

θ̂ = argminθ L2E(θ, ν)
= argmaxθ

{〈pε|ν |p̂ε〉}
= argmaxθ

{
1
N

∑N
i=1 pε|ν(ε

(i))
} (7)

The estimation for both θ and ν with L2E can be rewritten:

(θ̂, ν̂) = argmax
θ,ν

{
〈pε|ν |p̂ε〉 − 1

2
‖pε|ν‖2

}
(8)

The term 1
2‖pε|ν‖2 can be thought as a barrier function [8] to

prevent the scale estimate ν̂ to be zero. Moreover the estimate
ν̂ is exactly the true parameter νT when the empirical estimate
p̂ε (eq. 5) converges exactly towards the model pε|νT

. Note
that when outliers occur, p̂ε will not converge towards a good
model from the model family pε|ν . L2E robustness in finding
θ is then observed for a well chosen fixed scale [2].
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B. Generalised Relaxed Radon Transform (GR2T)

The Generalised Relaxed Radon Transform (GR2T) has
recently been proposed for robust regression [1] and it is
augmenting the original problem (4) by adding an auxiliary
variable λ as follow:{

λ+ F (x, θ) = ε ∼ pε|ν(ε)
λ = 0

(9)

The problem stated in equation (9) is equivalent to the original
equation (4) : GR2T proposes to use the first equation in (9) to
compute estimates of the pdfs pλ|θ and pλθ while the second
equation is used for narrowing down the search in the latent
space to the special case of interest when λ = 0 [1]. The joint
density function pλθ corresponds to:

pθλ(θ, λ) =
∫
pλθ|x(λ, θ|x) px(x) dx

= 〈pλθ|x| px〉

= 〈pλ|xθ pθ|x| px〉

(10)

Given equation (9), the conditional pλ|xθ is defined with the
noise model pε|ν as follow:

pλ|xθ(λ|x, θ) = pε|ν(λ+ F (x, θ)) (11)

Note that when the error distribution pε|ν is the Dirac density
function δ(ε) (with ν = 0), the probability density function
pΘλ corresponds to the Generalised Radon Transform [9]. If
no prior is available to model the conditional pθ|x, one can
assume independence pθ|x = pθ leading to:

pλθ(λ, θ) = pθ(θ) 〈pλ|xθ| px〉︸ ︷︷ ︸
pλ|θ(λ|θ)

(12)

Using the observations {x(i)}i=1,··· ,N , the empirical probabil-
ity density function of x can be computed:

p̂x =
1

N

N∑
i=1

δ(x− x(i))

and the conditional pλ|θ can then be estimated by the empirical
average [1], [10]:

p̂λ|θ(λ|θ) = 〈pλ|θx| p̂x〉 = 1

N

N∑
i=1

pε|ν(ε(i)) (13)

Inference about θ in the case of interest λ = 0 can then be
done using the estimated posterior:

p̂θ|λ(θ|λ = 0) =
pθ(θ) p̂λ|θ(λ = 0|θ)∫
pθ(θ) p̂λ|θ(λ = 0|θ) dθ (14)

A maximum a posteriori estimate of the location parameter
can be computed as:

θ̂ = argmax
θ
{p̂θ|λ(θ|λ = 0) ∝ pθ(θ) p̂λ|θ(λ = 0|θ)} (15)

or simply using the estimated conditional p̂λ|θ when no prior
pθ is available e.g.:

θ̂ = argmax
θ
{p̂λ|θ(λ = 0|θ)} (16)

Augmenting equation (9) with an additive auxiliary variable
λ allows to not care about the potentially complex nature of

the function F (e.g. linear or non linear) in the modelling and
also allow the usage of a prior on the parameter of interest
θ. Note how the estimate of the conditional pλ|θ in equation
(13) is identical to L2E in equation (7) when the scale is fixed.
Note also that GR2T is a Bayesian modelling that allows the
inclusion of prior distribution about the latent variable θ and
contrary to recent works adding regularisation terms to L2 [6],
[7], the prior in GR2T is instead multiplied to pλ|θ. Reference
[1] explains how GR2T encapsulates the following robust
frameworks: the Hough transform [11]–[14], M-estimators
[15] and Generalized Projection Based M-Estimators [16],
[17].

III. GR2T FOR REGISTRATION

In this section, we reformulate briefly GR2T for
registration. Consider two datasets {x(i)}i=1,··· ,Nx

and
{y(j)}j=1,··· ,Ny

observations for the two random variables x
and y respectively. Assume the following relationship beween
x and y parameterised by a latent variable θ:

λ+ F (x, y, θ) = ε ∼ pε(ε) (17)

where λ is an auxiliary variable and the case of interest is
when λ = 0. A standard model for registration is to express
the transformation t for mapping x onto y in parametric form:

F (x, y, θ) = y − t(x, θ) (18)

For instance, we will consider a translation in the experiment
in section V-B):

F (x, y, θ) = y − (x+ θ) (19)

Using the same formulation for GR2T as presented in section
II-B, the conditional pλ|θ corresponds to:

pλ|θ(λ|θ) = 〈pλ|θxy| pxy〉
The question is how to compute an empirical estimate pxy . If
the observations {x(i)}i=1,··· ,Nx and {y(j)}j=1,··· ,Ny can be

grouped into a set of correspondences {(x(k), y(k))}k=1,··· ,K ,
then the following estimate can be used.

p̂xy(x, y) =
1

K

K∑
k=1

δ(x− x(k)) δ(y − y(k))

However, when no correspondences are available, one can
assume independence between x and y and use the following
empirical pdf:

p̂xy(x, y)

