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Abstract — Saliency algorithms in content-based image retrieval are employed to re-
trieve the most important regions of an image with the idea that these regions hold
the essence of representative information. Such regions are then typically analysed and
described for future retrieval/classification tasks rather than the entire image itself -
thus minimising computational resources required. We show that we can select a small
number of features for indexing using a visual saliency measure without reducing the
performance of classifiers trained to find objects.
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I Introduction

Humans optimise the analysis of a scene by sifting
through relevant and irrelevant information. At-
tention shifts from one ‘important’ region to an-
other and it is during this time that the brain
builds its representation [1]. This optimising ac-
tion is the subject of research in visual saliency.

Most commonly, visual saliency is calculated by
considering what stands out in an image, i.e. what
can grab a viewer’s attention. There are various
definitions for ‘what stands out’ in images leading
to different algorithms to calculate visual saliency.
For example, Itti and Baldi use the term the ‘sur-
prise factor’ [2], Schiele and Crowley in [3] and
Gilles in [4] use ‘rarity’ or ‘uniqueness’, Julesz uses
the term ‘pop-out’ [5]. But the common idea of vi-
sual saliency is to find the areas in an image/video
which grab our attention on the global or local
scale.

Content-based image retrieval (CBIR) is an area
of research that aims at defining relevant visual
features for efficient content retrieval in image
databases. In this paper we investigate if visual
saliency can help in selecting visual features for
retrieval and consequently reduce the computation
time and memory consumption needed for visual

feature storage. With one parameter (threshold),
we control the number of selected features in im-
ages used for retrieval. We show that even with a
small number of features, the classifiers trained to
find the objects of interest are still perform well.
This result can be used to scale CBIR systems de-
pending on the computational resources available
on the device being used (e.g. tablets, mobiles,
etc.).

II Previous Work

The notion of searching for attention grabbing re-
gions has been transposed into various saliency
models by computer scientists. Some models are
biologically-based meaning that they are based on
psychophysical and physiological evidence, while
others are not. Many saliency models that have
being proposed to the scientific community are
founded on the biologically-based Koch and Ull-
man model [7]. It is based on psychological studies
published in 1985 by Treisman and Gelade [8]. In
the Koch and Ullman model, saliency is first calcu-
lated by extracting features (visual cues - such as
colour, orientation, direction of movement, etc.)
from an image. An activation map (an initial
saliency map) is then calculated in parallel for each
of these channels. Next, the activation maps are
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combined into a master saliency map. Finally, a
ranking of salient regions is computed through the
use of a Winner-Takes-All (WTA) network. The
Koch and Ullman model has been used in many
applications [9, 10, 11].

Several other saliency models have been pro-
posed to the research community using a graph
representation of images [2, 12, 13]. For instance,
in the Graph-Based Visual Saliency (GBVS) algo-
rithm [2], the edges of a graph are used to denote
similarity between two nodes (pixels). Random
walks are then performed on these nodes and the
more a node is visited, the more salient it is deemed
to be.

When using saliency in CBIR, a common ap-
proach among researchers is to find salient re-
gions and then utilise feature point locating tech-
niques on these regions only. This was for example
the strategy used by Rutishauser et al. [14] and
Walther et al. [15]. They chose to employ an ad-
ditional segmentation step in their calculations by
extracting objects from salient regions. Features
were then located from these regions, i.e. from the
extracted objects, rather than the regions defined
by visual saliency algorithms. This segmentation
step, however, has not always performed well in
practice and still requires further work [16].

In this paper, we chose to use the GBVS al-
gorithm for saliency calculations because it has
been shown to be superior to the classic Koch and
Ullman model in predicting human fixations [10].
The Speeded Up Robust Features (SURF) feature
point algorithm developed by Bay in [17] is used
to locate and describe feature points in this pub-
lication. This feature detection method was se-
lected due to its robustness, memory efficiency in
describing feature points and superior speed when
compared to other popular feature detection meth-
ods such as the Scale Invariant Feature Transform
(SIFT) [18] method [19].

No one has yet, to the best of our knowledge,
analysed what the effect is of changing the saliency
measure to decrease the size of extracted regions on
classification results. The standard classification
technique Support Vector Machines (SVM) is used
to perform the classification on the selected SURF
features using saliency information.

