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ABSTRACT

We present a Mean shift (MS) algorithm for solving the rigid
point set transformation estimation [1]. Our registration al-
gorithm minimises exactly the Euclidean distance between
Gaussian Mixture Models (GMMs). We show experimen-
tally that our algorithm is more robust than previous imple-
mentations [1], thanks to both using an annealing framework
(to avoid local extrema) and using variable bandwidths in our
density estimates. Our approach is applied to 3D real data
sets captured with a Lidar scanner and Kinect sensor.

Index Terms— Mean Shift, Registration, Gaussian Mix-
ture Models, Rigid Transformation

1. INTRODUCTION

Point set registration refers to the process of finding the spa-
tial transformation between two sets of points. It is an essen-
tial task in computer vision for applications that require shape
alignment such as tracking, recognition and indexing among
others. Jian and Vermuri [1] proposed to estimate the rigid
transformation parameters by minimizing the Euclidean dis-
tance between two density functions estimated with the two
point sets to register. They solved the estimation using nu-
merical optimization [1]. As a first contribution, we present a
Mean Shift Algorithm for robustly registering two point sets
by modelling them as two mixtures of Gaussians (section 3).
Our algorithm is implemented with an annealing strategy to
converge toward the global minimum of the distance [2] and it
is well suited for parallel programming implementations [3].
Secondly, both density functions representing the point sets
use Gaussian kernels with variable bandwidths, and contrary
to previous modelling [1, 4], none of the densities are simpli-
fied to the empirical density function. As a result, we show
experimentally that our modelling is more robust than Jian
and Vermuri’s [1] (section 4) and we apply our approach to
align 2D and 3D data sets captured by a Lidar scanner and a
Kinect sensor.

Thanks to Trinity College Dublin and The Government of Chile for fund-
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2. STATE OF THE ART

One popular method to perform registration between two
point sets is the Iterative Closest Point (ICP) algorithm [5, 6].
It is based on a point-to-point correspondence between two
data sets performed using the nearest neighbour criteria.
Many improvements have been made to the basic ICP algo-
rithm [7] but the approach is sensitive to both outliers and its
initialization which requires some manual labelling [8].

Probabilistic methods that redefined the registration prob-
lem as a Maximum Likelihood estimation problem have also
been proposed [9] but they assume that one set (observations)
is a dense sample of the reference set which is not always
true in real applications. As an alternative to Maximum Like-
lihood estimation of the transformation, a more robust ap-
proach consists in modelling the two point sets as two prob-
ability density functions and finding the transformation that
minimises a cost function between these two pdfs [4]. Sev-
eral cost functions have been proposed such as cross correla-
tion [10] and the Cauchy-Schwarz divergence [11]. Jian and
Vermuri [1] have shown that most algorithms for registration
can be interpreted as a particular case of the minimization of
the power divergence between two probability density func-
tions [12]. Jian and Vermuri’s modelling is based on choosing
the cost function as the Euclidian L2 distance:

Θ̂ = arg min
Θ

∫
Rdx

(pu(x)− pv(x|Θ))2 dx (1)

with Θ being the transformation parameters to be estimated.
When the probability density functions pu(x) and pv(x) are
modelled as Gaussian Mixtures, the cost function has a closed
form expression. Moreover, when Θ is the parameter of a
rigid transformation, the estimation (eq. 1) is equivalent to
[1]:

Θ̂ = arg max
Θ

∫
Rdx

pu(x) pv(x|Θ) dx (2)

To use this estimation scheme for registration, the two
pdfs pu and pv need to be estimated from the two point sets.
One choice is to model one of the distributions with its em-
pirical density function, e.g. [4, 1]:

p̂u(x) =
1

nu

nu∑
k=1

δ(x− u(k))
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for the point set U = {u(k)}k=1,··· ,nu . The estimation (2)
becomes [4, 1]:

Θ̂ = arg max
Θ

1

nu

nu∑
k=1

pv(u(k)|Θ) (3)

The density pv is then approximated with a Gaussian
kernel density estimate using the second set of observations
{v(i)}i=1,··· ,nv

[1], with K defining the kernel and h its
bandwidth:

Θ̂ = arg max
Θ

1

nunv

nu∑
k=1

nv∑
i=1

K

(
‖u(k) −Θ(v(i))‖

h

)
(4)

Jian and Vermuri [1] solved equation (4) by using a stan-
dard non linear optimisation function from Matlab.