=
(

1
Nx

∑Nx

i=1 δ(x− x(i))
) (

1
Ny

∑Ny

j=1 δ(y − y(j))
)

= 1
Nx Ny

∑Nx

i=1

∑Ny

j=1 δ(x− x(i)) δ(y − y(j))
(20)

leading to

p̂λ|θ(λ|θ) = 1

Nx Ny

Nx∑
i=1

Ny∑
j=1

pε|ν(ε(i,j)) (21)

with the residuals ε(i,j) = λ + F (x(i), y(j), θ), ∀i, j. Exper-
imental results shown in V-B have been computed without
correspondence between the observations using the expression
(21) augmented with a prior distribution about the scale ν
explained next.
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IV. GR2T WITH SCALE PRIOR

When considering ν as a random variable equation (11) is
more accurately rewritten:

pλ|θxν(λ|θ, x, ν) = pε|ν(ε|ν) (22)

Assuming the scale ν independent of θ and x, the location and
scale can be estimated by:

(θ̂, ν̂) = argmax
θ,ν

{
p̂λν|θ(λ, ν|θ) = pν(ν) p̂λ|νθ(λ|ν, θ)

}
(23)

The log-normal distribution with zero mean is chosen as the
prior distribution for the scale ν:

pν(ν) =
1

ν
√
2πγ

exp

(
− (log ν)2

2γ2

)
, ν > 0, γ > 0 (24)

γ is an hyperparameter controling the shape of the prior: large
γ (e.g. γ = 4 is used in all experiments) favorises small
scales ν (more suitable for inliers) yet preventing ν to be zero.
Optimisation is performed by augmenting γ progressively to
4 to avoid local solutions.

Note that when the scale ν is very large (ν →∞) then the
pdf of the error can be approximated using Taylor expansion
(with ε

ν near zero) as follow:

pε|ν(ε|ν) = 1√
2πν

exp

(
− ε2

2ν2

)
� 1√

2πν

(
1− ε2

2ν2

)

Hence estimating θ by maximising p̂λ|θν when ν →∞ is the
same as minimising the sum of square errors and therefore
leads to the standard maximum likelihood (ML) solution.
Estimation using GR2T and L2E (eq. 8) are performed using a
gradient ascent algorithm using ML estimate (θ̂ML, ν̂ML) as
the initial guess.

V. EXPERIMENTAL RESULTS

We compare experimentally three approaches to estimate
the parameter θ of interest. The first is the standard Maximum
Likelihood (ML) approach that is known to not be robust to
outliers. This solution serves as an initial guess for both L2E
and GR2T. The second is L2E that is known to be more robust
to outliers in particular when the scale is well set: in this
paper the scale is also estimated by minimising the L2E cost
function. The last method corresponds to GR2T with a scale
prior.

A. Regression

To assess our algorithm we used several datasets published
by Toldo et al. [18] that include many outliers and pseudo-
outliers. The equations used to find the main pattern are:

λ+ (x1 − (θ1 + θ2 x2)) = ε (line)

and

λ+
√

(x1 − θ1).2 + (x2 − θ2).2 − θ3 = ε (circle)

Figure 1 shows several results: while L2E and ML systemati-
cally fail, GR2T manages to lock on a line in (b) and (c) but is
getting trapped in a solution with a higher scale in the dataset
(d). GR2T also manages to find a circle in (a) while ML and
L2E fails.

B. Registration

We compare the three estimation techniques to recover
the translation parameters to register two point sets. The first
point cloud {x(i)}i=1,··· ,Nx

corresponds to the 2D fish data
(composed of Nx = 98 2D points) [4]. The second dataset
{y(j)}j=1,··· ,Ny is a translated version of the first point set
(ground truth translation parameters equal to (−1,−1)) with
some noise. The equation used for registration here is:

λ+ ‖y − (x+ θ)‖ = ε (25)

with y ∈ R
2, x ∈ R

2, the translation parameter θ ∈ R
2 to

estimate, and the noise ε ∈ R follows a Normal distribution
with mean zero and variance ν2 ( the prior for ν is again the
log-normal distribution). Figure 2 compares the methods L2E
and GR2T for aligning these two point sets for various levels
of contamination (outliers), noise on the inliers, and missing
data. The results obtained by ML is not shown at it fails
systematically when outliers occur. Adding the prior for the
scale in GR2T allows to control that ν is not over-estimated
as this would lead to a bad estimate for θ. As a consequence
GR2T performs better than L2E.

VI. DISCUSSION AND FUTURE WORK

This paper has presented how GR2T can be efficiently
used to register datasets. Secondly prior information about
the scale can also be added in this Bayesian framework to
help the robust estimation of the location parameter. While
the rigid transformation for registration of 2D point sets has
been modelled using equation (25) in this paper, the following
alternative system of equations would have also been suitable:

(λ+ F (x, y, θ) = ε) ≡
({

λ1 + y1 − x1 − θ1 = ε1
λ2 + y2 − x2 − θ2 = ε2

)

with notations y = (y1, y2) and x = (x1, x2), θ = (θ1, θ2) and
in this case ε = (ε1, ε2) is a random vector in R

2. pε|ν can then
be modelled with a bivariate Normal distribution controlled by
a covariance matrix ν. Future work will look at choosing more
suitable prior distributions for these nuisance parameters ν, and
also to model for instance heteroscedastic noise [19].
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Fig. 2. Rigid Registration (translation) of 2D point clouds. Model point cloud (blue), target point cloud (pink) with outliers highlighted by cross markers.
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