We present next in more detail our basic CBIR
system and the experiments done to assess the use-
fulness of saliency for this application.

III CBIR System Design

A data set of three image classes were collected:
horses, yellow flowers, and faces. The horses data
set was obtained from the INRIA Horses V1.03
data set [20]. The yellow flowers data set was
compiled from images from the Visual Geometry
Group’s (The University of Oxford) set [21]. The

Correctly
classified

Incorrectly
classified

Horses
C 84.5% 15.5%
C̄ 98.7% 1.3%

Flowers
C 80.1% 19.9%
C̄ 97.8% 2.2%

Faces
C 90.3% 9.7%
C̄ 99.9% 0.1%

Table 1: Percentage of training features correctly
and incorrectly classified by the SVM.

faces data set was a combination of the ‘face94’ Es-
sex face database [22], the MIT CBCL Face data
set [23] and the Caltech101 data set [24]. All faces
chosen from the data set were of head-on shots and
each data set was used separately. The three image
classes were selected because they are a good rep-
resentation of objects with differing colour, texture
and context.

The first step in the experiment was to train
a two-class SVM. For each data set, 100 positive
images were cropped to only include the object of
interest: horse, yellow flower or face. These images
and 100 negative images (taken from the negative
images folder of the INRIA Horse V1.03 data set)
were then scanned for SURF feature points. All
the calculated feature points were then fed into
the SVM. Classification results of the SVM for the
training features are shown in Table 1, with C rep-
resenting feature points correctly classified in the
positive group and C̄ feature points correctly clas-
sified in the negative group.

The GBVS algorithm gives a saliency value be-
tween 0 and 1 for each pixel from an image, where
0 signifies no saliency, and 1 indicates the highest
saliency value possible. Entire regions can have
saliency values of 1 and the distribution of saliency
values can vary depending on each image.

A different subset of images to the training set
was used for testing. For each object of interest
(horse, flower, face), 40 positive (P) and 40 neg-
ative (N) images were tested. The objects in the
positive image group cover approximately 25% to
35% of the total size of the image (contrary to the
images used to trained the SVM classifiers, the test
images of the objects of interest were not cropped).
Some examples of the images in P can be seen in
Figure 3.

SURF features are computed for these test im-
ages, however only the features associated with a
saliency above a threshold T are fed into the clas-
sifier to try to find the images with the object of
interest.

The following saliency thresholds were used in
our experiment: T = 0 (no saliency information
used), 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The
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higher the value of T, the fewer number of fea-
ture points fed into the SVM. Figure 1 shows the
training and testing flowchart of the experiment.

Fig. 1: Flowchart of the training and testing phases of the
experiment

IV Performance Using Visual Saliency

The test set of positive images for each object of
interest were treated as one large image by col-
lecting all the feature points found in all images
into one pool. The pool of features from the posi-
tive images were run separately in the SVM to the
pool of features from the negative images. For each
threshold we compute the following proportion:

pp =
ap
np

, pn =
an
nn

(1)

where ap is the number of feature points in P clas-
sified as C, an is number of feature points in N
classified as C, np is the total number of feature
points detected in P and nn is the total number of
feature points detected inN. The confusion matrix
corresponds to:

C C̄
P pp 1-pp
N 1-pn pn

A standard error can be computed to measure
the uncertainty associated with the proportions pp
and pn such that:

SE(p) =
√
p(1− p)/n (2)

where p is pp (resp. pn) and n is np (resp. nn).
The proportion pp and 1 − pn for each data set
was computed for each threshold value T with its
corresponding standard error appearing as error

bars. If selecting features using saliency can re-
duce computation time, we want to check that the
retrieval result will not deteriorate as less features
are considered for classification.

a) Classification results

Figures 2 (a), (b) and (c) show these plots for
the horses, yellow flowers and faces data sets re-
spectively. The positive classifications pp improves
as the saliency threshold increases for all objects
(with 0 ≤ T ≤ 0.8). The improvement with
saliency (T= 0.8) versus without saliency (T=0)
is of 10% for Horses, 12% for Flowers, and 12%
for Faces. This seems to indicate that the fea-
ture points that are left out for classification as
T increases are more often from C̄ (background)
than the class of interest C (horse, flower, face).
On the other hand, the (false positive) proportion
1−pn measuring the proportion of points classified
in C in the negative set of images (where no object
of interest appears) remains more or less constant
whatever the saliency level chosen.