One problem with this modelling is that the empirical den-
sity function for pu is assumed to be a good estimate of the
true density function. This is not quite true for instance when
the observations are sparse or when there is missing data. In-
deed in many applications such as Lidar scan alignment, the
recorded point sets are not uniformly sampled from the scene
since they correspond only to what is seen in the scene from
a particular point of view. To compensate for this drawback,
we propose to explicitly estimate both of the density func-
tions by using Gaussian kernel estimates with the idea that
adjusting bandwidths can help to deal with missing observa-
tions. Section 3 presents an explicit algorithm to perform this
optimisation and we show experimentally (section 4) that our
modelling combined with our algorithm is more robust than
Jian and Vermuri’s [1].

3. MEAN SHIFT ALGORITHM FOR 2D POINT SETS

Let us define the random variable x ∈ R2 for which we col-
lected the observations U = {u(k)}k=1,··· ,nu

. A kernel esti-
mate of the probability density function of x can be proposed
by using U :

p̂u(x) =

nu∑
k=1

G(x,u(k), (h(k)
u )2I) π(k)

u (5)

where G is the Gaussian density function with three ar-
guments: the variable x ∈ R2, the mean (i.e. the data
point u(k)), and the covariance matrix chosen isotropic
(with variable bandwidth h

(k)
u and I the identity matrix).

{π(k)
u ≥ 0}k=1,··· ,nu

are the weights of the Gaussian ker-
nels such that

∑nu

k=1 π
(k)
u = 1. Lets assume that a sec-

ond set of 2D points {v(i)}i=1,··· ,nv
is collected such that

V = {Rv(i) + t}i=1,··· ,nv
is also a set of observations for the

random variable x with

R =

(
cosα − sinα
sinα cosα

)
and t =

(
tx
ty

)
We denote Θ = (α, tx, ty) the latent variable of interest cor-
responding to the rigid transformation. Then a second kernel

density estimate can be proposed to approximate the desni-
tisty of x as follows:

p̂v(x|Θ) =

nv∑
i=1

G(x,Rv(i) + t, (h(i)
v )2I) π(i)

v (6)

Then Θ can be estimated robustly with:

Θ̂ = arg max
Θ

{
C(Θ) =

∫
R2

p̂u(x) p̂v(x|Θ) dx

=

nu∑
k=1

nv∑
i=1

E(Θ,u(k),v(i))

}
(7)

where the analytical solution for the kernel E is [13]:

E(Θ,u(k),v(i)) =

π
(k)
u π

(i)
v

2π((h
(k)
u )2 + (h

(i)
v )2)

exp

(
−‖u(k) − Rv(i) − t‖2

2 ((h
(k)
u )2 + (h

(i)
v )2)

)
(8)

3.1. Taylor Expansion

The kernel E is not linear w.r.t. Θ. Consider the func-
tion Bv(Θ) = Rv + t defined for Θ ∈ [−π;π] × R2 to
Bv(Θ) ∈ R2. The Taylor expansion of this vector valued
function around Θ(0) is:

Bv(Θ) = Bv(Θ(0)) +DBv(Θ(0)) (Θ−Θ(0))︸ ︷︷ ︸
δΘ︸ ︷︷ ︸

B(δΘ,Θ(0),v)

+h.o.t (9)

where DBv(Θ(0)) corresponds to the 2× 3 matrix of the par-
tial derivatives of Bv computed at Θ(0) (for the point v =
(vx, vy)):

DBv(Θ(0)) =

(
−vx sinα(0) − vy cosα(0) 1 0
vx cosα(0) − vy sinα(0) 0 1

)
(10)

The first order approximation B(δΘ,Θ(0),v) is now linear
w.r.t. δΘ (eq. 9) and the kernel E is modified as follow:

Eki(δΘ,Θ
(0)) =

π
(k)
u π

(i)
v

2π((h
(k)
u )2 + (h

(i)
v )2)

× exp

(
−‖u(k) −B(δΘ,Θ(0),v(i))‖2

2 ((h
(k)
u )2 + (h

(i)
v )2)

)
(11)

The modified cost function to maximise is now defined near
Θ(0) by:

C(δΘ,Θ(0)) =

nu∑
k=1

nv∑
i=1

Eki(δΘ,Θ
(0)) (12)

and the estimation of Θ (eq. 7) is done iteratively by max-
imising C w.r.t δΘ (see algorithm 1).
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Algorithm 1 Estimation of Θ (eq. 7).

Input: m = 0,Θ(0), e, M
repeat
δ̂Θ = arg maxδΘ C(δΘ,Θ(m)) (algorithm 2)
Θ(m+1) = Θ(m) + δ̂Θ
m← m+ 1

until ‖Θ(m+1) −Θ(m)‖ ≤ e or m > M
Output: Θ̂ = Θ(m)

Algorithm 2 Estimation of δΘ.

Input: n = 0,Θ(m), δΘ(0) = 0, e, N
repeat
δΘ(n+1) = A(δΘ(n),Θ(m)) b(δΘ(n),Θ(m))
n← n+ 1

until ‖δΘ(n+1) − δΘ(n)‖ ≤ e or n > N

Output: δ̂Θ = δΘ(n)

3.2. Mean shift optimisation

An iterative Mean Shift algorithm can then be calculated to
optimise the cost function C in (12) w.r.t. δΘ (algorithm 2).
The 3× 3 matrix A is defined as:

A(δΘ(n),Θ(m)) =

(
nv∑
i=1

nu∑
k=1

Eki(δΘ
(n),Θ(m))

2((h
(k)
u )2 + (h

(i)
v )2)

DBv(i)(Θ(m))TDBv(i)(Θ(m))
)(−1)

(13)

The vector b is defined as:

b(δΘ(n),Θ(m)) =

nv∑
i=1

nu∑
k=1

Eki(δΘ
(n),Θ(m))

2((h
(k)
u )2 + (h

(i)
v )2)

DBv(i)(Θ(m))T (u(k) −B(0,Θ(m),v(i))) (14)

3.3. Simulated annealing

In order to avoid algorithm 1 to be dependent on the initial
guess Θ(0) and to prevent the estimate of Θ to be trapped in
a local maximum, an annealing strategy is also implemented
using the bandwidths as a temperature [2]. Starting with large
bandwidths, these are decreased iteratively using a geomet-
ric rate up to a minimum value (algorithm 3). The limits for
the bandwidths, {lh(k)

u , lh
(i)
v }, can be set automatically using

nearest neighbours, e.g.

lh(k)
u = arg min

k′ 6=k
‖u(k′) − u(k)‖

or manually chosen.

3.4. Remarks

In the simpler case when bandwidths are not variable, e.g.
h

(k)
u = hu,∀k and h(i)

v = hv,∀i, then the bandwidth in the

Algorithm 3 Estimation of Θ with simulated annealing.

Input: Θ(0), {h(k)
u , h

(i)
v } large ∀(k, i), 0 < β < 1

repeat
Θ̂ = arg maxΘ C(Θ) (algorithm 1)
for k = 1→ nu do

if h(k)
u > lh

(k)
u then

h
(k)
u ← β h

(k)
u

end if
end for
for i = 1→ nv do

if h(i)
v > lh

(i)
v then

h
(i)
v ← β h

(i)
v

end if
end for

until h(k)
u < lh

(k)
u ∀k and h(i)

v < lh
(i)
v ∀i

Output: Θ̂

kernel E (eq.11) is also not variable h =
√
h2
u + h2

v making
the simulated annealing algorithm (3) easier to use. More-
over in this case, our cost function to minimise is exactly
equivalent to Jian and Vermuri’s. (eq. (4)). We show ex-
perimentally in the next section that our annealing algorithm
converges better than Jian and Vermuri’s numerical algorithm
for this same cost function. Using variable bandwidths can
help in two ways. First, choosing locally larger bandwidths
can compensate for missing data and give a better pdf esti-
mate to represent the shape from a set of points. Second, this
can also improve the convergence of the Mean Shift algorithm
[14].

Our algorithm has been extended to 3D point sets. Appli-
cations using 3D data captured by a Lidar scan and a Kinect
sensor are also reported in the following section.

4. EXPERIMENTAL RESULTS

4.1. 2D data sets

We use for the experiments (as observations) the following
data sets: Fish, Contour, Chinese Character and the Road1.
As reference sets we use the same data but rotated by 50o,
80o, 50o, and 180o respectively. The problem to solve then
is to estimate the transformation parameters that align the two
sets of points (observation and reference). In figure 1 we show
the results obtained when using Jian and Vermuri’s algorithm
(top row) and when using our proposed MS algorithm (bottom
row).