This first result indicates that selecting features
using saliency will not deteriorate classification
performances but can in fact improve them.

As the saliency threshold increases, the standard
errors for the proportions also increase. This is due
to the fact that the number of selected features, np

and nn, decrease as T increases (see equation 2).
Although pp generally improves as the threshold
increases, the certainty about how much the pro-
portion actually improves is reduced. It can also
be noticed that the standard errors for faces are
smaller at each value of T compared to the other
two classes. The reason for this is that more fea-
ture points were being detected in this class of im-
ages as opposed to flower and horse images. Most
of the face images were taken with relatively ‘busy’
backgrounds that foster bountiful amounts of fea-
ture point detection. The difference in the number
of feature points detected in the three classes can
also explain the low pp values obtained for the faces
data set. More background points will bring down
the value of pp.

Figures 3 shows some results of the feature clas-
sification on images of the positive classes for two
saliency thresholds. Although the classifier (SVM)
used is not optimal (some points on the object are
misclassified as C̄ while some points on the back-
ground are classifed as C), the objects of interest
are well found by many feature points even as the
saliency threshold increases.

b) Disk Space Usage Results and Discussion

Another aspect of this experiment was to see what
the effect of changing the value of T would have
on disk space usage and classification time. Figure
4 (a) shows a plot of the memory usage required
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Fig. 2: (a): proportion of correct classification for the horses data set pp (solid blue line) and 1− pn (green dashdot line)
w.r.t. T; (b) proportion of correct classification for the flowers data set pp (solid blue line) and 1− pn (green dashdot

line) w.r.t. T; (c) proportion of correct classification for the faces data set pp (solid blue line) and 1− pn (green dashdot
line) w.r.t. T; (d) total no. of feature points np for horses (solid blue line), flowers (green dashdot line) and faces (dotted

red line) and nn (aqua dashed line).

for storing feature points in memory for the three
classes of images. A SURF feature point is a 64 el-
ement vector of floating point numbers. Since the
size of doubles stored in memory is machine de-
pendent, a single unit of memory usage was used
for a double to abstract over this machine depen-
dence (1 double = 1 unit, 1 SURF feature point =
64 units).

Figure 4 (a) depicts a clear downward trend for
memory usage for all three classes. This trend is
linear until T = 0.7 when the rate of change de-
creases. At T = 0.5, for example, a 60% decrease
in required memory usage is obtained, while a 75%
result is obtained at threshold value 0.6.

Figure 4 (b) shows the computation time that
was clocked for classifying the images in the three
image classes. These results were obtained on a
2.67 GHz Intel Core2 Quad CPU runningWindows
7 with 4 GB of RAM. The classifying application
(libsvm [25]) was used in Matlab.

The computation time graph is very similar to
the memory usage graph of Figure 4 (a). One
would expect this as the classification computa-
tion time is directly proportional to the number of
features stored in memory, assuming all the feature
points can be easily stored in RAM. An approxi-
mate speed-up of 60% and 75% was recorded for
the T values of 0.5 and 0.6 respectively, which is
the exact same level of improvement recorded for
memory usage.

V Conclusion

This paper showed that visual saliency can be used
to help in efficiently selecting visual features in a
retrieval system. Selection of features using vi-
sual saliency reduces computation time and mem-
ory consumption needed for visual feature storage.
The saliency threshold can be tuned efficiently to
get the best retrieval performance for both accu-
racy and speed, and it can be used to scale the
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Fig. 3: Example results for T = 0.3 and 0.6. From top to bottom: horses, flowers and faces. Green dots indicate feature
points classified in the image class (C), purple dots indicate feature points classified outside of it (C̄).

system to different devices.
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Fig. 4: (a) Memory usage for positive images w.r.t T for horses (solid blue line), flowers (green dashdot line) and faces
(red dotted line); (b) Classification computation time for positive images w.r.t. T for horses (solid blue line), flowers

(green dashdot line) and faces (red dotted line).
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