We first compare in figure 1 (a) the performance of our
MS algorithm when using the same setting used in Jian and
Vermuri’s algorithm (fixed and equals bandwidth for all ker-
nels in the two density functions). We compute the error be-
tween the ground truth and the estimated parameters. Results

1Available at http://www.cise.ufl.edu/˜anand/
students/chui/research.html [15].
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(a) Fish: 500 (b) Contour: 80o (c) Chinese Character: 50o (d) Road: 180o

d = 9.73 · 10−10 d = 0.3698, h = 0.05 d = 0.074, h = 0.05 d = 0.028, h = 1
Er = 2.28 · 10−5 Er = 2.75 Er = 0.0454 Er = 2.3166

Fixed Bandwidth Fixed Bandwidth & annealing Fixed Bandwidth & annealing Variable Bandwidth & annealing
d = 3.2850 · 10−7 d = 0.1629, h = 0.05 d = 0.02, h = 0.05 d = 6.3818 · 10−5, h = 1
Er = 3.285 · 10−4 Er = 1.3291 · 10−4 Er = 2.3799 · 10−5 Er = 8.2637 · 10−4

Fig. 1. 2D data sets: alignment obtained when testing the 2D data sets Fish, Contour, Chinese Character and The Road:
Reference point set (blue circles), observation (red asterisk) and estimated solution (green cross). The top row of the figure
shows results obtained using Jian and Vermuri’s algorithm while in the bottom row we show the convergence obtained using
our proposed MS algorithm.

are approximately zero in both cases. For comparison we also
compute the Euclidean distance d between the two density
functions which is close to zero in both cases since the sets
are perfectly aligned. Results shows that our algorithm per-
forms similarly to Jian and Vermuri’s algorithm when using
the same modelling for the cost function.

Figure 1(b and c) shows results when the data sets (ob-
servation and reference sets) are not the same set of points
(which is the standard scenario in real applications). More-
over, the sets are chosen as non-uniform subsamples from the
original data set. In these cases Jian and Vermuri’s algorithm
fails in estimating the right solution for the transformation
parameters while our algorithm converges to the global so-
lution thanks to the annealing strategy implemented (settings:
hmax = 2 and hmin = 0.01).

When the shape on the data set is not well encoded in the
modelling of the density function, the MS algorithm may not
converge to the right solution (even when using the annealing
strategy). However, this can be solved by using variable band-
width when modelling the two density functions. An example
is shown in (Figure 1d)) when using the Road data set rotated
by 180o. In this case the dense points on the sets are modelled
using a larges bandwidth than the sparse point on the set. This

variability of the bandwidth helps in the convergence of the
algorithm (Figure 1d) bottom). Both the Euclidean distance
d and errror Er are small and this shows how accurate our
algorithm is with respect to Jian and Vermuri’s.

4.2. Applications using Real 3D Data sets

3D Lidar scan alignment: We use 93 Lidar scans from the
Hannover1 database2 and estimate the transformation param-
eters between consecutive pairs. We compare the value of the
Euclidean distance between the density functions when using
our estimated solution Θ̂ and when using the ground truth
ΘGT . For the 92 pairs computed we conclude with 99.9% of
confidence that our estimate Θ̂ minimizes the distance better
between the two pdfs even when relaxing the bandwidth.
Figure 2 presents a close up when aligning two scans using
our estimate of Θ and using the ground truth.

3D Kinect scan alignment: We use our algorithm for align-
ing data captured from multiple views using the Kinect sen-
sor. The resulting mesh when many views are used (Fig.

2Captured by Oliver Wulf from the Leibniz University and available at
http://kos.informatik.uni-osnabrueck.de/3Dscans/.
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(a) (b)

Fig. 2. Details of the alignment between buildings. a) using
our proposed algorithm for aligning the scans and b) using
ground truth.

3 b) shows less holes and appears smoother than the mesh
generated from only one Kinect scan (Fig. 3 a).

Fig. 3. Kinect scan alignment for a face. The top row shows
a sequence of images captured from different points of view.
Bottom row: Mesh created from (a) a single acquisition, (b)
multiples views and (c) face captured using a laser scanner.

5. CONCLUSIONS

We have presented a Mean Shift algorithm for solving the ro-
bust point set registration proposed by Jian and Vermuri [1].
We use as a cost function the closed form solution for the
Euclidean distance between the Mixture of Gaussians. The
resulting algorithm is shown to be more robust to Jian and
Vermuri’s thanks to the annealing framework implemented
and the use of variable bandwidth for modelling the density
functions. The use of variable bandwidth compensates the
limitation of the isotropic covariance in the modelling of the
density function allowing better representations of the encode
shape in the data set. Additional experiments in 3D real data
were also reported, demonstrating the performance of our al-
gorithm in real applications.
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